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Abstract FFT algorithms have memory access pat-

terns that prevent many architectures from achieving

high computational utilization, particularly when par-

allel processing is required to achieve the desired lev-

els of performance. Starting with a highly efficient hy-

brid linear algebra/FFT core, we co-design the on-chip

memory hierarchy, on-chip interconnect, and FFT algo-

rithms for a multicore FFT processor. We show that it

is possible to to achieve excellent parallel scaling while

maintaining power and area efficiency comparable to

that of the single-core solution. The result is an archi-

tecture that can effectively use up to 16 hybrid cores for

transform sizes that can be contained in on-chip SRAM.

When configured with 12MiB of on-chip SRAM, our

technology evaluation shows that the proposed 16-core

FFT accelerator should sustain 388 GFLOPS of nomi-
nal double-precision performance, with power and area

efficiencies of 30 GFLOPS/W and 2.66 GFLOPS/mm2,

respectively.
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1 Introduction

Both linear algebra (LA) and Fast Fourier Transforms

(FFTs) are fundamentally linked to the underlying math-

ematics of many areas of computational science. Matrix

computations form the basis of almost all numerical

methods. By contrast, FFTs are perhaps the most im-

portant single tool in signal processing and analysis,

and play a fundamental role in indirect imaging tech-

nologies, such as synthetic aperture radar [5] and com-

puterized tomographic imaging [14]. FFTs are a widely

used tool for the fast solution of partial differential

equations, and support fast algorithms for the multi-

plication of very large integers. Fourier transforms and

dense linear algebra operations are closely related, and

many scientific applications (such as finite element or

N-body problems) often require both. However, com-

pared to the direct computation of the discrete Fourier

transform by matrix computations, the FFT has a more

modest number of computations per data element (this

is one of the main reasons that it is “fast”), so that per-

formance of FFT algorithms is typically limited by the

data motion requirements rather than by the arithmetic

computations.

Compared to dense linear algebra operations, FFTs

provide many additional challenges to obtaining high

performance. First: the increased ratio of data move-

ment per computation (even with perfect caches) will

cause the algorithm to be memory bandwidth limited

on most current computer systems. Second: memory

access patterns include strides of 2, 4, 8, ...N/2, which
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interfere pathologically with the cache indexing and

the cache and memory banking for standard processor

designs. Third: the butterfly operation contains more

additions than multiplications, such that the balanced

FPUs on most current architectures will be under-utilized.

In previous work, we analyzed the similarities be-

tween General Matrix-Matrix Multiply (GEMM) and

FFT algorithms, and we showed how one might trans-

form an optimized GEMM core into an FFT accelera-

tor [26]. Our starting point was a Linear Algebra Core

(LAC) [21] that can support the full range of level-3

BLAS [25] and matrix-factorizations [24] with high ef-

ficiency. After evaluating LAC limitations and trade-

offs for possible FFT solutions, we introduced a flexi-

ble, hybrid design that can perform both linear algebra

and FFT computations efficiently. This hybrid core is

based on a minimal set of modifications to the exist-

ing LAC architecture and is optimized for FFTs over a

wide range of vector lengths.

In this paper, we continue our analysis of larger

FFT problem sizes that cannot fit into the core-local

memory, but are small enough to fit into an on-chip

scratch-pad storage. We explore different options to ac-

celerate such problems when exploiting multiple hybrid

LA/FFT cores. In the process, we examine different

possible modes of operation in which the design can

run FFTs as a multi- or many-core solution for dif-

ferent problem sizes. We present the design of a unique

low-power memory hierarchy architecture that provides

sufficient bandwidth for the cores to perform FFTs ef-

ficiently. Finally, we study the power efficiency trade-

offs as function of the required memory bandwidth and

storage size for different configurations.

The goal of this work is to explore the design space

and perform a study to evaluate the potential for scal-

ability of a multicore configuration of the hybrid linear

algebra/FFT core of our previous work, rather than

to advance a specific implementation thereof. We fo-

cus primarily on double-precision floating-point perfor-

mance – in part because the original linear algebra core

was designed for double precision, and in part because

the use of double precision variables increases band-

width requirements and thus increases the need to focus

on optimizing the data motion in the architecture. We

include some single precision comparisons to FPGAs

and specialized FFT engines in the final section because

we were unable to find comparable double-precision re-

sults in the literature.

In doing so, we evaluate and explore tradeoffs us-

ing analytical performance and power models that have

been calibrated through synthesis of key components

and comparisons against literature. Our methodology is

based on multiple iterations of an algorithm-architecture

co-design process, taking into account the interplay be-

tween design choices for the core and the on-chip mem-

ory hierarchy. As part of this process, we study multiple

choices in multi-core configurations and compare them

in terms of power, area efficiency, and design simplicity.

The rest of the paper is organized as follows: In Sec-

tion 2 we provide a brief overview of related work. Sec-

tion 3 describes the conventional and Fused Multiply

Add (FMA) Radix-2 and Radix-4 butterfly FFT algo-

rithms. In Section 4, we describe the baseline architec-

ture of existing hybrid LAC/FFT cores. Section 5 then

describes the mapping of larger FFTs onto a larger de-

sign, and Section 6 studies the trade-off and deriva-

tion of different architecture constraints. In Section 7

we present a set of architecture configurations for both

single- and multi- core solution suggested by our ana-

lytical models. In Section 8, we present estimated per-

formance and efficiency of our design and compare with

some competing options. Finally, we conclude the paper

in Section 9.

2 Related Work

The literature related to fixed-point FFT hardware in

the digital signal processing domain is immense. Liter-

ature reviews of hardware implementations date back

to 1969 [3] – only four years after the publication of the

foundational Cooley-Tukey algorithm [7].

The literature related to specialized floating-point

FFT hardware is considerably less broad, especially when

excluding work that is concerned exclusively with FPGA

implementations [1,11,17], or when seeking references

to double-precision floating-point FFTs. Much of the
literature focuses on the requirements of the arithmetic

units (e.g., [35,30]), or on the construction of individ-

ual butterfly units [12,31], or on the performance for

streams of fixed-sized FFT’s (e.g., [20]) rather than on

complete FFT algorithms for a variety of problem sizes

(as is our focus here).

Important recent work concerns the automatic gen-

eration of optimized hardware FFT designs from high-

level specifications [19]. These hardware designs can

use either fixed or floating-point arithmetic and can be

used in either ASIC or FPGA implementations. One

double-precision result using FPGAs [1] explores the

issue of obtaining maximum performance for large 2D

FFTs from a fixed level of off-chip memory bandwidth,

achieving greater than 85% of the theoretical perfor-

mance limit for the off-chip bandwidth available. Hem-

mert and Underwood [11] provide performance com-

parisons between CPU and FPGA implementations of

double-precision FFTs, and include projections of an-

ticipated performance.
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Performance of FFT algorithms varies dramatically

across hardware platforms and software implementa-

tions, depending largely on the effort expended on op-

timizing data motion. The predominance of power-of-

two memory access strides causes general purpose mi-

croprocessor based systems to deliver poor performance

on FFTs that do not fit in cache, even with highly op-

timized implementations [8]. Programmable Graphics

Processing Units (GPUs) often provide much higher

performance for FFTs, but with only moderately higher

energy and area efficiency than general-purpose proces-

sors [1,27]. Modifications to enhance FFT performance

in the Godson-3B processor, a MIPS64-compatible, high-

performance 8-core CPU, are presented in [18], and

a highly optimized implementation of single precision

FFT for the Cell BE is presented in [10]. A broad sur-

vey of the power, performance, and area characteris-

tics of single-precision FFT performance on general-

purpose processors, GPUs, FPGAs and ASICs is pro-

vided by Chung [6], while a more detailed comparison

of single-precision FFT performance on recent FPGAs

and GPUs is presented in [27].

3 FFT Core Algorithm

At the lowest level, FFT algorithms are based on com-

bining a small number of complex input operands via

sum, difference, and complex multiplications to produce

an equal number of complex output operands. These

are referred to as “butterfly” operations because of the

shape of the dataflow diagram (e.g., as shown later in

Fig. 3). In this section, we briefly give the mathematical

description of Radix-2 and Radix-4 FFT butterfly op-

erations as optimized for execution on Fused Multiply-

Add (FMA) units. Then, we discuss the data commu-

nication patterns that are needed when applying these

operations to compute FFTs of longer sequences.

The Radix-2 Butterfly operation can be written as

the following matrix operation, where wj
L are constant

values (usually referred to as “twiddle factors”) which

we store in memory:(
x(j)

x(j + L/2)

)
:=

(
1 ωj

L

1 −ωj
L

)(
x(j)

x(j + L/2)

)
.

This operation contains a complex multiplication op-

eration and two complex additions, corresponding to

10 real floating-point operations. Using a floating-point

MAC unit, this operation takes six Multiply-ADD op-

erations that yields 83% utilization.

A modified, FMA-optimized butterfly is introduced

in [15], where the multiplier matrix in the normal but-

b=a-WL
jb d=c-WL

2jd

a=2a-b c=2c-d

c=a-WL
jc

x(j)=2a-c

d=b-iWL
jd

x(j+3L/4)=2b-d

0-34-7

8-9

10-11
12-15

18-2116-17

22-23

x(j+L/2)=x(j)-wj
Lx(j+L/2)

x(j)=2x(j)-x(j+L/2)

0-3

4-5

RADIX 4 on a FMAC
RADIX 2 on a FMAC

Accumulation
Dependency

Multiplication 
Dependency

a=x(j); b=x(j+L/2); d=x(j+3L/4);

x(j+L/4)=d

c=x(j+L/4);

x(j+L/2)=c

Fig. 1 DAG of the optimized Radix-4 butterfly using a fused
multiply-add unit. Rectangles on top indicate the input data,
solid nodes show complex computations with four FMA op-
erations each, nodes with dashed lines show complex compu-
tations with two FMA operations each. The nodes are exe-
cuted in an order that avoids data dependency hazards due to
pipeline latencies, as shown by the start-finish cycle numbers
next to each node.

terfly is factored and replaced by:(
1 ωj

L

1 −ωj
L

)
=

(
2 −1
0 1

)(
1 0

1 −ωj
L

)
.

This algorithm requires 12 floating point operations

represented in six multiply-adds. Although the total

number of floating-point operations is increased, they

all utilize a fused multiply-add unit and the total num-

ber of FMAs remains six.

A Radix-4 FFT butterfly is typically represented as

the following matrix operation:(
x(j)

x(j + L/4)
x(j + L/2)
x(j + 3L/4)

)
× =

(
1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

)
diag(1, ωj

L, ω
2j
L , ω3j

L ).

This contains three complex multiplications and eight

complex additions that sum up to 34 real floating-point

operations. The number of complex additions is much

larger than the number of multiplications. Hence, there

is a clear computation imbalance between multiplica-

tions and additions. Note also that three complex twid-

dle factors ωj
L, ω2

Lj, and ω3
Lj all have to be brought into

the butterfly unit.

Alternately, the Radix-4 matrix above can be per-

muted and factored to give the following representation

(ω = ωj
L):(

x(j)
x(j + L/4)
x(j + L/2)
x(j + 3L/4)

)
× =

(
1 0 ω 1
0 1 0 −iω
1 0 −ω 0
0 1 0 −iω

) 1 ω2 0 0
1 −ω2 0 0

0 0 1 ω2

0 0 1 −ω2

 .
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This can be further divided recursively using the same

factorization as in the radix-2 FMA-adapted version.

The result generates 24 FMA operations as depicted in

Fig. 1. The FMAC utilization for the Radix-4 DAG is

34/48=70.83%, but this corresponds to 40/48=83.33%

if using the nominal 5NLogN2 operation count from the

Radix-2 algorithm that is traditionally used in comput-

ing the FLOP rate. Further details about this algorithm

will be presented in Section 5. The number of loads also

drops because only two of the three twiddle factors (ωj
L

and ω2j
L ) are required to perform the computations.

The two implementations of an L-point Radix-4 FFT

are shown below. The pseudo-code for the standard im-

plementation is shown on the left and the pseudo-code

for the FMA optimized version is shown on the right:

for j = 0 : L/4− 1 for j = 0 : L/4− 1
a := x(j); a := x(j);

b := ωj
Lx(j + L/4) b := x(j + L/4)

c := ω2j
L x(j + L/2) c := x(j + L/2)

d := ω3j
L x(j + 3L/4) d := x(j + 3L/4)

τ0 := a+ c b := a− ω2j
L b

τ1 := a− c a := 2a− b
τ2 := b+ d d := c− ω2j

L d
τ3 := b− d c := 2c− d
x(j) := τ0 + τ2; x(j + L/2) := c = a− ωj

Lc
x(j + L/4) := τ1 − iτ3; x(j) := 2a− c
x(j + L/2) := τ0 − τ2; x(j + L/4) := d := b− iωj

Ld
x(j + 3L/4) := τ1 + iτ3; x(j + 3L/4) := 2b− d

end for end for

4 Hybrid Core Design

The microarchitecture of our baseline hybrid Linear Al-

gebra / FFT Core (LAFC) is illustrated in Fig. 2 [26].

The LAFC architecture consists of a 2D array of nr×nr

Processing Elements (PEs), with nr = 4 in Fig. 2.

Each PE has a double-precision Floating-Point Mul-

tiply ACcumulate (FPMAC) unit with a local accu-

mulator, and local memory (SRAM). PEs on the same

row/column are connected by low-overhead horizon-

tal/vertical broadcast buses. The control is distributed

and each PE has a state machine that drives a predeter-

mined, hard coded sequence of communication, storage,

and computation steps for each supported operation.

4.1 Architecture

For performing linear algebra operations, the architec-

ture and implementation optimize the rank-1 update

operation that is the innermost kernel of parallel matrix

multiplication [34]. This allows the implementation to

achieve orders of magnitude better efficiency in power

and area consumption than conventional general pur-

pose architectures [23].

The FPMAC units perform the inner dot-product

computations central to almost all linear algebra oper-

ations. To achieve high performance and register-level

locality, the LAFC utilizes pipelined FPMAC units that

can achieve a throughput of one dependent FPMAC

operation per cycle [13], which avoids data dependency

hazards and associated stalls in regular architectures [22].

For FFT operation, the off-core bandwidth needs

to be double that of a pure linear algebra design. The

PEs must be able to overlap the prefetching of input

data and the post-storing of output data from/to off-

core memory concurrently with the computations. The

LAFC therefore has two external memory interfaces

that allow both row and column buses to transfer data

to/from PEs. This design is symmetric and natively

supports transposition.

The PE-internal storage also needs enough band-

width to provide data for both Radix-4 computations

and off-core communications. The original linear alge-

bra PE has one larger, single-ported and one smaller,

dual-ported SRAM to save power for more frequent

accesses to elements of Matrix B. Since the smaller

SRAM is already dual ported, the larger SRAM is fur-

ther divided into two halves for FFT operation. Fur-

thermore, the register file is extended with more ports

and more capacity to match the requirements of the

FFT. An 8-word register file is needed to store the four

complex input, temporary, and output values of the

FMA-optimized Radix-4 butterfly. Overall, the datap-

ath within the LAFC has a symmetric design with two

separate buses each connected to all the components in

the PE and to one of the SRAMs.

4.2 FFT Mapping

The broadcast bus topology allows a PE to communi-

cate with other PEs in the same row and with other PEs

in the same column simultaneously. To maximize local-

ity, we consider only designs in which each butterfly

operation is computed by a single PE, with communica-

tion taking place between the butterfly computational

steps. We note that if the LAFC dimensions are se-

lected as powers of two, the communication across PEs

between both Radix-2 or Radix-4 butterfly operations

will be limited to the neighbors on the same row or col-

umn. The choice of nr = 2 provides little parallelism,

while values of nr >= 8 provide inadequate bandwidth

per PE due to the shared bus interconnect. Therefore,

we choose nr = 4 as the standard configuration for the

rest of the paper.

A Radix-2 operation takes six FMA operations. Per-

forming Radix-2 operations in each PE, the LAFC can

perform 32-point FFTs, but can only hide the latency
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Fig. 2 Hybrid linear algebra/FFT core (LAFC) with support for reuse of temporary values of Radix-4 butterfly operations
and enough bandwidth between PEs and to off-core memory. Extensions for FFT operation are shown in red.

of the FMA pipeline for FFT transforms with 64 or

more points. The shortcoming of performing Radix-2

butterflies on the PEs comes from a computation/ com-

munication imbalance [26]. In stages two through four

of the overall algorithm, broadcast buses are being used

for exchanging data. In doing so, nr complex numbers

are transferred on the bus, which takes 2nr (eight) cy-

cles. Since computation requires only six cycles, this

imbalance decreases utilization by an undesirable 25%.

The Radix-4 butterfly on the PE is more compli-

cated. Fig. 1 shows the DAG, where solid ellipse nodes

take 4 FMA operations and dashed nodes take 2 FMA

operations. A pipelined FPMAC unit has q pipeline

stages with q = 5 ∼ 9. The nodes in the DAG should

be scheduled in a way that data dependency hazards

do not occur due to pipeline latency. However, the FP-

MAC units have single cycle accumulation capabilities.

Hence, no data dependency hazards can occur among

addition/accumulations (dashed arrows). For the mul-

tiplication dependencies (solid arrows), there should be

at least q cycles between start of a child node and the

last cycle of its parent. The start-finish cycle numbers

next to each node show an execution schedule that tol-

erates pipeline latencies of up to 9 cycles with no stalls,

thus providing 100% FMA utilization.

The overall Radix-4 algorithm is similar to the Radix-

2 algorithm, but with more work done per step and

with communication performed over larger distances in

each step. Fig. 3 shows a 64-point FFT where each PE

performs Radix-4 butterfly operations. This transform

contains three stages. The communication pattern for

the first PE in the second and third stages is shown

with highlighted lines in the figure. In the second stage,

PE0=PE(0,0) has to exchange its last three outputs

with the first outputs of its three neighboring PEs:

PEs(1,2,3)×40 ⇒
PE1 = PE(0, 1)

PE2 = PE(0, 2)

PE3 = PE(0, 3)

(See Fig. 4). Similarly, in the third stage, PE(0,0) has

to exchange its last three outputs with the first outputs

of PEs that have distance with multiples of 4:

PEs(4,8,12) = PE(1,2,3)×41 ⇒
PE4 = PE(1, 0)

PE8 = PE(2, 0)

PE12 = PE(3, 0)

Since there are only 16 PEs in a core, PEs that have

distances of multiples of 42 = 16 fall onto the same

PE, and there is no PE-to-PE communication. When

communication is required, all the PEs on the same row

or column have to send and receive a complex number

to/from each of their neighbors. The amount of data

that needs to be transferred between PEs is 2nr(nr−1).

For the case of nr = 4, the communication takes 24

cycles, which exactly matches the required cycle count

for the radix-4 computations. As such, the remainder

of the paper will focus on the Radix-4 solution only.

The approach used for the 64-point FFT can be gen-

eralized to any (power of 4) size for which the data and

twiddle factors fit into the local memory of the PEs.

Consider an N = 4m point FFT using the Radix-4 but-

terfly implementation described above. The transform

includes logN4 = m stages. Out of these m stages, only

two use broadcast buses for data transfer – one stage

using the row buses and one stage using the column

buses. The rest of data reordering is done by address

replacement locally in each PE. Therefore as discussed

in the next section, as the transform size increases, the

broadcast buses are available for bringing data in and

out of the LAC for an increasing percentage of the total

time.
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Fig. 4 Data communication access patterns between PEs of the LAFC for Radix-4 FFT.

For larger problem sizes, the radix computations can

be performed in a depth-first or breadth-first order (or

in some combination). We choose the breadth-first ap-

proach due to its greater symmetry and simpler control.

In this approach, all the butterflies for each stage are

performed before beginning the butterflies for the next

stage.

5 Mapping for Larger Transforms

The local memory in the PEs will allow storage of in-

put data, output data, and twiddle factors for problems

significantly larger than the 64-element example above,

but the local memory size will still be limited. To make

the examples concrete, we will use 4096 as a “typical”

value for the maximum size that can be transformed in

core-local memory, with more discussion in later sec-

tions.

Given a core capable of computing FFTs for vec-
tors of length [64, . . . , 4096], it is of interest to explore

the off-core memory requirements to support the data

access patterns required by these small FFTs as well

as those of more general transforms, such as larger 1D

FFTs or multidimensional FFTs.

First, we note that the butterfly computations shown

in Fig. 3 produce results in bit-reversed order. Although

some algorithms are capable of working with trans-

formed results in permuted orders, in general it is nec-

essary to invert this permutation to restore the results

to their natural order. Converting from bit-reversed to

natural order (or the converse) generates many power-

of-two address strides, which are problematic for mem-

ory systems based on power-of-two banking with multi-

cycle bank cycle times. The most straightforward solu-

tions are based on high-speed SRAM arrays capable of

sourcing or sinking contiguous, strided, or random ad-

dresses at a rate matching or exceeding the bandwidth

requirement of the core. These will be referred to as

“off-core SRAM” in the discussions below.

In part due to this requirement for high-speed ran-

dom access, this analysis is limited to sizes that are

appropriate for on-chip (but off-core) memory. Consid-

erations for off-chip memory are beyond the scope of

this paper and are deferred to future work.

5.1 Mapping for Larger 1D FFTs

Support for larger one-dimensional FFTs is provided

through the generalized Cooley-Tukey factorization, com-

monly referred to as the “four-step” algorithm [2]. For

an FFT of length N , we split the length into the prod-

uct of two integer factors, N = N1 × N2 and treat

the data as a two-dimensional array with N1 columns

and N2 rows. The 1D discrete Fourier transform can

then be computed by the sequence: (1) Transform the

“columns” (N1 FFTs of length N2); (2) Multiply the

results by an array of complex roots of unity (also re-

ferred to as “twiddle factors” in the literature, but these
are an additional set of scaling factors beyond those in-

cluded in the row and column transforms themselves1);

(3) Transform the “rows” (N2 FFTs of length N1). The

fourth step (transposing the output of step three) is

omitted here, as discussed below.

For a core capable of directly performing transforms

of up 4096 elements, this algorithm allows computing

a 1D transform for lengths of up to 40962 = 224 ' 16

million elements. (On-chip memory capacity will not be

adequate for the largest sizes, but the algorithm suffices

for this full range.) For transforms larger than N = 224

elements, the transform must be factored more than

two sub-factors, each less than or equal to 212. The

corresponding algorithms can be derived directly or re-

cursively, but support for these algorithms is beyond

the scope of this paper.

1 To avoid confusion in this paper, we distinguish between
”local twiddle factors” used in the radix-4 operator and
”global twiddle factors” used in the four-step method.
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Stage 2 or 1:
Read 

Transform
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Fig. 5 Overview of data motion to/from the core for performing a 64K 1D FFT (left), and for a 256× 256 2D FFT (right).
Differences between the two cases are highlighted in red text.

The overall data motion for the 1D FFT is shown

in in the left panel of Fig. 5. Assuming that the data

begins in natural order, the first set of transforms must

operate on strided data – essentially the “columns” of a

row-major array. In order to perform transforms on nat-

urally ordered data, an array transposition is required.

This is performed while the data is being loaded from

the on-chip memory into the core, and requires support

for reading data at a stride of N2 complex elements. The

core performs the transform as described in the previ-

ous section. Each “column” of results is written back to

the same location in off-core SRAM from which it was

initially fetched. Note that the data in the core is in bit-

reversed order after being transformed, so in order to

return the data to off-core SRAM in natural order, the

data must be loaded from the core in bit-reversed order,

then returned to the off-core SRAM with the stride of

N2 complex elements.

The multiplication by the “global twiddle factors”

can be performed at the end of the first set of trans-

forms, or as a separate step, or (as in this design), as

the data is read back into the core for the second set of

transforms, but before the second set of transforms be-

gins. The second FFT step therefore requires twice the

read bandwidth of the first set of FFTs, since both the

intermediate data and the global twiddle factors must

be read from the off-core SRAM to the core for this

step.

After the intermediate data is read into the core and

multiplied by the global twiddle factors, the second set

of transforms can be performed on each “row”. As each

of these row transforms is completed, the data is writ-

ten from core memory to the off-core SRAM with the

bit-reversal permutation to return the data to natural

order.

This completes the computations for the 1D FFT,

but at this point the values are stored in the transpose

of the natural order. Given the ability of the off-core

SRAM to source data in arbitrary order, it is assumed

that subsequent computational steps will simply load

the data in transposed order. (Since transforms can be

factored in more than one way, this requires that sub-

sequent steps know which factorization was used.)

5.2 Algorithm for Multidimensional FFTs

For a core capable of computing 1D FFTs of lengths

64, . . . , 4096, multi-dimensional FFTs of sizes up to 4096

in any dimension are straightforward, as they are sim-

ply the result of independent 1D transforms for each

“row”, “column”, etc. The 2D transforms, in particular,

are similar to large 1D FFTs computed by the four-step

method, but are simpler to implement since no “global

twiddle factors” are required, and since the final result

does not require an additional transposition.

The data motion for the 2D FFT is shown in the

right panel of Fig. 5. After the row transforms are pro-

duced and written back to the off-core SRAM (using

bit-reversal to obtain natural ordering), the data is read

in transposed order to allow computation of the column

transforms. These are then written back in transposed

order (with bit reversal to restore natural order) to com-

plete the 2D FFT.

Multidimensional FFTs of higher order require a

different stride for the transposition for each dimen-

sion, but are otherwise almost identical to the 2D FFT.

For multidimensional transforms with any dimension(s)
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larger than 4096, the four-step method described above

for 1D transforms is applied to each transform of length

greater than 4096.

5.3 Mapping of Transforms on Multiple Cores

The four-step algorithm for 1D FFTs described in Sec-

tion 5.1 provides a clean decomposition of the FFT al-

gorithm into independent “row” and “column” trans-

forms, plus a point-wise set of global twiddle factor mul-

tiplications. This provides a large degree of computa-

tional parallelism that can be exploited across multiple

cores in all three computational steps.

At a high level, the four-step algorithm used on mul-

tiple cores is almost the same as for the single-core case.

For the first step, instead of fetching one column from

off-core SRAM and processing it with one core, multi-

ple columns are fetched, each column is sent to a core,

and the transforms proceed concurrently. The global

twiddle factor multiplication is point-wise, and so triv-

ially parallelizable. Finally, multiple rows are fetched,

each row is sent to a core, and again the transforms are

performed concurrently.

To view the algorithm at a finer level of detail one

must make assumptions about the memory hierarchy

and interconnection topology.

For multidimensional transforms on multiple cores,

the considerations of Section 5.2 apply. Instead of pro-

cessing the independent transforms sequentially through

a single core, they are block-distributed and processed

sequentially by multiple cores. The off-core memory

must be capable of handling different strides for each

of the (non-unit-stride) dimensions.

5.4 Mappings and Their Modes of Operation

The modes in which an FFT engine might operate de-

pend on the relative values of key attributes of the im-

plementation technology available. Based on the pre-

ceding analysis, we can consider three cases:

1. Core-contained : Short transforms (64 to 4096 ele-

ments) that can be performed fully within the local

memory of a core. These are implemented directly

by repeated application of the Radix-4 kernel.

2. Four-step, Single-Core: Larger transforms executed

by one core that must stage the data to/from an

off-core (but on-chip) memory, using the four-step

algorithm presented in Section 5.1.

3. Multicore: Transforms that are distributed across

multiple cores to obtain better performance on each

transform.

log2N MiB/array 1 Core 4 Core 16 Core
12 0.0625 direct 4-step* 4-step*
14 0.25 4-step 4-step* 4-step*
16 1.0 4-step 4-step 4-step*
18 4.0 4-step 4-step 4-step

Table 1 Transform sizes and algorithms for 1, 4, and 16
cores. “Direct”: performed directly using radix-4 operations
in the core’s local memory. “4-step”: uses the 4-step algorithm
with global twiddle factors loaded from off-core SRAM. “4-
step*”: uses the 4-step algorithm, with global twiddle factors
pre-loaded into core-local memory.

Case 1 (core-contained transforms) often occur as

streams of independent vectors. These are trivial to

pipeline (given adequate buffer space in the core and

adequate off-core bandwidth) and trivial to parallelize

(across independent transforms) and so will not be fur-

ther discussed as an independent workload. However,

these short core-contained transforms form the basis of

the four-step method. Therefore, this mode of opera-

tion needs to be considered as a component of larger

transforms

Case 2 (the four-step method on a single core) was

initially presented in our previous work [26]. This mode

forms the basis for the multicore algorithm that is our

primary focus in this paper.

Case 3 (transform using multiple cores) is the main

focus of the current work. It is closely related to Case

1 and Case 2, but introduces new balances of compute

versus bandwidth and requires the introduction of an

architecture for global communication across cores to

support the transpose functionality.

In summary, the transform sizes being analyzed here

and the corresponding choices of algorithms are pre-

sented in Table 1. The notation “4-step*” is used to

refer to those cases for which the local memory require-

ments for working storage and buffers is small enough

to allow the global twiddle factors to be pre-loaded into

core-local memory.

6 Architecture Trade-off Analysis

In previous sections, we provided the fundamentals for

mapping a Radix-4 based FFT transform onto a LAFC-

based architecture. In this section, we derive per-core

analytical models for architectural constraints and trade-

offs in relation to various operation modes and architec-

tural configuration parameters. Note that the tightest

limitations always come from the 4-step method, so we

will primarily focus on this mode.

We briefly review the primary core constraints and

trade-offs for local storage, computation/communication

overlap, and off-core bandwidth that are thoroughly
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FFT N2 × N1 2D No-Ov 2D Ov 1D No-Ov 1D Ov
Local Store 4N1 6N1 6N1 8N1

Radix-4 Cycl. 6N1log4N1/n
2
r

Tw. Mult. Cycl. - - 6N1/n
2
r 4N1/n

2
r

Comm 2N1(R)+2N1(W) 4N1(R)+2N1(W)

Table 2 Single core storage and compute requirements for
overlapped and non-overlapped versions of N2 ×N1 2D and
N = N2 ×N1 1D FFTs for 4-Step mode.

discussed in [26]. The number of PEs in each row/column

is denoted with nr(=4) and problem sizes are chosen in

the range of N = 64, . . . , 4096. Each FMA-optimized

Radix-4 butterfly takes 24 cycles as presented in Sec-

tion 3. Therefore, an N -point FFT requires a cycle

count of N/4× 24× logN4 /n2
r.

Similar to our linear algebra design [21], we consider

two cases in our analysis for FFT on the core: no or full

overlap of off-core communication with computation.

Note that due to the high ratio of communication to

computation (O(N)/O(N logN)), the non-overlapped

FFT solution suffers significantly resulting in low uti-

lization. Hence, our primary focus will be on implemen-

tations that overlap computation and off-core data mo-

tion as completely as possible. The core requirements

for these combinations are summarized in Table 2.

6.1 Single-core constraints for 2D FFTs

For both stages of the 2D FFT and the first stage

of the 1D FFT, each core is performing independent

FFT operations on rows or columns. The local twid-

dle factors remain the same for each transform, and

can therefore be retained in core-local memory. There-

fore, the core bandwidth and local store size can be

calculated as follows: The amount of data to transfer

for a problem of size N includes N complex inputs

and N complex transform outputs resulting in a to-

tal of 4N real number transfers. In case of no overlap,

data transfer and computation are performed sequen-

tially. For the case of full overlap, the average band-

width for a FFT of size N can be derived from the

division of the total data transfers by the total com-

putation cycles as BWAvg = 2n2
r/3 logN

4 . However, out

of logN4 stages, stage 2 utilizes row buses and stage 3

uses column buses for inter-PE communications. If col-

umn buses are used to bring data in and out of the

PEs, the effective required bandwidth is increased to

BWeff = 2n2
r/3(logN

4 −1).

The aggregate local store of PEs includes the N

complex input points and N complex local twiddle fac-

tors. In the non-overlapped case, this amount of storage

suffices. There is no need for extra buffering capacity.

However, the overlapped case requires an extra N point

buffer to hold the prefetched input values for the next

transform. Therefore, the aggregate PE local stores in a

core should be 6N double-precision floating-point val-

ues.

6.2 Single-core constraints for 1D FFTs

In order to maximize the potential for overlapping com-

putation with data transfer in the four-step method,

the multiplication of intermediate results by the global

twiddle factors is merged with the second set of trans-

forms. In this merged step, the core must read both

the intermediate row data and the global twiddle fac-

tors, then multiply them (point-wise) before perform-

ing the row transforms. The complex multiplication for

each element adds 4N real multiplications to the total

computations of this step, giving a total cycle count

of (6NlogN4 + 4N)/n2
r. The amount of data to transfer

for a problem of size N includes 2N complex inputs

(transform inputs and global twiddle factors), and N

complex outputs resulting in a total of 6N real num-

ber transfers. In case of no overlap, data transfer and

computation are performed sequentially. For the case of

full overlap, the average bandwidth for an FFT of size

N therefore becomes BWAvg = 3n2
r/(3 logN

4 +2). If col-

umn buses are used to bring data in and out of the PEs,

the effective required bandwidth is increased (as in the

2D case described above) to BWeff = 3n2
r/(3 logN

4 −1).

Each N -point input to the core has to be multiplied

by a different set of global twiddle factors, so another

buffer is needed to pre-load the next column’s global

twiddle factors.

Finally, as described earlier, one can compute the

1D FFT by splitting N into the product of two inte-

ger factors, N = N1 × N2. Earlier we noted that the

fully-overlapped solution has lower communication load

for larger transform lengths. Noting also that the sec-

ond set of FFTs puts more communication load on the

core/external memory, we expect that ordering the fac-

tors so that the larger factor corresponds to the length

of the second set of transforms will provide more bal-

anced memory transfer requirements. Fig. 7 demon-

strates this effect for the case of a 64K point 1D FFT

with three different options for 64K = N1 ×N2.

6.3 Core constraints for multicore FFTs

For multicore operation, the constraints on the cores

are similar or identical to those of the single-core case.

However, the range of practical transform lengths is

slightly modified by the use of the four-step algorithm

(see Section 7.2). We therefore consider only sizes of

212 or larger for a multicore solution. In this case, the
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Fig. 7 Average communication load on core for the two
stages of a 64K 1D FFT.

four-step method employs row and column transforms

of length 26 or larger.

7 FFT Processor Architectures

In this section, we present a set of architecture config-

urations suggested by the preceding analyses. Several

options for the shared memory hierarchy will be derived

to meet the data handling and access pattern demands

of the problem. We first start with the single-core archi-

tecture and then present the multi-core shared memory

architecture.

7.1 Single Core Architecture

Fig. 6 shows the core bandwidth and local store re-

quirements for the overlapped and non-overlapped al-

gorithms. The utilization of the non-overlapped version

increases from 35% to 50% as the size of the transform

increases. The overlapped algorithm can fully utilize

the FMAC units for all these sizes, maintaining its op-

timum utilization of slightly over 83.3%. Depending on

the FFT type (1D or 2D), the overlapped algorithm

requires 33%∼50% extra local storage. Note that the

non-overlapped bandwidth is assumed to be at a fixed

rate of four doubles/cycles, which is the maximum ca-

pacity of the LAFC with only one memory interface.

For overlapped operation, we assume a full LAFC de-

sign with memory interfaces on both row and column

busses.

Table 2 shows that the largest requirement for core-

local storage is 8N1 words for a the second set of trans-

forms in the four-step algorithm for the 1D FFT (i.e.,

four buffers of N1 complex elements each). Noting that

larger transform sizes require lower average off-core data

transfer rates, there is a trade-off between core local

storage size and off-core communication bandwidth. We

have previously used the size N = 4096 as a baseline

for largest core-containable transform size. Four buffers

of this size requires 256 KiB of memory in the core, or

16 KiB per PE. Using the nomenclature of Figure 2,

this corresponds to 8 KiB for each of MEM A1/A2 and

4 KiB for MEM B.

For the case of double-precision complex data, the

natural data size is 2×64 = 128 bits, so we will assume

128-bit interfaces between the core buses and the off-

core SRAMs. As shown in Section 5.1, the first step of a

large 1D FFT requires less memory traffic than the sec-

ond stage, which includes loading an additional set of

twiddle factors. As such, we focus on the second stage

here. We consider whether the instantaneous read and

write requirements of the algorithm can be satisfied by

two separate SRAMs, one for data and one for twiddle

factors, each with a single 128-bit-wide port operating

at twice the frequency of the core, giving each a band-

width of 4 double-precision elements per cycle. (I.e.,

each SRAM has a bandwidth that exactly matches the

bandwidth of the row buses or of column buses.)
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Twiddle READ
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Data READ

Write
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Fig. 8 Example scheduling of data bus usage for fully over-
lapped pre-fetch/post-store for the worst case considered –
a 64-element transform in the second stage of the four-step
algorithm. 75% of the free row and column bus cycles are
required for off-core data transfers.

The worst case for this algorithm occurs for a sec-

ond stage (row) transform length of N1 = 64 elements,

where full overlap of data transfers with computation

requires that the external memory be able to provide

256 double-precision elements (64 complex input el-

ements plus 64 complex twiddle factors) and receive

128 double-precision elements (64 complex output el-

ements) during the 88 cycles required to perform the

twiddle factor multiplications and the three Radix-4

computations. The proposed memory interface band-

width is clearly adequate to provide for the average

traffic – the SRAMs require 64 cycles (of the 88 avail-

able) to provide the 256 words prefetched by the core

for its next iteration. The writes require only 32 of the

88 cycles, and these can be overlapped with the reads.

The core’s row and column buses are not available

for external data transfers in every cycle. Recall from

Fig. 3 that the row buses are in use during the sec-

ond Radix-4 step (24 cycles) of the 64-point FFT. By

contrast, the column buses are in use during the third

24-cycle Radix-4 step. Both row and column buses are

free during the twiddle factor multiplication step (16

cycles for N1 = 64) and during the 24 cycles of the

first Radix-4 computation. The detailed schedule can

be implemented in a variety of ways, but the example

in Fig. 8 shows that the required data transfers require

only 75% of the row and column bus cycles that are

available.

For all cases with N > 64, there are additional

Radix-4 stages with no use of the row and column

buses, making full overlap of communication and com-

putation easier to schedule. As the transform size in-

creases, the fraction of cycles available for data transfer

increases slowly. When the four-step method is being

used, the growth is slower than one might expect. The

current design requires the bandwidth of two off-core

SRAMs (i.e., one for twiddle factors and one for data in-

put/output) for problem sizes up to 216, and the band-

width of one off-core SRAM for larger sizes. Given the

minimum of 12 MiB of SRAM required for the 218 case,

it seems likely that most larger problem sizes will have

to be implemented using a different memory technology.

Non-SRAM memories do not provide the low-latency,

high-bandwidth, single-word random access capability

assumed here, so larger problems will require algorith-

mic changes to accommodate the characteristics of the

memory technology to be used.

7.2 Multicore Architecture

All FFT algorithms require some degree of global com-

munication, either in the repeated application of radix

butterflies of ever-increasing stride, or in the transpo-

sition operation of the four-step method. One option

that might be considered to enable this global commu-

nication for a multicore architecture is the use of a sin-

gle, shared multi-ported off-core SRAM. This approach,

however, has serious scalability issues, with both area

and energy per access growing up to quadratically with

the number of ports, and with the maximum frequency

of operation decreasing as the number of ports is in-

creased. Therefore, a more elegant approach is required.

The treatment of the 1D vector as a 2D array in the

four-step method suggests that distributing the data

across the cores either by rows or by columns will enable

half of the transforms to be performed entirely on local

data. Since the “global twiddle factors” are only used

in a point-wise fashion, they can always be distributed

to allow local access, thus making approximately 3/5 of

the accesses localizable.

These issues lead us to propose an architecture com-

posed of a collection of “core plus private off-core SRAM

memory”, and assume that the data is block-distributed

across the off-core SRAMs by row. (Due to the symme-

try of the computations and data access, there are no

fundamental differences between block distributions by

row and by column.) With this assumption, the second

set of transforms in the four-step method are on rows,

and are therefore fully local in such an architecture.

The first set of transforms, however, requires transpos-

ing the data across all of the cores. We therefore assume

that the architecture contains a transposer that fully

connects all the cores to all the off-core SRAMs, and

that provides the transposition functionality that we

obtained by simply using a strided access in the single-

core case. This connectivity is illustrated schematically

in Fig. 9 for the case of four cores. The operation of the

transpose unit is illustrated schematically in Fig. 10

for the case of four cores. The ordering of the data

accesses sent through the transpose unit is chosen to

maximize the potential for overlap of computation with

data transfers.
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Fig. 9 Interconnections in a multicore system with four
cores. The transpose unit interleaves the four input streams
into the four output streams as shown in Fig. 10.
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Fig. 10 Operation of transpose unit for a four-core system.
The unit fetches four elements from each core (or SRAM),
transposes the 4 × 4 array, then sends four elements to each
SRAM (or core). This cycle is repeated until each core has
received a full column, then repeated for each set of four
columns in the 2D representation of the array.
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Twiddle 
Factors

Core

Transposer

Fig. 11 Schematic of off core memory configuration in the
multicore case. The transposer is connected to all cores and
to all off-core data SRAM pairs.

We consider the memory configuration of a single

core in more detail, as illustrated in Fig. 11. As in the

single-core case, we assume that the data and twiddle

factors are divided into separate SRAMs, each with a

single 128-bit port running at twice the core frequency.

We extend the configuration of [26] to support overlap

of computation with off-chip data transfers by replicat-

ing the data SRAM. Finally, we add a few small-radix

switches to allow connection of the row and column

buses to the twiddle factor SRAM, the transpose unit,

or one of the two data SRAMs.

To minimize complexity, we enforce some limita-

tions on the connections. As mentioned previously, all of
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Transposer
Shift Out

Transposer
Shift In

Transposer
Shift In

Buffer ShiftBuffer Shift

Fig. 12 Detail architecture of a 4×4 transposer, which is
basically an array of shift registers combined in orthogonal
direction for input and output and is double buffered.

these interfaces are bandwidth-matched, such that only

1:1 connectivity is possible. Only one of the two data

SRAM banks is accessible to the transpose unit and lo-

cal core during each computational step, with the other

data SRAM bank used exclusively for transferring re-

sults from the previous transform out and pre-loading

input data for the next transform. The SRAM holding

the twiddle factors does not require connectivity to the

transpose unit, since twiddle factors are only used in

a point-wise distributed fashion. Finally, the core can

connect to either the transpose unit or (one of the) lo-

cal data SRAM banks, but not both at the same time

(i.e., if both row and column buses are performing ex-

ternal data transfers at any one time, one set has to be

reading from the twiddle factor SRAM.)

Rather than incurring the complexity of a general-

purpose P × P crossbar, the transpose unit proposed

here can be considered (at a high level) to be a set

of cross-coupled row and column FIFOs that provide

full-bandwidth bidirectional transposition between the

P data SRAMs and the P cores. Fig. 12 illustrates the

transposer configuration for one data transfer direction

(reading data in on the rows and writing data out on
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the columns). Data transfer in the other direction (not

shown) is entirely analogous.

For a configuration with P cores and P SRAMs, the

transpose unit will contain two sets of P × P registers.

Each pair of registers is grouped in a “shifting cell”.

The shifting cells are arranged in a two-dimensional ar-

ray with P bidirectional row ports and P bidirectional

column ports. When operating in row-to-column mode,

each of the P registers in row i can only be written by

input port i, while each of the registers in column j can

only be read by output port j. The converse is true for

column-to-row mode.

The shifting cells of the transposer use one set of the

registers to buffer the input shifting data (as a FIFO

along each row) and the other set to shift the previously

buffered data out (as a FIFO along each column). Each

of the 2×2 switches contains two 2:1 multiplexers. One

of the switches selects the correct register for buffering

the input and the other selects the other one to shift

the output. In Fig. 12(a) we show a case where Reg

A is used for buffering the input and Reg B is used

to shift the previously buffered data out. Alternatively

Fig. 12(b) is the case when Reg B is buffering and Reg

A is shifting data out. By double-buffering the data

in this way, we completely separate row and column

transfers in time, so no dynamic switching is required

and no conflicts can occur.

Consider the 1-D transform of a vector of length

N = N1 ×N2 using the four-step method and P cores.

Assuming the data is distributed across the cores by

row, stage 1 must start with reading the columns of

the array, transposing them, and sending them to the

cores. By careful selection of the order in which the

data is read, bandwidth can be maximized and latency

minimized. E.g., for P cores, P elements at a stride of

N1/P (one element bound for each core) are fetched

from each SRAM to be sent to the transpose unit. This

is repeated P times with each repetition incrementing

the row number of the data selected. This results in a

P×P set of values in the transpose unit, which are then

sent to the cores in transposed order. Thus for an array

factored into N = N2×N1 (rows by columns), the first

N2 elements sent to each core constitute one complete

column. At this point, each core can begin transforming

its first column while additional columns are read from

the transposer and buffered into core memory.

After the columns have been transformed, the data

is returned in the reverse direction. The only difference

is that the indices produced by the algorithm above

are bit-reversed before being used to access the core

memory, thus putting the data back in natural order as

it is returned to the offcore memory.

For small problem sizes, all of the input data can be

buffered in core memory before the transposer needs to

be turned around to enable storing the data back to

SRAM. For larger problem sizes, the buffering requires

multiple phases of loads and stores through the trans-

poser, but in all of these cases there are enough idle data

transfer cycles (waiting for the transforms to complete)

to completely hide the transposer turnaround cycles.

Therefore, with the exception of a single row or column

transfer to fill the pipeline and another to drain it, all

data transfers are overlapped with computation.

8 Evaluation Results

In this section, we present performance, area and power

estimates for LAFC-based multi-core FFT accelerators,

and we compare our single and multi-core solution with

other available single- and double-precision implemen-

tations on various platforms. We note that this is a tech-

nology evaluation, not a complete design, so the power

and area estimates are approximations. We model all

the FPUs, the registers, the busses, the in-core and

off-core SRAMs, and the long-distance on-chip inter-

connects. We do not model the many small state ma-

chines required for control and sequencing of opera-

tions, address generators, bit-reversal for the addresses,

off-chip interfaces, error detection/correction circuits,

self-test circuits, etc. Given the statically predictable

cycle counts for the small number of operating modes

and transform sizes supported by this engine, we be-

lieve that a simple mostly-distributed control structure

is possible, though the details will depend on the spe-

cific usage scenario and are beyond the scope of this

paper. Although these functions contribute significantly

to the design effort for a system, they are not expected

to be first-order contributors to the performance, area,

or power estimates that we consider here.

8.1 Performance Estimation

As discussed in Section 7.1, the PEs execute radix-4 op-

erations at a nominal 83.3% utilization in the absence of

overheads. Two classes of overheads will be considered

here: the time required to execute the global twiddle

factor multiplications in the four-step method, and the

data transfer time that is not overlapped with computa-

tion (incurred when starting up and shutting down the

pipelined row and column transforms in the four-step

method).

In most cases, the larger of the two overheads is the

time required to multiply the data by the global twiddle
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Fig. 13 Normalized cycle counts for four transform sizes on 4 and 16 cores. Cycle counts are normalized against the total
compute cycles for the row and column transforms.

factors between the two transform steps in the four-

step method. This is a linear overhead of N/4 cycles.

As such, it does not change the asymptotic efficiency of

the algorithm, but does change the effective utilization

slightly. For problem sizes of N = 4096 or smaller, the

core can perform the transform directly, so the four-

step algorithm is not needed. For N = 16384, the extra

cycles reduce the nominal utilization to 76.1%, with

larger problems showing slightly less degradation due

to the increase in the N log2 N term.

In the single-core configuration, the overhead re-

quired to start up and drain the pipeline is very small.

This is due to offcore SRAM latencies being low (1.5 -

2.5 ns depending on size), and because the parallelism

allows almost all data transfers to be overlapped with

computation. The worst case occurs for the smallest

problem size requiring the four-step method, N = 214,

which we decompose as 28 transforms of length 26 in the

first step and 26 transforms of length 28 in the second

step. At a bandwidth of 2 complex elements per cycle,

loading the first column requires 32 cycles, after which

data transfers are completely overlapped with compu-

tation. Once the final column transform has been com-

puted, the copy-out of the final column can be over-

lapped with the loading of the first row. Loading the

first row and the associated global twiddle factors (256

elements each) requires 256 cycles. Once the final row

transform is completed, an additional 128 cycles are re-

quired to copy the final set of values to SRAM. The

total overhead of 32 + 256 + 128 = 416 cycles is less

than 0.9% of the compute cycles, and is neglected here.

In addition to the overhead required for global twid-

dle factor multiplication, the multicore implementation

contains additional latencies associated with transfers

via the transpose unit. We assume a latency of 12 SRAM

cycles (6 core cycles, or LD = 6 ns) for the direct path

between an SRAM and its local core. This remains

mostly negligible compared to the N1/2 core cycles re-

quired for any row or column transfer. For a transpose

unit connecting P cores, we assume an additional 2P

SRAM cycles (or P core cycles) of latency – P SRAM

cycles to load a buffer in the transpose unit and P

SRAM cycles to read that buffer in transposed order.

This latency, LP , will be incurred for both reading the

initial column and writing the final column data. We

do not attempt to overlap the writing of the final col-

umn data with the reading of the first row because that

would require access to the off-core data SRAMs using
both the direct path and the transpose path at the same

time. By avoiding this case, the switching infrastructure

can be simplified at a very small cost in performance

(well under 1% for all cases except the most demand-

ing case of N=4096 on 16 cores, where the performance

penalty due to the added latency approaches 3%).

Given these assumptions, the core cycle count for

the various cases can be condensed into the sum of the

compute time Tc, the global twiddle factor multiplica-

tion time Tt, and the pipeline start/drain overhead time

To. In these equations, N = N1×N2 is the problem size

(with N1 ≥ N2 to minimize the communication require-

ments in the second half of the 4-step method), P is the

number of cores in use, LD is the startup latency for a

local SRAM access (6 ns), and LP is the startup latency

for an access through the transposer (6 + P ns):

Tc = N/4× 24× log4 N/n2
r

Tt = 4×N/n2
r

To = 2× (2N2/2 + LP ) + 2× (2N1/2 + LD)
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PE Component Estimate

SRAM

SRAM Area 0.073 mm2

SRAM Max Power 0.015 W
SRAM Actual Power 0.006 W

Floating-Point Unit

FP Area 0.042 mm2

FP Power 0.031 W

Register File

RF Area 0.008 mm2

RF Max Power 0.004 W
RF Actual Power 0.003 W

Broad-cast Buses

Bus Area /PE 0.014 mm2

Max Bus Power 0.001 W

PE Total

PE Area 0.138 mm2

PE Max Power 0.052 W
PE Actual Power (GEMM,FFT) (0.037, 0.041) W

GFLOPS/W (GEMM, FFT) (53.80, 40.50)
GFLOPS/Max W (GEMM, FFT) (38.55, 32.12)

GFLOPS/mm2 (GEMM, FFT) (14.54, 12.11)

Power density 0.377 W/mm2

Table 3 PE characteristics for a LAFC that can perform
both linear algebra and FFT operations.

Fig. 13 shows the normalized cycle counts for prob-

lem sizes of N=4K, 16K, 64K, 256K (212 to 218) for

both 4-core and 16-core configurations. Each column

is normalized against the sum of compute cycles for

the row and column transforms. The relative compute

cycle count for each transform step depends on the

choice of factorization. The factorization is symmetric

for N = 212 and N = 216, and biased towards longer

transforms in stage 2 for N = 214 and N = 218. The

global twiddle factor multiplication overhead is inde-

pendent of the number of cores, decreasing from 11.1%

for N = 212 to 7.4% for N = 218. The data trans-

fer overhead includes the pipeline filling and draining

at the beginning of each stage, which we do not over-

lap with computation. This overhead increases with

the core count due to the extra latency required to

buffer data through the (larger) transpose unit. For

N = 212 on 4 cores, the data transfer overhead is a mod-

est 6.9%, while on 16 cores the data transfer overhead is

a marginally tolerable 31.9%. For larger problem sizes,

the data transfer overhead drops rapidly (slightly faster

than a linear decrease, as expected from the N log2 N

work requirement), with even 16 cores delivering better

than 88% parallel efficiency for problems as small as

N = 216.

8.2 Area and Power Estimation

The basic PE and core-level estimations of a LAFC in

45nm bulk CMOS technology were reported previously

in [26], using CACTI to estimate the power and area

consumption of memories, register files, look-up tables
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Fig. 15 LAFC Normalized Efficiency parameters for GEMM
and FFT for the target applications normalized based on the
LAC parameters at 45nm.

and buses. Power and area of the floating-point units

use the measurements reported in [9].

Here we review these area and power estimates for

the core, then present our methodology and results for

estimating area and performance for the multi-core ex-

tensions in more detail.

Core-level area and power estimates Table 3 summa-

rizes the projected power and area consumption of PE

components running at 1 GHz. For total efficiency, we

report a pair of numbers of a LAFC either running

GEMM or FFT. Fig. 14 plot the power and area break-

down of the LAFC design. The “actual” power consid-

ers the worst-case power when running either GEMM

or FFT, while the “maximum” power breakdown shows

the peak power that is used by the LAFC. We observe

that the power consumption is dominated by the FP-

MAC unit, with secondary contributions from the PE-

local SRAMs. Furthermore, the area breakdown em-

phasizes that most of the PE area is occupied by the

memory blocks.

Fig. 15 demonstrates the efficiency metrics of the

LAFC when running GEMM or FFT. Note that in

all cases, efficiency numbers are scaled by achievable

utilization. Efficiency numbers are normalized against

the original LAC design optimized for GEMM opera-

tions only. We can observe that the LAFC has lower

efficiency when considering maximum power and area.

However, since the leakage power consumption of the

SRAM blocks is negligible, the LAFC maintains the

power efficiency of a pure LAC when running GEMM.

By contrast, FFT operation results in 20% efficiency

drop due to extra communication overhead.

Multi-core power and area estimates For the multicore

system, we must model the overhead of an additional

level in memory hierarchy, plus the overhead of the

transpose unit required for global communication. The
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Problem total SRAM Cores Wires + Total GFLOPS/ GFLOPS/ GFLOPS Util
Size cycles Dyn (W) leak(W) total(W) (W) Xposer (W) (W) W (mm2)

Double Precision @45nm
4 Cores

4K 2720 1.097 0.233 1.330 2.640 0.011 3.981 22.69 1.02 90.35 71%
16K 12128 0.984 0.233 1.217 2.640 0.010 3.867 24.45 1.06 94.56 74%
64K 53792 1.035 0.233 1.268 2.640 0.009 3.918 24.88 1.10 97.47 76%
256K 238880 0.933 0.233 1.166 2.640 0.008 3.814 25.90 1.11 98.76 77%

16 Cores
4K 828 1.828 0.251 2.080 10.560 2.812 15.452 19.21 1.97 296.81 58%
16K 3324 1.821 0.251 2.073 10.560 2.802 15.435 22.35 2.29 345.03 67%
64K 13884 1.744 0.251 1.996 10.560 2.683 15.239 24.78 2.50 377.62 74%
256K 60732 1.861 0.251 2.112 10.560 2.454 15.126 25.68 2.57 388.48 76%

Single Precision @45nm
4 Cores

4K 2720 0.357 0.114 0.471 1.240 0.006 1.716 52.64 2.10 90.35 71%
16K 12128 0.320 0.114 0.434 1.240 0.005 1.679 56.32 2.20 94.56 74%
64K 53792 0.337 0.114 0.451 1.240 0.005 1.695 57.49 2.27 97.47 76%
256K 238880 0.304 0.114 0.417 1.240 0.004 1.661 59.45 2.30 98.76 77%

16 Cores
4K 828 0.629 0.123 0.752 4.960 1.406 7.118 41.70 4.06 296.81 58%
16K 3324 0.626 0.123 0.749 4.960 1.401 7.110 48.53 4.72 345.03 67%
64K 13884 0.600 0.123 0.723 4.960 1.342 7.024 53.76 5.17 377.62 74%
256K 60732 0.640 0.123 0.763 4.960 1.227 6.950 55.90 5.31 388.48 76%

Table 4 Estimated power, performance, and area metrics for 4-core and 16-core configurations performing 1D FFTs on various
vector lengths at 45nm.
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figurations at 45nm.

result of the power and area analysis are summarized

for four different problem sizes in Table 4. We exam-

ine 4-core and 16-core solutions using the algorithmic

choices previously presented in Table 1. We chose an ag-

gregate off-core SRAM of 12 MiB for all the multicore

configurations. This can hold the data, twiddle factors,

and buffers for overlapping off-chip data transfer for

problem sizes up to N=256K.

The off-core memory power is estimated using SRAM

leakage power and energy per access from the CACTI

simulations, combined with the access counts for per-

forming a complete FFT of a given size, with the aver-

age power computed as the total energy used divided

by the cycle count estimates from Section 8.1. For each

configuration we adjusted the off-core SRAM config-

urations until CACTI reported minimum cycle times

of less than 0.5 ns (supporting operation at twice the

nominal 1 GHz frequency of the cores), and used the

corresponding area, leakage power, and energy per ac-

cess in the subsequent analysis.

For the four-core system, synthesis of the transpose

unit as a set of FIFOs resulted in a projection of negli-

gible area and power consumption (< 0.1% and < 0.3%

of the total, respectively). Due to the simple geometry



18 Ardavan Pedram et al.

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

2.5	
  

3	
  

3.5	
  

4	
  

N=4K	
   N=16K	
   N=64K	
   N=256K	
  

Po
w
er
	
  [W

a5
s]
	
  

Wires	
  +	
  Transposer	
  

SRAM	
  Dynamic	
  

SRAM	
  Leakage	
  

Cores	
  

0	
  

2	
  

4	
  

6	
  

8	
  

10	
  

12	
  

14	
  

16	
  

N=4K	
   N=16K	
   N=64K	
   N=256K	
  

Po
w
er
	
  [W

a4
s]
	
  

Wires	
  +	
  Transposer	
  

SRAM	
  Dynamic	
  

SRAM	
  Leakage	
  

Cores	
  

Fig. 17 Power breakdown of the double-sprecision multi-core solution with on-chip SRAMs to fit 256K size FFT with 12
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Fig. 18 Power breakdown of the single-precision multi-core solution with on-chip SRAMs to fit 256K size FFT with 6 MBytes
of on-chip SRAM. 4-LAFC (left), 16-LAFC (right).

of a 2×2 array, we assume that the four “core plus pri-

vate off-core SRAM” blocks can be organized so that

the transposer is physically close to the data ports for

the SRAMs and cores, so wire area and power are as-

sumed to be small and are not separately computed.

For the 16-core system, synthesis of the transpose

unit as a set of FIFOs also resulted in fairly low area and

power consumption estimates, but it was not obvious

that current technology would support the wiring den-

sity and bandwidths required. Recent work [28], how-

ever, has demonstrated a full crossbar operating at 4.5

Tb/s and 3.4 Tb/s/W fabricated in 45 nm technology

– suggesting that the 4.096 Tb/s peak bandwidth re-

quired for the 16-core transposer in this project is fea-

sible. Given that concrete design with accompanying

hardware measurements, we chose to estimate our en-

ergy per transfer and area using the 3.4 Tb/s/W and

4.06 mm2 values from [28].

We estimate the area and power of the long-distance

wires using values from the same implementation, as

described in [29]. Given the overall chip size of approxi-

mately 150 mm2, we estimate that a 4×4 array of cores

with a centrally located transpose unit will yield an av-

erage wire length of 4 mm. The long-distance wire area

estimate assumes no overlap between the global wires

and the cores or SRAMs, with 200 nm wire spacing

and 128 wires between each core and the transposer.

For power, this methodology predicts an average long-

wire transfer energy of 2 pJ/bit. This value is almost

an order of magnitude larger than the energy required

inside the transpose unit itself, though the sum of the

transposer and wire power remains under 20% of the

total average power.

Fig. 16 demonstrates the area breakdown of the

multi-core chip with 4 and 16 cores for single and double

precision units. For the 4-core configuration the wiring

and transposer area is negligible, leaving the SRAMs

as the main consumer of the real estate on the chip –

occupying 90% and 85% of the area in the double pre-

cision and the single precision configurations, respec-

tively. When the number of cores is increased to 16

(with the off-core SRAM remaining at 12 MiB in to-

tal), the area occupied by the cores increases to 22%

and 35% of the total area for double and single pre-

cision configurations respectively, while the transposer

and long-distance wires add about 5% to the chip area.

Figs. 17 and 18 and show the power consumption

breakdown for the four-step algorithm on a multi-core
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architecture using double-precision and single-precision

arithmetic respectively. The overall pattern for single-

precision is very similar to the double-precision case at

slightly less than half of the total power consumption.

Figs. 17(left) and 18(left) report the 4-core configura-

tion. We can see a slight decrease in power consump-

tion as the problem size increases for both single and

double -precision. However, for N=64K, the design con-

sumes more power as a result of changing the algorithm

and the extra load of global twiddle factor transfers be-

tween cores and SRAMs. Despite the large increase in

data communication requirement, the cores remain the

main sources of power consumption in the 16-core de-

signs, as shown in Figs. 17 (right) and 18(right). This

emphasizes that the memory hierarchy around the cores

is carefully designed to consume low energy.

As shown in Table 4 and Fig. 13, the 4-core solu-

tion delivers excellent scaling over the considered prob-

lem sizes with nominal performance of 90.4 to 98.8

GFLOPS and 22.7 to 25.9 GFLOPS/W double-precision

efficiency. The 16-core configuration suffers some scal-

ability losses for the smallest two problem sizes, with

speedups of 3.3× and 3.6× compared to the 4-core con-

figuration, and with correspondingly reduced energy ef-

ficiency. For the larger two problem sizes the 16-core

configuration delivers better than 96.8% parallel effi-

ciency, with the double-precision case showing energy

efficiency almost identical to that of the 4-core con-

figuration. This improvement in scaling with problem

size is expected, but the negligible power/performance

penalty for the 16-core double precision case is some-

what surprising. The explanation lies in the difference

in SRAM configurations. The 16-core case uses 48 off-

core SRAMs of 0.25 MiB each, while the 4-core case

uses 12 off-core SRAMs of 1.0 MiB each. The smaller

SRAMs are more efficient, requiring almost exactly half

the energy per access of the larger SRAMs. This energy

savings almost exactly cancels the extra energy expen-

diture required for the transposer and long wires in the

16-core double precision case. For the single-precision

case the reduction in SRAM power is smaller than the

long distance wire power overhead leading to an overall

reduction in power efficiency of up to about 7% for the

larger two problem sizes.

In summary, the designs with 4 and 16 cores deliver

in excess of 90 and 300 GFLOPS double-precision per-

formance while consuming less than 4 and 13 Watts of

power, respectively. This includes power for the cores,

the off-core SRAMs in active use, the off-core SRAMs

used to pre-load and post-store the next data set, and

the transposer and long wires.

8.3 Comparison to Other Processors

Table 5 provides comparisons of estimated performance,

area, and power consumption between our proposed de-

sign and several alternative processors – including a

state-of-the-art general-purpose processor [33], a low-

power ARM processor [4], a version of the IBM Cell

processor [16], and a recent NVIDIA GPGPU [32]. In

this table, we limit the comparison to double-precision

1D FFT performance for problem sizes that fit into on-

chip SRAM or cache. All area and power (but not per-

formance) estimates are scaled to 45nm technology and

(to the extent possible) include only the area and power

associated with the cores and SRAMs or caches that are

in actual use for each problem size considered. Although

these comparisons are necessarily coarse, we find that in

each case, the proposed FFT engine provides at least an

order of magnitude advantage in efficiency and signifi-

cant advantages in performance per unit area (which is

much harder to interpret cleanly due to the dominance

of SRAMs in the area requirements).

We were only able to find limited published data for

specialized FFT cores configured for double-precision

floating-point arithmetic, so we prepared power and

area estimates for our system configured for single -

precision floating-point operation. We compare these

results to published single- precision alternatives in Ta-

ble 6. It is important to note that three of the four

designs used for comparison are streaming implemen-

tations optimized for single-length transforms of fixed

size elements. For these cases, the most appropriate

comparison is the single-core LAFC without additional

off-chip SRAM (the first entry in Table 6). A single hy-

brid, in-core LAFC is estimated to deliver a respectable

62% of the GFLOPS/W of the specialized ASIC system

(configured for streaming transforms of a fixed length

of 4096 elements), though with much poorer area effi-

ciency – most likely due to the relatively large on-core

SRAMs retained in our LAFC core. The FPGA refer-

ence in the table uses the same design methodology as

the ASIC, but is optimized for streaming transforms

of length 1024. Despite the simplifications allowed by

this specialization, our proposed design is projected to

achieve more than an order of magnitude better perfor-

mance per unit energy and performance per unit area

than this highly optimized FPGA design.

Two additional comparisons are included in the sin-

gle precision table. The Godson-3B result is also spe-

cialized for streaming FFTs of length 1024, but has the

highest performance per Watt of any general-purpose

processor that we were able to find in our literature

survey. The Cell processor result is somewhat dated,

but is included because it contains both parallelization
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Platform Problem $/SRAM Peak FFT Eff Power Area GFLOPS/ GFLOPS/ Util
Running FFT fits in [KBytes] GFLOPS GFLOPS [Watt] [mm2] Watt mm2

LAFC core On-core SRAM 320 32.0 26.7 0.66 2.2 40.5 12.12 83.3%
LAFC core On-chip SRAM 2048 32.0 26.7 0.96 13.2 27.7 2.01 83.3%

Xeon E3-1270 core L1 cache 32 27.2 18.0 28 27.7 0.64 0.65 66.2%
Xeon E3-1270 core L2 cache 256 27.2 12.0 28 36.6 0.43 0.33 44.1%
ARM A9 (1 GHz) L1 cache 32 1.0 0.6 0.28 6.3 2.13 0.09 60.0%

LAFC 4-core On-chip SRAM 12288 128 98.8 3.8 88.9 25.95 1.11 77.2%
LAFC 16-core On-chip SRAM 12288 512 388.5 12.67 146.9 30.66 2.65 75.9%

PowerXCell 8i SPE SPE local RAM 2048 102.4 12.0 64 102 0.19 0.12 11.7%
NVIDIA C2050 L1+L2 cache 1728 515.2 110.0 150.00 529.0 0.73 0.21 21.3%

Xeon E3-1270 4-core L3 cache 8192 108.8 39.1 91.73 231.4 0.43 0.17 35.9%

Table 5 Comparison between the proposed single- and multi-core designs and several alternatives for cache-contained double-
precision FFTs scaled to 45nm.

Platform Problem $/SRAM Peak FFT Eff Power Area GFLOPS/ GFLOPS/ Util
Running FFT fits in [KBytes] GFLOPS GFLOPS [Watt] [mm2] Watt mm2

LAFC 1-core On-core SRAM 320 32.0 26.7 0.31 1.6 86.0 16.67 83.3%
LAFC 1-core Off-core SRAM 1024 32.0 26.7 0.43 7.7 62.0 3.47 83.3%
LAFC 4-core On-chip SRAM 6144 128 98.76 1.66 43.0 59.4 2.30 77.2%
LAFC 16-core On-chp SRAM 6144 512 388.48 6.95 73.0 55.9 5.32 75.9%

ASIC [19] (streaming,N=4096) - (N/A) 1200 8.7 10 137.9 125 N/A
FPGA [19,6] (streaming,N=1024) - (N/A) 380 60 380 6.3 1.0 N/A

Godson-3B [18] (streaming,N=1024) 4096 256 139 28 144 5.0 0.97 54.3%
Cell BE [10] SPE local RAM 2048 192 48.2 20 55 2.4 0.87 25.1%

Table 6 Comparison between the proposed Hybrid core modified for single-Precision (32-bit IEEE floating-point) operation,
two highly optimized special-purpose FFT designs proposed in [19], the Godson-3B processor [18], and a highly optimized
implementation for the Cell BE [10].

across the eight Synergistic Processing Elements of the

Cell Processor and a problem size (N=64K) that is con-

siderably larger than those typically found in the liter-

ature. All of the configurations of the single-precision

LAFC processor are projected to deliver more than an

order of magnitude better performance per Watt than

these two options, as well as maintaining a significant

advantage in performance per unit area (despite having

significantly more on-chip SRAM).

9 Summary, Conclusions and Future Work

Beginning with a high-efficiency double-precision floating-

point core capable of being configured for either linear

algebra or FFT operations, we demonstrate how a com-

bination of careful algorithm analysis with judiciously

chosen data-path modifications allowed us to produce a

multicore FFT architecture with excellent parallel scal-

ing and minimal degradation in power efficiency and

area efficiency of the single-core design.

We project nominal FFT performance of up to 388

GFLOPS for the 16-core configuration running at 1.0

GHz on problem sizes that can fit in on-chip SRAM. For

a 45 nm technology target, the power efficiency varies

between 25 GFLOPS/W and over 30 GFLOPS/W –

more than an order of magnitude better than any avail-

able double-precision alternative. For single-precision

operation, we project power efficiencies of at least 55

GFLOPS/W, which is within a factor of three com-

pared to state of the art special-purpose FFT engine

customized for single-sized (N=4096) transforms.

Area efficiency is dominated primarily by the off-

core memory required for the four-step algorithm used

to compute large transforms and to compute transforms

using multiple cores. Even with this overhead, the area

efficiency of 1.0 GFLOPS/mm2 to 2.6 GFLOPS/mm2

is significantly better than general-purpose solutions or

FPGA implementations.

Significantly, our technology evaluation shows that

the efficiency of the four-core design is comparable to

the efficiency of the single-core, while the increased effi-

ciency of smaller off-core SRAMs (per core) allows the

16-core solution to deliver better energy efficiency than

either the single-core or four-core versions for all except

the smallest problem sizes considered.

Ongoing work includes hardware/software co-design

to permit use of memory technologies that require ex-

ploitation of locality for effective use (such as eDRAM),

the additional complexities involved in using off-chip

DRAM (stacked or traditional), and analysis of the per-

formance, energy, and area tradeoffs involved in com-

puting some or all of the (double precision) global twid-

dle factors rather than storing all of them.

We also plan to look into additional specialization of

the FFT designs on the same core to achieve better uti-

lization and efficiency using customized floating-point

units.
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