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Abstract. Almost all efforts to optimize high-performance matrix-matrix multiplication have4
been focused on the case where matrices contain real elements. The community’s collective assump-5
tion appears to have been that the techniques and methods developed for the real domain carry over6
directly to the complex domain. As a result, implementors have mostly overlooked a class of methods7
that compute complex matrix multiplication using only real matrix products. This is the second in a8
series of articles that investigate these so-called induced methods. In the previous article, we found9
that algorithms based on the more generally applicable of the two methods—the 4m method—lead10
to implementations that, for various reasons, often underperform their real domain counterparts.11
To overcome these limitations, we derive a superior 1m method for expressing complex matrix mul-12
tiplication, one which addresses virtually all of the shortcomings inherent in 4m. Implementations13
are developed within the BLIS framework, and testing on microarchitectures by three vendors con-14
firms that the 1m method yields performance that is generally competitive with solutions based on15
conventionally implemented complex kernels, sometimes even outperforming vendor libraries.16
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1. Introduction. Over the last several decades, matrix multiplication research20

has resulted in methods and implementations that primarily target the real domain.21

Recent trends in implementation efforts have condensed virtually all matrix product22

computation into relatively small kernels—building blocks of highly optimized code23

(typically written in assembly language) upon which more generalized functionality24

is constructed via various levels of nested loops [23, 5, 3, 22, 2]. Because most effort25

is focused on the real domain, the complex domain is either left as an unimplemented26

afterthought—perhaps because the product is merely a proof-of-concept or proto-27

type [5], or because the project primarily targets applications and uses cases that28

require only real computation [2]—or it is implemented in a manner that mimics the29

real domain down to the level of the assembly kernel [23, 3, 4].1 Most modern mi-30

croarchitectures lack machine instructions for directly computing complex arithmetic31

on complex numbers, and so when the effort to implement these kernels is undertaken,32

kernel developers encounter additional programming challenges that do not manifest33

in the real domain. Specifically, these kernel developers must explicitly orchestrate34

computation on the real and imaginary components in order to implement multi-35

plication and addition on complex scalars, and they must do so in terms of vector36

instructions to ensure high performance is achievable.37

This low-level kernel approach carries distinct benefits. Pushing the nuances and38

complexities of complex arithmetic down to the level of the kernel allows the higher-39

level loop infrastructure within the matrix multiplication to remain largely the same40
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as its real domain counterpart. (See Figure 1.1.) Another benefit leverages a key41

difference between the real and complex forms of nearly all matrix computations:42

arithmetic intensity. Complex matrix multiplication (regardless of how it is imple-43

mented) requires four times the number of floating-point operations but only twice44

the number of memory operations. Encoding complex arithmetic within assembly45

code allows the real and imaginary components of the multiplication operands to be46

loaded into registers and then resued at virtually no cost. The impact of the two-fold47

increase in memory operations is further minimized thanks to the standard format48

for storing complex matricies, which places an element’s real and imaginary parts49

adjacent to one another2, allowing both to be accessed conveniently via contiguous50

load and store instructions. Thanks to this low-cost reuse and accommodating stor-51

age format, implementations based on assembly-based complex kernels are capable of52

achieving a somewhat larger fraction of the hardware’s peak performance relative to53

real domain kernels.54

However, this low-level approach also doubles the number of assembly kernels that55

must be written in order to fully support computation in either domain (real or com-56

plex) for the desired floating-point precisions. And while computation in the complex57

domain may not be of interest to all developers, it is absolutely essential for many58

fields and applications in part because of complex numbers’ unique ability to encode59

both the phase and magnitude of a wave. Thus, the maintainers of general-purpose60

matrix libraries—such as those that export the Basic Linear Algebra Subprograms61

(BLAS) [1]—are typically compelled by their diverse user bases to support general62

matrix multiplication (gemm) on complex matrices despite the implementation and63

maintenance costs it may impose.64

Because of how software developers have historically designed their implementa-65

tions, many assume that supporting complex matrix multiplication operations first66

requires writing complex domain kernels. To our pleasant surprise, we have discovered67

a new way for developers to implement high-performance complex matrix multiplica-68

tion without those kernels.69

The predecessor to the current article investigates whether (and to what degree of70

effectiveness) real domain matrix multiplication kernels can be repurposed and lever-71

aged toward the implementation of complex matrix multiplication [21]. The authors72

develop a new class of algorithms that implement these so-called “induced methods”73

for matrix products in the complex domain. Instead of relying on an assembly-coded74

complex kernel, as a conventional implementation would, these algorithms express75

complex matrix multiplication only in terms of real domain primitives.3 We consider76

the current article a companion and follow-up to that previous work [21].77

In this article, we will consider a new method for emulating complex matrix78

multiplication using only real domain building blocks, and we will once again show79

that a clever rearrangement of the real and imaginary elements within the internal80

“packed” matrices is key to facilitating high performance. The novelty behind this81

new method is that the semantics of complex arithmetic are encoded entirely within82

a special data layout, which allows each call to the complex matrix multiplication83

kernel to be replaced with just one call to a real matrix multiplication kernel. This84

substitution is possible because a real matrix multiplication on the reorganized data85

2 The widely-accepted BLAS interface requires use of this standard format.
3 In [21], the authors use the term “primitive” to refer to a functional abstraction that implements

a single real matrix multiplication. Such primitives are often not general purpose and may come with
significant prerequisites to facilitate their use.
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Fig. 1.1. An illustration of the algorithm for computing high-performance matrix multiplication,
taken from [21], which expresses computation in terms of a so-called “block-panel” subproblem.

mimics the computation and I/O of a comparable complex matrix multiplication on86

the unaltered data. Because of this one-to-one equivalence, we call it the 1m method.87

1.1. Contributions. This article makes the following contributions:88

• It introduces4 the 1m method along with two algorithmic variants and an89

analysis of issues germane to their high-performance implementations, in-90

cluding workspace, packing formats, cache behavior, multithreadability, and91

programming effort. A detailed review shows how 1m avoids all of the major92

challenges observed of the 4m method.93

• It promotes code reuse and portability by continuing the previous article’s94

focus on solutions which may be cast in terms of real matrix multiplication95

kernels. Such solutions have clear implications for developer productivity, as96

they allow kernel authors to focus their efforts on fewer and simpler kernels.97

• It builds on the theme of the BLIS framework as a productivity multiplier [22],98

further demonstrating how complex matrix multiplication may be imple-99

mented with relatively minor modifications to the source code and in such a100

way that results in immediate instantiation of complex implementations for101

all level-3 BLAS-like operations.102

• It demonstrates performance of 1m implementations that is not only superior103

to the previous effort based on the 4m method but also competitive with104

solutions based on complex matrix kernels.105

• It serves as a reference guide to the 1m implementations for complex matrix106

4 This proposed 1m method was first published [19].
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multiplication found within the BLIS framework, which is available to the107

community under the open-source 3-clause BSD software license.108

We believe these contributions are consequential because the 1m method effectively109

obviates the previous state-of-the-art established via the 4m method. Furthermore,110

we believe the thorough treatment of induced methods encompassed by the present111

article and its predecessor will have lasting archival as well as pedagogical value.112

1.2. Notation. In this article, we continue the notation established in [21].113

Specifically, we use uppercase Roman letters (e.g. A, B, and C) to refer to ma-114

trices, lowercase Roman letters (e.g. x, y, and z) to refer to vectors, and lowercase115

Greek letters (e.g. χ, ψ, and ζ) to refer to scalars. Subscripts are used typically to116

denote sub-matrices within a larger matrix (e.g. A =
(
A0 A1 · · · An−1

)
) or117

scalars within a larger matrix or vector.118

We make extensive use of superscripts to denote the real and imaginary compo-119

nents of a scalar, vector, or (sub-)matrix. For example, αr, αi ∈ R denote the real120

and imaginary parts, respectively, of a scalar α ∈ C. Similarly, Ar and Ai refer to the121

real and imaginary parts of a complex matrix A, where Ar and Ai are real matrices122

with dimensions identical to A. Note that while this notation for real, imaginary, and123

complex matrices encodes information about content and origin, it does not encode124

how the matrices are actually stored. We will explicitly address storage details as125

implementation issues are discussed.126

At times we find it useful to refer to the real and imaginary elements of a com-127

plex object indistinguishably as fundamental elements (or f.e.). We also abbreviate128

floating-point operations as “flops” and memory operations as “memops”. We define129

the former to be a Multiply or Add (or Subtract) operation whose operands are130

f.e. and the latter to be a load or store operation on a single f.e.. These definitions131

allow for a consistent accounting of complex computation relative to the real domain.132

We also discuss cache and register blocksizes that are key features of the matrix133

multiplication algorithm discussed elsewhere [22, 20, 21]. Unless otherwise noted,134

blocksizes nC , mC , kC , mR, and nR refer to those appropriate for computation in the135

real domain. Complex domain blocksizes will be denoted with a superscript z.136

This article discusses several hypothetical algorithms and functions. Unless oth-137

erwise noted, a call to function func that implements C := C + AB appears as [138

C ] := func( A, B, C ). We will also reference functions that access properties of139

matrices. For example, m(A) and n(A) would return the m and n dimensions of a140

matrix A, while rs(B) and cs(B) would return the row and column strides of B.141

2. Background and review.142

2.1. Motivation. In [21], the authors list three primary motivating factors be-143

hind their effort to seek out methods for inducing complex matrix multiplication via144

real domain kernels:145

• Productivity. By inducing complex matrix multiplication from real domain146

kernels, the number of kernels that must be supported would be halved.147

This allows the DLA library developers to focus on a smaller and simpler148

set of real domain kernels. This benefit would manifest most obviously when149

instantiating BLAS-like functionality on new hardware [20].150

• Portability. Induced methods avoid dependence on complex domain kernels151

because they encode the idea of complex matrix product at a higher level.152

This would naturally allow us to encode such methods portably within a153

framework such as BLIS [22]. Once integrated into the framework, developers154

This manuscript is for review purposes only.



COMPLEX MATRIX MULTIPLICATION VIA THE 1M METHOD 5

and users would benefit from the immediate availability of complex matrix155

multiplication implementations whenever real matrix kernels were present.156

• Performance. Implementations of complex matrix multiplication that rely157

on real domain kernels would likely inherit the high-performance properties158

of those kernels. Any improvement to the real kernels would benefit both real159

and complex domains.160

Thus, it is clear that finding a suitable induced method would carry significant benefit161

to DLA library and kernel developers.162

2.2. The 3m and 4m methods. The authors of [21] investigated two general163

ways of inducing complex matrix multiplication: the 3m method and the 4m method.164

These methods are then contrasted to the conventional approach, whereby a blocked165

matrix multiplication algorithm is executed with a complex domain kernel—one that166

implements complex arithmetic at the scalar level, in assembly language.167

The 4m method begins with the classic definition of complex scalar multiplication168

and addition in terms of real and imaginary components of α, β, γ ∈ C:169

γr := γr + αrβr − αiβi
170

γi := γi + αiβr + αrβi(2.1)171172

We then observe that we can apply such a definition to complex matrices A ∈ Cm×k,173

B ∈ Ck×n, and C ∈ Cm×n, provided that we can reference the real and imaginary174

parts as logically separate submatrices:175

Cr := Cr +ArBr −AiBi
176

Ci := Ci +AiBr +ArBi(2.2)177178

This definition expresses a complex matrix multiplication in terms of four matrix179

products (hence the name 4m) and four matrix accumulations (i.e., additions or sub-180

tractions).181

The 3m method relies on a Strassen-like algebraic equivalent of Eq. 2.2:182

Cr := Cr +ArBr −AiBi
183

Ci := Ci +
(
Ar +Ai

)(
Br +Bi

)
−ArBr −AiBi

184185

This re-expression reduces the number of matrix products to three at the expense of186

increasing the number of accumulations from four to seven. However, when the cost187

of a matrix product greatly exceeds that of an accumulation, this trade-off can result188

in a net reduction in computational runtime.189

The authors of [21] observe that both methods may be applied to any particular190

level of a blocked matrix multiplication algorithm, resulting in several algorithms,191

each exhibiting somewhat different properties. Furthermore, they show how either192

method’s implementation is facilitated by reordering real and imaginary elements193

within the internal storage format used when making packed copies of the current194

matrix blocks.5 The blocked algorithm used in that article is shown in Figure 1.1 and195

revisited in Section 2.4 of the present article.196

Algorithms that implement the 3m method were found to yield “effective flops197

per second” performance that not only exceeded that of 4m, but also approached or198

5 Others have exploited the careful design of packing and computational primitives in an effort to
improve performance, including in the context of Strassen’s algorithm [7, 9, 10, 11], the computation
of the K-Nearest Neighbors [24], tensor contraction [8], and Fast Fourier Transform [17].
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exceeded the theoretical peak rate of the hardware.6 Unfortunately, these compelling199

results come at a cost: the numerical properties of implementations based on 3m200

are slightly less robust than that of algorithms based on the conventional approach201

or 4m. And although the author of [6] found that 3m was stable enough for most202

practical purposes, many applications will be unwilling to stray from the numerical203

expectations implicit in conventional matrix multiplication. Thus, going forward, we204

will focus on 4m as the standard reference method against which we will compare.205

It is worth briefly considering the simplest approach to implementing the 4m206

method, which is hinted at by Eq. 2.2. This straightforward algorithm would invoke207

the real domain gemm four times, computing ArBr and AiBi to update Cr and AiBr208

and ArBi to update Ci. This is possible as long as the matrices’ real and imaginary209

parts are separately addressable, as they are in modern BLAS-like frameworks such210

as BLIS [22]. The previous article studied this high-level instance of the 4m method,211

dubbed Algorithm 4m hw, and classified it into a family of related algorithms. Unfor-212

tunately, Algorithm 4m hw does not perform well with the standard format for storing213

complex matrices. The reason: Algorithm 4m hw computes with Ar, Ai, Br, Bi, Cr,214

and Ci as separate logical matrices, but since their f.e. are stored non-contiguously,215

those f.e. cannot be accessed efficiently on modern hardware. If Algorithm 4m hw216

instead computed upon matrices that split the storage of their real and imaginary217

parts into two separate matrices, each with contiguous rows or columns, then its ex-218

pected performance would rise to match that of real matrix multiplication. However,219

even with this somewhat exotic “split” complex storage format, Algorithm 4m hw220

would carry some disadvantages relative to the new induced method discussed later221

in this article.7222

Thus, our aim is to develop an induced method that (1) yields performance that is223

at least as high as that of a corresponding real domain gemm while also (2) allowing224

applications to continue using the standard storage format8 and (3) avoiding key225

disadvantages inherent in the various 4m algorithms, including 4m hw.226

2.3. Previous findings. For the reader’s convenience, we will now summarize227

the key findings, observations, and other highlights from the previous article regarding228

algorithms and implementations based on the 4m method [21].229

• Since all algorithms in the 4m family execute the same number of flops, the230

algorithms’ relative performance depends entirely on (1) the number of mem-231

ops executed and (2) the level of cache from which f.e. of the packed matrices232

Ãi and B̃p are reused9. The number of memops is affected only by a halving233

of certain cache blocksize needed in order to leave cache footprints of Ãi and234

6 Note that 3m and other Strassen-like algorithms are able to exceed the hardware’s theoretical
peak performance when measured in effective flops per second: that is, the 3m implementation’s
wall clock time—now shorter because of avoided matrix products—divided into the flop count of a
conventional algorithm.

7 For example, parallelizing Algorithm 4m hw may be limited by the three implicit synchroniza-
tion points that would occur between the four invocations of real domain gemm. Also, it was shown
in the previous article that Algorithm 4m hw inherently can only be applied to two-operand level-3
operations such as trmm and trsm by using m× n workspace [21].

8 An implementation may use the split format internally while still requiring the standard storage
format at the user level. However, this technique, which is employed on more granular scale by
Algorithm 4m 1a in the previous article, would incur a noticeable increase in memory operations
and serve as a net drag on performance [21].

9 Here, the term “reuse” refers to the reuse of f.e. that corresponds to the recurrence of Ar,
Ai, Br, and Bi in Eq. 2.2, not the reuse of whole (complex) elements that naturally occurs in the
execution of the gemm algorithm in Figure 1.1.

This manuscript is for review purposes only.



COMPLEX MATRIX MULTIPLICATION VIA THE 1M METHOD 7

B̃p unchanged. The level of cache from which f.e. are reused is determined235

by the level of the gemm algorithm to which the 4m method was applied.236

• The lowest-level application, algorithm 4m 1a, efficiently moves f.e. of A, B,237

and C from main memory to the L1 cache only once per rank-kC update and238

reuses f.e. from the L1 cache. It relies on a relatively simple packing format239

and requires negligible, fixed-size workspace, is well-suited for multithreading,240

and is minimally disruptive to the BLIS framework. Algorithm 4m 1a can241

also be extended relatively easily to all other level-3 operations.242

• The conventional assembly-based approach to complex matrix multiplication243

can be viewed as a special case of 4m in which f.e. are reused from registers244

rather than cache. In this way, a conventional implementation embodies the245

lowest-level application of 4m possible, in which the method is applied to246

individual scalars (and then optimally encoded via vector instructions).247

• The way complex numbers are stored has a significant effect on performance.248

The standard format adopted by the community (and required by the BLAS),249

which uses an interleaved pair-wise storage of real and imaginary values,250

naturally favors conventional implementations because they can reuse f.e.251

from vector registers. However, this storage is awkward for algorithms based252

on 4m (and 3m) because it stymies the use of vector instructions for loading253

and storing f.e. of Cr and Ci. The 4m 1a algorithm already suffers from a254

quadrupling10 of the number of memops on C in addition to being forced to255

access these f.e. in a non-contiguous manner.256

• While the performance of Algorithm 4m 1a exceeds that of its simpler sibling,257

4m hw, it not only falls short of a comparable conventional solution, it also258

falls short of its real domain “benchmark”—that is, the performance of a259

similar problem size in the real domain computed by an optimized algorithm260

using the same real domain kernel.261

2.4. Revisiting the matrix multiplication algorithm. In this section, we262

review a common algorithm for high-performance matrix multiplication on conven-263

tional microprocessor architectures. This algorithm was first reported on in [3] and264

further refined in [22]. Figure 1.1 illustrates the key features of this algorithm.265

The current state-of-the-art formulation of the matrix multiplication algorithm266

consists of six loops, the last of which resides within a microkernel that is typically267

highly optimized for the target hardware. These loops partition the matrix operands268

using carefully chosen cache (nC , kC , and mC) and register (mR and nR) blocksizes269

that result in submatrices residing favorably at various levels of the cache hierarchy270

so as to allow data to be reused many times. In addition, submatrices of A and B are271

copied (“packed”) to temporary workspace matrices (Ãi and B̃p, respectively) in such272

a way that allows the microkernel to subsequently access matrix elements contiguously273

in memory, which improves cache and TLB performance. The cost of this packing is274

amortized over enough computation that its impact on overall performance is negli-275

gible for all but the smallest problems. At the lowest level, within the microkernel276

loop, an mR × 1 micro-column and a 1 × nR micro-row are loaded from the current277

micropanels of Ãi and B̃p, respectively, so that the outer product of these vectors278

may be computed to update the corresponding mR × nR submatrix, or micro-tile, of279

C. The individual floating-point operations that constitute these tiny rank-1 updates280

10 A factor of two comes from the fact that, as shown in Eq. 2.2, 4m touches Cr and Ci twice
each, while another factor of two comes from the cache blocksize scaling required on kC in order to
maintain the cache footprints of micropanels of Ãi and B̃p.
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are oftentimes executed via vector instructions (if the architecture supports them) in281

order to maximize utilization of the floating-point unit(s).282

The algorithm captured by Figure 1.1 forms the basis for all level-3 implementa-283

tions found in the BLIS framework (as of this writing). This algorithm is based on a284

so-called block-panel matrix multiplication.11 The register (mR, nR) and cache (mC ,285

kC , nC) blocksizes labeled in the algorithmic diagram are typically chosen by the286

kernel developer as a function of hardware characteristics, such as the vector register287

set, cache sizes, and cache associativity. The authors of [15] present an analytical288

model for identifying suitable (if not optimal) values for these blocksizes.289

3. 1m method. The primary motivation for seeking a better induced method290

comes from the observation that 4m inherently must update real and imaginary f.e.291

of C: (1) in separate steps, and may not use vector instructions to do so (due to the292

standard interleaved storage format); and (2) twice as frequently, in the case of 4m 1a,293

due to the algorithm’s half-of-optimal cache blocksize kC . As reviewed in Section 2.3,294

this imposes a significant drag on performance. If there existed an induced method295

that could update real and imaginary elements in one step, it may conveniently avoid296

both issues.297

3.1. Derivation. Consider the classic definition of complex scalar multiplication298

and accumulation, shown in Eq. 2.1, refactored and expressed in terms of matrix and299

vector notation:300 (
γr

γi

)
+=

(
αr −αi

αi αr

)(
βr

βi

)
(3.1)301

302

Here, we have a singleton complex matrix multiplication problem that can naturally303

be expressed as a tiny real matrix multiplication where m = k = 2 and n = 1.304

Let us assume we implement this very small matrix multiplication according to the305

high-performance algorithm discussed in Section 2.4.306

From this, we make the following key observation: If we pack α to Ãi in such a307

way that duplicates αr and αi to the second column of the micropanel (while also308

swapping the placement of the duplicates and negating the duplicated αi), and if309

we pack β to B̃p such that βi is stored to the second row of the micropanel (which,310

granted, only has one column), then a real domain gemm microkernel executed on311

those micropanels will compute the correct result in the complex domain and do so312

with a single invocation of that microkernel.313

Thus, Eq. 3.1 serves as a packing template that hints at how the data must be314

stored. Furthermore, this template can be generalized. We augment α, β, γ with315

conventional row and column indices to denote the complex elements of matrices A,316

B, and C, respectively. Also, let us apply the Eq. 3.1 to the special case of m = 3,317

n = 4, and k = 2 to better observe the general pattern.318 
γr00 γr01 γr02 γr03
γi00 γi01 γi02 γi03
γr10 γr11 γr12 γr13
γi10 γi11 γi12 γi13
γr20 γr21 γr22 γr23
γi20 γi21 γi22 γi23

+=


αr
00 −αi

00 αr
01 −αi

01

αi
00 αr

00 αi
01 αr

01

αr
10 −αi

10 αr
11 −αi

11

αi
10 αr

10 αi
11 αr

11

αr
20 −αi

20 αr
21 −αi

21

αi
20 αr

20 αi
21 αr

21



βr
00 βr

01 βr
02 βr

03

βi
00 βi

01 βi
02 βi

03

βr
10 βr

11 βr
12 βr

13

βi
10 βi

11 βi
12 βi

13

(3.2)319

320

11 This terminology describes the shape of the typical problem computed by the macro-kernel, i.e.
the second loop around the microkernel. An alternative algorithm that casts its largest cache-bound
subproblem in terms of panel-block matrix multiplication is discussed in [19].
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From this, we can make the following observations:321

• The complex matrix multiplication C := C + AB with m = 3, n = 4, and322

k = 2 becomes a real matrix multiplication with m = 6, n = 4, and k = 4.323

In other words, the m and k dimensions are doubled for the purposes of the324

real gemm primitive.325

• If the primitive is the real gemm microkernel, and we assume that matrices326

A and B above represent column-stored and row-stored micropanels from327

Ãi and B̃p, respectively, and also that the dimensions are conformal to the328

register blocksizes of this microkernel (i.e., m = mR and n = nR) then the329

micropanels of Ãi are packed from a 1
2mR× 1

2kC submatrix of A, which, when330

expanded in the special packing format, appears as the mR × kC micropanel331

that the real gemm microkernel expects.332

• Similarly, the micropanels of B̃p are packed from a 1
2kC × nR submatrix of333

B, which, when reordered into a second special packing format, appears as334

the kC × nR micropanel that the real gemm microkernel expects.335

It is easy to see by inspection that the real matrix multiplication implied by336

Eq. 3.2 induces the desired complex matrix multiplication. We will refer to the packing337

format used on matrix A above as the 1e format, since the f.e. are “expanded”338

(i.e., duplicated to the next column, with the duplicates swapped and the imaginary339

duplicate negated). Similarly, we will refer to the packing format used on matrix B340

above as the 1r format, since the f.e. are merely reordered (i.e., imaginary elements341

moved to the next row). Thus, the 1m method is fundamentally about reordering the342

matrix data so that a subsequent real matrix multiplication on that reordered data is343

equivalent to a complex matrix multiplication on the original data.12344

3.2. Two variants. Notice that implicit in the 1m method suggested by Eq. 3.2345

is the fact that matrix C is stored by columns. This assumption is important; when A346

and B are packed according to the 1e and 1r formats, respectively, C must be stored347

by columns in order to allow the real domain primitive (or microkernel) to correctly348

update the individual real and imaginary f.e. of C with the corresponding f.e. from349

the matrix product AB.350

Suppose that we instead refactored and expressed Eq. 2.1 as follows:351

(
γr γi

)
+=

(
αr αi

)( βr βi

−βi βr

)
(3.3)352

353

This gives us a different template, one that implies different packing formats for A354

and B. Applying Eq. 3.3 to the special case of m = 4, n = 3, and k = 2 yields:355


γr00 γ

i
00 γ

r
01 γ

i
01 γ

r
02 γ

i
02

γr10 γ
i
10 γ

r
11 γ

i
11 γ

r
12 γ

i
12

γr20 γ
i
20 γ

r
21 γ

i
21 γ

r
22 γ

i
22

γr30 γ
i
30 γ

r
31 γ

i
31 γ

r
32 γ

i
32

+=


αr
00 α

i
00 α

r
01 α

i
01

αr
10 α

i
10 α

r
11 α

i
11

αr
20 α

i
20 α

r
21 α

i
21

αr
30 α

i
30 α

r
31 α

i
31




βr
00 β

i
00 βr

01 β
i
01 βr

02 β
i
02

−βi
00 β

r
00 −βi

01 β
r
01 −βi

02 β
r
02

βr
10 β

i
10 βr

11 β
i
11 βr

12 β
i
12

−βi
10 β

r
10 −βi

11 β
r
11 −βi

12 β
r
12


(3.4)

356

357

In this variant, we see that matrix B, not A, is stored according to the 1e format358

(where columns become rows), while matrix A is stored according to 1r (where rows359

12 The authors of [17] also investigated the use of transforming the data layout during packing to
facilitate complex matrix multiplication. And while they employ techniques similar to those of the
1m method, their approach differs in that it does not recycle the existing real domain microkernel.
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Table 3.1
1m complex domain blocksizes as a function of real domain blocksizes

Variant

Blocksizes, in terms of real domain
values, required for . . .

kzC mz
C nzC mz

R mz
P nzR nzP

1m c 1
2kC

1
2mC nC

1
2mR mP nR nP

1m r 1
2kC mC

1
2nC mR mP

1
2nR nP

Note: Blocksizes mP and nP represent the so-called “packing dimensions” for the micro-panels of
Ãi and B̃p, respectively. These values are analogous to the leading dimensions of matrices stored
by columns or rows. In BLIS microkernels, typically mR = mP and nR = nP , but sometimes the
kernel author may find it useful for mR < mP or nR < nP .

become columns). Also, we can see that matrix C must be stored by rows in order to360

allow the real gemm microkernel to correctly update its f.e. with the corresponding361

values from the matrix product AB.362

Henceforth, we will refer to the 1m variant exemplified in Eq. 3.2 as 1m c since363

it is predicated on column storage of the output matrix C, and we will refer to the364

variant depicted in Eq. 3.4 as 1m r since it assumes C is stored by rows.365

3.3. Determining complex blocksizes. As we alluded in Section 3.1, the366

appropriate blocksizes to use with 1m are a function of the real domain blocksizes.367

This makes sense because the idea is to fool the real gemm microkernel, and the368

various loops for register and cache blocking around the microkernel, into thinking369

that it is computing a real domain matrix multiplication. Which blocksizes must be370

modified (halved) and which are used unchanged depends on the variant of 1m being371

executed—or, more specifically, which matrix is packed according to the 1e format.372

Table 3.1 summarizes the complex domain blocksizes prescribed for 1m c and373

1m r as a function of the real domain values.374

Those familiar with the matrix multiplication algorithm implemented by the BLIS375

framework, as depicted in Figure 1.1, may be unfamiliar with mP and nP , the so-376

called packing dimensions. These values are the leading dimensions of the micropanels.377

On most architectures, mP = mR and nP = nR, but in some situations it may be378

convenient (or necessary) to use mR < mP or nR < nP . In any case, these packing379

dimensions are never scaled, even when their corresponding register blocksizes are380

scaled to accommodate the 1e format, because the halving that would otherwise be381

called for is cancelled out by the doubling of f.e. that manifests in the 1e format.382

3.4. Algorithms.383

3.4.1. General algorithm. Before investigating 1m method algorithms, we will384

first provide algorithms for computing real matrix multiplication to serve as a reference385

for the reader. Specifically, in Figure 3.1 we provide pseudo-code for rmmbp, which386

depicts a real domain instance of the block-panel algorithm shown in Figure 1.1.387

3.4.2. 1m-specific algorithm. Applying 1m c and 1m r to the block-panel388

algorithm depicted in Figure 1.1 yields two nearly identical algorithms, 1m c bp and389

1m r bp, respectively. Their differences can be encoded within a few conditional390

statements within key parts of the high and low levels of code. Figure 3.2 shows a391

hybrid algorithm that encompasses both, supporting row- and column-stored C.392
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Algorithm: [ C ] := rmmbp( A, B, C )

for ( j = 0 : n− 1 : nC )

Identify Bj , Cj from B,C

for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

Pack Bjp → B̃p

for ( i = 0 : m− 1 : mC )

Identify Api, Cji from Ap, Cj

Pack Api → Ãi

for ( h = 0 : nC − 1 : nR )

Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )

Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := rkern( Ãil, B̃ph, Cjihl )

Fig. 3.1. Abbreviated pseudo-code for implementing the general matrix multiplication algorithm
depicted in Figure 1.1. Here, rkern calls a real domain gemm microkernel. The algorithm is left-
justified to facilitate comparison with Algorithms 1m c bp and 1m r bp in Figure 3.2 (left).

Algorithm: [ C ] := 1m ? bp( A, B, C ) [ C ] := vk1m( A, B, C )

Set bool colStore if rs( C ) = 1

for ( j = 0 : n− 1 : nC )

Identify Bj , Cj from B,C

for ( p = 0 : k − 1 : kC )

Identify Ap, Bjp from A,Bj

if colStore Pack1r Bjp → B̃p

else Pack1e Bjp → B̃p

for ( i = 0 : m− 1 : mC )

Identify Api, Cji from Ap, Cj

if colStore Pack1e Api → Ãi

else Pack1r Api → Ãi

for ( h = 0 : nC − 1 : nR )

Identify B̃ph, Cjih from B̃p, Cji

for ( l = 0 : mC − 1 : mR )

Identify Ãil, Cjihl from Ãi, Cjih

Cjihl := vk1m( Ãil, B̃ph, Cjihl )

Acquire workspace W

Determine if using W ; set usew

if ( usew )

Alias Cuse ←W , Cin ← 0

else

Alias Cuse ← C, Cin ← C

Set bool colStore if rs(Cuse) = 1

if ( colStore ) cs(Cuse)×= 2

else rs(Cuse)×= 2

n(A)×= 2; m(B)×= 2

Cuse := rkern( A, B, Cin )
if ( usew )

C := W

Fig. 3.2. Left: Pseudo-code for Algorithms 1m c bp and 1m r bp, which result from applying
1m c and 1m r algorithmic variants to the block-panel algorithm depicted in Figure 1.1. Here,
Pack1e and Pack1r pack matrices into the 1e and 1r formats, respectively. Right: Pseudo-code
for a virtual microkernel used by all 1m algorithms.

In Figure 3.2 (right), we illustrate the 1m virtual microkernel. This function,393

vk1m, consists largely of a call to the real domain microkernel rkern with some394

additional logic needed to properly induce complex matrix multiplication in all cases.395

Some of the details of the virtual microkernel will be addressed later.396
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Table 3.2
f.e. memops incurred by various algorithms, broken down by stage of computation

Algorithm

f.e. memops required to . . . a

update micro-
tilesb Cr, Ci

pack
Ãi

move Ãi from
L2 to L1 cache

pack
B̃p

move B̃p from
L3 to L1 cache

4m h 8mn k
kC

8mk n
nC

4mk n
nR

8kn 4kn m
mC

4m 1b 8mn k
kC

8mk 2n
nC

4mk n
nR

8kn 4kn 2m
mC

4m 1a 8mn 2k
kC

8mk n
nC

4mk n
nR

8kn 4kn m
mC

assembly 4mn k
kC

4mk n
nC

2mk n
nR

4kn 2kn m
mC

1m c bp
4mn 2k

kC

6mk n
nC

4mk n
nR

4kn 2kn 2m
mC

1m r bp 4mk n
nC

2mk 2n
nR

6kn 4kn m
mC

a We express the number of iterations executed in the 5th, 4th, 3rd, and 2nd loops as n
nC

, k
kC

, m
mC

,

and n
nR

. The precise number of iterations along a dimension x using a cache blocksize xC would

actually be d x
xC
e. Similarly, when blocksize scaling of 1

2
is required, the precise value

⌈
x

xC/2

⌉
is expressed as 2x

xC
. These simplifications allow easier comparison between algorithms while still

providing meaningful approximations.
b As described in Section 3.6.2, mR × nR workspace sometimes becomes mandatory, such as when
βi 6= 0. When workspace is employed in a 4m-based algorithm, the number of f.e. memops
incurred updating the micro-tile typically doubles from the values shown here.

3.5. Performance properties. Table 3.2 tallies the total number of f.e. mem-397

ops required by 1m c bp and 1m r bp. For comparison, we also include the corre-398

sponding memop counts for a selection of 4m algorithms as well as a conventional399

assembly-based solution, as first published in Table III in [21].400

Notice that 1m c bp and 1m r bp incur additional memops relative to a conven-401

tional assembly-based solution because, unlike the latter, 1m implementations cannot402

reuse13 all real and imaginary f.e. from vector registers.403

We can hypothesize that the observed performance signatures of 1m c bp and404

1m r bp may be slightly different because each places the additional memop overhead405

that is unique to 1m on different parts of the computation. This stems from the fact406

that there exists an asymmetry in the assignment of packing formats to matrices in407

each 1m variant. Specifically, 50% more memops—relative to a conventional assembly408

solution—are required during the initial packing and the movement between caches409

for the matrix packed according to 1e since that format writes four f.e. for every410

two that it reads from the source operand. (Packing to 1r incurs the same number411

of memops as an assembly-based solution.) Also, if 1m c bp and 1m r bp use real412

microkernels with different micro-tile shapes (i.e., different values of mR and nR),413

those microkernels’ differing performance properties will likely cause the performance414

signatures of 1m c bp and 1m r bp to deviate further.415

Table 3.3 summarizes Table 3.2 and adds: (1) the level of the memory hierarchy416

from which each matrix is reused; and (2) a measure of memory movement efficiency.417

13 Here, the term “reuse” refers to the same reuse described in Footnote 9.
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Table 3.3
Performance properties of various algorithms

A
lg
o
ri
th
m

Total f.e. memops required
(Sum of columns of Table 3.2)

Level from which f.e. of ma-
trix X are reused, and lL1:
# of times each cache line is
moved into the L1 cache (per
rank-kC update).

C lCL1 A lAL1 B lBL1

4m h 8mn
(

k
kC

)
+ 4mk

(
2n
nC

+ n
nR

)
+ 2kn

(
4 + 2m

mC

)
Mem 4 Mem 4 Mem 4

4m 1b 8mn
(

k
kC

)
+ 4mk

(
4n
nC

+ n
nR

)
+ 2kn

(
4 + 4m

mC

)
L2 2a L2 1 L1 1

4m 1a 8mn
(

2k
kC

)
+ 4mk

(
2n
nC

+ n
nR

)
+ 2kn

(
4 + 2m

mC

)
L1 1a L1 1 L1 1

assembly 4mn
(

k
kC

)
+ 2mk

(
2n
nC

+ n
nR

)
+ 2kn

(
2 + m

mC

)
Reg 1 Reg 1 Reg 1

1m c bp 4mn
(

2k
kC

)
+ 2mk

(
3n
nC

+ 2n
nR

)
+ 2kn

(
2 + 2m

mC

)
Reg 1 L2b 1 Reg 1

1m r bp 4mn
(

2k
kC

)
+ 2mk

(
2n
nC

+ 2n
nR

)
+ 2kn

(
3 + 2m

mC

)
Reg 1 Reg 1 L1b 1

a This assumes that the micro-tile is not evicted from the L1 cache during the next call to rkern.
b In the case of 1m algorithms, we consider f.e. of A and B to be “reused” from the level of cache

in which the 1e-formatted matrix resides.

3.6. Algorithm details. This section lays out important details that must be418

handled when implementing the 1m method.419

3.6.1. Microkernel I/O preference. Within the BLIS framework, microker-420

nels are registered with a property that describes their input/output preference. The421

I/O preference describes whether the microkernel is set up to ideally use vector in-422

structions to load and store elements of the micro-tile by rows or by columns. This423

property typically originates from the semantic orientation of vector registers used to424

accumulate the mR × nR micropanel product. Whenever possible, the BLIS frame-425

work will perform logical transpositions14 so that the apparent storage of C matches426

the preference property of the microkernel being used. This guarantees that the mi-427

crokernel will be able to load and store f.e. of C using vector instructions.428

This preference property is merely an interesting performance detail for conven-429

tional implementations (real and complex). However, in the case of 1m, it becomes430

crucial for constructing a correctly-functioning implementation. More specifically, the431

microkernel’s I/O preference determines whether the 1m c or 1m r algorithm is pre-432

scribed. Generally speaking, a 1m c algorithmic variant must employ a microkernel433

that prefers to access C by columns, while a 1m r algorithmic variant must use a434

microkernel that prefers to access C by rows.435

3.6.2. Workspace. In some cases, a small amount of mR × nR workspace is436

needed. These cases fall into one of four scenarios: (1) C is row-stored and the real437

microkernel rkern has a column preference; (2) C is column-stored and rkern has438

a row preference; (3) C is general-stored (i.e., neither rs(C) nor cs(C) is unit); and439

(4) βi 6= 0. If any of these conditions hold, then the 1m virtual microkernel will need440

to use workspace. This corresponds to the setting of usew in vk1m (in Figure 3.2),441

14 This amounts to swapping the row and column strides and swapping the m and n dimensions.
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which causes rkern to compute the micropanel product normally but store it to the442

workspace W . Subsequently, the result in W is then accumulated back to C.443

Cases (1) and (2), while supported, actually never occur in practice because BLIS444

will perform a logical transposition of the operation, when necessary, so that the445

storage of C will always appear to match the I/O preference of the microkernel.446

Case (3) is needed because the real microkernel is programmed to support the up-447

dating of real matrices stored with general stride, which cannot emulate the updating448

of complex matrices stored with general stride. The reason is even when stored with449

general stride, complex matrices use the standard storage format, which interleaves450

real and imaginary f.e. in contiguous pairs. There is no way to coax this pattern451

of data access from a real domain microkernel, given its existing API. Thus, general452

stride support must be implemented outside rkern, within vk1m.453

Case (4) is needed because real domain microkernels are not capable of scaling C454

by complex scalars β when βi 6= 0.455

3.6.3. Handling alpha and beta scalars. As in the previous article, we have456

simplified the general matrix multiplication to C := C+AB. In practice, the operation457

is implemented as C := βC + αAB, where α, β ∈ C. Let us use Algorithm 1m c bp458

in Figure 3.2 to consider how to support arbitrary values of α and β.459

If no workspace is needed (because none of the four situations described in Sec-460

tion 3.6.2 apply), we can simply pass βr into the rkern call. However, if workspace is461

needed, then we must pass in a local βuse = 0 to rkern, compute to local workspace462

W , and then apply β at the end of vk1m when W is accumulated to C.463

When α is real, the scaling may be performed directly by rkern. This situation464

is ideal since it usually incurs no additional costs.15 Scaling by α with non-zero465

imaginary components can still be performed by the packing function when either Ãi466

or B̃p are packed. Though somewhat less than ideal, the overhead incurred by this467

treatment of α is minimal in practice since packing is a memory-bound operation.468

3.6.4. Multithreading. As with Algorithm 4m 1a in the previous article, Al-469

gorithms 1m c bp and 1m r bp parallelize in a straightforward manner for multicore470

and many-core environments. Because these algorithms encode the 1m method en-471

tirely within the packing functions and the virtual microkernel, all other levels of code472

are completely oblivious to, and therefore unaffected by, the specifics of the new al-473

gorithms. Therefore, we expect that 1m c bp and 1m r bp will yield multithreaded474

performance that is on-par with that of rmmbp.475

3.6.5. Bypassing the virtual microkernel. Because the 1m virtual microker-476

nel serves as a function wrapper to the real domain microkernel, it incurs additional477

overhead. Thankfully, there exists a simple workaround, one that is viable as long as478

βi = 0 and C is either row- or column-stored (but not general-stored). If these con-479

ditions are met, the real domain macrokernel can be called with modified parameters480

to induce the equivalent complex domain subproblem. This optimization allows the481

virtual microkernel (and its associated overhead) to be avoided entirely.482

Because this optimization relies only on β ∈ R and row- or column storage of C,483

it may be applied automatically at runtime to the vast majority of use cases.484

3.7. Other complex storage formats. The 1m method was developed specif-485

ically to facilitate performance on complex matrices stored using the standard storage486

format required by the BLAS. This interleaved storage convention for real and imag-487

15 This is because many microkernels multiply their intermediate AB product by α unconditionally
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Table 4.1
Register and cache blocksizes used by various BLIS implementations of matrix multiplication,

as configured for an Intel Xeon E5-2690 v3 “Haswell” processor

Precision/Domain Implementation mz
R nzR mz

C kzC nzC

single complex

BLIS 1m c 16/2 6 144/2 256/2 4080

BLIS 1m r 6 16/2 144 256/2 4080/2

BLIS assembly (c) 8 3 56 256 4080

BLIS assembly (r) 3 8 75 256 4080

double complex

BLIS 1m c 8/2 6 72/2 256/2 4080

BLIS 1m r 6 8/2 72 256/2 4080/2

BLIS assembly (c) 4 3 44 256 4080

BLIS assembly (r) 3 4 192 256 4080

Note: For 1m implementations, division by 2 is made explicit to allow the reader to quickly see both
the complex blocksize values as well as the values that would be used by the underlying real domain
microkernels when performing real matrix multiplication. The I/O preference of the assembly-based
implementations is indicated by a “(c)” or “(r)” (for column- or row-preferring).

inary values is ubiquitous within the community and therefore implicitly assumed.488

However, some applications may be willing to tolerate API changes that would allow489

storing a complex matrix X as two separate real matrices Xr and Xi.For those ap-490

plications, the best an induced method may hope to do is implement each specialized491

complex matrix multiplication in terms of two real domain matrix multiplications—492

since there are two real matrices that must be updated. Indeed, there exists a variant493

of the 1m method, which we call the 2m method, that targets updating a matrix C494

that separates (entirely or by blocks) its real and imaginary f.e. [19].495

4. Performance. In this section we present performance results for implemen-496

tations of 1m algorithms on a recent Intel architecture. For comparison, we include497

results for a key 4m algorithm as well as those of conventional assembly-based ap-498

proaches in the real and complex domains.499

4.1. Platform and implementation details. Results presented in this section500

were gathered on a single Cray XC40 compute node consisting of two 12-core Intel501

Xeon E5-2690 v3 processors featuring the “Haswell” microarchitecture. Each core,502

running at a clock rate of 3.2 GHz16, provides a single-core peak performance of 51.2503

gigaflops (GFLOPS) in double precision and 102.4 GFLOPS in single precision.17504

Each socket has a 30MB L3 cache that is shared among cores, and each core has a505

private 256KB L2 cache and 32KB L1 (data) cache. Performance experiments were506

gathered under the Cray Linux Environment 6 operating system running the Linux507

4.4.103 (x86 64) kernel. Source code was compiled by the GNU C compiler (gcc)508

version 7.3.0.18 The version of BLIS used in these tests was not officially released at509

16 This system uses Intel’s Turbo Boost 2.0 dynamic frequency throttling technology. According
to [14], the maximum the clock frequency when executing AVX instructions is 3.2 GHz when utilizing
one or two cores, and 3.0 GHz when utilizing three or more cores.

17 Accounting for the reduced AVX clock frequency, the peak performance when utilizing 24 cores
is 48 GFLOPS/core in double precision and 96 GFLOPS/core in single precision.

18 The following optimization flags were used during compilation of BLIS and its test drivers: -O3

-mavx2 -mfma -mfpmath=sse -march=haswell.
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the time of this writing, and was adapted from version 0.6.0-11.19510

Algorithms 1m c bp and 1m r bp were implemented in the BLIS framework as511

described in Section 3.4. We also refer to results based on existing conventional512

assembly-based microkernels written by hand (via GNU extended inline assembly513

syntax) for the Haswell microarchitecture.514

All experiments were performed on randomized, column-stored matrices with515

gemm scalars held constant: α = β = 1. In all performance graphs, each data516

point represents the best of three trials.517

Blocksizes for each of the BLIS implementations tested are provided in Table 4.1.518

In all graphs presented in this section, the x-axes denote the problem size, the519

y-axes show observed floating-point performance in units of GFLOPS per core, and520

the theoretical peak performance coincides with the top of each graph.521

4.2. Sequential results. Figure 4.1 reports performance results for various im-522

plementations of double- and single-precision complex matrix multiplication on a523

single core of the Haswell processor. For these results, all matrix dimensions were524

equal (e.g. m = n = k). Results for 1m c bp (which uses a column-preferring mi-525

crokernel) appears on the left of Figure 4.1 while those of 1m r bp (which uses a526

row-preferring microkernel) appears on the right.527

Each graph in Figure 4.1 also contains three reference implementations: BLIS’s528

complex gemm based on conventional assembly-coded kernels (e.g. “cgemm assem-529

bly”); BLIS’s real gemm (e.g. “sgemm assembly”); and the 4m 1a implementation530

found in BLIS.20 We configured all three of these reference codes to use column-531

preferential microkernels on the left and row-preferential microkernels on the right,532

as indicated by a “(c)” or “(r)” in the legends, in order to provide consistency with533

the 1m results.534

As predicted in Section 3.5, we find that the performance signatures of the535

1m c bp and 1m r bp algorithms differ slightly. This was expected given that the536

1e and 1r packing formats place different memory access burdens on different packed537

matrices, Ãi and B̃p, which reside in different levels of cache. It was not previously538

clear, however, which would be superior over the other. It seems that, at least in539

the sequential case, the difference is somewhat more noticeable in double-precision,540

though even there it is quite subtle. This difference is almost certainly due to the541

individual performance characteristics of the underlying row- and column-preferential542

microkernels. We find evidence of this in the 4m 1a results, which was also affected543

by the change in microkernel I/O preference.544

In all cases, the 1m implementations outperform 4m 1a, with the margin some-545

what larger in single-precision.546

The 1m implementations match or exceed the performance of their real domain547

gemm benchmarks (the dashed lines in each graph) and are quite competitive with548

assembly-coded complex gemm (the solid lines) regardless of the algorithm employed.549

Finally, the curious reader may recall our brief hypothetical discussion of execut-550

ing Algorithm 4m hw on a split complex storage format from Section 2.2 and wonder551

where such an implementation would fall relative to the measured performance data.552

Since Algorithm 4m hw on a split format would mimic the execution of four unrelated553

19 Despite not yet having an official version number, this version of BLIS may be uniquely
identified, with high probability, by the first 10 digits of its git “commit” (SHA1 hash) number:
ceee2f973e.

20 Within any given graph of Figures 4.1 and 4.2, the 1m and 4m 1a implementations use the same
real-domain microkernel as that of the real gemm (e.g. “sgemm assembly” or “dgemm assembly”).
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Fig. 4.1. Single-threaded performance of various implementations of single-precision (top) and
double-precision (bottom) complex gemm on a single core of an Intel Xeon E5-2690 v3 “Haswell”
processor. The left and right graphs differ in which 1m implementation they report, with the left
graphs reporting 1m c bp (which employs a column-preferring microkernel) and the right graphs
reporting 1m r bp (which employs a row-preferring microkernel). The graphs also contain three
reference curves for comparison: an assembly-coded complex gemm, an assembly-coded real gemm,
and the 4m 1a implementation found in BLIS (with the latter two using the same microkernel as the
1m implementation shown in the same graph). For consistency with the 1m curves, these reference
implementations differ from left to right graphs in the I/O preference of their underlying microkernel,
indicated by a “(c)” or “(r)” (for column- or row-preferring) in the legends. The theoretical peak
performance coincides with the top of each graph.

real matrix multiplications, its performance would track nearly identically with that554

of the real domain gemm.555

4.3. Multithreaded results. Figure 4.2 shows single- and double-precision per-556

formance using 24 threads, with one thread bound to each physical core of the proces-557

sor. Performance is presented in units of gigaflops per core to facilitate visual assess-558

ment of scalability. For all BLIS implementations, we employed 4-way parallelism559

within the 5th loop, 3-way parallelism within the 3rd loop, and 2-way parallelism in560

the 2nd loop for a total of 24 threads. This parallelization scheme was chosen in a561

manner consistent with that of the previous article using a strategy set forth in [18].562

Compared to the single-threaded case, we find a more noticeable difference in563

multithreaded performance between the 1m algorithms. Specifically, the 1m r bp im-564

plementation (based on a row-preferring microkernel) outperforms that of 1m c bp565

(based on a column-preferring microkernel), with the difference more pronounced566
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Fig. 4.2. Multithreaded performance of various implementations of single-precision (top) and
double-precision (bottom) complex gemm on two Intel Xeon E5-2690 v3 “Haswell” processors, each
with 12 cores. All data points reflect the use of 24 threads. The left and right graphs differ in which
1m implementation they report, with the left graphs reporting 1m c bp (which employs a column-
preferring microkernel) and the right graphs reporting 1m r bp (which employs a row-preferring
microkernel). The graphs also contain three reference curves for comparison: an assembly-coded
complex gemm, an assembly-coded real gemm, and the 4m 1a implementation found in BLIS (with
the latter two using the same microkernel as the 1m implementation shown in the same graph).
For consistency with the 1m curves, these reference implementations differ from left to right graphs
in the I/O preference of their underlying microkernel, indicated by a “(c)” or “(r)” (for column-
or row-preferring) in the legends. The theoretical peak performance coincides with the top of each
graph.

in single-precision. We suspect this is rooted not in the algorithms per se but in567

the differing microkernel implementations used by each 1m algorithm. The 1m r bp568

algorithm uses a real microkernel that is 6 × 16 and 6× 8 in the single- and double-569

precision cases, respectively, while 1m c bp uses 16 × 6 and 8 × 6 microkernels for570

single- and double-precision implementations, respectively. The observed difference571

in performance between the 1m algorithms is likely attributable to the fact that the572

microkernels’ different values for mR and nR place different latency and bandwidth573

requirements when reading f.e. from the caches (primarily L1 and L2). More specif-574

ically, larger values of mR place a heavier burden on loading elements from the L2575

cache, which is usually disadvantageous since that cache may exhibit higher latency576

and/or lower bandwidth. By contrast, a microkernel with larger nR loads more ele-577

ments (per mR × nR rank-1 update) from the L1 cache, which resides closer to the578
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Fig. 4.3. Single-threaded (left) and multithreaded (right) performance of various implementa-
tions of single-precision (top) and double-precision (bottom) complex gemm on a single core (left)
or 12 cores (right) of an Intel Xeon E5-2690 v3 “Haswell” processor. All multithreaded data points
reflect the use of 24 threads. The 1m curves are identical from those shown in Figures 4.1 and 4.2.
The theoretical peak performance coincides with the top of each graph.

processor and offers lower latency and/or higher bandwidth than the L2 cache.579

The multithreaded 1m implementation approximately matches or exceeds its real580

domain counterpart in all cases.581

The 1m algorithm based on a row-preferential microkernel, 1m r bp, outper-582

forms 4m 1a, especially in single-precision where the margin is quite wide. The 1m583

algorithm based on column-preferential microkernels, 1m c bp, performs more poorly,584

barely edging out 4m 1a in single precision and tracking closely with 4m 1a in double585

precision. We suspect that 4m 1a is more resilient to the lower-performing column-586

preferential microkernel by virtue of the fact that the algorithm’s virtual microkernel587

leans heavily on the L1 cache, which on this architecture is capable of being read588

from and written to at relatively high bandwidth (64 bytes/cycle and 32 bytes/cycle,589

respectively) [13].590

4.4. Comparing to other implementations. While our primary goal is not591

to compare the performance of the newly developed 1m implementations with that592

of other established BLAS solutions, some basic comparison is merited and thus we593

have included Figure 4.3 (left). These graphs are similar to those in Figure 4.1,594

except that: we show only implementations based on row-preferential microkernels;595
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we omit 4m 1a; and we include results for complex gemm implementations provided596

by OpenBLAS 0.3.6 [16] and Intel MKL 2019 Update 4 [12].597

Figure 4.3 (right) shows multithreaded performance of the same implementations598

running with 24 threads.599

These graphs show that BLIS’s complex assembly-based and 1m implementations600

typically outperform OpenBLAS while falling short in most (but not all) cases when601

compared to Intel’s MKL library.602

4.5. Additional results. Additional performance results were gathered on a603

Marvell ThunderX2 compute server as well as an AMD EPYC (Zen) system. For604

brevity, we present and discuss that data in the appendix available online as sup-605

plementary materials. Those results reinforce the narrative provided here, lending606

even more evidence that the 1m method is capable of yielding high-performance im-607

plementations of complex matrix multiplication that are competitive with (and often608

outperform) other leading library solutions.609

5. Observations.610

5.1. 4m limitations circumvented. The previous article concluded by iden-611

tifying a number of limitations inherent in the 4m method. We now revisit this list612

and briefly discuss whether, to what degree, and how those limitations are overcome613

by algorithms based on the 1m method.614

Number of calls to primitive. The most versatile 4m algorithm, 4m 1a, incurs615

up to a four-fold increase in function call overhead over a comparable assembly-based616

implementation. By comparison, 1m algorithms require at most a doubling of micro-617

kernel function call overhead, and in certain common cases (e.g., when β ∈ R and C618

is row- or column-stored), this overhead can be avoided completely. The 1m method619

is a clear improvement over 4m due to its one-to-one substitution of the matrix mul-620

tiplication primitive.621

Inefficient reuse of input data from A, B, and C. The most cache-efficient622

application of 4m is the lowest level algorithm, 4m 1a, which reuses f.e. of A, B,623

and C from the L1 cache. But, as shown in Table 3.3, both 1m r and 1m c variants624

reuse f.e. of two of the three matrices from registers, with 1m r bp reusing f.e. of625

the third matrix from the L1 cache.626

Non-contiguous output to C. Algorithms based on the 4m method must up-627

date only the real and then only the imaginary parts of the output matrix, twice628

each. When C is stored (by rows or columns) in the standard format, with real and629

imaginary f.e. interleaved, this piecemeal approach prevents the real microkernel630

from using vector load and store instructions on C during those four updates. The631

1m method avoids this issue altogether by packing A and B to formats that allow the632

real microkernel to update contiguous real and imaginary f.e. of C simultaneously.633

Reduction of kC . Algorithm 4m 1a requires that the real microkernel’s pre-634

ferred kC blocksize be halved in the complex algorithm in order to maintain proper635

cache footprints of Ãi and B̃p as well the footprints of their constituent micropanels.21636

Using these sub-optimally sized micropanels can noticeably hobble the performance637

of 4m 1a. Looking back at Table 3.1, it may seem like 1m suffers a similar handicap;638

21 Recall that the halving of kC for 4m 1a was motivated by the desire to keep not just two, but
four real micropanels in the L1 cache simultaneously. These correspond to the real and imaginary
parts of the current micropanels of Ãi and B̃p.
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however, the reason for halving kC and its effect are both completely different. In the639

case of 1m, the use of kzC = 1
2kC is simply a conversion of units (complex elements640

to real f.e.) for the purposes of identifying the size of the complex submatrices to641

be packed that will induce the optimal kC value from the perspective of the real mi-642

crokernel, not a reduction in the f.e. footprint of the micropanels operated upon by643

that real microkernel. The ability of 1m to achieve high performance when k = 1
2kC644

is actually a strength for certain higher-level applications, such as Cholesky, LU, and645

QR factorizations based on rank-k update. Those operations tend to perform better646

when the algorithmic blocksize (corresponding to kC) is as narrow as possible in order647

to limit the amount of computation in the lower-performing unblocked subproblem.648

Framework accommodation. The 1m algorithms are no more disruptive to649

the BLIS framework than the most accommodating of 4m algorithms, 4m 1a. This is650

because, like with 4m 1a, almost all of the 1m implementation details are sequestered651

within the packing routines and the virtual microkernel.652

Interference with multithreading. Because the 1m algorithms are imple-653

mented entirely within the packing routines and virtual microkernel, they parallelize654

just as easily as the most thread-friendly of the 4m algorithms, 4m 1a, and entirely655

avoid the threading difficulties of higher-level 4m algorithms.22656

Non-applicability to two-operand operations. Certain higher-level appli-657

cations of 4m are inherently incompatible with two-operand operations because they658

would overwrite the original contents of the input/output operand even though subse-659

quent stages of computation depend on that original input. 1m avoids this limitation660

entirely. Like 4m 1a, 1m can easily be applied to two-operand level-3 operations such661

as trmm and trsm.23662

5.2. Summary. The analysis above suggests that the 1m method solves or663

avoids most of the performance-degrading weaknesses of 4m and in the remaining664

cases is no worse off than the best 4m algorithm.665

5.3. Limitations of 1m. Although the 1m method avoids most of the weak-666

nesses inherent to the 4m method, a few notable caveats remain.667

Non-real values of beta. In the most common cases where βi = 0, the 1m668

implementation may employ the optimization described in Section 3.6.5. However,669

when βi 6= 0, the virtual microkernel must be called. In such cases, 1m yields slightly670

lower performance due to extra memops.24671

Algorithmic dependence on I/O preference. If the real domain microkernel672

is row-preferential (and thus performs row-oriented I/O on C), then the 1m implemen-673

tation must choose an algorithm based on the 1m r variant. But (in this scenario),674

if 1m c is instead preferred for some reason, then either the underlying microkernel675

needs to be updated to handle both row- and column-oriented I/O, or a new column-676

preferential microkernel must be written. A similar caveat holds if the real domain677

microkernel is column-preferential and the 1m r variant is preferred.678

22 This thread-friendly property holds even when the virtual microkernel is bypassed altogether
as discussed in Section 3.6.5

23 As with 4m 1a, 1m support for trsm requires a separate pair of virtual microkernels that fuse
a matrix multiplication with a triangular solve with nR right-hand sides.

24 The 4m method suffers lower performance when βi 6= 0 for similar reasons.
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Higher bandwidth on Ãi and B̃p. Compared to a conventional, assembly-679

based gemm, implementations based on the 1m method require twice as much mem-680

ory bandwidth when reading packed matrices Ãi and B̃p. Microkernels that encode681

complex arithmetic at the assembly level are able to load real and imaginary f.e.682

and then reuse those f.e. from registers, thus increasing the microkernel’s arithmetic683

intensity. By contrast, the 1m method’s reliance on real domain microkernels means684

that it must reuse real and imaginary f.e. from some level of cache and thus incur685

additional memory traffic.25 The relative benefit of the conventional approach is likely686

to be most visible when parallelizing gemm across all cores of a many-core system687

since that situation tends to saturate memory bandwidth.688

5.4. Further discussion. Before concluding, we offer some final thoughts on689

the 1m method and its place in the larger spectrum of approaches to implementing690

complex matrix multiplication.691

5.4.1. Geometric interpretation. Matrix multiplication is sometimes thought692

of as a three-dimensional operation with a contraction (accumulation) over the k di-693

mension. This interpretation carries into the complex domain as well. However, when694

each complex element is viewed in terms of its real and imaginary components, we695

find that a fourth pseudo-dimension of computation (of fixed size 2) emerges, one696

which also involves a contraction. The 1m method reorders and duplicates elements697

of A and B in such a way that exposes and “flattens” this extra dimension of com-698

putation. This, combined with the exposed treatment of real and imaginary f.e.,699

causes the resulting floating-point operations to appear indistinguishable from a real700

domain matrix multiplication with m and k dimensions (for column-stored C) or k701

and n dimensions (for row-stored C) that are twice as large.702

5.4.2. Data reuse: efficiency vs. programmability. Both the conventional703

approach and 1m move data efficiently through the memory hierarchy.26 However,704

once in registers, a conventional complex microkernel reuses those loaded values to705

perform twice as many flops as 1m. The previous article observes that all 4m algo-706

rithms make different variations of the same tradeoff: by forgoing the reuse of f.e.707

from registers and instead reusing those data from some level of cache, the algorithms708

avoid the need to explicitly encode complex arithmetic at the assembly level. As it709

turns out, 1m makes a similar tradeoff, but gives up less while gaining more: it is710

able to effectively reuse f.e. from two of the three matrix operands from registers711

while still avoiding the need for a complex microkernel, and it manages to replace712

that kernel operation with a single real matrix multiplication. And we would argue713

that increasing programmability and productivity by forfeiting a modest performance714

advantage is a good trade to make under almost any circumstance.715

5.4.3. Storage. The supremacy of the 1m method is closely tied to the inter-716

leaved storage of real and imaginary values—specifically, of the output matrix C. If717

applications instead store complex matrices with their real and imaginary compo-718

nents split into two separate real matrices, the 4m approach (for numerically sensitive719

settings) as well as low-level applications of 3m (for numerically insensitive settings)720

may become more appropriate [19, 21].721

25 The 4m method suffers the same “bandwidth penalty” as 1m for the same reason.
26 This is in contrast to, for example, Algorithm 4m hw, which the previous article showed makes

rather inefficient use of cache lines as they travel through the L3, L2, and L1 caches.
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6. Conclusions. We began the article by reviewing the general motivations for722

induced methods for complex matrix multiplication as well as the specific methods,723

3m and 4m, studied in the previous article. Then, we recast complex scalar multipli-724

cation (and accumulation) in such a way that revealed a template that could be used725

to fashion a new induced method, one that casts complex matrix multiplication in726

terms of a single real matrix product. The key is the application of two new packing727

formats on the left- and right-hand matrix product operands that allows us to dis-728

guise the complex matrix multiplication as a real matrix multiplication with slightly729

modified input parameters. This 1m method is shown to have two variants, one each730

favoring row-stored and column-stored output matrices. When implemented in the731

BLIS framework, competitive performance was observed for 1m algorithms on three732

modern microarchitectures. Finally, we reviewed the limitations of the 4m method733

that are overcome by 1m and concluded by discussing a few high-level observations.734

The key takeaway from our study of induced methods is that the real and imag-735

inary elements of complex matrices can always be reordered to accommodate the736

desired fundamental primitives, whether those primitives are defined to be various737

forms of real matrix multiplication (as is the case for the 4m, 3m, 2m, and 1m meth-738

ods), or vector instructions (as is the case for microkernels that implement complex739

arithmetic in assembly code). Indeed, even in the real domain, the classic matrix740

multiplication algorithm’s packing format is simply a reordering of data that targets741

the fundamental primitive implicit in the microkernel—namely, an mR × nR rank-1742

update. The family of induced methods presented here and in the previous article ex-743

pand upon this basic reordering so that the mathematics of complex arithmetic can be744

expressed at different levels of the algorithm and of its corresponding implementation,745

each yielding different benefits, costs, and performance.746
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Appendix A. Additional Performance Results.829

In this section we present performance results for implementations of 1m method830

on two additional types of hardware. The primary purpose of gathering these results831

was to confirm 1m performance on additional architectures beyond the Intel Haswell832

system reported on in the main article.833

A.1. Marvell ThunderX2. In this section, we report the performance of the834

1m method on the Marvell ThunderX2, a high-performance ARMv8 microarchitec-835

ture.836

A.1.1. Platform and implementation details. Results presented in this sec-837

tion were gathered on a single compute node consisting of two 28-core Marvell Thun-838

derX2 CN9975 processors.27 Each core, running at a clock rate of 2.2 GHz, provides839

a single-core peak performance of 17.6 gigaflops (GFLOPS) in double precision and840

35.2 GFLOPS in single precision. Each socket has a 32MB L3 cache that is shared841

among cores, and each core has a private 256KB L2 cache and 32KB L1 (data) cache.842

Performance experiments were gathered under the Ubuntu 16.04 operating system843

running the Linux 4.15.0 kernel. Source code was compiled by the GNU C compiler844

(gcc) version 7.3.0.28 The version of BLIS used in these tests was version 0.5.0-1.29845

In this section, we show 1m results for only Algorithm 1m c bp. Unlike the846

results shown in the main article, we did not develop conventional assembly-based847

microkernels and thus cannot compare against a complex domain solution based on848

those kernels. For further comparison, we measured performance for the complex849

gemm implementations found in OpenBLAS30 and ARMPL 18.4.0.850

All other parameters, such as values of α and β, and the number of trials per-851

formed for each problem size, as well as graphing conventions, such as scaling of the852

y-axis, remain identical to those of the main article.853

A.1.2. Analysis. Figure A.1 contains single-threaded (left) and multithreaded854

(right) performance of single-precision (top) and double-precision (bottom) complex855

gemm implementations. In addition to the 1m c bp implementation within BLIS,856

we also show the corresponding real domain gemm implementation and the cgemm or857

zgemm found in OpenBLAS and ARMPL. For all BLIS implementations, we employed858

4-way parallelism within the 5th loop and 14-way parallelism within the 3rd loop for859

a total of 56 threads.860

In Figure A.1 (top-left), single-precision 1m and its corresponding real domain861

benchmark track each other closely in the single-threaded configurations tested, as we862

would have expected. Somewhat surprisingly, the vendor library, ARMPL, does not863

appear to scale well at 56 threads, as shown in Figure A.1 (top-right). Also somewhat864

surprisingly, OpenBLAS performance is consistently low, even for sequential execu-865

tion. This suggests that while parallelism may be well-configured, their kernel is likely866

underperforming.867

27 While four-way symmetric multithreading is available on this hardware, the feature was disabled
at boot-time so that the operating system detects only one logical core per physical core and schedules
threads accordingly.

28 The following optimization flags were used during compilation of BLIS and its test drivers: -O3

-ftree-vectorize -mtune=cortex-a57. In addition to those flags, the following flags were also used
when compiling assembly kernels: -march=armv8-a+fp+simd -mcpu=cortex-a57.

29 This version of BLIS may be uniquely identified, with high probability, by the first 10 digits of
its git “commit” (SHA1 hash) number: e90e7f309b.

30 This version of OpenBLAS may be uniquely identified, with high probability, by the first 10
digits of its git commit number: 52d3f7af50.
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Fig. A.1. Single-threaded (left) and multithreaded (right) performance of various implementa-
tions of single-precision (top) and double-precision (bottom) complex gemm on a single core (left)
or 56 cores (right) of a Marvell ThunderX2 CN9975 processor. All multithreaded data points reflect
the use of 56 threads. The real domain gemm implementation from BLIS uses a column-preferential
microkernel, as indicated the a “(c)” in the legends. (The 1m c bp implementation uses the same
column-preferential microkernel as the real domain gemm implementation.) The theoretical peak
performance coincides with the top of each graph.

Figure A.1 (bottom) tells a similar story of performance among double-precision868

implementations, except that all BLIS implementations are, for reasons not immedi-869

ately obvious, somewhat less efficient relative to peak performance than their single-870

precision counterparts. ARMPL performance is more competitive for both one and 56871

threads, though the single-core graph exposes evidence of a “crossover point” strat-872

egy gone awry. ARMPL also seems to exhibit large swings in performance for certain873

large, multithreaded problem sizes. Once again, OpenBLAS performance is much874

lower, but consistently so.875

In summary, BLIS’s 1m implementation performs extremely well on the Marvell876

CN9975 when computing in single precision. Performance and scalability in double877

precision, while not quite as impressive, is still highly competitive, especially when878

compared to OpenBLAS and the ARM Performance Library.879

A.2. AMD Zen. In this section, we report the performance of the 1m method880

on the AMD Zen microarchitecture.881
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A.2.1. Platform and implementation details. Results presented in this sec-882

tion were gathered on a single compute node consisting of two 32-core AMD EPYC883

7551 (Zen) processors.31 Each core runs at a clock rate of 3.0 GHz when using a884

single core and 2.55 GHz when utilizing all cores simultaneously. The former clock885

rate yields a single-core peak performance of 24.0 GFLOPS in double precision and886

48.0 GFLOPS in single precision, and the latter clock rate yields a multicore peak887

performance of 20.4 GFLOPS/core and 40.8 GFLOPS/core for single- and double-888

precision computation, respectively. Each socket has a 64MB of L3 cache (distributed889

as 8MB for each four-core complex) that is shared among cores, and each core has a890

private 512KB L2 cache and 32KB L1 (data) cache. Performance experiments were891

gathered under the Ubuntu 18.04 operating system running the Linux 4.15.0 kernel.892

Source code was compiled by the GNU C compiler (gcc) version 7.4.0.32 The version893

of BLIS used in these tests was version 0.6.0-1266.33894

In this section, we show 1m results for only Algorithm 1m r bp. For reference, we895

also measured performance for the complex gemm implementations found in Open-896

BLAS 0.3.7 and Intel MKL 2020 (initial release).897

All other parameters, such as values of α and β, and the number of trials per-898

formed for each problem size, as well as graphing conventions, such as scaling of the899

y-axis, remain identical to those of the main article.900

A.2.2. Analysis. Figure A.2 contains single-threaded (left) and multithreaded901

(right) performance of single-precision (top) and double-precision (bottom) complex902

gemm implementations. In addition to the 1m r bp implementation within BLIS, we903

also show the corresponding real and complex domain gemm implementations based904

on conventional assembly-coded kernels. We also show the cgemm or zgemm found in905

OpenBLAS and MKL. For all BLIS implementations, we employed 2-way parallelism906

within the 5th loop, 8-way parallelism within the 3rd loop, and 4-way parallelism907

within the 2nd loop for a total of 64 threads.908

In Figure A.2 (top-left), all implementations track closely together except for909

MKL.34 We see a similar pattern for single-threaded double precision in Figure A.2910

(bottom-left).911

In Figure A.2 (top-right) and (bottom-right), we see multithreaded performance912

when utilizing all 64 cores of the AMD EPYC system. The relative performance of913

1m r bp is consistent with the results seen previously on Haswell. That is, the 1m914

method facilitates performance that meets or exceeds the performance of an optimized915

real domain implementation of gemm (i.e., one that uses the same microkernels as916

1m), but falls slightly short of the performance of a conventional assembly-coded917

complex domain gemm. Once again, MKL performance suffers noticeably on AMD918

hardware.35 OpenBLAS lags somewhat behind the BLIS-based implementations, but919

31 While two-way symmetric multithreading is available on this hardware, a maximum of one
logical core per physical core was utilized during our tests.

32 The following optimization flags were used during compilation of BLIS and its test drivers: -O3

-march=znver1. Furthermore, all test drivers were run via numactl -i all.
33 This version of BLIS may be uniquely identified, with high probability, by the first 10 digits of

its git “commit” (SHA1 hash) number: f391b3e2e7.
34 We hypothesize that as MKL parses the results of the CPUID instruction, it detects an

unexpected CPU vendor (AMD instead of Intel) and therefore selects a “fallback” (safe but low-
performing) kernel. If this is the case, then the fix would be trivial, which suggests that MKL’s
underperformance on AMD hardware is deliberate.

35 In order to keep the legends in Figure A.2 readable, the curves for MKL in were clipped beyond
the first 20 data points. In all four graphs, the omitted data points depict a plateauing of the curve
that is consistent with the data that is shown.
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Fig. A.2. Single-threaded (left) and multithreaded (right) performance of various implementa-
tions of single-precision (top) and double-precision (bottom) complex gemm on a single core (left)
or 64 cores (right) of an AMD EPYC 7551 (Zen) processor. All multithreaded data points reflect
the use of 64 threads. The real and complex domain gemm implementations from BLIS use row-
preferential microkernels, as indicated the a “(r)” in the legends. (The 1m r bp implementation uses
the same row-preferential microkernel as the real domain gemm implementation.) The theoretical
peak performance coincides with the top of each graph.

performance unexpectedly drops for very large problem sizes. This behavior was920

reproducible, though the exact problem size at which the drop-off occurred shifted921

across repeated experiments.922

In summary, BLIS’s 1m implementation performs very well on the AMD EPYC923

7551 when computing in single and double precision, exceeding the performance of924

both OpenBLAS and MKL. Scalability (relative to theoretical peak) is also quite925

good in both precisions considering the challenges that NUMA-based architectures926

sometimes pose to parallelization efforts.927
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