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Implementing high-performance complex matrix multiplication via the
3m and 4m methods

FIELD G. VAN ZEE and TYLER M. SMITH, The University of Texas at Austin

In this article, we explore the implementation of complex matrix multiplication. We begin by briefly identi-
fying various challenges associated with the conventional approach, which calls for a carefully-written kernel

that implements complex arithmetic at the lowest possible level (i.e., assembly language). We then set out to

develop a method of complex matrix multiplication that avoids the need for complex kernels altogether. This
constraint promotes code reuse and portability within libraries such as BLAS and BLIS and allows kernel

developers to focus their efforts on fewer and simpler kernels. We develop two alternative approaches—one
based on the 3M method and one that reflects the classic 4M formulation—each with multiple variants,

all of which rely only upon real matrix multiplication kernels. We discuss the performance characteristics

of these so-called “induced” methods, and observe that the assembly-level method actually resides along
the 4M spectrum of algorithmic variants. Implementations are developed within the BLIS framework, and

testing on modern hardware confirms that while the less numerically stable 3M method yields the fastest

runtimes, the more stable (and thus widely applicable) 4M method’s performance is somewhat limited due
to implementation challenges which appear inherent in nature.
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1. INTRODUCTION
High performance matrix multiplication resides near the bottom of the food chain for
scientific and numerical applications. Implementations for matrix multiplication are
commonly accessed via the level-3 Basic Linear Algebra Subprograms (BLAS) [Don-
garra et al. 1990], a subset of a standardized library API that provides routines for
computing various types of matrix products, including general matrix-matrix multi-
ply (GEMM). Many well-known projects either implement the BLAS directly [Dongarra
et al. 1990; Xianyi et al. 2012; Whaley and Dongarra 1998; Van Zee and van de Geijn
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2015; AMD 2012; IBM 2012; Intel 2014]), or build upon the matrix multiplication fa-
cilities within the BLAS to perform more sophisticated dense linear algebra (DLA)
computations [Van Zee et al. 2009; Anderson et al. 1999; Agullo et al. 2009; Agullo
et al. 2010; Poulson et al. 2013; Choi et al. 1992]. Most BLAS operations are specified
for both the real and complex domains. And while multiplication of real matrices is
employed by countless applications, the unique properties of complex numbers, such
as their ability to encode both the phase and magnitude of a wave, makes complex
domain computations vitally important to many sub-fields of science and engineering,
including signal processing, quantum mechanics, and control theory.

Previous work has shown that one particular algorithm for performing matrix mul-
tiplication is ideal for most problem shapes [Goto and van de Geijn 2008a; 2008b; Van
Zee et al. 2016; Smith et al. 2014], particularly the rank-k update that frequently ap-
pears within matrix factorizations (e.g. Cholesky, LU, and QR), inversions (e.g. trian-
gular and Hermitian-positive definite), and transformations (e.g. block Householder).
Previously expressed as three loops around a monolithic kernel [Goto and van de Geijn
2008a], the state-of-the-art formulation of this algorithm consists of five loops1 around
a much smaller micro-kernel [Van Zee and van de Geijn 2015; Van Zee et al. 2016;
Smith et al. 2014]. Still, these “micro-kernels” must be implemented very carefully,
typically by experts who understand various characteristics of the compute hardware
(such as the instruction set, instruction latencies, and the various features of the mem-
ory hierarchy). Most of these kernels are implemented in low-level languages such
as machine-specific assembly language2, which unfortunately obscure the mathemat-
ics being expressed. To make matters worse, very few modern architectures provide
machine instructions that directly implement complex multiplication and addition,
forcing kernel developers to orchestrate computation on the real and imaginary com-
ponents manually.3 This can be a tedious undertaking, even for those well-versed in
assembly language. While still requiring skill and knowledge of the hardware, imple-
menting real domain matrix multiplication is a significantly more accessible task.

Much of the scientific computing community’s attention remains fixed on matrix
multiplication in the real domain (usually double precision). Evidence of this can
be seen most prominently in the way the community benchmarks its supercomput-
ers [Dongarra et al. 1979; Dongarra et al. 2003; Top500 2015]. These codes consist
largely of an LU factorization with partial pivoting on a double-precision real dense
matrix. Most of the floating-point operations in an LU factorization are performed,
at some level of recursion, within GEMM subproblems. Consequently, when other as-
pects of the LU factorization are implemented properly, the performance of the overall
benchmark is largely determined by the performance of the double-precision GEMM
(dgemm) implementation. Thus, it is no wonder that we prioritize optimizing real ma-
trix multiplication kernels.

1.1. Motivations
We have set the stage for our present work by observing that, relative to complex
matrix kernels, real matrix kernels are not only objectively easier to implement on

1This newer approach exposes two additional loops which previously, in the original algorithm, were hidden
within the monolithic kernel.
2Low-level APIs known as vector intrinsics are sometimes used instead, typically because they fit more
naturally within higher-level languages such as C.
3A notable exception to this is the IBM Blue Gene/Q architecture, which provides instructions specifically
targeting complex numbers.
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many current architectures, but they are also more ubiquitous4 and quite likely to be
highly optimized.

In this article, our goal is to provide a blueprint for simplifying the implementation
of complex matrix multiplication, and to do so in such a way that exploits the foun-
dational presence of real matrix multiplication in scientific computing environments.
Specifically, we set out to investigate whether, and to what degree, real matrix kernels
can be repurposed towards the implementation of complex matrix multiplication. This
is motivated primarily by three concerns:

— Productivity. Perhaps most obvious is the desire to minimize the number and com-
plexity of kernels that must be optimized in order to support high performance within
matrix multiplication operations. If complex kernels were, in fact, not necessary
when computing complex matrix multiplication, then DLA library developers could
focus on a smaller and simpler set of real domain kernels. This reduced set of kernels
would be more easily maintained on existing hardware, and allow developers to more
rapidly instantiate BLAS-like functionality on new hardware.

— Portability. At its face, complex matrix multiplication is fundamentally different
from real matrix multiplication. (This is primarily because scalar multiplication dif-
fers fundamentally in the complex domain.) Thus, if we can avoid reliance upon com-
plex matrix kernels, it is not because we have avoided the mechanics of the complex
domain entirely, but rather because we have encoded the notion of complex matrix
product at a different (higher) level. Expressing complex matrix multiplication at a
level higher than the lowest-level matrix kernel would allow us to encode the ap-
proach portably within a library such as the BLAS-Like Library Instantiation Soft-
ware (BLIS) framework [Van Zee and van de Geijn 2015; Van Zee et al. 2016]. If suc-
cessful, this would allow developers and other experts to effectively induce complex
matrix multiplication “for free” as long as the corresponding real matrix multiplica-
tion kernel is present.

— Performance. A hypothetical complex matrix multiplication based on a real domain
kernel would likely inherit the performance properties of that kernel; that is, optimiz-
ing the real kernel would accelerate both real and complex domain matrix multipli-
cation. However, the conventional wisdom among DLA experts suggests that complex
matrix multiplication is expected to slightly outperform matrix multiplication in the
real domain (perhaps by 3-5%). In our current study, several questions arise on this
topic. If real domain kernels can be leveraged towards the implementation of complex
matrix multiplication, what level of relative performance can be realized? What are
the sources of performance degredation, if any? And can these hurdles be overcome?
We hope to move toward answering these questions in the course of our study.

1.2. Discussion Preview
The article is laid out as follows. We begin by briefly enumerating some of the chal-
lenges typically encountered when implementing a conventional complex matrix mul-
tiplication, wherein complex arithmetic is performed at the lowest possible level. We
then consider two alternative approaches, each of which casts complex matrix mul-
tiplication entirely in terms of real matrix multiplication: the 4M method, which is
based on the fundamental definition of multiplication in the complex domain, and the
3M method, which utilizes an alternative expression of complex multiplication that re-
quires only three products. Each method yields a family of algorithms, several of which

4It is unclear how to apportion credit for this ubiquity between (1) the emphasis on real domain benchmarks,
(2) the prevalence of real domain applications, and (3) the relative ease of coding real domain arithmetic in
hardware.
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are discussed in detail. The methods are implemented using the BLIS framework and
then evaluated for performance on two modern architectures. We conclude the article
by observing key properties of the algorithms and listing several challenges that must
be overcome in order to make further progress in the area.

Before proceeding, we provide a few comments regarding the narrative mechanics of
the current article.

— In part because of the article’s thorough treatment of details and other practical
considerations, recent newcomers to the area may find themselves overwhelmed. Ad-
mittedly, our target audience primarily consists of DLA library developers and other
experts who are relatively well-acquianted with the process of implementing high-
performance software for matrix computation. Some “power users” who tinker with
DLA libraries may also find the subject matter of interest.

— Some readers will find the relative ordering of Sections 4 and 5 curious. We wish to
reassure these readers in advance that our choice of presenting the 3M method prior
to the 4M method is intentional and based on subtleties which relate to the overall
presentation of the article.

— While not strictly necessary, we encourage the reader to first read [Van Zee and
van de Geijn 2015] and [Smith et al. 2014]. The former provides a foundational back-
ground into BLIS and the insights which lead to its development while the latter
further discusses the framework in the context of many-threaded parallelism. Also,
the loop-based analyses in Sections 4.3 and 5.1 were modeled after similar analyses
found in the second article. Thus, reading that article first will serve to acquaint the
reader with the structure and style of discussion in those sections.

1.3. Contributions
This article makes the following contributions:

— It summarizes some of the issues and challenges associated with the conventional ap-
proach to implementing complex matrix multiplication. This provides a basic back-
ground to help motivate the study of avoiding, if possible, the encoding of complex
arithmetic at the lowest levels of matrix multiplication.

— It provides a detailed discussion of the performance characteristics and relative
strengths and weaknesses of two alternative methods of performing complex ma-
trix multiplication—the 3M and the 4M methods—giving special attention to imple-
mentation issues such as impact on workspace requirements, packing format, cache
behavior, multithreadability, and programming effort within the BLIS framework.

— It promotes code reuse and portability by focusing on solutions which may be cast
in terms of real matrix multiplication kernels. This increased leverage has clear im-
plications for developer productivity, as it would allow kernel programmers to focus
their efforts on fewer and simpler kernels.5

— It builds on the theme of the BLIS framework as a productivity multiplier [Van Zee
and van de Geijn 2015], showing how select complex matrix multiplication solutions
may be implemented with relatively minor modifications to the source code, and in
such a way that results in immediate instantiation of complex implementations for
all level-3 BLAS-like operations.

5This has implications for architecture design as well. If complex matrix multiplication can be performed
only with real domain kernels, then there is one less reason to provide special (potentially costly) instruc-
tions and logic for performing complex arithmetic.
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— It serves as a reference guide to select implementations of the aforementioned alter-
native methods for complex matrix multiplication found within the BLIS framework,
which is available to the community under an open source software license.6

While the subject matter is relatively fundamental, the contributions presented here
stand to improve the accessibility and availability of complex level-3 BLAS implemen-
tations for the entire community, especially as new hardware is developed.

1.4. Notation
Throughout this article, we will use relatively well-established notation when describ-
ing linear algebra objects. Specifically, we will use uppercase Roman letters (e.g. A, B,
and C) to refer to matrices, lowercase Roman letters (e.g. x, y, and z) to refer to vectors,
and lowercase Greek letters (e.g. χ, ψ, and ζ) to refer to scalars. Subscripts are used
typically to denote sub-matrices within a larger matrix (e.g. A = ( A0 A1 · · · An−1 ) ).

We will also make extensive use of superscripts to denote the real and imaginary
components of a scalar, vector, or (sub-)matrix. For example, αr, αi ∈ R denote the real
and imaginary parts, respectively, of a scalar α ∈ C. Similarly, Ar and Ai refer to the
real and imaginary parts of a complex matrix A, where Ar and Ai are themselves ma-
trices with dimensions identical to A. Also, at times we will use Ar+i as shorthand for
Ar + Ai (i.e., the sum of the parts, or “summed” part). Note that while this notation
for real, imaginary, and complex matrices encodes information about content and ori-
gin, it does not encode how the matrices are actually stored. We will explicitly address
storage details as implementation issues are discussed.

Also, at times we will find it useful to refer to the real and imaginary elements
of a complex object indistinguishably as fundamental elements (or F.E.). We also ab-
breviate floating-point operations as “flops” and memory operations as “memops”. We
define the former to be a MULTIPLY or ADD (or SUBTRACT) operation whose operands
are fundamental elements and the latter to be a load or store operation on a single
fundamental element.7 These definitions allow for a consistent accounting of complex
computation relative to the real domain.

This article also discusses and references several hypothetical GEMM-like functions.
Unless otherwise noted, a call to function FUNC that implements C := C + AB will
appear as [ C ] := FUNC( A, B, C ). Similarly, the operations C := A+B and C := A−B
will appear as [ C ] := ADDM( A, B ) and [ C ] := SUBM( A, B ), respectively.

2. REVIEW
2.1. High-performance matrix multiplication
In this section, we review the general algorithm for high-performance matrix multipli-
cation on conventional microprocessor architectures. This algorithm was first reported
in [Goto and van de Geijn 2008a] and further refined in [Van Zee and van de Geijn
2015]. Figure 1 illustrates the key features of this algorithm.

As alluded to in Section 1, the current state-of-the-art formulation of the matrix
multiplication algorithm consists of six loops, the last of which resides within a micro-
kernel that is typically highly optimized for the target hardware. These loops partition
the matrix operands using carefully chosen cache (nC , kC , and mC) and register (mR

and nR) blocksizes that result in submatrices residing favorably at various levels of

6The BLIS framework is available under the so-called “new” or “modified” or “3-clause” BSD license.
7Later, we generalize our discussion of flops and memops to hardware architectures that support vector in-
structions, which implement the execution of multiple flops or memops per instruction, usually in proportion
to the length (in units of fundamental elements) of the vector register operands.
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Fig. 1. An illustration of the algorithm for computing high-performance matrix multiplication, as expressed
within the BLIS framework [Van Zee and van de Geijn 2015].
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the cache hierarchy, so as to allow data to be reused many times.8 In addition, subma-
trices of A and B are copied (“packed”) to temporary workspace matrices (Ãi and B̃p,
respectively) in such a way that allows the micro-kernel to subsequently access matrix
elements contiguously in memory, which improves cache and TLB performance. The
cost of this packing is amortized over enough computation that its impact on overall
performance is negligible for all but the smallest problems. At the lowest level, within
the micro-kernel loop, an mR × 1 micro-column vector and a 1 × nR micro-row vector
are loaded from the current micro-panels of Ãi and B̃p, respectively, so that the outer
product of these vectors may be computed to update the correspondingmR×nR subma-
trix, or “micro-tile” of C. The individual floating-point operations that constitute these
tiny rank-1 updates are oftentimes executed via vector instructions (if the architecture
supports them) in order to maximize utilization of the floating-point unit.

The algorithm captured by Figure 1 forms the basis for high-performance imple-
mentations of the level-3 operations found in the GotoBLAS [Goto and van de Geijn
2008b] library, as well as its immediate successor, OpenBLAS [Xianyi et al. 2012]. The
BLIS framework, discussed in the next section, also employs this algorithm (or a close
variant) for each of its level-3 operations.

2.2. The BLIS Framework
The BLIS framework is a relatively new infrastructure for rapidly instantiating high-
performance BLAS and BLAS-like libraries. The framework’s level-3 operations cor-
respond closely to the nine level-3 BLAS: general matrix multiply (GEMM), Hermitian
and symmetric matrix multiply (HEMM and SYMM), Hermitian and symmetric rank-
k update (HERK and SYRK), Hermitian and symmetric rank-2k update (HER2K and
SYR2K), triangular matrix multiply (TRMM), and triangular solve with multiple right-
hand sides (TRSM) [Dongarra et al. 1990; Van Zee and van de Geijn 2015]. Gener-
ally speaking, each of these operations requires its own carefully optimized (assembly-
coded) kernel in order to achieve high performance. While the previous state-of-the-art,
as captured in [Goto and van de Geijn 2008b], established some reuse and consolida-
tion among similar operations, at least four unique computational kernels (and several
packing kernels) were still needed in order to provide full level-3 coverage. A key fea-
ture of BLIS is that the framework factors out much of the code—corresponding to
the first and second loops around the micro-kernel shown in Figure 1—that resides
within these assembly-coded kernels. BLIS expresses this code portably, within the
higher-level C99 language, which not only promotes code readability and reuse, but
also significantly reduces the complexity of what remains of the inner-most kernel,
which now amounts to a single loop over tiny mR × nR rank-1 updates. Remarkably,
this code refactorization also reduces the number of kernels needed to just one. Op-
timizing this micro-kernel for a given datatype (domain and precision) facilitates the
immediate instantiation of high-performance implementations of all level-3 operations
of the chosen datatype.9 Thus, when developing BLAS or BLAS-like operations on new
hardware, the BLIS framework serves as a substantial productivity multiplier.

Later in this paper, we will use BLIS as a prototyping environment in which to im-
plement and test various alternative approaches to complex matrix multiplication. We

8Before proceeding further into the article, the reader may wish to look ahead to the entries labeled “BLIS
assembly” in Table V to gain a sense of typical values for these cache and register blocksizes.
9The kernel developer may optionally optimize an additional two triangular solve micro-kernels, which
yields further optimization for TRSM. The marginal benefit of optimizing these TRSM micro-kernels depends
on various factors, such as the hardware design and problem size being tested, but is typically in the range
of 5-20%.
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will also discuss the amount of programming effort that would be required to imple-
ment a given approach within BLIS.

3. CONVENTIONAL APPROACH
In this section, we briefly discuss some of the issues one might expect to encounter
when attempting to implement high-performance complex matrix multiplication in
the conventional manner. Specifically, we touch upon topics germane to implementing
complex matrix multiplication via an assembly-coded micro-kernel.

3.1. Potential Challenges
The conventional approach to implementing complex matrix multiplication entails
writing a low-level kernel that performs complex arithmetic, and then inserting this
kernel into a BLAS-like framework such as BLIS. In order to attain high performance,
the kernel developer would typically write this kernel in assembly language. However,
since most modern architectures do not natively implement complex domain instruc-
tions (i.e., in terms of complex numbers) the developer must express the complex mul-
tiplications and additions in terms of suboperations on the complex numbers’ real and
imaginary components. This complicates the task considerably, and exposes the ker-
nel developer to various hurdles that do not manifest in the case of the real domain
micro-kernel.

3.1.1. Programmability. Programming complex matrix multiplication in assembly lan-
guage, (via instructions on real scalars) can be more difficult than for real matrix mul-
tiplication. We provide qualitative evidence of this in Figure 2.

The diagrams in Figure 2 (left) show the flow of execution when implementing a
4 × 4 rank-1 update for the real domain in a hypothetical assembly language using
vector instructions.10 These pseudo-instructions perform element-wise arithmetic and
assume the presence of vector registers capable of holding four scalar elements. Note
that these diagrams capture the body of the inner-most loop in Figure 1 (i.e. the loop
body of the micro-kernel).

Figure 2 (right) shows two similar diagrams for a 2×2 rank-1 update for the complex
domain. From these, we can see that implementing complex arithmetic in assembly
language require additional instructions for permuting elements (as well as a special
SUBTRACTADD instruction), and would likely require more careful planning. By con-
trast, the pseudo-codes implied by Figure 2 (left) are quite simple, and can be described
concisely as an outer product (and accumulation) implemented as a series of column-
wise AXPY operations on vector register operands. Also notice that the code implied by
both diagrams in Figure 2 (right) require a reordering of the elements after the loop.

3.1.2. Floating-point latency and register set size. Some floating-point units have an in-
struction latency that, when combined with a limited number of registers, hobbles the
performance of assembly codes that perform rank-1 update. This happens when allo-
cating registers to the loading of (and subsequent computation with) elements of A
and B leaves too few registers with which to accumulate sufficiently large (i.e. flop-
rich) mR × nR rank-1 products. If the requisite number of registers simply does not
exist, performance will be limited.

Furthermore, unless special (uncommon) functionality is present, complex arith-
metic sometimes requires extra registers to hold intermediate results, often produced
by certain “swizzle” instructions—those that duplicate, shuffle, or permute elements
within vector registers, as depicted in Figure 2 (bottom-right).

10While the instructions depicted in Figure 2 (left) are not machine-specific, they roughly correspond to
those found within the Intel AVX instruction set.
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lighter shaded boxes represent the pth column and pth row of the packed micro-panels of Ãi and B̃p, which
reside in the L2 and L1 caches, respectively, as depicted at the bottom of Figure 1. The darker shaded cells
represent vector registers. Since the diagrams on the right do not explicitly label real and imaginary values,
we will note here that the micro-column from the current micro-panel of Ãi contains the complex values(
α0 + iα1

α2 + iα3

)
while the micro-row from the current micro-panel of B̃p contains

(
β0 + iβ1 β2 + iβ3

)
.
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3.1.3. Instruction set. Certain instructions are key to maintaining throughput with
complex arithmetic. For example, if the hypothetical architecture depicted in Figure 2
(right) lacked the PERMUTE instruction, complex arithmetic would likely be impossible
to implement efficiently with vector instructions.11 Perhaps more likely is the scenario
in which these same instructions exist, but exhibit relatively high execution and/or
issue latencies12, leaving high performance out of reach.

Taken together, these issues, when present, can pose additional challenges when
implementing micro-kernels for complex matrix multiplication. This brings us back
to the central question: can we rely on simpler real domain kernels and still achieve
acceptable complex domain performance?

4. 3M METHOD
We now turn to implementations of complex matrix multiplication that do not require
complex matrix kernels, and by proxy do not require complex arithmetic to be encoded
in assembly language. Instead, these methods refactor the computation so that it can
be expressed in terms of only real matrix multiplication kernels. Going forward, we
will refer to such algorithms as performing induced complex matrix multiplication.

4.1. Basics
We begin with the fundamental definition of complex scalar multiplication and addi-
tion commonly found in algebra textbooks. Let χ, ψ, ζ ∈ C. We can express the complex
scalar product update ζ := ζ + χψ as:

ζ := ζ + χψ =
(
ζr + iζi

)
+
(
χr + iχi

)(
ψr + iψi

)
= ζr + χrψr − χiψi + i

[
ζi + χrψi + χiψr

]
(1)

If we translate Eq. 1 into imperative statements in terms of real and imaginary com-
ponents, we arrive at:

ζr := ζr + χrψr − χiψi

ζi := ζi + χrψi + χiψr (2)

If ζr and ζi are computed according to Eq. (2), four scalar multiplications, three addi-
tions, and one subtraction are required. Since additions and subtractions are typically
comparable in cost, we will henceforth treat and refer to scalar additions and subtrac-
tions indistinguishably as “additions.”

4.2. Reformulation
Alternative expressions of Eq. (1) may be derived. Let us focus on one13 in particular:

ζ = ζr + χrψr − χiψi + i
[
ζi + χrψi + χiψr

]
= ζr + χrψr − χiψi + i

[
ζi + χrψi + χiψr +

(
χrψr − χrψr

)
+
(
χiψi − χiψi

)]
= ζr + χrψr − χiψi + i

[
ζi +

(
χrψr + χrψi + χiψr + χiψi

)
− χrψr − χiψi

]
= ζr + χrψr − χiψi + i

[
ζi +

(
χr + χi

)(
ψr + ψi

)
− χrψr − χiψi

]
(3)

11We wish to emphasize that instructions shown in Figure 2 (right) do not uniquely enable complex arith-
metic; other architectures will offer somewhat different sets of instructions, allowing the construction of
slightly different assembly-level algorithms.
12Henceforth, in the context of non-floating-point instructions, we will sometimes use “latency” to refer to
both execution latency as well as the reciprocal throughput (issue latency).
13In [Higham 1992], Higham reports that, according to Knuth [Knuth 1981] this formulation was first
proposed by Peter Ungar in 1963.
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Textually, Eq. (3) contains five products. However, since two of the products reoccur
once each, this equation exposes a way to compute the complex scalar product χψ using
only three unique multiplications. Higham refers to this as the “3M” method [Higham
1992].

If we apply 3M to complex matricesA ∈ Cm×k,B ∈ Ck×n, and C ∈ Cm×n, and express
using imperative statements, we have:

Cr := Cr +ArBr −AiBi

Ci := Ci +
(
Ar +Ai

)(
Br +Bi

)
−ArBr −AiBi

If we introduce workspace matrices W ∈ Cm×n, SA ∈ Rm×k, SB ∈ Rk×n, we can reuse
the ArBr and AiBi terms once computed, as expressed by:

W r := ArBr, W i := AiBi

SA := Ar +Ai, SB := Br +Bi

Cr := Cr +W r −W i

Ci := Ci + SASB −W r −W i (4)

Notice that while 3M saves one multiplication, it incurs three extra additions, for a
net increase of two arithmetic operations. However, when applied to matrix operands,
these extra operations have negligible impact on the overall cost because they con-
stitute lower-order terms: the 3M method’s intermediate matrix products collectively
require 3 × 2mnk flops while the matrix additions require only 5mn + mk + kn flops.
Therefore, asymptotically, 3M incurs nearly 25% fewer flops than the 4 × 2mnk flops
required of the conventional approach discussed in Section 3.

Note that implementing 3M at the scalar level forfeits this advantage. At the scalar
level, there is little or no benefit to reusing the intermediate products χrψr and χiψi,
for two reasons. First, modern computers tend to favor computations with a balanced
number of MULTIPLY and ADD instructions; thus, trading a MULTIPLY for two addi-
tional ADD instructions may be counterproductive. Second, even when this is not the
case, the relative cost difference typically observed between MULTIPLY and ADD is not
enough to merit use of 3M. In general, the 3M method becomes advantageous only
when the cost of a multiplication is significantly higher than that of an addition.

A numerical stability analysis of 3M is presented in [Higham 1992]. Higham finds
that 3M, like the closely related Strassen’s Algorithm [Strassen 1969], is slightly less
stable than conventional approaches based on Eq. 2, but stable enough to merit use
in many practical settings. Higham’s conclusions are based on the highest level appli-
cation of 3M, which we refer to as algorithm 3M H in the next section and beyond. A
comprehensive numerical analysis of 3M when applied to other levels of the matrix
multiplication algorithm is beyond the scope of this article.

Now that we have expressed 3M method in terms of real and imaginary sub-
matrices, we can explore how to use 3M to implement complex matrix multiplication
in terms of real matrix multiplication.

4.3. Application
Previous work has focused on applying 3M-like (Strassen-based) approaches at a rel-
atively high level [Higham 1990; Demmel and Higham 1992], with BLAS serving as
the building blocks. But if we return to Figure 1, we can see that the 3M method, as
represented by Eq. 4, can potentially be applied around any one of the loops exposed
by the BLIS matrix multiplication algorithm.

In this section, we consider various hypothetical approaches that result from apply-
ing 3M within each loop depicted in Figure 1, with special attention given to workspace,
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Algorithm: [ C ] := RGEMM( A, B, C )
for ( j = 0 : n− 1 : nC )

Identify Bj , Cj from B,C
for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

PACK Bjp → B̃p

for ( i = 0 : m− 1 : mC )
Identify Api, Cji from Ap, Cj

PACK Api → Ãi

for ( h = 0 : nC − 1 : nR )
Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )
Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := RKERN( Ãil, B̃ph, Cjihl )

Fig. 3. An abbreviated pseudo-code for implementing the general matrix multiplication algorithm depicted
in Figure 1. Here, RKERN calls a real domain GEMM micro-kernel.

Algorithm: [ C ] := 3M H( A, B, C )
Acquire workspace SA, SB ,W
SA := ADDM( Ar, Ai ) ; SB := ADDM( Br, Bi )
W r := RGEMM( Ar, Br, 0 )
W i := RGEMM( Ai, Bi, 0 )
Ci := RGEMM( SA, SB , Ci )
Cr := ADDM( W r, Cr ) ; Cr := SUBM( W i, Cr )
Ci := SUBM( W r, Ci ) ; Ci := SUBM( W i, Ci )

Fig. 4. An algorithm for applying the 3M method at the highest level of general matrix multiplication, with
the 5th loop around the micro-kernel becoming the real matrix multiplication primitive (shown here as a
call to RGEMM).

packing format, cache performance, programmability, and multithreadability. We will
also note when an application of 3M exhibits properties that complicate (or preclude)
extension to other level-3 operations. Note that in targeting the various loops, we are
essentially defining different real domain matrix multiplication primitives, varying
from the very coarse grain where the primitive is a general-purpose real GEMM, to
the very fine grain where the primitive is a real GEMM micro-kernel. For reference,
we provide Figure 3, which shows pseudo-code for real general matrix multiplication
(RGEMM) implemented in terms of a real micro-kernel (RKERN). This pseudo-code im-
plements the algorithm depicted in Figure 1.

Since we are targeting matrix multiplication in the complex domain, our discussion
will assume that m, k, and n represent problem size dimension in units of complex
scalars. However, keep in mind that whilemC , kC , nC are the optimal blocksizes chosen
for RGEMM, those dimensions may also be used to measure dimensions in units of
complex scalars, as determined by context.

4.3.1. Outside the algorithm. Perhaps the most obvious place to apply 3M is at the high-
est level. This would define our real matrix multiplication primitive to be the 5th loop
around the micro-kernel, which would encompass the entire matrix multiplication al-
gorithm. We can implement this case by replacing each real matrix product in Eq. 4
with a call to RGEMM. Similarly, addition and subtraction with the real or imaginary
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submatrices can be handled with ADDM and SUBM. Note that this is equivalent to
applying Eq. 4 from within the calling application.

Algorithm 3M H in Figure 4 provides pseudo-code which shows the 3M method being
implemented at this level.

This approach requires workspace matrices W ∈ Cm×n, SA ∈ Rm×k, SB ∈ Rk×n.14

Unfortunately, for large input matrices, the amount of workspace required is consider-
able. And while 3M H automatically inherits the multithreadedness of RGEMM, ADDM
and SUBM may hinder scalability.15 However, 3M H is easy to implement in BLIS. Also,
packing functionality and cache blocksizes need not be changed.

4.3.2. 5th loop around the micro-kernel. Applying 3M inside the 5th loop around the
micro-kernel would result in a similar algorithm to that of 3M H. The most substantial
difference is workspace is reduced somewhat when n > nC , with W ∈ Cm×nC , SB ∈
Rk×nC . We estimate that encoding this approach in BLIS would be somewhat in-
elegant, because it would require specialization and duplication of code that nor-
mally would remain completely general. Also, if parallelism around the n dimension
was desired, multithreading may be somewhat complicated by the computation of
SA := Ar + Ai, which would either need to be computed redundantly among threads
or computed by one thread and then shared. All other properties regarding workspace,
packing, and cache blocksizes would remain the same.

We omit showing Algorithm 3M 5 for space reasons.

4.3.3. 4th loop around the micro-kernel. Applying 3M within the 4th loop around the
micro-kernel would result in a primitive that implements a single rank-kC update.
Here, we assume that the packing of Bjp → B̃p occurs three times, once before each
call to the primitive. This approach would further reduce workspace requirements to
W ∈ Cm×nC , SA ∈ Rm×kC , SB ∈ RkC×nC . As of this writing, the BLIS framework does
not support parallelization of the 4th loop16, so this approach would not complicate
multithreading, nor would the modifications to BLIS be any more (or less) challenging
relative to 3M 5. All other properties remain unchanged.

We omit showing Algorithm 3M 4 for space reasons.

4.3.4. 3rd loop around the micro-kernel. Targeting the body of the 3rd loop around the
micro-kernel would result in a primitive that implements a “block-panel” matrix multi-
ply, which in BLIS is performed by a functional unit of code known as the macro-kernel.
Here, workspace is reduced again, this time to W ∈ CmC×nC , SA ∈ RmC×kC , SB ∈
RkC×nC . This reduction is significant because all workspace matrix dimensions are
now bounded by constant blocksizes.

As a practical matter, targeting the 3rd loop would require the packing function to
be adapted so that B̃p is packed to contain

(
B̂r B̂i B̂r+i

)
, where B̂ = Bjp and each of

the three submatrices are packed in the classic micro-panel format described in [Van
Zee and van de Geijn 2015]. Recall that, while BLIS can separately access the real and
imaginary parts of traditionally-stored complex matrices, the purpose of packing is to
allow contiguous access of data by the micro-kernel. Since 3M makes use of real and

14 Notice that since Algorithm 3M H uses workspace matrices W r and W i in separate operations, they may
be stored separately as two real matrices, rather than as a single complex matrix with pairs of real and
imaginary elements stored contiguously.
15We assume that either ADDM and SUBM are single-threaded. Even if these operations were multithreaded,
their efficiency would be inherently limited. ADDM and SUBM perform only mn flops but incur 3mn memory
operations, and thus the available memory bandwidth of modern multicore systems would be saturated with
a relatively few number of threads.
16Parallelization within the 4th loop is different than the other four loops because it requires mutual exclu-
sion to support multiple threads updating identical regions of C.
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imaginary parts (and their sum) as part of separate sub-operations, this change to the
packing facility preserves contiguity at the granularity expected by the micro-kernel.
Note that this also gives us an opportunity to hide some of the cost of computing the
SB = Br+i term in Eq. 4, since the constituent elements must flow through the memory
hierarchy anyway as part of the packing process. This also means that the workspace
required by SB simply takes the form of larger packing space for B̃p, rather than matrix
storage that must be managed separately.

The packing format of Ãi does not change, however, the approach does require that
the contents packed into Ãi may originate from any one of Âr, Âi, and SA = Âr+i where
Â = Api. As with B̂r+i, Âr+i can be computed on-the-fly while it is being packed into
Ãi, thus eliminating the need to allocate separate space for SA.

Unfortunately, 3M within the 3rd loop promotes poor use of the L3 cache. The second
call to the primitive (to compute Ãi

iB̃
i
p) results in much of B̃r

p being evicted from the
L3 cache, with similar evictions for B̃i

p and B̃r+i
p . To compensate, nC can be reduced by

two-thirds so that all three submatrices can coexist within the L3 cache. However, this
means that the cost of packing each block Âr, Âi, and Âr+i (i.e. the cost of moving each
from main memory into the L2 cache) will be amortized over 66% less computation,
since each will be multiplied by a different (now smaller) region of B̃p. A silver lining
in this reduction to nC is that B̃p occupies the same amount of internal workspace as
it would in a conventional algorithm, even when the added space for B̂r+i is taken into
account.

Another drawback to this approach is that the 3rd loop around the micro-kernel is
often targeted for parallelism, especially when each processing core has a private L2
cache [Smith et al. 2014]. Consequently, the computation of B̂r+i (which occurs outside
the 3rd loop) may present complicating issues to multithreading similar to those of
Algorithm 3M 5, both in terms of performance and programmability.

We omit showing Algorithm 3M 3 for space reasons.

4.3.5. 2nd loop around the micro-kernel. Applying 3M within the 2nd loop around the
micro-kernel results in a matrix primitive that multiplies an mC × kC block of A by a
kC × nR micro-panel of B. This would seem to reduce workspace to W ∈ CmC×nR , SA ∈
RmC×kC , SB ∈ RkC×nR . However, as with 3M 3, we will show later how blocksize re-
ductions further reduce the workspace required.

For this approach, we need to pack Bjp → B̃p to a special format that is different
than described above for 3M 3. Let Bjp = B̂, so that we may reclaim the subscript for
further partitioning. Instead of organizing B̃p so that micro-panels of B̂r, B̂i, and B̂r+i

are grouped together, this format would extract the real, imaginary, and summed parts
of the micro-panels and interleave them as ordered “3-tuples” of real micro-panels:

B̂ →
(
B̃r

0 B̃i
0 B̃r+i

0 B̃r
1 B̃i

1 B̃r+i
1 · · · B̃r

t−1 B̃i
t−1 B̃r+i

t−1

)
where t = dnC/nRe and B̃j refers to the jth set of nR columns (i.e. micro-panel) of B̂.
Once again, we would need to reduce nC in order to maintain a similar footprint in the
L3 cache.

Because of the nature of our matrix primitive, we would also need to format Ãi dif-

ferently, as

 Âr

Âi

Âr+i

, where Â = Api. Note that this format is simply the transposition

of the format used on to pack B̃p for Algorithm 3M 3. And similarly, we would need to
reduce mC by approximately two-thirds in order for Ãi to occupy the same fraction of
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Algorithm: [ C ] := 3M 1( A, B, C ) [ C ] := VK3M 1( A, B, C )
for ( j = 0 : n− 1 : nC )
Identify Bj , Cj from B,C
for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

PACK3MINTERLEAVED Bjp → B̃p

for ( i = 0 : m− 1 : mC )
Identify Api, Cji from Ap, Cj

PACK3MINTERLEAVED Api → Ãi

for ( h = 0 : nC − 1 : nR )
Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )
Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := VK3M 1( Ãil, B̃ph, Cjihl )

Acquire workspace W

Expose A =

 Ar

Ai

Ar+i

 ,

B =
(
Br Bi Br+i

)
W r := RKERN( Ar, Br, 0 )
W i := RKERN( Ai, Bi, 0 )
Ci := RKERN( Ar+i, Br+i, Ci )
Cr := ADDM( W r, Cr )
Cr := SUBM( W i, Cr )
Ci := SUBM( W r, Ci )
Ci := SUBM( W i, Ci )

Fig. 5. Left: Pseudo-code for Algorithm 3M 1. Here, PACK3MINTERLEAVED packs the gth micro-panel of

Bjp = B̂ as
(
B̂r

g B̂i
g B̂r+i

g

)
and of Api = Â as

 Âr
g

Âi
g

Âr+i
g

. Right: Pseudo-code for a virtual micro-kernel

used in Algorithm 3M 1. This virtual micro-kernel assumes that the micro-panel arguments A and B were
packed with separate real, imaginary, and summed sub-panels.

the L2 cache. However, as before, this means that the cost of moving the current B̃r
j ,

B̃i
j , or B̃r+i

j micro-panel from the L3 cache into the L1 cache is now amortized over less
computation, since each must be multiplied by a different (now smaller) region of Ãi.

Recall our opening remarks regarding workspace requirements. If Ãi and B̃p are
packed as described above, separate workspaces for SA and SB are no longer needed,
as those intermediate matrices become integrated into Ãi and B̃p, whose mC and nC
dimensions, respectively, have been reduced to compensate. We still need workspace
W ∈ CmC×nR , though, in order to compute and reuse the ArBr and AiBi terms.

The 2nd loop around the micro-kernel is also frequently targeted for parallelism
(perhaps even more often than the 3rd loop), especially when the L2 cache is shared
among processing cores [Smith et al. 2014]. Parallelism at this level is also targeted
because it yields relatively fine-grain workload balancing, since t is usually quite large.

Now, unlike with Algorithm 3M 3, here the summing of the real and imaginary parts
of both Api andBjp occurs entirely within their respective packing routines. Depending
on where parallelism is extracted, this may or may not hinder performance. Paralleliz-
ing higher level loops would lead threads to add the real and imaginary sub-matrices
of Ai and Bp in parallel. However, parallelizing only within the macro-kernel (2nd or
1st loops) would serialize the computation of the (Ar + Ai) and (Br + Bi) terms of the
3M method, which may result in poor scaling to many threads.

Applying 3M within the 2nd loop would be moderately disruptive to the existing
BLIS code for two reasons. First, it would need to carefully take into account multi-
threading, especially within the 1st loop and with regard to workspace W . Secondly,
these modifications would need to be made to all level-3 BLIS macro-kernels.

We omit showing Algorithm 3M 2 for space reasons.

4.3.6. 1st loop around the micro-kernel. If we target the first loop around the micro-
kernel, our primitive becomes the micro-kernel itself. Here, it makes sense for both
Ãi and B̃p to be packed using the “interleaved” micro-panels approach described for

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 2016.



0:16 F. Van Zee and T. Smith

B̃p within Algorithm 3M 2. This results in s = dmC/mRe triplets of real, imaginary,
and summed micro-panels being packed into Ãi. If packing is performed in this man-
ner, the only workspace required is W ∈ CmR×nR . This tiny micro-tile of workspace is
small enough to be allocated statically (i.e. on the function stack).

Defining the micro-kernel as the primitive comes with other benefits. For example,
we can define a “virtual” micro-kernel, written portably in C99, which implements the
3M method (in terms of the real micro-kernel) in a separate function. This allows the
details of the 3M method to remain completely abstracted from the existing level-3
macro-kernel code. Thus, Algorithm 3M 1 requires only isolated and relatively modest
changes to support within the BLIS framework.

Yet another benefit is that 3M at this level does not hinder multithreading, since
the framework is already set up to extract all parallelism above the micro-kernel. And
since the W ∈ CmR×nR workspace can be allocated statically on the function stack of
the virtual micro-kernel, no additional workspace issues arise in the context of many
threads.

The main drawback of this algorithm is that kC must be reduced by two-thirds in or-
der to maintain the same the cache footprints of the micro-panels. Unfortunately, this
means that the real domain micro-kernel will be called on micro-panels whose k di-
mensions are, in the best of cases, one-third their optimal value. Hence, 3M 1 updates
C three times as frequently as the other 3M algorithms while performing the same
number of flops. We expect that this reduction of kC will cause a small-to-moderate
performance penalty, depending on the relative cost of memory operations.

Algorithm 3M 1 is shown in Figure 5 (left), with a separate algorithm for the virtual
micro-kernel given in Figure 5 (right).

4.4. Refinements and other implementation details
4.4.1. Handling alpha and beta scalars. We have thus far simplified the general matrix

multiplication operation to C := C +AB. However, in practice, the operation is imple-
mented as C := βC +αAB, where α, β ∈ C. Let us use Algorithm 3M H, in Figure 4, as
an example as we now consider how to modify our 3M algorithms to support arbitrary
values of α and β.

If β is real, we can pass β into the third call to RGEMM and then replace the ADDM
and SUBM operations with calls to an AXPY-like operation: Y := βY +X. If instead β is
complex, Cr and Ci must be scaled outside of RGEMM and before adding or subtracting
by W r and W i. Notice that 3M 1 benefits from the fact that it would scale by β within
the virtual micro-kernel, which means the operation is automatically done in parallel
when multithreading.

When α is real, the scaling may be performed by the primitive. Now, at first glance,
scaling by complex α would seem problematic. In this situation, a naive approach
might be to scale a copy of A or B. However, this scaling can be folded into the pack-
ing of either Ãi or the B̃p. While the scaling that occurs during packing is not, by
default, optimized to use vector instructions, we do not see this as much of a problem,
for two reasons. First, the limiting factor in packing is the memory operations them-
selves, which, compared to MULTIPLY and ADD instructions, are quite costly, especially
when data is moved from main memory. Second, the overall cost of packing, which is
O(k(m + n)), is small relative to the overall cost of floating-point operations, which is
O(2mnk). For these reasons, we would not expect vector instructions to provide much
speedup.

Thus, with a little extra logic in the primitive and the packing facility, scaling can be
incorporated. This logic is conveniently hidden when the primitive is a virtual micro-
kernel.
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4.4.2. Alignment of packed matrices. Recall that some of the algorithms for 3M reduce
one or more of the cache blocksizes by two-thirds in order to keep the packed matrices’
cache footprints similar to what they would be in a classic real domain algorithm, such
as expressed in Figure 1 and RGEMM. But since blocksizesmC , nC , and kC are integers,
division by three results in a non-integer value, either truncated or rounded up, which
will usually not be aligned to a power-of-two memory address. The authors of [Low
et al. 2016] allude to the importance of keeping the micro-panels aligned. We further
speculate that micro-panel alignment may be needed on some systems to facilitate
more predictable cache replacement behavior, especially for the L1 cache where it is
crucial that the current micro-panel of B̃p remain as the 1st loop executes. In these
cases, padding may be employed to maintain the desired alignment.

4.4.3. Avoiding workspace. The workspace requirements, in one form or another, cause
a myriad of challenges to the 3M algorithms presented in Section 4.3:

— In Algorithms 3M 5 and 3M 4, the workspace itself is unacceptably large. Even Algo-
rithm 3M 3, which bounds workspace by constant blocksizes, requires substantially
more workspace than the conventional, assembly-level approach.

— In all algorithms except 3M 1, the potential serialization from ADDM and SUBM
subproblems may hinder scalability in many-threaded settings. (Scalability is un-
affected, however, if, for applicable algorithms, ADDM and SUBM are fused with the
packing stage and the packing function is parallelized.)

— In Algorithms 3M 3, 3M 2, and 3M 1, the use of packing space to store summed terms
require awkward blocksize reductions by two-thirds, which may cause alignment is-
sues. Those algorithms also use a smaller values of mC , nC , or kC , which in turn
means the cost of data movement through the cache hierarchy is amortized over
fewer flops.

At first glance, it may seem that the workspace requirements, and all of the ways
they complicate the 3M algorithms, are unavoidable. However, there is an optimization
which nearly eliminates workspace altogether.

The most straightforward way to explain this optimization is in the context of 3M H.
We begin with three separate calls to a slightly modified RGEMM, as depicted in Fig-
ure 6 (top-left). Here, the first invocation of RGEMM will focus solely on computing the
ArBr term of the 3M method, as if Ar and Br were each standalone real matrices.
(The second and third invocations of RGEMM will focus on the other two terms of the
3M method.) We also pass in a new value q that encodes which of the three “phases”
is being executed. The phase value is first used by the packing facility to determine
the appropriate contents of Ãi and B̃p, as shown in Figure 6 (bottom-left). A modified
virtual 3M micro-kernel, shown in Figure 6 (bottom-right), then uses the phase in-
formation to determine how the current micro-kernel product is accumulated into the
current micro-tile. For example, in the case of the the first phase, Ãi and B̃p are packed
with Ar

pi B
r
jp, respectively. Then, within the modified virtual micro-kernel, the inter-

mediate product ArBr is added to the real part of the micro-tile, and also subtracted
from the imaginary part. The second and third phases proceed in a similar manner.

This modified 3M HW algorithm addresses nearly all of the challenges mentioned
above:

— Workspace is now reduced to only CmR×nR . This workspace is also used only within
the virtual micro-kernel. As a result, it is typically small enough to be statically allo-
cated on the function stack. This greatly simplifies workspace allocation, especially
in the context of multithreading.
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Algorithm: [ C ] := 3M HW( A, B, C )
C := RGEMM3M HW( A, B, C, 0 )
C := RGEMM3M HW( A, B, C, 1 )
C := RGEMM3M HW( A, B, C, 2 )
[ C ] := RGEMM3M HW( A, B, C, q ) [ C ] := VK3M HW( A, B, C, q )
for ( j = 0 : n− 1 : nC )

Identify Bj , Cj from B,C
for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

Select B̂ from {Br
jp, B

i
jp, B

r+i
jp }

using q and PACK B̂ → B̃p

for ( i = 0 : m− 1 : mC )
Identify Api, Cji from Ap, Cj

Select Â from {Ar
pi, A

i
pi, A

r+i
pi }

using q and PACK Â→ Ãi

for ( h = 0 : nC − 1 : nR )
Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )
Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := VK3M HW( Ãil, B̃ph, Cjihl, q )

Acquire workspace W
W := RKERN( A, B, 0 )
if ( q = 0 )
Cr := ADDM( W , Cr )
Ci := SUBM( W , Ci )

else if ( q = 1 )
Cr := SUBM( W , Cr )
Ci := SUBM( W , Ci )

else if ( q = 2 )
Ci := ADDM( W , Ci )

Fig. 6. An abbreviated pseudo-code for Algorithm 3M HW (top-left), implemented in terms of RGEMM3M HW
(bottom-left) and virtual micro-kernel VK3M HW (bottom-right).

— As with 3M 1, this algorithm benefits from the fact that the ADDM and SUBM compo-
nents, which reuse the intermediate product W during the first and second phases,
are embedded within the virtual micro-kernel VK3M HW. This means that scalabil-
ity is not hindered by those accumulation steps. In fact, multithreading is almost
completely unaffected.17

— Performing the computation in three phases allows each phase to use unreduced
(e.g. optimal) values of kC when packing and computing with micro-panels of A and
B. While not as impactful on performance, mC and nC may also be used unmodified.

Since changes are limited to the packing facility and the virtual micro-kernel, 3M HW
causes no significant disruption to the level-3 operation infrastructure within BLIS or
the underlying multithreading framework. The phase information, passed down to the
micro-kernel from outside the 5th loop, can be hidden within existing abstractions for
most of its journey. And even though we are only packing data from one phase at a
time, it is still possible to scale by α ∈ C during packing.18

The most significant drawback of the workspace optimization employed by Algo-
rithm 3M HW is that it does not extend to the two-operand level-3 operations TRMM

17 Scalability within Algorithm 3M HW is only hindered somewhat when the number of threads is high
relative to problem size, because parallelism may only occur within the three phases. Threading across
phases cannot be employed until support is added for multithreading within the 4th loop around the micro-
kernel, which will allow multiple threads to update the same region of C in a mutually exclusive manner.
18 Notice that scaling during packing may be employed by Algorithm 3M HW, even though any given phase
only packs the real, imaginary, or summed values. For example, let as assume that we have decided to
apply a scalar α ∈ C to matrix A. To accomplish this, during the q = 0 phase Ar

pi would be packed as
(αrAr

pi−αiAi
pi)→ Ãi. Then, when q = 1, Ai

pi would be packed as (αrAi
pi +αiAr

pi)→ Ãi. And finally, when

q = 2, Ar+i
pi would be packed as

(
(αr + αi)Ar

pi + (αr − αi)Ai
pi

)
→ Ãi.
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and TRSM. This stems from the fact that, in these operations, one of the operands in-
volved in the matrix product (matrix B) is being overwritten. Thus, the second and
third stages will not have the necessary input values available in order to perform the
computation associated with those phases.

It may be of interest to some readers to point out that OpenBLAS (and the Goto-
BLAS before it) takes a similar approach to implementing cgemm3m and zgemm3m, except
that the workspace optimization is applied to that project’s equivalent of 3M 4. Also,
since OpenBLAS encodes the entire macro-kernel in assembly code, an entirely new
assembly-coded kernel specific to 3M must be written (and maintained) for each target
architecture. In contrast, BLIS allows us to construct our 3M HW algorithm in terms
of a portable virtual micro-kernel, which can then leverage existing micro-kernel code.
Now, the OpenBLAS approach is slightly more efficient, because those custom kernels
can, based on the current phase being executed, write to the real and imaginary parts
of each micro-tile directly from registers. In the BLIS-based approach, the real micro-
kernel writes to a temporary mR×nR workspace, and then the virtual 3M micro-kernel
uses the phase value to determine how to update C, which requires an extra mRnR
memory operations for each call to the virtual micro-kernel. In practice, though, these
extra mRnR memops come at a relatively minor cost since the workspace micro-tile
resides in the L1 cache.

4.4.4. Kernel support for general stride. The BLIS framework exposes separate row and
column strides of matrix operands in its native API, and thus tracks both strides in-
ternally. The BLIS micro-kernel interface similarly exposes separate row and column
strides for matrix C, which means that BLIS micro-kernels are required to support ma-
trices stored with general stride (such as non-contiguous slices of higher dimensional
tensors). This feature can be used to specify an “in-place” update to only the real, or
only the imaginary part of the micro-tile of C. For example, in VK3M 1, general stride
support allows the Ar+iBr+i micro-kernel product to be accumulated directly into Ci,
without first storing the product to temporary workspace.

However, updating the micro-tile of C in the case of general stride can degrade
performance for two reasons. First, and most obviously, when both row and column
strides are non-unit, the micro-kernel often cannot employ vector store instructions
to output an entire register’s contents to contiguous memory. Exceptions exist, such
as with the “scatter” instructions found in the KNC instruction set.19 However, while
these instructions concisely capture the desired operation, their performance is still
penalized at runtime due to the non-contiguity of the elements being updated. Second,
storing elements to (or loading elements from) memory individually can be instruction-
intensive, requiring one instruction just to extract an element from a vector register
and another to output that element to memory.20 By contrast, row or column storage
of C allows multiple elements to be output to memory with a single vector instruction.

Notice that, in the case of VK3M 1, shown in Figure 5 (right), we can speed up the
runtime of the real micro-kernel by instead writing the Ar+iBr+i product to tempo-
rary (contiguous) workspace. However, we must then incur the cost of copying that
temporary product to the current micro-tile of C. Thus, it is not clear that the general
stride feature always provides a net benefit. Indeed, whether it is advantageous to up-
date the real and imaginary parts of C directly (in-place) probably depends on specific
properties of the hardware.

19AVX2 contains instructions for gathering data from non-contiguous memory locations to a single register,
but lacks instructions for the corresponding reverse (scatter) operation.
20Using AVX on Sandy Bridge architectures, 9 instructions are needed to output four double-precision ele-
ments from a vector register to non-contiguous memory locations, and 15 instructions are needed to output
eight single-precision elements.
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Table I. F.E. memops incurred by various 3M algorithms, broken down by stage of computation.

A
lg

or
it

hm

F.E. memops required to . . . a

updateb
micro-tiles
Ci, W r , W i

reuseb
W r , W i

pack
Ãi

form
SA

move Ãi

from L2 to
L1 cache c

pack
B̃p

form
SB

move B̃p

from L3 to
L1 cache d

3M H[W] e 4mn k
kC

8mn
[

k
kC

]
3 · 2mk n

nC
3mk

[
n
nC

]
3 ·mk n

nR
3 · 2kn 3kn 3 · kn m

mC

3M 5[W] e 4mn k
kC

8mn
[

k
kC

]
3 · 2mk n

nC
3mk n

nC
3 ·mk n

nR
3 · 2kn 3kn 3 · kn m

mC

3M 4 4mn k
kC

8mn k
kC

3 · 2mk n
nC

3mk n
nC

3 ·mk n
nR

3 · 2kn 3kn 3 · kn m
mC

3M 3 f 4mn k
kC

8mn k
kC

3 · 2mk 3n
nC

3mk 3n
nC

3 ·mk n
nR

5kn 3 · kn m
mC

3M 2 f 4mn k
kC

8mn k
kC

5mk 3n
nC

3 ·mk n
nR

5kn 3 · kn 3m
mC

3M 1 f 4mn 3k
kC

8mn 3k
kC

5mk n
nC

3 ·mk n
nR

5kn 3 · kn m
mC

Note: We intentionally factor some values as 3 · e. This unsimplified expression occurs wherever the same
memop term e is incurred three times as a result of the three intermediate products present in all 3M algo-
rithms.
a We express the number of iterations executed in the 5th, 4th, and 3rd loops as n

nC
, k

kC
, m

mC
. (The total

number of iterations executed in the 2nd loop also appears as n
nR

.) The precise number of iterations along
a dimension x using a cache blocksize xC would actually be d x

xC
e. Simlarly, when blocksize scaling of 1

3

is required, the precise value
⌈

x
bxC/3c

⌉
is expressed as 3x

xC
. These simplifications allow easier comparison

between algorithms while still providing meaningful approximations.
b The memops incurred on Ci during the computation of Ci := Ci + SASB are counted in the column
labeled “update micro-tiles Ci, W r , W i”. Similarly, the memops incurred by the update of Cr , as well as the
subsequent update of Ci from subtracting W r and W i, are counted in the column labeled “reuse W r,W i”.
c d The cost of moving micro-panels of Ãi and B̃p from the L2 and L3 caches, respectively, to the L1 cache is
incurred entirely within the primitive’s real domain micro-kernel, where those memops can be mostly hidden
(i.e. executed concurrently with useful flops), especially when prefetching is employed. Therefore, these terms
do not substantially contribute to the overall runtime costs.
e Iteration terms enclosed in brackets apply only when the workspace optimization is employed.
f Merged table cells for these 3M algorithms indicate that the packing of Ãi is merged with the formation of
SA, and/or the packing of B̃p is merged with the formation of SB .

Table II. Performance properties of various 3M algorithms.

A
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(Sum of columns of Table I)

Scaling req’d
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tain cache
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cache line is moved
into L1 cache (per
rank-kC update).

kC mC nC lCL1 lAL1 lBL1

3M HW a 12mn
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k
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)
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(
n
nC

+ 1
3

n
nR

)
+ 3kn

(
3 + m

mC

)
1 1 1 3 3 3

3M 5W a 12mn
(

k
kC

)
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(
n
nC

+ 1
3

n
nR

)
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(
3 + m

mC

)
1 1 1 3 3 3

3M 4 12mn
(

k
kC

)
+ 9mk

(
n
nC

+ 1
3

n
nR

)
+ 3kn

(
3 + m

mC

)
1 1 1 3 3 3

3M 3 12mn
(

k
kC

)
+ 9mk
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3n
nC
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3

n
nR

)
+ 3kn

(
5
3
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mC

)
1 1 1/3 3 3 1

3M 2 12mn
(

k
kC

)
+ 5mk

(
3n
nC

+ 3
5

n
nR

)
+ 3kn

(
5
3

+ 3m
mC

)
1 1/3 1/3 3 1 1

3M 1 12mn
(

3k
kC

)
+ 5mk

(
n
nC

+ 3
5

n
nR

)
+ 3kn

(
5
3

+ m
mC

)
1/3 1 1 1 1 1

a We assume that the workspace optimization is employed for Algorithms 3M H and 3M 5.

4.5. Summary
In this section, we have presented a family of algorithms for performing the 3M method
to compute a complex matrix multiplication.
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Algorithm: [ C ] := 4M H( A, B, C )
Cr := RGEMM( Ar, Br, Cr ) ; Cr := RGEMM( −Ai, Bi, Cr )
Ci := RGEMM( Ar, Bi, Ci ) ; Ci := RGEMM( Ai, Br, Ci )

Fig. 7. An algorithm for applying the 4M method at the highest level of general matrix multiplication.

Table I summarizes the F.E. memops incurred by each 3M algorithm previously dis-
cussed. Table II shows the total F.E. memop cost approximations shown in Table I,
factored to emphasize their relative differences. The table also shows any cache block-
size scaling required as well as the number of times each cache line of each matrix
operand is moved into the L1 cache.

Based on this analysis, we find Algorithms 3M H and 3M 2 to be of particular in-
terest. Algorithm 3M H has the lowest F.E. memop cost for very large matrices and
among the lowest for rank-kC updates. 3M H, even with the workspace optimization,
is straightforward to implement in BLIS. Algorithm 3M 2, while requiring a less el-
egant implementation, maintains a relatively low F.E. memop cost when k = kC and
works for all level-3 operations, including TRMM and TRSM. Both algorithms use unre-
duced values for kC , the cache blocksize to which performance is most sensitive. By
contrast, we can see the steep cost of updating C inherent in Algorithm 3M 1.

In general, employing the 3M method would be most appropriate when performance
is a priority. However, for those many applications that are unwilling or unable to risk
any additional numerical instability, the 3M method may be of little utility. Thus, we
continue our investigation.

5. 4M METHOD
Notice that we can extend the imperative statements in Eq. 2 to complex matrices
while forgoing the reformulation shown in Eq. 3:

Cr := Cr +ArBr −AiBi

Ci := Ci +ArBi +AiBr (5)

We call this the 4M method because it casts a complex matrix multiplication in terms
of four real matrix multiplications.

While 4M does not provide any opportunities to skip computation (via reuse of inter-
mediate products), it avoids the potential for numerical instability that is inherent in
3M. Also, unlike the 3M method, 4M employs each real or imaginary submatrix of A
and B twice each, which provides the opportunity to (potentially) reuse each of those
operands from some level of cache rather than from main memory.

The 4M method requires 8mnk flops. We can see by analysis and inspection that 4M
can be implemented as a series of four instances of real domain GEMM, where each
instance executes 2mnk flops.

5.1. Application
As with 3M, the 4M method can be applied around any of the loops shown in Fig-
ure 1. Furthermore, when applied within the 5th, 4th, 3rd, and 2nd loops around the
micro-kernel, several orderings of the real/imaginary matrix product subproblems are
possible. A full analysis is beyond the scope of this article, which we leave as an exer-
cise for the reader. We will, however, present a small selection of algorithms—enough
to convey the general ideas behind applying 4M.

5.1.1. Outside the algorithm. Like the 3M method, 4M can be applied outside the matrix
multiplication algorithm in a straightforward manner by simply implementing Eq. 5
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Algorithm: [ C ] := 4M 1A( A, B, C ) Algorithm: [ C ] := 4M 1B( A, B, C )
for ( j = 0 : n− 1 : nC )

Identify Bj , Cj from B,C
for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

PACK4MINTERLEAVED Bjp → B̃p

for ( i = 0 : m− 1 : mC )
Identify Api, Cji from Ap, Cj

PACK4MINTERLEAVED Api → Ãi

for ( h = 0 : nC − 1 : nR )
Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )
Identify Ãil, Cjihl from Ãi, Cjih

Let Ãil = Â, B̃ph = B̂, Cjihl = Ĉ

Expose Â =

(
Âr

Âi

)
, B̂ =

(
B̂r B̂i

)
Ĉr := RKERN( Âr, B̂r, Ĉr )
Ĉr := RKERN( −Âi, B̂i, Ĉr )
Ĉi := RKERN( Âr, B̂i, Ĉi )
Ĉi := RKERN( Âi, B̂r, Ĉi )

for ( j = 0 : n− 1 : nC )
Identify Bj , Cj from B,C
for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

PACK4MINTERLEAVED Bjp → B̃p

for ( i = 0 : m− 1 : mC )
Identify Api, Cji from Ap, Cj

PACK4MINTERLEAVED Api → Ãi

for ( h = 0 : nC − 1 : nR )
Identify B̃ph, Cjih from B̃p, Cji

Let B̃ph = B̂, Cjih = Ĉ

Expose B̂ =
(
B̂r B̂i

)
for ( l = 0 : mC − 1 : mR )

Identify Âl, Ĉl from Ãi = Â, Ĉ

Expose Âl =

(
Âr

l

Âi
l

)
Ĉr

l := RKERN( Âr
l , B̂r, Ĉr

l )
Ĉi

l := RKERN( Âi
l, B̂

r, Ĉi
l )

for ( l = 0 : mC − 1 : mR )
Identify Âl, Ĉl from Ãi = Â, Ĉ

Expose Âl =

(
Âr

l

Âi
l

)
Ĉr

l := RKERN( −Âi
l, B̂

i, Ĉr
l )

Ĉi
l := RKERN( Âr

l , B̂i, Ĉi
l )

Fig. 8. Pseudo-codes for two variations of applying 4M to the 1st loop around the micro-kernel. Here,

PACK4MINTERLEAVED packs the gth micro-panel of Bjp = B̂ as
(
B̂r

g B̂i
g

)
and of Api = Â as

(
Âr

g

Âi
g

)
.

as a series of calls to RGEMM on the real and imaginary submatrices of A, B, and C.
This is shown in Figure 7 as Algorithm 4M H.

Notice that the 4M method does not require workspace at any level.
Since Algorithm 4M H uses RGEMM unmodified, no changes to cache blocksizes or

packing formats are necessary. Similarly, multithreading within any single invocation
to RGEMM is unaffected, with the only limitation being, as with 3M, that multithread-
ing may not be extracted across calls to RGEMM unless the 4th loop is multithreaded
(which would provide the ability for threads to update the same parts of matrix C in a
mutually exclusive manner, as mentioned previously in Footnote 17).

Since RGEMM requires no changes, it is quite easy to implement 4M H within the
BLIS framework. However, 4M H fails to achieve any significant reuse of the real and
imaginary parts of A and B. That is, unless A and B are quite small, the fundamental
elements that would be reused in a subsequent call to RGEMM will have already been
evicted from the L1 and L2 caches.

5.1.2. 1st loop around the micro-kernel. Algorithm 4M 1A in Figure 8 (left) encodes the
result of applying 4M within the 1st loop around the micro-kernel. This application
is done in a manner similar to that of Algorithm 3M 1, whereby the loop body of the
1st loop computes all intermediate 4M products. As with 3M 1, the real GEMM micro-
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kernel serves as the primitive. Note that Algorithm 4M 1A inlines the 4M computation
directly into the loop rather than abstract those statements into a separate virtual
micro-kernel. (This is only done to allow textual comparison to a different algorith-
mic variant, 4M 1B, which we will discuss shortly. A virtual micro-kernel may still be
employed for both algorithms.)

As with Algorithm 3M 1, it makes sense to pack both both Ãi and B̃p with inter-
leaved real and imaginary micro-panels. This format is similar to the one introduced
in Section 4.3.5, except here we omit the third micro-panel in the 3-tuple (or third
“sub-panel”). This results in s = dmC/mRe pairs of micro-panels packed in Ãi and
t = dnC/nRe pairs of micro-panels packed in B̃p.

Targeting this loop carries some benefits similar to those of 3M 1. For example, the
invocations of the micro-kernel primitive may be hidden within a virtual 4M micro-
kernel, which abstracts the 4M details from the macro-kernel code. Similarly, since all
parallelism is extracted outside the virtual micro-kernel, multithreading is unaffected.
And with only the packing and virtual micro-kernel functions in need of modification,
this method fits nicely into the existing BLIS framework. Finally, unlike 4M H, 4M 1A
is able to efficiently reuse the micro-panels’ real and imaginary sub-panels from the
L1 cache.

A significant drawback to this algorithm, however, is that kC must be reduced by half
in order to maintain the same L1 cache footprint for micro-panels of Ãi and B̃p, as well
as the same L2 and L3 cache footprints for Ãi and B̃p, respectively. This means that, for
sufficiently large k, 4M 1A requires twice as many memops to update C compared to
4M H, which already executes memops on C twice as often as a conventional algorithm
built on an assembly-coded complex micro-kernel. We expect this reduction of kC to
cause a noticeable performance penalty.

Algorithm 4M 1B, shown in Figure 8 (right), reorders the 4M computation within
the 1st loop. The idea here is that instead of computing with the real and imaginary
sub-panels of each micro-panel of Ãi before moving to the next iteration of the 2nd
loop, all computation associated with the hth real sub-panel of B̃p is performed before
moving on to the hth imaginary sub-panel. Only then does the 2nd loop iterate. In
other words, we have applied a loop fission transformation, splitting the 1st loop into
two loops, one for the real sub-panel of the current micro-panel of B̃p, and one for
the imaginary sub-panel. This reordering forfeits reuse of the real and imaginary sub-
panels of Ãi from the L1 cache, and instead reuses them from the L2 cache. However,
since this algorithm does not oscillate back and forth between accessing the real and
imaginary sub-panels of the current micro-panel of B̃p, those sub-panels’ kC dimension
need not be reduced by half.21 This means that, for large enough values of k, Algorithm
4M 1B updates C half as often as 4M 1A. Unfortunately, Algorithm 4M 1A cannot be
be applied to TRSM, though it may be used for TRMM.

Notice that we could further fissure the two instances of the 1st loop in Algorithm
4M 1B into four instances. This would call for a different packing format on Ãi similar

to the one employed by Algorithm 3M 2, where Api = Â is packed as
(

Âr

Âi

)
→ Ãi.

Also, notice that this hypothetical algorithm 4M 1C (which we omit for space reasons)
is equivalent to what would be 4M 2A, since it would essentially expose four instances
of the primitive naturally found in the 2nd loop around the micro-kernel.

21While Algorithm 4M 1B avoids the need to reduce kC , it does require that mC and nC be halved in
order to maintain then footprints of Ãi and B̃p within the L2 and L3 caches, respectively. However, overall
performance tends to not be as sensitive to these cache blocksizes as it is to kC .
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5.2. Refinements and other implementation details
5.2.1. Handling alpha and beta scalars. Generally speaking, arbitrary scalars α and β in

4M-based algorithms may be handled in a manner similar to that of 3M.
Note that if α is real, the negation on the AiBi term of Eq. 5 may be implemented

by negating the α scalar, which is passed into each call to the matrix multiplication
primitive. If α is complex, then the scalar must be applied to a copy of A or B, which
may be done during packing. In that case, α = −1 can then be passed into the primitive
to negate the AiBi term.

Unfortunately, since 4M does not require workspace, there is no natural place to
apply a complex-valued α scalar in algorithms that implement 4M above the level
at which packing takes place. This includes Algorithm 4M H as well as hypothetical
algorithms that target the 5th loop (i.e. 4M 5A and 4M 5B). Our workaround to this is
to employ the same algorithmic structure prescribed by the 3M workspace optimization
discussed in Section 4.4.3, which would transform, for example, Algorithm 4M H into
an Algorithm 4M HW capable of handling α ∈ C. The goal here is not be to avoid
workspace needed by the basic (scalar-omitting) algorithms—since those algorithms
have no such requirement to begin with—but rather to avoid introducing workspace
for the sole purpose of supporting complex α scalars. This allows A or B to be scaled as
described for q = 0 and q = 1 in Footnote 18.

If β is real, it can be applied during the first updates to Cr and Ci (for example,
when ArBr and ArBi, respectively, are computed). If β is complex, C must be scaled
separately, before accumulating the 4M products. Given that these additional memops
must be incurred, it makes sense to use mR × nR workspace, which facilitates the use
of vector instructions for up to half of the memops on the micro-tile.

5.2.2. Alignment of packed matrices. Recall that 4M 1 requires that kC be reduced to
maintain micro-panel L1 cache footprints. Since the reduction factor is 1

2 , and since no
extra data is being packed, as in the case of the summed sub-panels for the interleaved
3M packing format, alignment of micro-panels does not pose an issue.

5.2.3. Kernel support for general stride. As mentioned previously, 4M does not, strictly
speaking, require any workspace (except in some cases of applying a complex α scalar
at high levels). However depending on the hardware, workspace may improve perfor-
mance of the virtual micro-kernel. As discussed in Section 4.4.4, the micro-kernel can
separately access the real and imaginary parts of an output matrix C that stores those
values in pairs, as shown in Figure 8. However, doing so typically incurs a performance
penalty. Introducing a small mR × nR workspace would allow the real micro-kernel to
employ vector instructions to accumulate the intermediate results. However, as before
with 3M, the temporary workspace must then be written back to C. If this technique is
applied to any algorithm above the level targeted by 4M 1A, the number of F.E. mem-
ops increases two-fold.22 These additional memory operations may negate some (or all)
of the benefit of using contiguous workspace in the first place.

22This two-fold increase in memops, also mentioned in Footnote a of Table III, can be optimized down to
a 50% increase for 4M 1A if the real micro-kernel skips the loading of the C micro-tile elements when
the micro-kernel’s β parameter is zero. This is because the 4M 1A virtual micro-kernel has the unique
opportunity to update Cr and Ci only after both of their micro-panel products have been accumulated to
each of W r and W i:
W r := ArBr ; W r := W r −AiBi;
W i := ArBi; W i := W r +AiBr ;
C := C +W
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Table III. F.E. memops incurred by various 4M algorithms, broken down by stage of computation, with required
blocksize scaling.

Algorithm
F.E. memops required to . . .

Scaling req’d
to main-
tain cache
footprints

update micro-
tilesa Cr , Ci

pack
Ãi

move Ãi from
L2 to L1 cache

pack
B̃p

move B̃p from
L3 to L1 cache

kC mC nC

4M H
4M 5[AB]
4M 4[AB]
4M 3B

8mn k
kC

8mk n
nC

4mk n
nR

8kn 4kn m
mC

1 1 1c

4M 3A 8mn k
kC

8mk 2n
nC

4mk n
nR

8kn 4kn m
mC

1 1d 1/2

4M 2[AB]
4M 1B

8mn k
kC

8mk 2n
nC

4mk n
nR

8kn 4kn 2m
mC

1 1/2 1/2

4M 1A 8mn 2k
kC

8mk n
nC

4mk n
nR

8kn 4kn m
mC

1/2 1 1

assembly b 4mn k
kC

4mk n
nC

2mk n
nR

4kn 2kn m
mC

− − −

a As described in Section 5.2.1,mR×nR workspace becomes mandatory when βi 6= 0. When workspace is
employed in a 4M-based algorithm, the number of F.E. memops incurred updating the micro-tile typically
doubles.
b An assembly-coded complex implementation may call for different cache blocksize values than in the
real domain. However, this is not particularly remarkable, and so we omit the complex-to-real cache
blocksize ratios for the assembly case.
c In the case of 4M 4A, this unreduced value of nC assumes the ArBr and AiBr subproblems are com-
puted consecutively, so that Br is fully used before packing Bi (to then compute AiBi and ArBi).
d This unreduced value of mC assumes the ArBr and ArBi subproblems are computed consecutively, so
that Ar is fully used before packing Ai (to then compute AiBi and AiBr).

5.3. Summary
In this section, we have presented a family of algorithms for performing the 4M method
for complex matrix multiplication.

Table III tallies the total number of F.E. memops required by various 4M-based al-
gorithms (including several that were not explicitly presented or discussed). Similarly,
Table IV summarizes the main performance properties.

This analysis confirms that 4M 1A suffers from a higher memop cost of updating C
than its siblings (due to a reduced kC), but reuses F.E. from all matrix operands from
the L1 cache, and moves matrix cache lines into the L1 cache only once. Its modifi-
cations are also limited to the packing function and virtual micro-kernels, making it
easy to implement. Algorithm 4M 1B uses an unreduced kC blocksize and therefore re-
quires fewer memops to update C, but exhibits slightly less efficient use of data from
Ãi. It also requires changes to the macro-kernels, making it somewhat less elegant to
support. We would expect all other algorithms to perform, to varying degrees, more
poorly than 4M 1B. Also, 4M 1A is the only 4M algorithm that works for TRSM.

While 3M executes many fewer flops, the 4M method should be used instead when
numerical stability must remain undiminished—a common requirement in high-
performance computing (HPC) applications. Yet even these more general-purpose 4M-
based algorithms have weaknesses which must be thoughtfully considered.

6. PERFORMANCE
In this section we present performance of various implementations of the 3M and 4M
methods along with conventional implementations based on assembly-coded micro-
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Table IV. Performance properties of various 4M algorithms, including the assembly-based approach.

A
lg

or
it

hm Total F.E. memops required
(Sum of columns of Table III)

Level from which F.E. of matrix X
are reused, and lL1: # of times each
cache line is moved into the L1
cache (per rank-kC update).

C lCL1 A lAL1 B lBL1

4M H
4M 5[AB]

8mn
(

k
kC

)
+ 4mk

(
2n
nC

+ n
nR

)
+ 2kn

(
4 + 2m

mC

) MEM 4 MEM 4 MEM 4

4M 4B a MEM 4 MEM 4 MEM 2

4M 4A
4M 3B

MEM 4 MEM 4 L3 2

4M 3A 8mn
(

k
kC

)
+ 4mk

(
4n
nC

+ n
nR

)
+ 2kn

(
4 + 2m

mC

)
MEM 4 L2 2 L3 1

4M 2B

8mn
(

k
kC

)
+ 4mk

(
4n
nC

+ n
nR

)
+ 2kn

(
4 + 4m

mC

) MEM 4 L2 1 L3 1

4M 2A L2 4 L2 1 L1 1

4M 1B L2 2b L2 1 L1 1

4M 1A 8mn
(

2k
kC

)
+ 4mk

(
2n
nC

+ n
nR

)
+ 2kn

(
4 + 2m

mC

)
L1 1b L1 1 L1 1

assembly 4mn
(

k
kC

)
+ 2mk

(
2n
nC

+ n
nR

)
+ 2kn

(
2 + m

mC

)
REG 1 REG 1 REG 1

a In 4M 4B, we assume that the 4th loop is fissured into two loops, the first of which computes Ar
pB

r
jp

and Ai
pB

r
jp for all iterations p, and the second of which computes Ar

pB
i
jp and Ai

pB
i
jp.

b This assumes that the micro-tile is not evicted from the L1 cache during the next call to RKERN.

Table V. Register and cache blocksizes used by the various implementations of matrix
multiplication, as configured for an Intel Xeon E5-2680 “Sandy Bridge” processor.

Precision/Domain Implementation mR nR mC kC nC

single real BLIS assembly 8 8 128 384 2048

single complex

BLIS 3M HW 8 8 128 384 2048

BLIS 3M 1 8 8 128 384/3 2048

BLIS 4M HW 8 8 128 384 2048

BLIS 4M 1B 8 8 128/2 384 2048/2

BLIS 4M 1A 8 8 128 384/2 2048

BLIS assembly 8 4 96 256 2048

OpenBLAS 8 4 512 256 16240

double real BLIS assembly 8 4 96 256 2048

double complex

BLIS 3M HW 8 4 96 256 2048

BLIS 3M 1 8 4 96 256/3 2048

BLIS 4M HW 8 4 96 256 2048

BLIS 4M 1B 8 4 96/2 256 2048/2

BLIS 4M 1A 8 4 96 256/2 2048

BLIS assembly 4 4 64 192 2048

OpenBLAS 4 4 256 192 10384

kernels. While we only present empirical results on a single microarchitecture, it has
been previously shown that level-3 BLIS implementations generally extend in a rela-
tively predictable manner to a range of hardware types [Van Zee et al. 2016].
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6.1. Platform and implementation details
Results presented in this section were gathered on a single Dell Zeus C8220z com-
pute node consisting of two eight-core Intel Xeon E5-2680 processors featuring the
“Sandy Bridge” microarchitecture. Each core, clocked at 3.1 GHz, provides a peak per-
formance of 24.8 GFLOPS in double precision and 49.6 GFLOPS in single precision.23

Each socket has a 20MB L3 cache that is shared among cores, and each core has a
private 256KB L2 cache and 32KB L1 (data) cache. Performance experiments were
gathered under the CentOS 6.3 operating system running the Linux 2.6.32 (x86 64)
kernel. All source code was compiled and linked by the GNU C compiler (gcc), version
4.7.1.24 The version of BLIS used in all tests was 0.1.6-51.25

Subsequent performance graphs will include results from experimental BLIS im-
plementations of Algorithms 3M HW, 3M 3, 3M 2, 3M 1, 4M HW, 4M 1A, and 4M 1B
as described in Sections 4 and 5. Also included are results based on conventional,
assembly-based micro-kernels written by hand for the Sandy Bridge microarchitecture
via GNU extended inline assembly syntax.

All experiments were performed on randomized, column-stored matrices with GEMM
scalars held constant: α = −1 and β = 1. In all performance graphs, each data
point represents the best of three trials. For 3M results, we report the effective rate
of computation—in other words, the rate of flops that would have been achieved if
complex arithmetic were being performed in the conventional manner (or via 4M).

Blocksizes for each of the implementations tested are provided in Table V. For ref-
erence, we also provide the blocksizes for single-precision and double-precision real
domain matrix multiplication, as well as those used by complex GEMM implementa-
tions in OpenBLAS 0.2.12.

6.2. Comparing to other implementations
Before proceeding with the main body of our results, we wish to emphasize that our
goal is not simply to compare the performance of every 3M and 4M implementation
with that of existing BLAS solutions. Rather, our goal is to study various algorithms
for the 3M and 4M induced methods by comparing performance primarily within fam-
ilies. Nonetheless, we acknowledge the importance of providing some way to judge
the general level of performance of these methods against that of other libraries, and
therefore have included Figure 9. This figure serves two purposes. First, it allows the
reader to directly compare the conventional implementations of complex matrix mul-
tiplication (zgemm and cgemm) available in BLIS with those provided by OpenBLAS
0.2.12 and MKL 11.0 Update 4.26 The graphs clearly show that BLIS’s conventional
complex implementations are competitive. Secondly, it introduces data that will recur
in subsequent graphs, thus allowing readers to indirectly compare the performance of
any induced method implementation with that of OpenBLAS or MKL. Our aim here
is to facilitate comparison (albeit indirectly) while simultaneously keeping the focus
on comparing different implementations within the same framework (BLIS) and also
keeping the graphs uncluttered and readable.

23This system uses Intel’s Turbo Boost 2.0 dynamic frequency throttling technology. Upon inquiry, system
administrators informed us that the processors are well cooled and thus typically run at the maximum allow-
able frequency of 3.1GHz. This was confirmed by running test drivers through the perf stat performance
monitoring command.
24The following optimization flags were used during compilation: -O3 -mavx -mfpmath=sse -march=native.
25This version of BLIS may, with high probability, be uniquely identified by the first 10 digits of its git
“commit” (SHA1 hash) number: c84286d5ce.
26When linking our test drivers to MKL, we continued to use gcc.
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Fig. 9. Single-threaded performance of various conventional (i.e., assembly-coded) implementations of
double-precision (left) and single-precision (right) complex GEMM on a single core of an Intel Xeon E5-2680
“Sandy Bridge” processor. The theoretical peak performance coincides with the top of the graphs.

6.3. Sequential results
Figure 10 reports performance results for various implementations of double- and
single-precision complex matrix multiplication on a single core of the Sandy Bridge
processor. The x-axes of the graphs denote the problem size and the y-axes show ob-
served floating-point performance in units of 109 flops (gigaflops) per second. For the
top graphs, the theoretical peak performance is represented by the dotted line, while
in the bottom graphs, the peak coincides with the top of the graphs. For these results,
m = n was bound to the problem size while the k dimension was fixed to the corre-
sponding value of kC , as listed in Table V. We justify focusing on this problem shape—
rank-kC update—because: (1) it will yield near-optimal performance for all of our im-
plementations tested, (2) this type of matrix product frequently occurs within high-
performance implementations of more sophisticated DLA operations such as Cholesky,
LU, and QR factorizations, and (3) it is the foundation for matrix multiplications where
all three dimensions are large.27

As expected, implementations based on the 3M method yield effective performance
that exceeds the theoretical peak of the processor core. Also, we see that 3M HW out-
performs 3M 1. Recall that this outperformance is expected since 3M 1 must use a
reduced value for kC . This leads to fewer flops being performed per update of C.

In the case of 4M, the situation is reversed: 4M 1A outperforms 4M HW, albeit mod-
estly. We attribute this to the fact that the computation in 4M HW is organized in four
phases, where each phase sweeps through the entire matrices to compute one of the
four products in Eq. 5, which leaves very little opportunity for data to be reused from
the L1 or L2 caches. This poor reuse of data, particularly when updating F.E. of C,
is enough to offset the main benefit of 4M HW, which is that the full value of kC can
be used. By contrast, 4M 1A efficiently moves data into the L1 cache, where it is then
reused towards each of the four 4M products. This efficient data reuse from the L1
cache is enough to outweigh the penalty incurred from a halved kC . Also, the data for

27The authors of [Goto and van de Geijn 2008a] propose a taxonomy that includes other shape scenarios
besides rank-kC update and large quasi-square multiplication. Some of these other types of matrix prod-
uct may favor algorithms that are different from the one depicted in Figure 1. This topic deserves special
treatment, and thus is beyond the scope of the present article.
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Fig. 10. Single-threaded performance of various implementations of double-precision (left) and single-
precision (right) complex GEMM on a single core of an Intel Xeon E5-2680 “Sandy Bridge” processor. The
theoretical peak performance (in terms of effective GFLOPS) coincides with the dotted line in the top graphs
and as the top of the graph in the bottom graphs.

4M 1B show that using an unreduced kC while reusing micro-panels of Ãi from the L2
cache (instead of the L1 cache) results in a slight net benefit relative to 4M 1A.

We can see from Figure 10 that, while lower level applications of 4M tend to yield
higher performance, the pattern is reversed for 3M. Recall that, unlike 4M, 3M inher-
ently does not reuse any of its input operands, only its intermediate products. In fact,
neither 3M 1 nor 3M HW reuse input data beyond what is prescribed by the overall
matrix multiplication algorithm (depicted in Figure 1). Ultimately, 3M 1 suffers be-
cause it reorders and interleaves the three phases of 3M HW down to the micro-panel
level. This reordering carries no apparent benefit (beyond compatibility with TRMM
and TRSM), but results in lower performance because of the necessarily reduced kC .

The graphs in Figure 10 also report performance for double- and single-precision
real domain GEMM. These curves provide a reference against which we may judge the
overall success of the 4M (and 3M) implementations. On the Intel Xeon, all 4M imple-
mentations fall within 5-10% of their real domain “benchmarks” (i.e., a comparable
implementation of real GEMM using the same matrix primitive or kernel).
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Fig. 11. Multithreaded performance of various implementations of double-precision (left) and single-
precision (right) complex GEMM on two Intel Xeon E5-2680 “Sandy Bridge” processors, each with eight
cores. All data points reflect the use of 16 threads. The theoretical peak performance (in terms of effective
GFLOPS/core) coincides with the dotted line in the top graphs and as the top of the graph in the bottom
graphs.

6.4. Multithreaded results
Figure 11 shows double- and single-precision performance using 16 threads, with one
thread bound to each core of the processor. Performance is presented in units of gi-
gaflops per core to provide easy visual assessment of scalability. For all implemen-
tations, we employed 2-way parallelism within the 5th loop and 8-way parallelism
within the 3rd loop, for a total of 16 threads. This parallelization scheme was chosen
as follows [Smith et al. 2014]. The two sockets of the Xeon E5-2680 each have an L3
cache that is shared among those sockets’ cores. This encourages two-way parallelism
in the 5th loop, which, for large enough n, produces two panels B̃p to be packed and
used simultaneously on completely independent parts of matrix C. Furthermore, by
also parallelizing the 3rd loop, each of the eight cores of either socket can pack sep-
arate blocks Ãi into their private L2 caches. Thus, when each core executes the 2nd
loop (i.e., the macro-kernel), it multiplies its local block Ãi by the row-panel B̃p that is
shared among all cores on the socket.

Similar to the single-threaded case, we find that 4M HW underperforms 4M 1A and
4M 1B, except this time by a larger margin. Notice that Algorithms 4M 1A and 4M 1B
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reuse micro-tiles of C from the L1 and L2 caches, respectively, while in 4M HW, which
executes in four phases, the F.E. of C are almost never reused from any level of cache.
This helps explain the performance shortfall in both the single- and multithreaded
cases. We suspect that the much larger shortfall that manifests in the multithreaded
case is due to the system’s memory bandwidth becoming saturated as all 16 threads
vie to update their independent micro-tiles nearly simultaneously.

The double-precision results for 4M 1A and 4M 1B once again fall within 10% of the
benchmark real domain implementation. Surprisingly, in the single-precision case, the
4M 1A and 4M 1B implementations track closely with the performance of their real
GEMM benchmark.

In general, multithreaded 3M implementations perform somewhat more poorly rel-
ative to the single-threaded case. This is likely due to the additional memops consti-
tuting a higher percentage of overall runtime cost (relative to 4M), which more quickly
leads to memory bandwidth saturation.

7. FURTHER DISCUSSION
7.1. Unifying Observations
In light of our theoretical analyses and empirical results, we now offer a series of
observations which, taken together, begin to condense and unify some of the findings
of this article.

7.1.1. Variance in memops explains relative performance. All 3M and 4M algorithms execute
the same number of flops28 as the other algorithms within their respective families,
and so each algorithm’s performance relative to others in its family depends on the
number (and circumstance, which we will comment upon shortly) of memops executed.
Tables I and III reveal that the level at which 3M or 4M is applied determines the
total number of F.E. memops required. In the case of 3M, the loop level determines
the F.E. memop count in two ways. First, the targeted loop determines the packing
strategy, which sometimes requires blocksize scaling in order to avoid over-occupying
the various levels of cache. Second, the loop being targeted for 3M determines whether
the computation of SA and SB can be fused with the packing of Ãi and B̃p. Blocksize
scaling causes the total number of memops to increase, while fusing the computation
of SA and SB with packing causes the total number of memops to decrease. In the case
of 4M, only the former effect is applicable. This, combined with a less drastic blocksize
scaling factor, results in less variation of F.E. memops across 4M algorithms.

7.1.2. A spectrum of algorithms. Algorithm 4M HW moves each fundamental element of
A, B, and C from main memory to the L1 cache a total of four times each—twice for the
4M method, and twice due to incidental spatial (i.e. cache line) proximity—per rank-
kC update. And of the reusable elements that are packed to Ãi and B̃p, none are ever
reused across calls to RGEMM. Thus, 4M HW makes poor use of each cache line that is
moved through the cache hierarchy.

Algorithm 4M 1A moves each fundamental element of A, B, and C from main mem-
ory to the L1 cache only once per rank-kC update. Furthermore, only elements that
are needed are moved; there is virtually no excess data movement due to spacial prox-
imity. And as packed micro-panels of Ãi and B̃p are moved into the L1 cache, they are
reused from the L1 cache. Thus, 4M 1A makes very efficient use of each cache line that
is moved through the cache hierarchy.

28In this hypothetical accounting of flops, we assume that the workspace optimization is employed for 3M,
and thus the flops involved in the formation of SA and reuse of W r,W i is constant across all 3M algorithms
listed in Table I.
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We can observe, then, that 4M-based algorithms exist along a spectrum with the fol-
lowing trade-off properties: (1) The higher the 4M method is applied, the lower the effi-
ciency of data movement through the caches, and the lower the 4M method is applied,
the higher the efficiency of data movement29; (2) Higher applications can use larger
primitives, while lower applications must use smaller primitives. Larger primitives
tend to require fewer modifications to the underlying matrix multiplication framework
because they hide details (particularly with regards to packing and multithreading)
that surface when using smaller primitives.30

Notice that data efficiency in the context of 3M is somewhat different. 3M inherently
does not reuse any input data beyond that which is already prescribed by the matrix
multiplication algorithm. And we suspect that the total number of F.E. memops re-
quired, which exhibits greater variation within the 3M family, generally has a greater
effect on performance than the degree of redundant cache line movements. For exam-
ple, our empirical results suggest that, at least in the (important) case of-kC update,
the excessive number of F.E. memops incurred by 3M 1 outweighs the combined ben-
efit of accessing operands A, B, and C only once each and reusing micro-panels of Ãi

and B̃p from the L1 cache.

7.1.3. The conventional approach: a special case. The conventional approach discussed
in Section 3 corresponds to the special case whereby 4M is applied at the scalar level,
within a single rank-1 update of the micro-kernel’s loop. This special case resides at the
lowest end of the spectrum of 4M algorithms. Here, efficiency is maximized, as real and
imaginary elements are reused only once they have been moved into registers, where
they are computed upon by an extremely small primitive: a single vector instruction.
The cost of this efficiency, though, is that some form of swizzling must be performed
at the sub-vector level, sometimes resulting in the programming difficulties suggested
by Figure 2 (right). Note that in the cases of higher level applications (e.g. 4M 1A and
higher), swizzling is somewhat implicit, and is analogous to the referencing of different
real or imaginary sub-regions of A and B when calling the primitive defined for that
level. Of course, this implicit swizzling is not entirely “free” since it often requires
the data to be rearranged in advance. However, it can be mostly free if packing must
occur anyway, as is the case with several mid-to-lower level applications of 4M, and
whatever overhead is incurred in the modified packing operation is amortized over
plenty of floating-point operations.

7.1.4. The impact of storage. Another contributing factor to the performance of complex
matrix multiplication, one might argue, is actually in the storage of complex numbers.
The traditional, interleaved pair-wise storage of real and imaginary values increases
the potential efficiency of data movement from main memory to registers, and also
unlocks the potential to reuse that data from registers, but the price of realizing those
efficiencies is assembly-level swizzling. If complex numbers were stored in such a way
that did not favor complex arithmetic being performed in registers, the alternative
methods based on real primitives would be more obvious. Also, the task of express-
ing (programming) complex micro-kernels simplifies greatly, as demonstrated by algo-
rithm 4M 1A, if we simply forgo pursuit of the best-case scenario of reusing F.E. from
registers, and instead settle for reuse from the L1 cache. Granted, with this trade-off
comes lower performance. But evidence suggests that the primary cause behind the

29Here, a “higher” or “lower” level application of 4M (or 3M) refers to the targeted loop’s relative position
within the overall matrix multiplication algorithm, as depicted in Figure 1.
30One exception to this, however, is when 4M is applied a the very lowest level, just outside the micro-kernel.
In this case, code changes can remain hidden (within the virtual micro-kernels) and thus those algorithms
represent a programming “sweet spot” within the BLIS framework.
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performance drag on 4M algorithms is not reusing F.E. from a more distant level of
cache, but rather the doubling or quadrupling of memops on C, combined with the
non-contiguous nature of those data accesses (which also precludes use of most vector
load and store instructions).31 If there existed an induced method that did not incur
such high costs when updating C, that induced method might perform competitively
with conventional implementations. Indeed, 4M-based algorithms would be able to up-
date C much more efficiently if complex matrices were stored with real and imaginary
parts divided into separate (contiguous row- or column-stored) matrices.32 This sepa-
rated storage format would allow the underlying real micro-kernel to always use vector
load and store instructions when accessing the output matrix, thus (largely) avoiding
the performance penalty incurred when accessing only real or only imaginary values.
However, this storage scheme is relatively unconventional within the HPC commu-
nity, while the traditional interleaved format is quite entrenched. Therefore, it would
be unreasonable to expect applications to adapt.

Given these realities, we are left to conclude that, if there exists a better solution, it
will likely not be found through the 4M method.

7.2. Progress and the (challenging) path forward
The 4M method comes with concrete benefits. It allows developers to focus on fewer and
simpler micro-kernels—reducing coding and maintenance burdens both because there
is less code, and also because that remaining code tends to be more easily expressed
in assembly language. And it builds on existing kernels, allowing it to be encoded
portably within a BLAS-like framework such as BLIS, where it extends to any level-
3 operation with only modest effort. Our experience thus far suggests that 4M can
induce “placeholder” implementations that deliver acceptable (even if short of optimal)
performance, which may still be of value in situations where time, resources, and/or
expertise is limited.

Unfortunately, the 4M family of induced algorithms also collectively exhibit real lim-
itations which appear inherent in nature. Any future work in this area will be forced
to confront these challenges, or find novel ways of circumventing them altogether:

— Number of calls to primitive. If we assume that virtual micro-kernels are em-
ployed to hide implementation details, instantiating 4M algorithms such as 4M 1A
can result in close to a 400% increase in function call overhead relative to a conven-
tional assembly-based code. Algorithm 4M H fares even worse with an 800% increase.
The small amount of logic present in virtual micro-kernels may also contribute no-
ticeable overhead. These extra costs become an issue when they cannot be amortized
across a sufficient number of floating-point operations, either because the costs them-
selves are large or because the L1 cache size limits kC , and thus the number of cycles
worth of computation that can be performed by a single micro-kernel call.

— Inefficient reuse of input data from A, B, and C. Higher and mid-level appli-
cations of 4M inefficiently move data from the input matrices through the memory
hierarchy, only to let those elements be evicted from cache before they are reused.

31This observation makes sense when one considers that doubling or quadupling the memop cost on the
input operands (or their packed equivalents) represents a lower order term, mkC + kCn, compared to the
potentially much larger impact from increasing memops on the m× n output matrix C.
32The 3M method has a similar affinity towards separate storage of real and imaginary parts. Except since
the goal of 3M is to reuse intermediate terms, extra memory operations (outside of the micro-kernel) are
unavoidable, even if they are performed efficiently via vector instructions. By contrast, separating com-
plex matrices into real and imaginary matrices would benefit 4M algorithms by avoiding workspace-related
memops and ensuring that the remaining memops on C can execute via vector instructions.
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Only the lowest level algorithms reuse real and imaginary F.E. once they have been
moved into cache.

— Non-contiguous output to C. 4M-based algorithms must, at some level, update
only the real and then only the imaginary parts of the output matrix, twice each,
which tends to incur a non-trivial increase in runtime cost. Long-term trends in
this area are not favorable to 4M: First, as vector register lengths are extended with
newer architectures and instruction sets, the relative cost of updating individual real
or imaginary values will only grow; Second, the cost of memory access relative to the
cost of floating-point computation will likely continue its upward trajectory, further
magnifying the cost of repeatedly accessing the micro-tile of C.

— Reduction of kC . Some algorithms, such as 4M 1A, may require reducing the kC
blocksize to maintain cache footprints of packed matrices Ãi and B̃p as well as indi-
vidual micro-panels within those matrices. This causes the real domain micro-kernel
to be called on micro-panels with k dimensions that are, at best, half their optimal
size. Consequently, fewer flops are executed per update of C, which means a larger
fraction of total runtime is spent accessing elements of the output matrix, thus erod-
ing performance.

— Framework accommodation. Many 4M algorithms would require significant and
disruptive changes to BLIS’s underlying code. This effect would likely hold even for
other frameworks, because those changes to the framework stem from changes to the
matrix multiplication algorithm itself. Ideally, this algorithmic specialization would
be avoided.

— Interference with multithreading. Some applications of 4M, particularly those to
high- and mid-level loops, complicate (or prevent) the ability to express an ideal par-
titioning of work and data for many-threaded parallelism, as with Algorithm 4M HW.

— Non-applicability to two-operand operations. Higher level applications, such as
4M HW, cannot be used to implement TRMM or TRSM without first making workspace-
expensive, performance-degrading copies of the input/output operand B.

These issues conspire to limit (to varying degrees) the achievable performance of
4M-based algorithm—a shortfall some may find unacceptable.

8. CONCLUSIONS
We began the article with a brief overview of the conventional approach to implement-
ing matrix multiplication in the complex domain. Then, we investigated the 3M method
and provided a detailed analysis of the method’s applicability to each loop within a
commonly accepted algorithm for matrix multiplication, exposing several variants in
the process. The more general-purpose 4M method was also discussed, accompanied
by an abbreviated analysis of a select set of possible algorithms. Decent performance
was observed on a modern Intel system. Finally, we identified key familial properties
of the 3M and 4M algorithms, and summarized their benefits and limitations.

We conclude that while the 3M method can yield effective performance that exceeds
the peak of the machine, some may be wary of its distinct numerical properties. The
4M method does not forfeit any numerical advantage over the conventional approach,
but often lags slightly behind its real domain benchmarks. Given that conventionally-
implemented complex matrix multiplication typically slightly exceeds that of its real
domain counterpart, this lag may be troublesome to many. Still, 4M provides a family of
backstop solutions—a lower bound on attainable complex performance in the absence
of a complex kernel. Developing an induced method that builds on the performance of
4M should be the focus of future work.
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