
0

Supporting mixed-domain mixed-precision matrix multiplication
within the BLIS framework

FIELD G. VAN ZEE, The University of Texas at Austin
DEVANGI N. PARIKH, The University of Texas at Austin
ROBERT A. VAN DE GEIJN, The University of Texas at Austin

We approach the problem of implementing mixed-datatype support within the general matrix multiplication

(GEMM) operation of the BLIS framework, whereby each matrix operand A, B, and C may be stored as

single- or double-precision real or complex values. Another factor of complexity, whereby the computation
is allowed to take place in a precision different from the storage precisions of either A or B, is also included

in the discussion. We first break the problem into mostly orthogonal dimensions, considering the mixing of

domains separately from mixing precisions. Support for all combinations of matrix operands stored in ei-
ther the real or complex domain is mapped out by enumerating the cases and describing an implementation

approach for each. Supporting all combinations of storage and computation precisions is handled by type-

casting the matrices at key stages of the computation—during packing and/or accumulation, as needed.
Several optional optimizations are also documented. Performance results gathered on a 56-core Marvell

ThunderX2 and a 52-core Intel Xeon Platinum demonstrate that high performance is mostly preserved,
with modest slowdowns incurred from unavoidable typecast instructions. The mixed-datatype implementa-

tion confirms that combinatoric intractability is avoided, with the framework relying on only two assembly

microkernels to implement 128 datatype combinations.

CCS Concepts: rMathematics of computing→Mathematical software performance; Computations
on matrices;

General Terms: Algorithms; Performance

Additional Key Words and Phrases: dense, linear algebra, DLA, high-performance, real, complex, mixed,
datatype, type, domain, precision, matrix, multiplication, microkernel, BLAS, BLIS, libraries, framework

ACM Reference Format:
Field G. Van Zee, Devangi N. Parikh, and Robert A. van de Geijn. Supporting mixed-domain mixed-precision
matrix multiplication within the BLIS framework. ACM Trans. Math. Softw. 0, 0, Article 0 (20xx), 25 pages.
DOI: http://dx.doi.org/xx.xxxx/xxxxxxx

1. INTRODUCTION
The BLAS [Dongarra et al. 1990] defines the general matrix-matrix multiplication
(GEMM) operation to support any of the following computations:

C := αAB + βC, C := αABT + βC, C := αABH + βC,
C := αATB + βC, C := αATBT + βC, C := αATBH + βC,
C := αAHB + βC, C := αAHBT + βC, C := αAHBH + βC.

This research was partially sponsored by grants from Oracle, Huawei, and the National Science Foundation
(Awards ACI-1550493 and ACI-1714091). Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation (NSF).
Authors’ addresses: Institute for Computational Engineering and Sciences, Department of Computer Sci-
ence, The University of Texas at Austin, Austin, TX 78712, {field,dnp,rvdg}@cs.utexas.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 20xx Copyright held by the owner/author(s). Publication rights licensed to ACM. 0098-3500/20xx/-ART0

$15.00
DOI: http://dx.doi.org/xx.xxxx/xxxxxxx

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:2 F. G. Van Zee et al.

where C is m × n, the left-hand matrix product operand (A, AT , or AH) is m × k, the
right-hand matrix product operand (B, BT , or BH) is k × n, and α and β are scalars.

This matrix multiplication functionality is made available to software developers via
the following application programming interfaces, or APIs:

sgemm(transa, transb, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC)
dgemm(transa, transb, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC)
cgemm(transa, transb, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC)
zgemm(transa, transb, m, n, k, alpha, A, ldA, B, ldB, beta, C, ldC)

The first letter of the routine name uniquely encodes the datatype—that is, the do-
main and precision—of the matrix and scalar operands as well as the computation:
single-precision real (s); double-precision real (d); single-precision complex (c); and
double-precision complex (z). The parameters transa and transb indicate if A and/or
B, respectively, should be computed upon as if they were transposed or conjugate-
transposed. The interfaces implicitly require that matrices be stored in column-major
order. Accordingly, the parameters ldA, ldB, and ldC convey the so-called “leading di-
mensions” of the arrays A, B, and C, respectively—that is, the number of elements that
separate matrix element (i, j) from element (i, j + 1) in memory.

While this interface has served the HPC community well, it has also become con-
straining. For example, when computing tensor contractions (which often resemble
matrix multiplications), one may need to refer to a sub-tensor that cannot be repre-
sented with column-major storage without making a temporary copy. Similarly, some
situations may call for conjugating (but not transposing) a matrix operand. Indeed,
such functionality is already supported by the BLIS framework, which exports BLAS-
like operations and APIs [Van Zee and van de Geijn 2015]. However, even BLIS only
supports computation on operands with identical datatypes. Consider the following:

— There exist applications that may wish to update a complex matrix by the product of
a complex matrix and a real matrix. These include applications involving damped re-
sponse [Kristensen et al. 2009; Coriani et al. 2012], Green’s functions methods [Nooi-
jen and Snijders 1992], Complex Absorbing Potential (CAP), and Complex Scaling
(CS) [Jagau et al. 2017]. Applications in quantum chemistry may also benefit. These
mixed-domain instances of GEMM are currently improvised either by casting the op-
eration in terms of cgemm or zgemm, in which case half of the floating-point operations
are superfluous, or by performing two passes with sgemm or dgemm, which tends to be
cumbersome and error-prone, requires extra workspace in which to make temporary
copies of the real and imaginary parts of the complex matrix operands, and likely
yields suboptimal performance.

— Similarly, there exist applications that could benefit from storing matrix operands
in different precisions, and/or computing in a precision that is lower or higher than
the storage precision of A and B. These include NWChem [Valiev et al. 2010; Apra
et al. 2018] performing CCSD(T) computations [Crawford and Schaefer 2007; Stan-
ton 1997], and various applications in machine learning [Khudia et al. 2018]. Cur-
rently, this must be performed in an ad-hoc manner similar to the mixed-domain
case, and with similar workspace and performance drawbacks.

Thus, there is likely a fair amount of pent-up demand for high-performance implemen-
tations to datatype-flexible BLAS-like APIs.

As alluded to above, the naive approach to supporting mixed-datatype functionality
within the GEMM operation comes with obvious memory, performance, and produc-
tivity drawbacks: typecasting matrix operands to a common domain and/or precision
outside of the original implementation requires considerable workspace; the memory

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:3

access patterns engendered by monolithic casting almost surely acts as a drag on per-
formance; and programming an ad-hoc solution in terms of the BLAS GEMM interfaces
sometimes requires non-trivial skills. Indeed, some would find providing the full com-
binatoric space of functionality daunting, and in response might attempt to survey the
community and then only implement those cases for which interest was expressed.
Instead, our goal from the outset is to implement support for all cases, and to do
so in a manner that delivers high or near-high performance.1 Our approach, which
builds on the BLIS framework, yields a comprehensive reference implementation with
which consumers of this functionality can explore the benefits of mixed-domain and
mixed-precision GEMM computation without being constrained by limitations in the
interface, incomplete coverage within the implementation, or unnecessarily inefficient
performance.

1.1. Notation
Our notation should be mostly self-evident to most readers of high-performance dense
linear algebra literature. We use uppercase Roman letters, such as A, B, and C to
denote matrices, and lowercase Greek letters α and β to represent scalars.

Real and complex domains are indicated by R and C, respectively. Occasionally, we
refer to the real part of a matrix or matrix expression X with Re(X) and to the imag-
inary part with Im(X). In other places, such as where this notation would be too
cumbersome, we use superscripts, such as χr and χi for the real and imaginary com-
ponents, respectively, of a scalar χ.

When representing elements within a matrix, we use a subscript to encode the row
and column indices. For example, a scalar α13 would reference the element located in
the 2nd row and 4th column of a matrix A.2

2. BACKGROUND
In this section, we review the approach to matrix multiplication taken within the BLIS
framework as well as some related implementation details that will provide important
context to discussions later in this article.

2.1. Matrix Multiplication in BLIS
The GotoBLAS algorithm [Goto and van de Geijn 2008] for performing matrix multi-
plication underlies the highest-performing BLAS libraries for current general-purpose
microprocessors. The BLAS-like Library Instantiation Software (BLIS) framework,
which implements GEMM and other matrix-matrix operations, refactors the GotoBLAS
algorithm as pictured in Figure 1. BLIS isolates the code that needs to be optimized
(in assembly code or with vector intrinsics) for different architectures in a microker-
nel that updates a very small submatrix, or microtile, of C with a sequence of rank-1
updates that are accumulated in registers [Van Zee and van de Geijn 2015]. All other
loops and supporting kernels are implemented portably in C99. By contrast, Goto’s
implementation—also adopted by the OpenBLAS fork [OpenBLAS 2019] of the Goto-
BLAS library—casts the computation into a larger assembly-coded kernel. This larger
unit of code, which corresponds to what BLIS refers to as the macrokernel, consists of

1Understandably, some readers may question the utility of some mixed-datatype cases discussed in this
article. Skeptics may argue that one only needs to focus on the cases that “make sense.” We reason about
the issue as follows. While we can identify certain cases that are today useful to some people or applications,
we cannot say with certainty which cases will never be used by any person or application. And because we
cannot a priori identify the cases that will never be needed, we take the position that we must treat all cases
as important enough to merit implementation.
2Our subscript notation starts counting from 0.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:4 F. G. Van Zee et al.

4th loop around micro-kernel

5th loop around micro-kernel

3rd loop around micro-kernel

mR

mR

1

+=

+=

+=

+=

+=

+=

nC nC

kC

kC

mC mC

1

nR

kC

nR

Pack Ai → Ai

~

Pack Bp → Bp

~

nR

A Bj Cj

Ap

Ai

Bp

Cj

Ai

~
Bp

~

Bp

~
Ci

Ci

kC

L3 cache
L2 cache
L1 cache
registers

main memory

1st loop around micro-kernel

2nd loop around micro-kernel

micro-kernel

Fig. 1. BLIS refactoring of the GotoBLAS algorithm as five loops around the microkernel [Van Zee and
Smith 2017]. Used with permission.

the microkernel plus the logic that falls within the first two loops around the micro-
kernel.

A key element of the GotoBLAS algorithm is that high-performance implementa-
tion of GEMM incorporates the packing of submatrices of B (into buffer B̃) and of A
(into buffer Ã) to improve data locality during the execution of the microkernel.3 This
feature has been used in the past to consolidate other functionality into the same
framework: implementation of other matrix-matrix operations (level-3 BLAS) [Goto
and van de Geijn 008b; Van Zee and van de Geijn 2015], fusing sequences of matrix
operations of importance to Machine Learning [Yu et al. 2015], and implementation
of practical Fast Matrix Multiplication (Strassen-like) algorithms [Huang et al. 2017;
Huang et al. 2016]. A final insight comes from Van Zee [Van Zee 2018], in which it is
shown how complex matrix multiplication can be cast in terms of only microkernels
designed for real domain GEMM without a significant performance penalty.

Given a target architecture, instantiating the traditional functionality of GEMM with
BLIS requires only two microkernels, one each for single- and double-precision real

3This reorganization of matrices A and B can also improve TLB performance [Goto and van de Geijn 2002].

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:5

domain computations, with the insight from [Van Zee 2018] inducing the functional-
ity typically provided by complex domain microkernels. It also requires packing func-
tions, which by default take the form of architecture-agnostic (C99) implementations
provided by the framework, as well as architecture-specific cache and register blocking
parameters. BLIS exposes several other configure-time options, though they all default
to values that typically need no further tweaking.

2.2. Managing complexity in BLIS
The combinatoric complexity of the GEMM operation in BLIS is mitigated in several
ways.

2.2.1. Storage. BLIS tracks separate row and column strides for each matrix object.4
Using these two stride parameters, BLIS supports three matrix storage formats in
its end-user APIs: row-major storage (where the column stride is unit); column-major
storage (where the row stride is unit); and general storage (where neither stride is
unit).5 Each GEMM operand in BLIS may individually be stored in any of the three
aforementioned storage formats. If we consider all possible variations of general stor-
age as a single format, this results in a total of 33 = 27 different storage combinations.
The GEMM operation supports these 27 storage combinations as follows: the packing
function is written generically to allow it to read from any of the three storage formats
when reading matrices A and B (during the packing of Ã and B̃), and the microkernel
is required to handle input/output of C in any of the three supported formats.

2.2.2. Transposition. BLIS easily accommodates transposition of matrices A or B by
swapping the row and column strides (and their corresponding dimensions) just prior
to packing. This technique merely affects how the matrices are traversed rather than
how they are stored; thus, we call this an “induced” (or logical) transposition, as no
matrix elements are actually copied or moved.

2.2.3. Conjugation. In the case of complex matrices, optional conjugation6 of A and B

is handled during the packing into Ã and B̃.

2.2.4. Multithreaded parallelization. The authors of [Smith et al. 2014] discuss how BLIS
exposes many loops, each of which can be parallelized. Crucially, the complexity over
matrix storage datatypes (domain and precision), transposition/conjugation parame-
ters (transA and transb), and matrix storage formats (row, column, generalized) are or-
thogonal to the issues pertaining to extracting multithreaded parallelism from GEMM.
Therefore, the insights of [Smith et al. 2014] carry over to the parallelization when
mixing domains and/or precisions.

2.2.5. Optimizing input/output on C. High-performance microkernels accumulate their in-
termediate results using vector registers. Thus, the microkernel author must decide
whether to semantically assign the vector registers to contain contiguous rows or con-
tiguous columns of the microtile submatrix. We refer to this as the microkernel’s regis-
ter orientation. Interestingly, the register orientation necessarily biases the microker-
nel towards loading and storing elements of C as either rows or columns, since per-

4In BLIS, the row stride—like the leading dimension in row-major storage—expresses the number of el-
ements that separate matrix element (i, j) and element (i + 1, j) in memory. The column stride—like the
leading dimension in column-major storage—expresses the number of elements that separate elements (i, j)
and (i, j + 1).
5We often refer to row-major matrices as being row-stored, and column-major matrices as being column-
stored.
6In BLIS, all input matrix operands to GEMM and most other operations may be conjugated without trans-
position, which corresponds to a new trans parameter value absent in the BLAS.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:6 F. G. Van Zee et al.

forming IO on elements in the opposite orientation would require a sequence of costly
permutation instructions. BLIS tracks this intrinsic property, or IO preference, of the
microkernel so that the framework can transform the matrix problem to the micro-
kernel’s liking. For example, if our microkernel is row-preferential and the GEMM im-
plementation is executed on a column-stored matrix C, BLIS will employ a high-level
transposition of the entire operation (to CT := BTAT) so that, from the perspective
of the microkernel, CT appears to be stored in its preferred format—that is, a man-
ner consistent with its vector register orientation.7 Thus, regardless of whether the
microkernel is row- or column-preferential, the GEMM implementation will, generally-
speaking, yield similar performance on row- and column-stored matrices C.8

2.3. For the busy reader
We acknowledge that some readers may wish for a very short synopsis of the insights
presented later in this article. We sum up the techniques that allow implementing
all cases of mixed-domain and mixed-precision GEMM within the BLIS framework as
follows: The mixing of domains can be handled by enumerating the eight cases (six
of them new), which largely reduce to either manipulating matrix metadata, and/or
exposing the real and imaginary elements in a complex matrix in such a way that
a real matrix multiplication may be performed to induce the desired result, in part
motivated by insights from the 1M method [Van Zee 2018]. The mixing of precisions
can be handled by typecasting between precisions, as needed, during the packingA and
B (into Ã and B̃), while the typecasting during the accumulation of the intermediate
product AB may occur in special code wrappers that update C appropriately.

3. API CONSIDERATIONS
In the spirit of the BLAS API, a more complete interface that supports this richer,
mixed-datatype environment could take the form of

gemm(m, n, k, alpha, transA, A, domainA, precA, rstrideA, cstrideA,
transB, B, domainB, precB, rstrideB, cstrideB,

beta, C, domainC, precC, rstrideC, cstrideC,
precAB)

Fig. 2. A hypothetical BLAS-like API for mixed-domain, mixed-precision GEMM.

where transX indicates whether X should be computed upon as if it were (option-
ally) transposed, conjugate-transposed, or conjugated without transposition; X is the
address where matrix X is stored; domainX indicates whether X is stored as a matrix
of real or complex elements; precX indicates the precision in which elements of X are
stored (e.g., half-, single-, double-, or quad-precision); rstrideX and cstrideX indicate
the row and column strides, respectively, for storing9 X; and precAB indicates the pre-
cision in which the matrix multiplication takes place (possibly implying promotion or
demotion from the storage precision of either A or B). Note that column-major order

7If, for whatever reason, this optimization is not employed, the microkernel in this example would use the
general storage case to read and write to a column-stored C, which would incur a small performance penalty
due to an increased number of assembly instructions.
8Typically, the general-storage case in the microkernel must be handled separately from the contiguous
row- or column-storage case that is preferred. This case usually incurs a performance penalty that is mostly
unavoidable due to decreased spatial locality and an increased number of assembly instructions.
9Generally speaking, we consider these separate strides to support three storage formats—column-major,
row-major, and so-called generalized storage (where neither the row stride nor column stride is unit).

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:7

and row-major order are the special cases where rstrideX is unit and cstrideX is unit,
respectively.

The hypothetical API shown in Figure 2 plainly exposes all of the dimensions of
functionality along which the library developer must provide implementations. How-
ever, we feel that such an interface is not very useful towards inspiring those imple-
mentations, as it subtly nudges the developer towards extending the use of separate
interfaces for each parameter combination down the function stack, leading to solu-
tions that are vertically siloed from each other, even if various subsets share many
similarities.

BLIS preempted this problem by starting with an object-based foundation for en-
coding and expressing matrix (and vector) operands. Each linear algebra entity (such
as a matrix or vector) is encapsulated within a data structure, or more specifically, a
custom struct type. For example, BLIS currently exports the following object-based
function prototype for invoking the GEMM operation:

void bli_gemm(obj_t* alpha, obj_t* a, obj_t* b, obj_t* beta, obj_t* c);

Fig. 3. Function for computing GEMM provided by the object-based API in the BLIS framework.

The function bli gemm() takes five arguments of type obj t*, each of which corre-
sponds to the address of a struct representing the floating-point operands tradition-
ally passed into the GEMM operation. The function exposes no other arguments, be-
cause all of the conventional parameters (such as transA and transB) may be inter-
preted as properties of one of the floating-point operands.

A simplified version of the obj t type definition may be given as:

typedef struct obj_s
{

dim_t offset_m, offset_n;
dim_t dim_m, dim_n;
inc_t rstride, cstride;
doff_t diag_off;
siz_t elem_size;
objbits_t info;
char* buffer;
// Other fields as necessary...

} obj_t;

Fig. 4. A simplified definition for the struct underlying the obj t type used within BLIS.

Here, dim t, inc t, doff t, siz t, and objbits t represent various integer types de-
fined within BLIS for representing dimensions, strides and increments, diagonal off-
sets, byte sizes, and object property bitfields, respectively. The idea behind the struct
example in Figure 4 is that matrices may be represented by a collection of properties,
or metadata, and that these properties may be set—for example, when the object is
initialized and its underlying data buffer is allocated—and then subsequently queried
or modified using a collection of object-based accessor functions. Encapsulating matrix
properties within objects helps hide details that need not be exposed at certain levels
of the implementation.

The key observation to make now is that the domainX and precX arguments shown in
Figure 2 can be completely hidden within the object API of BLIS. Indeed, the current
definition of obj t within the framework already includes domain and precision bits
within the info bitfield. We only need to add an additional parameter, or designate

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:8 F. G. Van Zee et al.

additional bits within the info property, to support the computation precision (labeled
in Figure 2 as precAB). Thus, it is possible to add mixed-datatype support to GEMM
without any modification to the function interface to bli gemm().

A more thorough walkthrough of BLIS’s object API is well beyond the scope of this
article.10 The main takeaway from this discussion is that the original author of BLIS
designed the framework around an object-based core with the keen understanding
that additional APIs of arbitrary format, including (but not limited to) those in the
style of the BLAS, could always be layered on top of this more general abstraction.
Consequently, any such APIs built above and beyond the underlying object layer are
only incidental to the framework; they merely constitute syntactic re-expressions of
some subset of the functionality made possible by the object foundation.11

4. SUPPORTING MIXED DOMAIN COMPUTATION
We consider the storage domain (real or complex) of the matrix to be orthogonal to
the storage precision (single, double, etc). In this section, we consider how to handle
mixing matrix operands of different domains. For now, the reader should assume that
the storage precision is held constant across all matrix operands, and therefore can be
ignored. We also ignore scalars α and β for the time being, which simplifies the general
matrix multiplication operation to C := AB + C.

4.1. The 1m method
The author of [Van Zee 2018] recently presented a novel method of computing com-
plex matrix multiplication without relying upon kernels that explicitly perform com-
plex arithmetic at the scalar level, as is typically the case in high-performance BLAS
libraries. Instead, the so-called 1M method relies only upon matrix primitives (ker-
nels) that compute real matrix multiplication. And unlike the older and more easily
understood 4M method [Van Zee and Smith 2017], 1M replaces each complex matrix
multiplication with only a single real matrix multiplication.

The key to 1M is a pair of special packing formats, which Van Zee denotes 1E and
1R. The author illustrates the role of these two packing formats using the following
example of complex matrix multiplication C += AB where m = 3, n = 4, and k = 2.

γr00 γr01 γr02 γr03
γi00 γi01 γi02 γi03
γr10 γr11 γr12 γr13
γi10 γi11 γi12 γi13
γr20 γr21 γr22 γr23
γi20 γi21 γi22 γi23


+=



αr
00 −αi

00 αr
01 −αi

01

αi
00 αr

00 αi
01 αr

01

αr
10 −αi

10 αr
11 −αi

11

αi
10 αr

10 αi
11 αr

11

αr
20 −αi

20 αr
21 −αi

21

αi
20 αr

20 αi
21 αr

21



βr
00 βr

01 βr
02 βr

03

βi
00 βi

01 βi
02 βi

03

βr
10 βr

11 βr
12 βr

13

βi
10 βi

11 βi
12 βi

13

 (1)

In this example, it is assumed that matrix C is column-stored, which prescribes that
the 1E format be applied to A and the 1R format be applied to B. This can be confirmed
by inspection: applying a real matrix multiplication to the left- and right-hand matrix
product operands would not correctly compute the complex matrix multiplication if C
were row-stored because the intermediate elements of AB would update the wrong
elements of C. However, 1M provides a cure to this situation. Namely, symmetry in the

10Curious readers may find tutorial-like example codes included alongside the BLIS source code, which is
primarily distributed via GitHub [BLIS 2019]. Markdown documentation is also made available, and may
be conveniently rendered via GitHub with modern web browsers.
11The BLAS API provided by BLIS serves as a classic example of this kind of layering, as it builds on the
object API to arrive an an interface that exactly mimics the BLAS, even if doing so precludes access to
functionality and features that would otherwise be available.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:9

method allows for a row-oriented variant where C is row-stored.
γr00 γi00 γr01 γi01 γr02 γi02
γr10 γi10 γr11 γi11 γr12 γi12
γr20 γi20 γr21 γi21 γr22 γi22
γr30 γi30 γr31 γi31 γr32 γi32

+=


αr
00 αi

00 αr
01 αi

01

αr
10 αi

10 αr
11 αi

11

αr
20 αi

20 αr
21 αi

21

αr
30 αi

30 αr
31 αi

31




βr
00 βi

00 βr
01 βi

01 βr
02 βi

02

−βi
00 βr

00 −βi
01 βr

01 −βi
02 βr

02

βr
10 βi

10 βr
11 βi

11 βr
12 βi

12

−βi
10 βr

10 −βi
11 βr

11 −βi
12 βr

12


(2)

In this case, the application of the packing formats is reversed, such that 1E is ap-
plied to B and 1R is applied to A. Van Zee later points out that it is not actually the
storage of C that determines whether Eq. 1 or 2 is employed, but rather the SIMD
register orientation of the underlying real domain microkernel—which determines the
input/output preference of the microtile and thus the natural method of performing
SIMD reads and write instructions on C.

While the 1M method was originally articulated as a way to implement complex
domain matrix multiplication on operands of identical datatypes, we will soon show
that not only can it be extended to mixed-precision complex domain computation, but
it also indirectly supports a particular combination of mixed-domain operands.

4.2. Enumerating the cases
Consider for simplicity C := AB + C, ignoring the scaling factors α and β. Each of
{A,B,C} can be stored in either the real or complex domains, leading to 23 = 8 dif-
ferent combinations. Figure 5 enumerates and names each possible case. We will now
discuss each case, how it is interpreted, and how it is implemented within the BLIS
framework.

4.2.1. Cases 0, 3. The trivial case where all matrices are stored in the real domain,
which we refer to as Case 0, is already supported by the framework via algorithms
based on real domain microkernels. Similarly, Case 3, which applies when all matrices
are stored in the complex domain, is also already supported. Support for Case 3 is
provided in BLIS via conventional algorithms based on complex domain microkernels
as well as via the 1M method, which is particularly useful when complex microkernels
are not available. Cases 0 and 3 incur 2mnk and 8mnk flops, respectively.

4.2.2. Cases 1A, 1B. Case 1A captures situations where C and B are real while A is
complex. We interpret such an operation as C := Re(A)B +C. Implementing this case
in BLIS is rather straightforward: we ignore the imaginary part of A and compute as
if all matrices were real. Because BLIS tracks both row and column strides for each
matrix operand, ignoring the imaginary elements amounts to a temporary change to
the dimension and stride metadata contained within the object representing A. Case
1B involves a complex matrix B and real matrices C and A, but is otherwise handled
similarly. Since these case are ultimately implemented in terms of Case 0, they both
performs 2mnk flops.

4.2.3. Case 2AB. Case 2AB is applicable when A and B are complex while the ma-
trix to which they accumulate, C, is real. We interpret this somewhat curious scenario
as a matrix product that takes place in the complex domain, but one for which the
imaginary result is discarded: C := Re(AB) + C. Since Im(AB) is not needed, only
4mnk flops need to be performed. Thus, this case provides an opportunity for compu-
tational savings when properly implemented. BLIS implements 2AB by borrowing the
1R packing format used by the 1M method.12 Specifically, BLIS packs both matrices A

12This is the indirect support alluded to at the conclusion of Section 4.1.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:10 F. G. Van Zee et al.

Case C A B Description/Approach

0 R R R Supported by the original framework. Performs 2mnk flops.

1B R R C Interpreted as C := ARe(B) + C. Ignore Im(B) and compute
as Case 0. Performs 2mnk flops.

1A R C R Interpreted as C := Re(A)B + C. Ignore Im(A) and compute
as Case 0. Performs 2mnk flops.

2AB R C C Interpreted as C := Re(AB) + C. Use 1R packing format from
1M method to compute only Re(AB). Performs 4mnk flops.

1C C R R ComputeAB and accumulate intoRe(C). Performs 2mnk flops.

2BC C R C
Compute as if A ∈ C, but avoid all computations with Im(A).
Represent C and B with real and imaginary elements indistin-
guishable within am×2n and k×2n real matrices, respectively.
Requires a row-preferential microkernel. Performs 4mnk flops.

2AC C C R

Compute as if B ∈ C, but avoid all computations with Im(B).
Represent C and A with real and imaginary elements indis-
tinguishable within 2m × n and 2m × k real matrices, respec-
tively. Requires a column-preferential microkernel. Performs
4mnk flops.

3 C C C
Supported by the original framework (via the the 1M method
and/or assembly-coded complex microkernels). Performs 8mnk
flops.

Fig. 5. A table summarizing the eight possible cases of mixed-domain computation within the GEMM oper-
ation. The first column identifies a name for each case, with the number identifying the number of complex
matrix operands and the letters identifying the matrices that are complex. The second, third, and fourth
columns explicitly identify the domains of each matrix operand. The last column describes the interpreta-
tion of each case within BLIS along a brief comment on how the case is implemented (where applicable) and
a (minimum) flop count when implemented optimally.

and B using the 1R format while simultaneously conjugating B. This has the effect of
allowing a subsequent real matrix multiplication over the packed matrices to correctly
compute only the real half of the complex matrix multiplication update.

4.2.4. Case 1C. The opposite of 2AB—Case 1C—refers to settings in which matrix C
is complex while A and B are real. Since the matrix product takes place entirely in the
real domain, the natural interpretation is that AB updates only Re(C), and Im(C)
is left untouched. Generally speaking, BLIS implements 1C using a strategy similar
to the one used with 1A and 1B. That is, a temporary change to the object metadata
describing matrix C allows us to isolate Re(C), which once again reduces the problem
to Case 0. Accordingly, this case requires only 2mnk flops.

4.2.5. Cases 2AC, 2BC. Consider Case 2AC, in which matrices C andA are complex and
matrix B is real. We interpret this situation as performing a complex matrix product
AB to update both real and imaginary parts of C. However, all computation involving
the imaginary part of B, which is implicitly zero, may be ignored. This means that the
computation requires only 4mnk flops. Now, if C and A were guaranteed to be column-
stored, BLIS could handle this case with a simple change of metadata that recasts
those complex matrices as real, with the real and imaginary elements treated equally

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:11

and indistinguishably. However, BLIS also allows row storage (and general storage)
for all matrices, and thus the solution is not quite so simple. Instead, BLIS handles
2AC as follows.

If the original problem fits into Case 2AC and the microkernel is column-preferential,
A is packed as a real matrix (with imaginary elements stored traditionally, in element-
wise interleaved fashion) and B is packed normally. A real domain macrokernel (Case
0) is then executed, which will properly update C. However, if the microkernel is row-
preferential, the operation is logically transposed and Case 2BC is executed instead
(whereby matrices C and B are complex and A is real). Thus, the effective case em-
ployed, 2AC or 2BC, depends on the register orientation of the microkernel, not the
storage of C, and does so for the same reason that the 1M method, discussed previ-
ously in Section 4.1, depends on the same property.

After the aforementioned logical transposition is applied (or not), the microkernel
input/output preference may differ from the storage of matrix C. If this is the case,
then BLIS calls a virtual microkernel13, instead of calling the microkernel directly,
allowing for logic that will use a very small amount of temporary storage—equivalent
to one microtile—in order to facilitate the proper use of the microkernel (whether it be
row- or column-preferential) and then copy and/or accumulate the temporary microtile
result back to the appropriate location within the output matrix C.

4.3. Computation domain
Unlike the computation precision, which is discussed in the next section, the com-
putation domain is implied according to the case-specific interpretations covered in
Section 4.2 and summarized in Figure 5. Alternate interpretations exist, however.
For example, the computation of Case 2AB could be interpreted as taking place in
the real domain, which would result in Im(A) and Im(B) being ignored. Similar
interpretations—all of which would change the update to C—could be applied to Cases
2AC, 2BC, or even 3. However, we do not immediately see significant utility in exposing
these cases.14 Thus, our implementation in BLIS does not presently allow the caller to
explicitly specify the computation domain.

5. SUPPORTING MIXED PRECISION COMPUTATION
Now that variation among the storage domains has been fully explored, we turn our
attention to the storage precision of the matrices A, B, and C. Once again, we set aside
the scalars α and β, focusing only on variation among matrix operands. We also limit
the initial discussion to variation within the set of precisions that includes only single
and double precision.

5.1. Supporting all cases
Each of {A,B,C} can be stored in single or double precision. Furthermore, we define
a separate computation precision to identify the precision in which the matrix prod-

13In BLIS, virtual microkernels share the same type signature of conventional (“native”) microkernels and
ultimately compute the same operation. The only difference is that virtual microkernels typically imple-
ment the microkernel operation in the form of additional logic before (and sometimes after) the call to the
native microkernel. Sometimes, as with the 1M method, the native microkernel being called is the real-
domain equivalent relative to the virtual microkernel’s type signature (e.g., a virtual zgemm() microkernel
implemented in terms of the native dgemm() microkernel). Thus, the term is somewhat general-purpose and
additional context is needed to identify its specific nature.
14If an intrepid user wished to access such functionality, it could easily be done currently with BLIS by
manipulating the matrix object metadata accordingly. Of course, if users show interest in this functionality,
we will reconsider official support within the framework.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:12 F. G. Van Zee et al.

uct takes place. Combining the storage precision of each matrix with the computation
precision, we find that there exist 24 = 16 different cases.

At first glance, it may seem worthwhile to enumerate all mixed-precision cases as
we did for mixed-domain computation in Section 4. However, there is a more concise
and systematic way of describing how to support all cases, one that happens to coincide
closely with how mixed-precision support was ultimately implemented in BLIS.

While not part of the runtime logic for implementing mixed-precision computation,
we must first modify the packing facility so that the source and destination precisions
may differ. For example, we must be able to pack from a single-precision real matrix
to a double-precision real matrix, or vice versa. Once the mixed-precision functionality
is in place for the packing operation, the runtime logic may be encoded in three broad
steps, as follows.

5.1.1. Identify the computation precision. First, we must identify the computation preci-
sion. In BLIS, we provide a field for the computation precision within the metadata of
any matrix object. However, semantically, we deem only the field within the object for
matrix C to be relevant. Thus, upon calling the GEMM operation, we query the compu-
tation precision from C. Note that in BLIS, when objects are created, the computation
precision is initialized to be equal to the object’s storage precision. Consequently, if it
is not explicitly set by the caller prior to invoking GEMM, the computation precision
will automatically default to the storage precision of C.

5.1.2. Construct the target datatypes for A and B. Next, we embed target datatypes within
the metadata for objects representing matrices A and B. BLIS defines the target
datatype for A and B as being the storage datatype (domain and precision) of the ma-
trix during its packed state—in other words, the datatype to which the matrix must
be typecast before it can be computed upon.15 The target datatype for matrix A is con-
structed by combining the storage domain of A with the operation’s computation pre-
cision, with a similar process resulting in the target datatype for matrix B. The target
datatype for each matrix is then embedded within the metadata of the corresponding
object.

5.1.3. Determine whether typecasting is needed on accumulation. If the computation preci-
sion differs from the storage precision of C, then the intermediate result from com-
puting the product AB must be typecast before it is accumulated into C. This may be
implemented outside the microkernel by implementing additional macrokernels that
write the microkernel result to a temporary microtile (allocated on the function stack)
before typecasting and accumulating the temporary values back to C. Alternatively,
this logic may hidden within a virtual microkernel. BLIS opts for the former solution,
which somewhat reduces function call overhead at the cost of a somewhat higher object
(binary) code footprint.

If the computation precision is identical to the storage precision of C, then AB does
not require any typecasting before being accumulated. This corresponds to use of the
traditional macrokernel.

5.2. Using the 1M method for Case 3
As alluded to in the closing of Section 4.1, the 1M method can be extended to encompass
all combinations of mixed-precision operands—that is, all precision combinations that
fall within mixed-domain Case 3. This amounts primarily to (1) adding the ability to

15Note that we do not need to track the target datatype for C since the storage datatype of C does not
change in the course of the mixed-datatype GEMM operation.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:13

pack to the 1E and 1R16 formats when the target datatype differs from the storage
datatype and (2) adding the ability to scale by α (when αi 6= 0) during mixed-precision
packing of A and B. With these changes in place, the 1M virtual microkernel may be
used as-is since its functioning is undisturbed by the typecasting logic encoded in the
additional macrokernels mentioned previously in Section 5.1.3.17

5.3. Summary
By addressing the three areas described in Sections 5.1.1 through 5.1.3, and adding
support for typecasting within the packing function, we can handle all 16 cases of
mixing single and double precisions. Similarly, relatively minor changes to BLIS’s im-
plementation of the 1M method enable all mixed-precision instances of Case 3 to be
handled even if conventional, assembly-coded complex microkernels are unavailable.

Interestingly, the hypothetical impact of adding support for an additional floating-
point precision, such as half-precision, would manifest almost exclusively in the form
of additional support to the packing function.18 The mixed-precision runtime logic,
described above, would then trivially extend to support the two additional datatypes
(one each for real and complex domains).

6. OPTIMIZATIONS
After retrofitting the mixed-domain/mixed-precision functionality into the GEMM im-
plementation, it is possible to apply various optimizations to certain cases. In this
section, we briefly explore some of these optimizations.

6.1. Avoid virtual microkernel overhead with two microkernels
If and when BLIS adopts a regime whereby each hardware architecture is supported
simultaneously by two microkernels per datatype, one with a row preference and one
with a column preference, then the virtual microkernel logic becomes unnecessary, and
both 2AC and 2BC may be fully implemented without additional overhead.

6.2. Avoid non-contiguous/non-SIMD access on C

Some mixed-domain cases—at least as described in Section 4.2—result in accessing
complex matrix C by individual real and imaginary elements. The best example of this
is Case 1C, in which Re(C) is updated by the product of real matrices A and B. How-
ever, in order to isolate Re(C), the metadata describing matrix C must be tweaked in
such a way that the matrix then has non-unit stride in both dimensions. While BLIS
microkernels may update such matrices, doing so on current hardware comes with an
unavoidable performance penalty that does not manifest when accessing contiguous
elements via SIMD load and store instructions. Thus, it may be advantageous to inter-
nally allocate a temporary m×n matrix Ctemp in which to compute AB, after which the
result is copied back to C. As long as Ctemp is created (a) in the real domain and (b) as
either row- or column-stored, the microkernel will be able to update Ctemp efficiently
with SIMD instructions.

This optimization tends to be most worthwhile when k > kC , as it would imply that
the computation of AB unfolds as multiple rank-kC updates of C (that is, multiple
iterations of the 4th loop around the microkernel), with the non-contiguous load/store
penalty otherwise being incurred for each update.

16The ability to typecast while packing to the 1R format is also required by mixed-precision instances of
Case 2AB.
17In the course of our work, the BLIS testsuite was updated to allow testing of its 1M method implementa-
tion with mixed-precision operands.
18A real domain microkernel that performs computations in the new precision would also be needed.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:14 F. G. Van Zee et al.

6.3. Reduce typecasting costs and round-off error accumulation
When the storage precision of C differs from the computation precision, the GEMM
implementation executes typecasting instructions emitted by the compiler in order
to properly convert from one floating-point datatype to another—single- to double-
precision or double- to single-precision. These instructions can be costly, especially
when k > kC , since each element of C is typecast once per rank-kC update. In addition
to the performance cost of these typecasting instructions, they can also incur a numer-
ical cost. Specifically, when the storage precision of C is lower than the computation
precision, repeated round-off error can occur during accumulation of the intermediate
matrix product, which is once again exacerbated for large values of k. But as with
the repeated cost incurred from non-contiguous access described in Section 6.2, these
costs can be avoided by allocating a temporary m× n matrix Ctemp. The key difference
is that, in this case, Ctemp is created with its storage precision equal to the computa-
tion precision, which will avoid intermediate typecasting (and thus reduce round-off
error), leaving only typecasts on input (Ctemp := C) and on output (C := Ctemp). The
total number of typecasts needed may be further reduced to those on output provided
that Ctemp is initialized to zero and the final AB product be accumulated, rather than
copied, back to C.

6.4. Avoid virtual microkernel overhead with Ctemp

Notice that Cases 2AC and 2BC, as described in Section 4.2, may require use of a
virtual microkernel if a row-preferential microkernel (needed by 2BC) must be used
on a column-stored (or general stored) matrix, or if a column-preferential microkernel
(needed by 2AC) must be used on a row-stored (or general stored) matrix. The overhead
of the virtual microkernel, while small, may still be noticeable and is incurred for each
rank-kC update. The dual-microkernel strategy described in Section 6.1 solves this
issue. However, if only a single microkernel (per datatype) is available, a temporary
m× n matrix Ctemp may be allocated, with the important distinction being that Ctemp

is created with storage (by columns or rows) to match the preference of the available
microkernel. This allows the implementation to avoid the virtual microkernel alto-
gether during intermediate accumulation into Ctemp.

6.5. Summary
The optimizations described above are optional. At the time of this writing, BLIS im-
plements all except the dual-microkernel strategy described in Section 6.1. BLIS also
allows the the user to optionally disable all uses of Ctemp at configure-time, which
avoids the extra workspace that would otherwise be needed by the optimizations dis-
cussed in Sections 6.2 through 6.4.

7. HANDLING SCALARS
Before concluding our discussion of how to implement and support mixed-datatype
GEMM, we turn our attention to scalars α and β, which have been omitted from our
discussion thus far.

7.1. Mixed precision
If the precision of α differs from the computation precision, a decision must be made
as to how to proceed. Numerous possible policies exist for handling such situations.
Three examples follow:

(1) Typecast α to match the computation precision.
(2) Typecast the computation precision to match that of α.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:15

(3) Unconditionally promote the lower precision value to the precision of the other
(higher precision) value.

Our mixed-datatype extension to BLIS currently opts for option (1).
A similar decision must be made for handling the precision of β. The choices here

are even more numerous, because while we consider the precision of β and the stor-
age precision of C to be the main inputs to the runtime logic, one could also argue for
considering the disagreement with the computation precision that governs the compu-
tation of AB. A few possible policies are:

(1) Typecast β to match the storage precision of C.
(2) Perform the scaling βC in the higher precision of the two values, typecasting back

to the storage precision of C, as necessary.
(3) Typecast both β and C to the computation precision so that all suboperations

within βC + AB can occur in the same precision before being typecast back to
the storage precision of C.

Once again, our solution in BLIS opts for the relatively simple solution alluded to in
(1), with αAB being typecast to the storage precision on accumulation to C.

7.2. Mixed domain
Real values of β are easily handled for all eight cases enumerated in Section 4.2.

For Cases 0, 1A, 1B, and 1C, complex β may be projected into the real domain (which
discards Im(β) entirely) since, with C ∈ R, Im(β) cannot change the final result.
Similarly, complex values of β are handled as expected in the four cases where C ∈ C.
Specifically, Case 3 already handles complex β while Cases 2AB, 2AC, and 2BC support
Im(β) 6= 0 via extra logic in the virtual microkernel.

Real and complex values of α are already handled in Cases 0 and 3, respectively.
Real α are also already handled by Case 3 since R ⊂ C. In Case 0, a complex α can be
projected to the real domain since Im(α) would not change the computation, even if
we had storage in which to save the final result.

For Cases 1A, 1B, 1C, 2AB , 2AC, and 2BC, a non-zero imaginary component in α
could presumably change the final computation under a literal interpretation of the
computation—that is, one in which all five operands’ domains are taken at face value.
However, implementing this logic is non-trival. For example, consider our approach
to handling Case 1A, as discussed in Section 4.2. In this case, we perform the com-
putation according to Case 0, as if the imaginary components of A were zero. That
case’s handling is completely consistent with its mathematics, since in that scenario
A is the only operand with non-zero imaginary values, and thus they would have no
impact on the final result. However, if both A and α are complex, then the imaginary
components could combine to change the real component of the scalar-matrix product
αA. Adjusting for this new possible use case would require a different approach in the
implementation, perhaps using temporary workspace to store a copy of A while it is
scaled by α, after which the imaginary components may be ignored (assuming they
were even computed to begin with).19 However, while it is clear that going through
such motions would maintain deeper fidelity to the literal mathematics expressed in
the mixed-domain scenario, it’s not clear to us that this additional functionality would
be vital for most applications. As we continue to solicit feedback from the community,
we will pay close attention to whether users expect or request support for non-zero
imaginary values of α in Cases 1A, 1B, 1C, 2AB , 2AC, and 2BC. For now, our mixed-

19Alternatively (and more preferably), logic that packs Re(αA) where α,A ∈ C may be encoded within a
special packing function.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:16 F. G. Van Zee et al.

datatype solution supports only real values of α for those six cases, and prints an error
message if the scalar is given with a non-zero imaginary component.

8. PERFORMANCE
In this section, we discuss performance results for our mixed-datatype implementa-
tions on two servers with modern hardware architectures.

8.1. Platform and implementation details
8.1.1. Marvell ThunderX2. The first system upon which we measured performance is

a single compute node consisting of two 28-core Marvell ThunderX2 CN9975 proces-
sors.20 Each core, running at a clock rate of 2.2 GHz, provides a single-core peak per-
formance of 17.6 gigaflops (GFLOPS) in double precision and 35.2 GFLOPS in single
precision. Each of the two sockets has a 32MB L3 cache that is shared among its local
cores, and each core has a private 256KB L2 cache and 32KB L1 (data) cache. The
installed operating system was Ubuntu 16.04 running the Linux 4.15.0 kernel. Source
code was compiled by the GNU C compiler (gcc) version 7.3.0.21

8.1.2. Intel Xeon Platinum. The second system is a single node consisting of two 26-core
Intel Xeon Platinum 8167M processors.22 Each core ran at a clock rate of 2.0 GHz,
providing single-core peak performance of 64 gigaflops (GFLOPS) in double precision
and 128 GFLOPS in single precision. Each of the two sockets has a 35.75MB L3 cache
that is shared among its local cores, and each core has a private 1MB L2 cache and
32KB L1 (data) cache. The installed operating system was Ubuntu 18.04.1 running the
Linux 4.15.0 kernel. Source code was compiled by the GNU C compiler (gcc) version
7.3.0.23

8.1.3. Implementations. On both the ThunderX2 and the Xeon Platinum, the version of
BLIS used was based on an inter-version release that preceded 0.5.1.24 In both cases,
BLIS was configured with OpenMP-based multithreading. Architecture-specific con-
figuration, which determines settings such as kernel sets and cache blocksizes, was
performed automatically via the auto target to the configure script.

We showcase two (or, in some cases, three) implementations, with a third (or fourth)
provided for reference:

— Internal without extra memory. This refers to the BLIS implementation de-
scribed in Sections 4 and 5 in which all logic for supporting the mixing of domains
and precisions occurs opaquely inside of BLIS. This implementation does not, how-
ever, employ the use of a temporary matrix Ctemp discussed in Sections 6.2–6.4.

— Internal with extra memory. This implementation is identical to the previous im-
plementation, except that Ctemp is made available, thus incurring extra workspace

20While four-way symmetric multithreading (SMT) was available on this hardware, the feature was disabled
at boot-time so that the operating system detects only one logical core per physical core and schedules
threads accordingly.
21The following optimization flags were used during compilation on the ThunderX2: -O3 -ftree-vectorize
-mtune=cortex-a57. In addition to those flags, the following flags were also used when compiling assembly
kernels: -march=armv8-a+fp+simd -mcpu=cortex-a57.
22Two-way SMT (which Intel refers to as “Hyperthreading”) was available. However, we employed processor
affinity settings that limited the operating system to utilizing only one logical core per physical core.
23The following optimization flags were used during compilation on the Xeon Platinum: -O3. In addition
to those flags, the following flags were also used when compiling assembly kernels: -mavx512f -mavx512dq
-mavx512bw -mavx512vl -mfpmath=sse -march=skylake-avx512.
24This version of BLIS may be uniquely identified, with high probability, by the first 10 digits of its git
“commit” (SHA1 hash) number: cbdb0566bf.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:17

requirements in certain situations. It is worth pointing out that this implementa-
tion does not differ from its extra-memory-avoiding counterpart for all 128 mixed-
datatype cases. Thus, we will only present these results when one of the conditions
laid out in Sections 6.2–6.4 is applicable. Also, note that we do not employ any cache
blocking or parallelism outside of the underlying call to GEMM, such as when copy-
ing/accumulating Ctemp to/from C.

— Ad-hoc. This refers to an implementation that is formulated outside of BLIS, us-
ing temporary workspace and matrix copies wherever needed. The purpose behind
such an implementation is to show the best a knowledgeable computational scien-
tist could reasonably expect to achieve using only a BLAS library. Thus, while we
link this solution to BLIS, we do so via the framework’s BLAS compatibility layer.
Furthermore, we do not employ any cache blocking or parallelism outside of the
underlying call to GEMM.

— Reference. This refers to the sgemm(), dgemm(), cgemm(), and zgemm() provided
by BLIS, whichever is appropriate, as determined by the mixed-datatype case pre-
sented by each graph. These Reference curves are provided as a visual “high-water
mark” to show how much performance is ceded by the Internal and Ad-hoc mixed-
datatype implementations. As of this writing, we had not yet developed native com-
plex domain GEMM microkernels, and therefore the cgemm() and zgemm() curves
represent BLIS implementations based on the 1M method.

8.2. Results
8.2.1. Scope and Conventions. Performance data for sequential, multithreaded within

one socket (28 threads), and multithreaded across two sockets (56 threads) was gath-
ered on the ThunderX2. Similarly, sequential, single-socket (26 threads), and dual-
socket (52 threads) data was gathered on the Xeon Platinum. This produced a rather
large set of data, which we formatted into 768 individual graphs. As a practical mat-
ter, we have relegated this complete set of performance results to Online Appendix A.
Here, in the main body of the article, we limit our presentation to a slice of data that
we feel is broadly representative of the full set.

For any given graph, the x-axis denotes the problem size (where m = n = k), the
y-axis shows observed floating-point performance in units of GFLOPS per core, and
the theoretical peak performance of the hardware coincides with the top of the graph.
Problem sizes for sequential instances of GEMM were run from 40 to 2000 in incre-
ments of 40 while multithreaded executions were run from 120 to 6000 in increments
of 120.25 The data points in all performance graphs report the best of three trials.

Individual graphs are labeled according to the mixed-datatype case of its Internal
and Ad-hoc implementations. The datatypes are encoded as cabx, where the characters
c, a, and b encode the storage datatypes of C, A, and B, respectively, while x encodes
the computation precision. For example, a case labeled “zcsd” would refer to mixed-
domain Case 2AC, where matrices A and B are stored in single-precision (complex and
real, respectively), matrix C is double-precision complex, and the computation occurs
in double-precision arithmetic.

All experiments reflect the use of randomized, column-stored matrices with GEMM
scalars α = 1 and β = 1.

25Some readers may wish that we had run our multithreaded experiments to a somewhat larger maximum
problem sizes, perhaps 8,000 or 10,000. We sympathize with these readers. However, the results presented
in this article, including Online Appendix A, required a total of 302,400 invocations of GEMM performed over
a period of several days. Limiting the maximum problem size was necessary so that the experiments would
finish in a reasonable amount of time.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:18 F. G. Van Zee et al.

800 1600
0

10

20

30
G

F
LO

P
S

sdds

800 1600
0

10

20

30

ccss

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

5

10

15

dssd

800 1600
0

5

10

15

zzdd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

10

20

30

G
F

LO
P

S

ddds

800 1600
0

10

20

30

cscs

800 1600
0

5

10

15

sssd

800 1600
0

5

10

15

zdzd

800 1600
 m = n = k

0

10

20

30

G
F

LO
P

S

dsss

800 1600
 m = n = k

0

10

20

30

csss

800 1600
 m = n = k

0

5

10

15

sddd

800 1600
 m = n = k

0

5

10

15

zddd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

sdds

2500 5000
0

10

20

30

ccss

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

dssd

2500 5000
0

5

10

15

zzdd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

ddds

2500 5000
0

10

20

30

cscs

2500 5000
0

5

10

15

sssd

2500 5000
0

5

10

15

zdzd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

dsss

2500 5000
 m = n = k

0

10

20

30

csss

2500 5000
 m = n = k

0

5

10

15

sddd

2500 5000
 m = n = k

0

5

10

15

zddd

Fig. 6. Sequential (top) and multithreaded with 28 threads (bottom) performance of “Internal” and “Ad-hoc”
implementations of GEMM for select datatype combinations on a Marvell ThunderX2 CN9975 processor. The
12 graphs on the left side and right sides report computation in single- and double-precision, respectively.
The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:19

800 1600
0

50

100
G

F
LO

P
S

sdds

800 1600
0

50

100

ccss

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

20

40

60

dssd

800 1600
0

20

40

60

zzdd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

50

100

G
F

LO
P

S

ddds

800 1600
0

50

100

cscs

800 1600
0

20

40

60

sssd

800 1600
0

20

40

60

zdzd

800 1600
 m = n = k

0

50

100

G
F

LO
P

S

dsss

800 1600
 m = n = k

0

50

100

csss

800 1600
 m = n = k

0

20

40

60
sddd

800 1600
 m = n = k

0

20

40

60
zddd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

sdds

2500 5000
0

50

100

ccss

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

dssd

2500 5000
0

20

40

60

zzdd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

ddds

2500 5000
0

50

100

cscs

2500 5000
0

20

40

60

sssd

2500 5000
0

20

40

60

zdzd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

dsss

2500 5000
 m = n = k

0

50

100

csss

2500 5000
 m = n = k

0

20

40

60
sddd

2500 5000
 m = n = k

0

20

40

60
zddd

Fig. 7. Sequential (top) and multithreaded with 26 threads (bottom) performance of “Internal” and “Ad-hoc”
implementations of GEMM for select datatype combinations on a Intel Xeon Platinum 8167M processor. The
12 graphs on the left side and right sides report computation in single- and double-precision, respectively.
The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:20 F. G. Van Zee et al.

8.2.2. Exposition. Figure 6 (top) reports sequential performance on the Marvell Thun-
derX2. The six graphs on the left half of Figure 6 (top) report performance for six select
mixed-datatype cases that we felt are interesting: sdds, ddds, dsss, ccss, cscs, and csss.
All of these mixed-datatype cases perform their computation in single-precision. On
the right half, we display graphs that correspond to the precision-toggled analogues
of the graphs on the left—dssd, sssd, sddd, zzdd, zdzd, and zddd—all of which per-
form their computation in double-precision. Both Internal implementations (with and
without extra memory) are shown in four of the six graphs in each group, with the re-
maining two graphs displaying performance only for the implementation where extra
memory is disabled, since the optimization is not applicable for those cases.

The legends are shown once for each group of six graphs. Within the legend, the
curves labeled “Intern (+xm)” and “Intern (-xm)” refer to the Internal implementations
with and without extra memory, respectively. Additionally, the label for the Reference
implementation is augmented, in parentheses, with the conventional GEMM routine
that serves as the reference curve within that group of six graphs.

Organized identically as those in the top, the graphs in Figure 6 (bottom) report
multithreaded performance on one socket (28 threads) of the ThunderX2.

Finally, Figure 7 (top) and (bottom) report sequential and single-socket (26 threads)
performance, respectively, on the Intel Xeon Platinum using the same mixed-datatype
cases and organization as shown in Figure 6.

8.2.3. Observations and Analysis. Let us turn first to the sequential performance results
from the ThunderX2.

The first thing we notice is that, in five of the six mixed-datatype cases, the Ad-hoc
approach is capable of performing quite well relative to the Internal implementations.
The sixth case, which falls within mixed-domain Case 2BC, suffers because, unlike
with 2AC, we are unable to cast the problem in terms of sgemm() or dgemm() by ma-
nipulating matrix metadata, and therefore must resort to using cgemm() and zgemm().
And because Ai = 0, this approach necessarily wastes half of the floating-point compu-
tations.

Next, we notice that employing Ctemp often affords a modest but noticeable increase
in performance relative to forgoing extra memory. This is expected for all of the reasons
described in Sections 6.2–6.4.

Turning to the multithreaded performance on ThunderX2, we notice that the effect
of using extra memory in the Internal implementation is not only reversed, but also
magnified. Here, the additional costs incurred within the virtual microkernel are over-
whelmed by the cost of the accumulation of Ctemp back to C that must be performed
after the GEMM operation, which is not parallelized.26 The performance of the Ad-hoc
implementation also suffers, for similar reasons to that of the Internal implementation
using Ctemp. The effect is even worse for Ad-hoc, however, because that implementa-
tion must make whole copies of matrices up-front, and does so sequentially, before
executing the underlying GEMM operation. By contrast, the Internal implementations
benefit from typecasting A and B during packing, which is already parallelized.

Overall, the extra-memory-avoiding Internal implementation performs quite well
relative to its sgemm() and dgemm() benchmarks.

Turning to the Intel Xeon Platinum results in Figure 7, we find the data largely tells
the same story. Here, the multithreaded performance degradation caused by employ-
ing extra memory is even more severe, and the Ad-hoc performance is similarly at-

26This copy/accumulation operation, while not parallelized for any of the implementations tested for this
article, could in principle be parallelized. However, speedup for that component of the GEMM would likely be
limited as the many threads quickly saturate the available memory bandwidth.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:21

tenuated. Once again, in both sequential and multithreaded cases, one of the Internal
implementations matches or exceeds (sometimes by a large margin) that of the Ad-
hoc approach. However, for some datatype cases, even the memory-avoiding Internal
implementation lags noticeably behind its sgemm() or dgemm() benchmark. The cause
of this is not immediately clear, but may be related to memory bandwidth becoming
strained in cases where the the virtual microkernel is relied upon to update the output
matrix in two steps, using a temporary microtile as intermediate storage.

These results strongly suggest that, in general, BLIS should employ the use of In-
ternal implementation with Ctemp for sequential invocations of GEMM, but avoid Ctemp

in the case of many-threaded execution. As a function of the number of threads, the
crossover point between the two Internal implementations will likely depend on the
amount of parallelism that can be extracted within the accumulation of Ctemp back to
C before memory bandwidth is saturated. We leave this topic for future exploration.

9. MEASURING THE IMPACT ON CODE SIZE
Prior to reading the article, a casual reader might have been skeptical of the practi-
cality of our solution. However, Sections 4 and 5 decompose the problem into mostly
orthogonal use cases, giving hope that the ultimate impact on library code size is much
more manageable.

Indeed, by multiple measures, the BLIS library grew only modestly after introducing
mixed-datatype support.

Framework
source code

Total lines Change Total size
(Kilobytes) Change

Before 148,862 4,706

After 154,962 +6,100 4,892 +186

Fig. 8. The total number of lines and the total size (in kilobytes) of source code in the BLIS framework
(excluding the build system, kernels, and the testsuite) before (git commit 667d3929) and after (git commit
5fec95b9) support was added for mixed-datatype computation via the GEMM operation.

Testsuite
source code

Total lines Change Total size
(Kilobytes) Change

Before 22,891 680

After 24,356 +1,465 722 +42

Fig. 9. The total number of lines and the total size (in kilobytes) of source code in the BLIS testsuite before
(667d3929) and after (5fec95b9) support was added for mixed-datatype computation via the GEMM operation.

The second column in Figure 8 shows the total number of lines27 of code present in
the BLIS framework proper—which excludes other components such as the build sys-
tem, kernels, and the testsuite—before and after mixed-datatype support was added
to the GEMM operation.28 The fourth column shows the total size in kilobytes of the

27In this section, we uniformly report total lines of code, including blank lines and comments.
28The “before” and “after” snapshots of BLIS are uniquely identified with high probability by the first eight
digits of the git commit (SHA1 hash) numbers. Commit 667d3929 identifies the code just before mixed-
datatype support was added, while 5fec95b9 identifies the first commit in which mixed-datatype support is

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:22 F. G. Van Zee et al.

Object code size
(Kilobytes)

Static
library Change Shared

library Change
Statically-
linked
testsuite

Change

Before 3,141 2,286 1,632

After (disabled) 3,253 +112 2,382 +94 1,720 +88

After (enabled) 3,366 +225 2,486 +200 1,820 +188

Fig. 10. The total object code size for three build products: BLIS built as a static library; BLIS built as a
shared library; and the BLIS testsuite linked against the aforementioned static library. Object code sizes are
given using the: BLIS library just prior to mixed-datatype support (667d3929); with mixed-datatype support
present (5fec95b9) but disabled at configure-time; and with mixed-datatype support present (5fec95b9) and
enabled at configure-time.

source code. The change between the “before” and “after” values for total lines and to-
tal size are shown in the third and fifth columns, respectively. Mixed-datatype support
for the GEMM operation adds approximately 4% each to the total number of lines and
total bytes of source code.

Figure 9 lists similar metrics for the BLIS testsuite, which is capable of testing
the vast majority of BLIS’s computational operations. Here, the support for testing
all combinations of mixed-datatype execution, with any combination of matrix storage
storage or transposition and/or combinations, increases the source code footprint by
approximately 6% in both lines and total size.

Finally, Figure 10 shows the object (binary) code size for three build products: BLIS
built as a static library; BLIS built as a shared library; and the BLIS testsuite linked
against the static library.29 This figure shows three rows of values: before mixed-
datatype support for GEMM was added (667d3929); after mixed-datatype support was
added (5fec95b9) where the feature was disabled at configure-time; and after mixed-
datatype support was added (5fec95b9) where the feature was enabled at configure-
time. (In the the latter two cases, the “Change” columns represent the change from
the “before” state.) With mixed-datatype support present and enabled, the size of the
static library increases by only 255KB, or 8% of the original library size. In the case
of the shared library, the increase is just under 9%. And a statically-linked instance of
the BLIS testsuite increases by about 11%.

Thus, no matter the metric, the increase in code footprint is quite modest relative to
the scope of functionality added.

10. FINAL THOUGHTS
We conclude this article by sharing with the reader insights and observations that we
have drawn to-date about BLIS, BLAS, and the adoption of new software functionality
by the broader HPC community.

10.1. Case studies
In late 1990’s, various community participants convened multiple meetings of the
BLAS Technical (BLAST) Forum to discuss extensions to the original BLAS [BLAST
2002]. Some of these extensions targeted extended and mixed-precision functional-
ity and were eventually implemented and branded as XBLAS [Li et al. 2000; XBLAS
2019]. In the end, the mixed-precision extensions were not widely adopted. We spec-

present. This latter commit includes virtually all changes discussed in this article with the exception of the
mixed-precision support for the 1M method, which was added in a later commit (375eb30b).
29These object codes were built using GNU gcc 5.4.0 on an Intel Xeon E3-1271 v3 (Haswell) workstation.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:23

ulate that this was in part due to the fact that the reference implementation falls
short of achieving high performance. By contrast, when the reference codes of the
original BLAS [Dongarra et al. 1990; BLAS 2019] were introduced, compilers could
easily translate them to binary implementations that would yield high performance
on the vector supercomputers that were prominent at the time. Though computer ar-
chitectures have evolved since then, we suspect that the initial availability of high-
performance reference BLAS implementations helped give rise to a network of insti-
tutional experts and expertise, laying the foundation for today’s well-established con-
stellation of BLAS solutions.

A classic example of the release of a new standard hand-in-hand with a high qual-
ity implementation was the Message-Passing Interface (MPI) [Gropp et al. 1994; Snir
et al. 1996]. From the start, an implementation that later become known as MPICH
provided a high-performance reference implementation [Bridges et al. 1995]. Another
example is TBLIS, a library and framework for performing efficient contractions and
related operations on tensors [Matthews 2018]. TBLIS borrows some of the insights of
BLIS and then goes further to construct a general-purpose tensor library from scratch.
This new software architecture avoids the drawbacks of ad-hoc, BLAS-based solutions
that must first reorder tensors into column-major storage simply for the purpose of
calling dgemm(). The result is a comprehensive set of tensor functionality that exports
flexible APIs (in C89 and C++11) while also facilitating higher performance for both
sequential and multithreaded applications. In contrast to the BLAST extensions, we
feel that MPICH and TBLIS serve as important examples of software projects that
each made an impact in their community by coupling new APIs and functionality with
a complete high-performance reference implementation.

10.2. Managing complexity
Supporting the goal of providing a high-performance reference implementation with
new APIs, while a laudable step in the right direction, is ultimately insufficient if the
software is not designed to be practically implementable and maintainable. Suppose
we attempted to solve the problem of mixed-datatype GEMM by implementing a so-
lution in the style of the original reference BLAS. Such an approach tends to lead to
implementations that are duplicative and vertically siloed from one another, with sup-
port for each datatype, storage case, and transposition/conjugation scenario resulting
in a fully independent block of code. On top of supporting four (potentially differing)
storage datatypes across all three matrix operands, a fully independent computation
precision, and an fourth “conjugation only” transposition parameter value, BLIS also
supports three different storage formats (row, column, and general storage) for each
matrix operand. This would lead to 31,104 separate implementations. If two additional
precisions are supported—half-precision and quad-precision, for example—this num-
ber grows to 497,664.

Our takeaway from this analysis, and our past experiences, is that achieving a com-
plete high-performance reference implementation for mixed-datatype GEMM requires
careful management of complexity in the implementation. Complexity must be man-
aged not only within interfaces (e.g., via object-based APIs) but also internally by al-
lowing feature “decision points” (e.g., typecasting during packing) to work together in
sequence, rather than in duplication, to enable the desired combinatoric space of func-
tionality while collapsing its corresponding axial dimensions within the source code.
Otherwise, the solution quickly becomes unwieldy, if not hopelessly intractable, for its
maintainers.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

0:24 F. G. Van Zee et al.

10.3. Thesis
It is our conjecture that interfaces to new functionality, such as the mixed-datatype
GEMM presented in this article, should be accompanied by a corresponding high-
performance reference implementation, and that the key to making such a goal attain-
able is managing combinatoric software complexity. Aside from serving several obvi-
ous purposes—a research proof-of-concept, a reference for other developers, a working
solution upon which end-users can rely—the reference implementation, once instan-
tiated, confers another, less tangible benefit. Namely, it creates the initial conditions
in which a community can form and a tangible product around which its members
can organize, collaborate, and advance towards its shared objectives. Therefore, this
approach ultimately benefits all stakeholders.

11. SOFTWARE AVAILABILITY
The software referenced in this article may be found at the BLIS project page [BLIS
2019] on GitHub along with documentation, examples, links to discussion forums, and
other related resources.

ACKNOWLEDGMENTS

We kindly thank Jeff R. Hammond and Devin A. Matthews for referring us to appropriate citations for vari-
ous applications and use cases that stand to benefit from implementing mixed-domain and mixed-precision
matrix multiplication functionality. We also acknowledge Matthews for participating in and facilitating early
discussions on the topic of mixed-domain and mixed-precision computation. Also, we thank Marvell and Or-
acle for providing access to the Marvell ThunderX2 CN9975 and Intel Xeon Platinum 8167M servers, respec-
tively, on which performance data for this article was gathered. Finally, we thank members of the Science
of High-Performance Computing (SHPC) group for their contributions throughout the research towards and
drafting of this article.

REFERENCES
APRA, E., BYLASKA, E. J., DE JONG, W. A., GOVIND, N., KOWALSKI, K., STRAATSMA, T. P., VALIEV, M.,

VAN DAM, H. J. J., WANG, D., WINDUS, T. L., HAMMOND, J., AUTSCHBACH, J., BHASKARAN-NAIR, K.,
BRABEC, J., LOPATA, K., FISCHER, S. A., KRISHNAMOORTHY, S., JACQUELIN, M., MA, W., KLEMM,
M., VILLA, O., CHEN, Y., ANISIMOV, V., AQUINO, F., HIRATA, S., HACKLER, M. T., KONJKOV, V.,
MEJIA-RODRIGUEZ, D., RISTHAUS, T., MALAGOLI, M., MARENICH, A., DE-LA ROZA, A. O., MULLIN,
J., NICHOLS, P., PEVERATI, R., PITTNER, J., ZHAO, Y., FAN, P.-D., FONARI, A., WILLIAMSON, M. J.,
HARRISON, R. J., REHR, J. R., DUPUIS, M., SILVERSTEIN, D., SMITH, D. M. A., NIEPLOCHA, J.,
TIPPARAJU, V., KRISHNAN, M., KUIKEN, B. E. V., VAZQUEZ-MAYAGOITIA, A., JENSEN, L., SWART,
M., WU, Q., VOORHIS, T. V., AUER, A. A., NOOIJEN, M., CROSBY, L. D., BROWN, E., CISNEROS, G.,
FANN, G. I., FRUCHTL, H., GARZA, J., HIRAO, K., KENDALL, R. A., NICHOLS, J. A., TSEMEKHMAN, K.,
WOLINSKI, K., ANCHELL, J., BERNHOLDT, D. E., BOROWSKI, P., CLARK, T., CLERC, D., DACHSEL, H.,
DEEGAN, M. J. O., DYALL, K., ELWOOD, D., GLENDENING, E., GUTOWSKI, M., HESS, A. C., JAFFE,
J., JOHNSON, B. G., JU, J., KOBAYASHI, R., KUTTEH, R., LIN, Z., LITTLEFIELD, R., LONG, X., MENG,
B., NAKAJIMA, T., NIU, S., POLLACK, L., ROSING, M., GLAESEMANN, K., SANDRONE, G., STAVE,
M., TAYLOR, H., THOMAS, G., VAN LENTHE, J. H., WONG, A. T., AND ZHANG, Z. 2018. NWChem, a
computational chemistry package for parallel computers, version 6.8.

BLAS 2019. http://www.netlib.org/blas.
BLAST 2002. Basic linear algebra subprograms technical forum standard. International Journal of High

Performance Applications and Supercomputing 16, 1.
BLIS 2019. https://github.com/flame/blis.
BRIDGES, P., DOSS, N., GROPP, W., KARRELS, E., LUSK, E., AND SKJELLUM, A. 1995. User’s Guide for

mpich, a Portable Implementation of MPI. Argonne National Laboratory.
CORIANI, S., CHRISTIANSEN, O., FRANSSON, T., AND NORMAN, P. 2012. Coupled-cluster response theory

for near-edge x-ray-absorption fine structure of atoms and molecules. Phys. Rev. A 85, 022507.
CRAWFORD, T. D. AND SCHAEFER, H. F. 2007. An introduction to coupled cluster theory for computa-

tional chemists. In Reviews in Computational Chemistry, K. B. Lipkowitz and D. B. Boyd, Eds. Wiley-
Blackwell, 33–136.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework 0:25

DONGARRA, J. J., DU CROZ, J., HAMMARLING, S., AND DUFF, I. 1990. A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Soft. 16, 1, 1–17.

GOTO, K. AND VAN DE GEIJN, R. 2008. Anatomy of high-performance matrix multiplication. ACM Trans.
Math. Soft. 34, 3: Article 12, 25 pages.

GOTO, K. AND VAN DE GEIJN, R. 2008b. High-performance implementation of the level-3 BLAS. ACM
Trans. Math. Soft. 35, 1, 4:1–4:14.

GOTO, K. AND VAN DE GEIJN, R. A. 2002. On reducing TLB misses in matrix multiplication. Tech. Rep.
TR-02-55, Department of Computer Sciences, The University of Texas at Austin. November.

GROPP, W., LUSK, E., AND SKJELLUM, A. 1994. Using MPI. The MIT Press.
HUANG, J., RICE, L., MATTHEWS, D. A., AND VAN D GEIJN, R. A. 2017. Generating families of practical

fast matrix multiplication algorithms. In 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 656–667.

HUANG, J., SMITH, T. M., HENRY, G. M., AND VAN DE GEIJN, R. A. 2016. Strassen’s algorithm reloaded.
In Proceedings of the International Conference for High Performance Computing, Networking, Storage
and Analysis. SC ’16. IEEE Press, Piscataway, NJ, USA, 59:1–59:12.

JAGAU, T.-C., BRAVAYA, K. B., AND KRYLOV, A. I. 2017. Extending quantum chemistry of bound states to
electronic resonances. Annual Review of Physical Chemistry 68, 1, 525–553. PMID: 28463649.

KHUDIA, D. S., BASU, P., AND DENG, S. 2018. Open-sourcing FBGEMM for state-of-the-art server-side
inference. https://code.fb.com/ml-applications/fbgemm/.

KRISTENSEN, K., KAUCZOR, J., KJRGAARD, T., AND JRGENSEN, P. 2009. Quasienergy formulation of
damped response theory. The Journal of Chemical Physics 131, 4, 044112.

LI, X. S., DEMMEL, J. W., BAILEY, D. H., HENRY, G., HIDA, Y., ISKANDAR, J., KAHAN, W., KAPUR, A.,
MARTIN, M. C., THOMPSON, B. J., TUNG, T., AND YOO, D. J. 2000. Design, implementation and testing
of extended and mixed precision BLAS. LAPACK Working Note 149. October.

MATTHEWS, D. 2018. High-performance tensor contraction without transposition. SIAM J. Sci. Com-
put. 40, 1, C1–C24.

NOOIJEN, M. AND SNIJDERS, J. G. 1992. Coupled cluster approach to the single-particle Green’s function.
International Journal of Quantum Chemistry 44, S26, 55–83.

OpenBLAS 2019. https://github.com/xianyi/OpenBLAS.
SMITH, T. M., VAN DE GEIJN, R., SMELYANSKIY, M., HAMMOND, J. R., AND VAN ZEE, F. G. 2014. Anatomy

of high-performance many-threaded matrix multiplication. In Parallel and Distributed Processing Sym-
posium, 2014 IEEE 28th International. IEEE, 1049–1059.

SNIR, M., OTTO, S. W., HUSS-LEDERMAN, S., WALKER, D. W., AND DONGARRA, J. 1996. MPI: The Com-
plete Reference. The MIT Press.

STANTON, J. F. 1997. Why CCSD(T) works: a different perspective. Chemical Physics Letters 281, 1, 130–
134.

VALIEV, M., BYLASKA, E., GOVIND, N., KOWALSKI, K., STRAATSMA, T., DAM, H. V., WANG, D.,
NIEPLOCHA, J., APRA, E., WINDUS, T., AND DE JONG, W. 2010. Nwchem: A comprehensive and
scalable open-source solution for large scale molecular simulations. Computer Physics Communica-
tions 181, 9, 1477–1489.

VAN ZEE, F. G. 2018. Implementing high-performance complex matrix multiplication via the 1m method.
ACM Trans. Math. Soft.. submitted.

VAN ZEE, F. G. AND SMITH, T. M. 2017. Implementing high-performance complex matrix multiplication
via the 3m and 4m methods. ACM Trans. Math. Soft. 44, 1, 7:1–7:36.

VAN ZEE, F. G. AND VAN DE GEIJN, R. A. 2015. BLIS: A framework for rapidly instantiating BLAS func-
tionality. ACM Trans. Math. Soft. 41, 3, 14:1–14:33.

XBLAS 2019. http://www.netlib.org/xblas.
YU, C. D., HUANG, J., AUSTIN, W., XIAO, B., AND BIROS, G. 2015. Performance optimization for the k-

nearest neighbors kernel on x86 architectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’15. ACM, New York, NY, USA, 7:1–7:12.

Received month 20xx; revised month 20xx; accepted month 20xx

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Online Appendix to:
Supporting mixed-domain mixed-precision matrix multiplication
within the BLIS framework

FIELD G. VAN ZEE, The University of Texas at Austin
DEVANGI N. PARIKH, The University of Texas at Austin
ROBERT A. VAN DE GEIJN, The University of Texas at Austin

A. COMPLETE PERFORMANCE RESULTS
This section contains complete performance results using the same hardware, imple-
mentations, and test parameters discussed in Section 8. We report 128 performance
graphs for each combination of sequential, single-socket, and dual-socket execution
on both the Marvell ThunderX2 and Intel Xeon Platinum, resulting in a total of
128× 3× 2 = 768 graphs.

Performance graphs are organized into one set for each mixed-domain case, with
each set containing the 16 possible precision combinations within that case. The
mixed-domain sets of graphs appear in pairs (top and bottom) across Figures 11 to 34.
Within a figure, graphs in the left and center-left columns report performance using
a computation precision of single precision while those in the right and center-right
columns show performance using a computation precision of double precision. Further-
more, the graphs are organized such that, for any given graph in the single-precision
computation subgroup, the graph located two spots to its right corresponds to the ex-
periments where all precisions are toggled (from single to double or vice versa).

Within the graphs for any given mixed-domain set, the legends are omitted from
all except the top-right graph within each computation precision subgroup—that is,
the top graph in the center-left and right columns. As with the graphs presented in
Section 8, the “Reference” curves are listed as “Ref (?gemm)”, where the ? indicates one
of {s,d,c,z}. This added detail serves to remind the reader which datatype-specific
variant of BLIS’s conventional (datatype-homogeneous) GEMM is the most appropri-
ate curve against which to judge the “Internal” and “Ad-hoc” mixed-datatype imple-
mentations. In general, the graphs in the left and right halves of Figures 11–34 (top
and bottom) use sgemm() and dgemm() as reference curves, respectively, except for the
mixed-domain Case 3 results in the bottom halves of Figures 11, 15, 19, 23, 27, and 31,
which compare against cgemm() and zgemm()in the left and right halves, respectively.

We provide the following table to aid the reader in finding the performance graphs
associated with any given mixed-domain case, for each hardware and threading con-
figuration.

Hardware Threads Cases 0, 3 1A, 1B 2AB, 1C 2BC, 2AC

ThunderX2
1 Fig. 11 Fig. 12 Fig. 13 Fig. 14
28 Fig. 15 Fig. 16 Fig. 17 Fig. 18
56 Fig. 19 Fig. 20 Fig. 21 Fig. 22

Xeon Platinum
1 Fig. 23 Fig. 24 Fig. 25 Fig. 26
26 Fig. 27 Fig. 28 Fig. 29 Fig. 30
52 Fig. 31 Fig. 32 Fig. 33 Fig. 34

c© 20xx Copyright held by the owner/author(s). Publication rights licensed to ACM. 0098-3500/20xx/-ART0
$15.00
DOI: http://dx.doi.org/xx.xxxx/xxxxxxx

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–2 F. G. Van Zee et al.

800 1600
0

10

20

30

G
F

LO
P

S

ssss

800 1600
0

10

20

30

ssds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

5

10

15

dddd

800 1600
0

5

10

15

ddsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

10

20

30

G
F

LO
P

S

sdss

800 1600
0

10

20

30

sdds

800 1600
0

5

10

15

dsdd

800 1600
0

5

10

15

dssd

800 1600
0

10

20

30

G
F

LO
P

S

dsss

800 1600
0

10

20

30

dsds

800 1600
0

5

10

15

sddd

800 1600
0

5

10

15

sdsd

800 1600
 m = n = k

0

10

20

30

G
F

LO
P

S

ddss

800 1600
 m = n = k

0

10

20

30

ddds

800 1600
 m = n = k

0

5

10

15

ssdd

800 1600
 m = n = k

0

5

10

15

sssd

800 1600
0

10

20

30

G
F

LO
P

S

cccs

800 1600
0

10

20

30

cczs

Ref (cgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

5

10

15

zzzd

800 1600
0

5

10

15

zzcd

Ref (zgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

10

20

30

G
F

LO
P

S

czcs

800 1600
0

10

20

30

czzs

800 1600
0

5

10

15

zczd

800 1600
0

5

10

15

zccd

800 1600
0

10

20

30

G
F

LO
P

S

zccs

800 1600
0

10

20

30

zczs

800 1600
0

5

10

15

czzd

800 1600
0

5

10

15

czcd

800 1600
 m = n = k

0

10

20

30

G
F

LO
P

S

zzcs

800 1600
 m = n = k

0

10

20

30

zzzs

800 1600
 m = n = k

0

5

10

15

cczd

800 1600
 m = n = k

0

5

10

15

cccd

Fig. 11. Sequential performance of “Internal” and “Ad-hoc” implementations of GEMM for all precision com-
binations within mixed-domain Cases 0 (top) and 3 (bottom) on a Marvell ThunderX2 CN9975 processor. The
16 graphs on the left side and right sides report computation in single- and double-precision, respectively.
The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–3

800 1600
0

10

20

30

G
F

LO
P

S

sscs

800 1600
0

10

20

30

sszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

5

10

15

ddzd

800 1600
0

5

10

15

ddcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

10

20

30

G
F

LO
P

S

sdcs

800 1600
0

10

20

30

sdzs

800 1600
0

5

10

15

dszd

800 1600
0

5

10

15

dscd

800 1600
0

10

20

30

G
F

LO
P

S

dscs

800 1600
0

10

20

30

dszs

800 1600
0

5

10

15

sdzd

800 1600
0

5

10

15

sdcd

800 1600
 m = n = k

0

10

20

30

G
F

LO
P

S

ddcs

800 1600
 m = n = k

0

10

20

30

ddzs

800 1600
 m = n = k

0

5

10

15

sszd

800 1600
 m = n = k

0

5

10

15

sscd

800 1600
0

10

20

30

G
F

LO
P

S

scss

800 1600
0

10

20

30

scds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

5

10

15

dzdd

800 1600
0

5

10

15

dzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

10

20

30

G
F

LO
P

S

szss

800 1600
0

10

20

30

szds

800 1600
0

5

10

15

dcdd

800 1600
0

5

10

15

dcsd

800 1600
0

10

20

30

G
F

LO
P

S

dcss

800 1600
0

10

20

30

dcds

800 1600
0

5

10

15

szdd

800 1600
0

5

10

15

szsd

800 1600
 m = n = k

0

10

20

30

G
F

LO
P

S

dzss

800 1600
 m = n = k

0

10

20

30

dzds

800 1600
 m = n = k

0

5

10

15

scdd

800 1600
 m = n = k

0

5

10

15

scsd

Fig. 12. Sequential performance of “Internal” and “Ad-hoc” implementations of GEMM for all precision com-
binations within mixed-domain Cases 1A (top) and 1B (bottom) on a Marvell ThunderX2 CN9975 processor.
The 16 graphs on the left side and right sides report computation in single- and double-precision, respec-
tively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–4 F. G. Van Zee et al.

800 1600
0

10

20

30

G
F

LO
P

S

sccs

800 1600
0

10

20

30

sczs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

5

10

15

dzzd

800 1600
0

5

10

15

dzcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

10

20

30

G
F

LO
P

S

szcs

800 1600
0

10

20

30

szzs

800 1600
0

5

10

15

dczd

800 1600
0

5

10

15

dccd

800 1600
0

10

20

30

G
F

LO
P

S

dccs

800 1600
0

10

20

30

dczs

800 1600
0

5

10

15

szzd

800 1600
0

5

10

15

szcd

800 1600
 m = n = k

0

10

20

30

G
F

LO
P

S

dzcs

800 1600
 m = n = k

0

10

20

30

dzzs

800 1600
 m = n = k

0

5

10

15

sczd

800 1600
 m = n = k

0

5

10

15

sccd

800 1600
0

10

20

30

G
F

LO
P

S

csss

800 1600
0

10

20

30

csds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

5

10

15

zddd

800 1600
0

5

10

15

zdsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

10

20

30

G
F

LO
P

S

cdss

800 1600
0

10

20

30

cdds

800 1600
0

5

10

15

zsdd

800 1600
0

5

10

15

zssd

800 1600
0

10

20

30

G
F

LO
P

S

zsss

800 1600
0

10

20

30

zsds

800 1600
0

5

10

15

cddd

800 1600
0

5

10

15

cdsd

800 1600
 m = n = k

0

10

20

30

G
F

LO
P

S

zdss

800 1600
 m = n = k

0

10

20

30

zdds

800 1600
 m = n = k

0

5

10

15

csdd

800 1600
 m = n = k

0

5

10

15

cssd

Fig. 13. Sequential performance of “Internal” and “Ad-hoc” implementations of GEMM for all precision com-
binations within mixed-domain Cases 2AB (top) and 1C (bottom) on a Marvell ThunderX2 CN9975 processor.
The 16 graphs on the left side and right sides report computation in single- and double-precision, respec-
tively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–5

800 1600
0

10

20

30

G
F

LO
P

S

cscs

800 1600
0

10

20

30

cszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

5

10

15

zdzd

800 1600
0

5

10

15

zdcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

10

20

30

G
F

LO
P

S

cdcs

800 1600
0

10

20

30

cdzs

800 1600
0

5

10

15

zszd

800 1600
0

5

10

15

zscd

800 1600
0

10

20

30

G
F

LO
P

S

zscs

800 1600
0

10

20

30

zszs

800 1600
0

5

10

15

cdzd

800 1600
0

5

10

15

cdcd

800 1600
 m = n = k

0

10

20

30

G
F

LO
P

S

zdcs

800 1600
 m = n = k

0

10

20

30

zdzs

800 1600
 m = n = k

0

5

10

15

cszd

800 1600
 m = n = k

0

5

10

15

cscd

800 1600
0

10

20

30

G
F

LO
P

S

ccss

800 1600
0

10

20

30

ccds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

5

10

15

zzdd

800 1600
0

5

10

15

zzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

10

20

30

G
F

LO
P

S

czss

800 1600
0

10

20

30

czds

800 1600
0

5

10

15

zcdd

800 1600
0

5

10

15

zcsd

800 1600
0

10

20

30

G
F

LO
P

S

zcss

800 1600
0

10

20

30

zcds

800 1600
0

5

10

15

czdd

800 1600
0

5

10

15

czsd

800 1600
 m = n = k

0

10

20

30

G
F

LO
P

S

zzss

800 1600
 m = n = k

0

10

20

30

zzds

800 1600
 m = n = k

0

5

10

15

ccdd

800 1600
 m = n = k

0

5

10

15

ccsd

Fig. 14. Sequential performance of “Internal” and “Ad-hoc” implementations of GEMM for all precision com-
binations within mixed-domain Cases 2BC (top) and 2AC (bottom) on a Marvell ThunderX2 CN9975 pro-
cessor. The 16 graphs on the left side and right sides report computation in single- and double-precision,
respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–6 F. G. Van Zee et al.

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

ssss

2500 5000
0

10

20

30

ssds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

dddd

2500 5000
0

5

10

15

ddsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

sdss

2500 5000
0

10

20

30

sdds

2500 5000
0

5

10

15

dsdd

2500 5000
0

5

10

15

dssd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

dsss

2500 5000
0

10

20

30

dsds

2500 5000
0

5

10

15

sddd

2500 5000
0

5

10

15

sdsd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

ddss

2500 5000
 m = n = k

0

10

20

30

ddds

2500 5000
 m = n = k

0

5

10

15

ssdd

2500 5000
 m = n = k

0

5

10

15

sssd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

cccs

2500 5000
0

10

20

30

cczs

Ref (cgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

zzzd

2500 5000
0

5

10

15

zzcd

Ref (zgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

czcs

2500 5000
0

10

20

30

czzs

2500 5000
0

5

10

15

zczd

2500 5000
0

5

10

15

zccd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

zccs

2500 5000
0

10

20

30

zczs

2500 5000
0

5

10

15

czzd

2500 5000
0

5

10

15

czcd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

zzcs

2500 5000
 m = n = k

0

10

20

30

zzzs

2500 5000
 m = n = k

0

5

10

15

cczd

2500 5000
 m = n = k

0

5

10

15

cccd

Fig. 15. Multithreaded (28 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 0 (top) and 3 (bottom) on a Marvell ThunderX2
CN9975 processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–7

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

sscs

2500 5000
0

10

20

30

sszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

ddzd

2500 5000
0

5

10

15

ddcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

sdcs

2500 5000
0

10

20

30

sdzs

2500 5000
0

5

10

15

dszd

2500 5000
0

5

10

15

dscd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

dscs

2500 5000
0

10

20

30

dszs

2500 5000
0

5

10

15

sdzd

2500 5000
0

5

10

15

sdcd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

ddcs

2500 5000
 m = n = k

0

10

20

30

ddzs

2500 5000
 m = n = k

0

5

10

15

sszd

2500 5000
 m = n = k

0

5

10

15

sscd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

scss

2500 5000
0

10

20

30

scds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

dzdd

2500 5000
0

5

10

15

dzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

szss

2500 5000
0

10

20

30

szds

2500 5000
0

5

10

15

dcdd

2500 5000
0

5

10

15

dcsd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

dcss

2500 5000
0

10

20

30

dcds

2500 5000
0

5

10

15

szdd

2500 5000
0

5

10

15

szsd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

dzss

2500 5000
 m = n = k

0

10

20

30

dzds

2500 5000
 m = n = k

0

5

10

15

scdd

2500 5000
 m = n = k

0

5

10

15

scsd

Fig. 16. Multithreaded (28 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 1A (top) and 1B (bottom) on a Marvell ThunderX2
CN9975 processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–8 F. G. Van Zee et al.

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

sccs

2500 5000
0

10

20

30

sczs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

dzzd

2500 5000
0

5

10

15

dzcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

szcs

2500 5000
0

10

20

30

szzs

2500 5000
0

5

10

15

dczd

2500 5000
0

5

10

15

dccd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

dccs

2500 5000
0

10

20

30

dczs

2500 5000
0

5

10

15

szzd

2500 5000
0

5

10

15

szcd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

dzcs

2500 5000
 m = n = k

0

10

20

30

dzzs

2500 5000
 m = n = k

0

5

10

15

sczd

2500 5000
 m = n = k

0

5

10

15

sccd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

csss

2500 5000
0

10

20

30

csds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

zddd

2500 5000
0

5

10

15

zdsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

cdss

2500 5000
0

10

20

30

cdds

2500 5000
0

5

10

15

zsdd

2500 5000
0

5

10

15

zssd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

zsss

2500 5000
0

10

20

30

zsds

2500 5000
0

5

10

15

cddd

2500 5000
0

5

10

15

cdsd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

zdss

2500 5000
 m = n = k

0

10

20

30

zdds

2500 5000
 m = n = k

0

5

10

15

csdd

2500 5000
 m = n = k

0

5

10

15

cssd

Fig. 17. Multithreaded (28 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 2AB (top) and 1C (bottom) on a Marvell ThunderX2
CN9975 processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–9

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

cscs

2500 5000
0

10

20

30

cszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

zdzd

2500 5000
0

5

10

15

zdcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

cdcs

2500 5000
0

10

20

30

cdzs

2500 5000
0

5

10

15

zszd

2500 5000
0

5

10

15

zscd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

zscs

2500 5000
0

10

20

30

zszs

2500 5000
0

5

10

15

cdzd

2500 5000
0

5

10

15

cdcd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

zdcs

2500 5000
 m = n = k

0

10

20

30

zdzs

2500 5000
 m = n = k

0

5

10

15

cszd

2500 5000
 m = n = k

0

5

10

15

cscd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

ccss

2500 5000
0

10

20

30

ccds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

zzdd

2500 5000
0

5

10

15

zzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

czss

2500 5000
0

10

20

30

czds

2500 5000
0

5

10

15

zcdd

2500 5000
0

5

10

15

zcsd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

zcss

2500 5000
0

10

20

30

zcds

2500 5000
0

5

10

15

czdd

2500 5000
0

5

10

15

czsd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

zzss

2500 5000
 m = n = k

0

10

20

30

zzds

2500 5000
 m = n = k

0

5

10

15

ccdd

2500 5000
 m = n = k

0

5

10

15

ccsd

Fig. 18. Multithreaded (28 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 2BC (top) and 2AC (bottom) on a Marvell ThunderX2
CN9975 processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–10 F. G. Van Zee et al.

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

ssss

2500 5000
0

10

20

30

ssds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

dddd

2500 5000
0

5

10

15

ddsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

sdss

2500 5000
0

10

20

30

sdds

2500 5000
0

5

10

15

dsdd

2500 5000
0

5

10

15

dssd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

dsss

2500 5000
0

10

20

30

dsds

2500 5000
0

5

10

15

sddd

2500 5000
0

5

10

15

sdsd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

ddss

2500 5000
 m = n = k

0

10

20

30

ddds

2500 5000
 m = n = k

0

5

10

15

ssdd

2500 5000
 m = n = k

0

5

10

15

sssd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

cccs

2500 5000
0

10

20

30

cczs

Ref (cgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

zzzd

2500 5000
0

5

10

15

zzcd

Ref (zgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

czcs

2500 5000
0

10

20

30

czzs

2500 5000
0

5

10

15

zczd

2500 5000
0

5

10

15

zccd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

zccs

2500 5000
0

10

20

30

zczs

2500 5000
0

5

10

15

czzd

2500 5000
0

5

10

15

czcd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

zzcs

2500 5000
 m = n = k

0

10

20

30

zzzs

2500 5000
 m = n = k

0

5

10

15

cczd

2500 5000
 m = n = k

0

5

10

15

cccd

Fig. 19. Multithreaded (56 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 0 (top) and 3 (bottom) on a Marvell ThunderX2
CN9975 processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–11

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

sscs

2500 5000
0

10

20

30

sszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

ddzd

2500 5000
0

5

10

15

ddcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

sdcs

2500 5000
0

10

20

30

sdzs

2500 5000
0

5

10

15

dszd

2500 5000
0

5

10

15

dscd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

dscs

2500 5000
0

10

20

30

dszs

2500 5000
0

5

10

15

sdzd

2500 5000
0

5

10

15

sdcd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

ddcs

2500 5000
 m = n = k

0

10

20

30

ddzs

2500 5000
 m = n = k

0

5

10

15

sszd

2500 5000
 m = n = k

0

5

10

15

sscd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

scss

2500 5000
0

10

20

30

scds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

dzdd

2500 5000
0

5

10

15

dzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

szss

2500 5000
0

10

20

30

szds

2500 5000
0

5

10

15

dcdd

2500 5000
0

5

10

15

dcsd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

dcss

2500 5000
0

10

20

30

dcds

2500 5000
0

5

10

15

szdd

2500 5000
0

5

10

15

szsd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

dzss

2500 5000
 m = n = k

0

10

20

30

dzds

2500 5000
 m = n = k

0

5

10

15

scdd

2500 5000
 m = n = k

0

5

10

15

scsd

Fig. 20. Multithreaded (56 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 1A (top) and 1B (bottom) on a Marvell ThunderX2
CN9975 processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–12 F. G. Van Zee et al.

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

sccs

2500 5000
0

10

20

30

sczs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

dzzd

2500 5000
0

5

10

15

dzcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

szcs

2500 5000
0

10

20

30

szzs

2500 5000
0

5

10

15

dczd

2500 5000
0

5

10

15

dccd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

dccs

2500 5000
0

10

20

30

dczs

2500 5000
0

5

10

15

szzd

2500 5000
0

5

10

15

szcd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

dzcs

2500 5000
 m = n = k

0

10

20

30

dzzs

2500 5000
 m = n = k

0

5

10

15

sczd

2500 5000
 m = n = k

0

5

10

15

sccd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

csss

2500 5000
0

10

20

30

csds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

zddd

2500 5000
0

5

10

15

zdsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

cdss

2500 5000
0

10

20

30

cdds

2500 5000
0

5

10

15

zsdd

2500 5000
0

5

10

15

zssd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

zsss

2500 5000
0

10

20

30

zsds

2500 5000
0

5

10

15

cddd

2500 5000
0

5

10

15

cdsd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

zdss

2500 5000
 m = n = k

0

10

20

30

zdds

2500 5000
 m = n = k

0

5

10

15

csdd

2500 5000
 m = n = k

0

5

10

15

cssd

Fig. 21. Multithreaded (56 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 2AB (top) and 1C (bottom) on a Marvell ThunderX2
CN9975 processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–13

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

cscs

2500 5000
0

10

20

30

cszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

zdzd

2500 5000
0

5

10

15

zdcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

cdcs

2500 5000
0

10

20

30

cdzs

2500 5000
0

5

10

15

zszd

2500 5000
0

5

10

15

zscd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

zscs

2500 5000
0

10

20

30

zszs

2500 5000
0

5

10

15

cdzd

2500 5000
0

5

10

15

cdcd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

zdcs

2500 5000
 m = n = k

0

10

20

30

zdzs

2500 5000
 m = n = k

0

5

10

15

cszd

2500 5000
 m = n = k

0

5

10

15

cscd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

ccss

2500 5000
0

10

20

30

ccds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

5

10

15

zzdd

2500 5000
0

5

10

15

zzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

czss

2500 5000
0

10

20

30

czds

2500 5000
0

5

10

15

zcdd

2500 5000
0

5

10

15

zcsd

2500 5000
0

10

20

30

G
F

LO
P

S
/c

or
e

zcss

2500 5000
0

10

20

30

zcds

2500 5000
0

5

10

15

czdd

2500 5000
0

5

10

15

czsd

2500 5000
 m = n = k

0

10

20

30

G
F

LO
P

S
/c

or
e

zzss

2500 5000
 m = n = k

0

10

20

30

zzds

2500 5000
 m = n = k

0

5

10

15

ccdd

2500 5000
 m = n = k

0

5

10

15

ccsd

Fig. 22. Multithreaded (56 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 2BC (top) and 2AC (bottom) on a Marvell ThunderX2
CN9975 processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–14 F. G. Van Zee et al.

800 1600
0

50

100

G
F

LO
P

S

ssss

800 1600
0

50

100

ssds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

20

40

60

dddd

800 1600
0

20

40

60

ddsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

50

100

G
F

LO
P

S

sdss

800 1600
0

50

100

sdds

800 1600
0

20

40

60

dsdd

800 1600
0

20

40

60

dssd

800 1600
0

50

100

G
F

LO
P

S

dsss

800 1600
0

50

100

dsds

800 1600
0

20

40

60

sddd

800 1600
0

20

40

60

sdsd

800 1600
 m = n = k

0

50

100

G
F

LO
P

S

ddss

800 1600
 m = n = k

0

50

100

ddds

800 1600
 m = n = k

0

20

40

60

ssdd

800 1600
 m = n = k

0

20

40

60

sssd

800 1600
0

50

100

G
F

LO
P

S

cccs

800 1600
0

50

100

cczs

Ref (cgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

20

40

60

zzzd

800 1600
0

20

40

60

zzcd

Ref (zgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

50

100

G
F

LO
P

S

czcs

800 1600
0

50

100

czzs

800 1600
0

20

40

60

zczd

800 1600
0

20

40

60

zccd

800 1600
0

50

100

G
F

LO
P

S

zccs

800 1600
0

50

100

zczs

800 1600
0

20

40

60

czzd

800 1600
0

20

40

60

czcd

800 1600
 m = n = k

0

50

100

G
F

LO
P

S

zzcs

800 1600
 m = n = k

0

50

100

zzzs

800 1600
 m = n = k

0

20

40

60

cczd

800 1600
 m = n = k

0

20

40

60

cccd

Fig. 23. Sequential performance of “Internal” and “Ad-hoc” implementations of GEMM for all precision com-
binations within mixed-domain Cases 0 (top) and 3 (bottom) on an Intel Xeon Platinum 8167M processor.
The 16 graphs on the left side and right sides report computation in single- and double-precision, respec-
tively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–15

800 1600
0

50

100

G
F

LO
P

S

sscs

800 1600
0

50

100

sszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

20

40

60

ddzd

800 1600
0

20

40

60

ddcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

50

100

G
F

LO
P

S

sdcs

800 1600
0

50

100

sdzs

800 1600
0

20

40

60

dszd

800 1600
0

20

40

60

dscd

800 1600
0

50

100

G
F

LO
P

S

dscs

800 1600
0

50

100

dszs

800 1600
0

20

40

60

sdzd

800 1600
0

20

40

60

sdcd

800 1600
 m = n = k

0

50

100

G
F

LO
P

S

ddcs

800 1600
 m = n = k

0

50

100

ddzs

800 1600
 m = n = k

0

20

40

60

sszd

800 1600
 m = n = k

0

20

40

60

sscd

800 1600
0

50

100

G
F

LO
P

S

scss

800 1600
0

50

100

scds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

20

40

60

dzdd

800 1600
0

20

40

60

dzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

50

100

G
F

LO
P

S

szss

800 1600
0

50

100

szds

800 1600
0

20

40

60

dcdd

800 1600
0

20

40

60

dcsd

800 1600
0

50

100

G
F

LO
P

S

dcss

800 1600
0

50

100

dcds

800 1600
0

20

40

60

szdd

800 1600
0

20

40

60

szsd

800 1600
 m = n = k

0

50

100

G
F

LO
P

S

dzss

800 1600
 m = n = k

0

50

100

dzds

800 1600
 m = n = k

0

20

40

60

scdd

800 1600
 m = n = k

0

20

40

60

scsd

Fig. 24. Sequential performance of “Internal” and “Ad-hoc” implementations of GEMM for all precision com-
binations within mixed-domain Cases 1A (top) and 1B (bottom) on an Intel Xeon Platinum 8167M processor.
The 16 graphs on the left side and right sides report computation in single- and double-precision, respec-
tively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–16 F. G. Van Zee et al.

800 1600
0

50

100

G
F

LO
P

S

sccs

800 1600
0

50

100

sczs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

20

40

60

dzzd

800 1600
0

20

40

60

dzcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

50

100

G
F

LO
P

S

szcs

800 1600
0

50

100

szzs

800 1600
0

20

40

60

dczd

800 1600
0

20

40

60

dccd

800 1600
0

50

100

G
F

LO
P

S

dccs

800 1600
0

50

100

dczs

800 1600
0

20

40

60

szzd

800 1600
0

20

40

60

szcd

800 1600
 m = n = k

0

50

100

G
F

LO
P

S

dzcs

800 1600
 m = n = k

0

50

100

dzzs

800 1600
 m = n = k

0

20

40

60

sczd

800 1600
 m = n = k

0

20

40

60

sccd

800 1600
0

50

100

G
F

LO
P

S

csss

800 1600
0

50

100

csds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

20

40

60

zddd

800 1600
0

20

40

60

zdsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

50

100

G
F

LO
P

S

cdss

800 1600
0

50

100

cdds

800 1600
0

20

40

60

zsdd

800 1600
0

20

40

60

zssd

800 1600
0

50

100

G
F

LO
P

S

zsss

800 1600
0

50

100

zsds

800 1600
0

20

40

60

cddd

800 1600
0

20

40

60

cdsd

800 1600
 m = n = k

0

50

100

G
F

LO
P

S

zdss

800 1600
 m = n = k

0

50

100

zdds

800 1600
 m = n = k

0

20

40

60

csdd

800 1600
 m = n = k

0

20

40

60

cssd

Fig. 25. Sequential performance of “Internal” and “Ad-hoc” implementations of GEMM for all precision com-
binations within mixed-domain Cases 2AB (top) and 1C (bottom) on an Intel Xeon Platinum 8167M pro-
cessor. The 16 graphs on the left side and right sides report computation in single- and double-precision,
respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–17

800 1600
0

50

100

G
F

LO
P

S

cscs

800 1600
0

50

100

cszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

20

40

60

zdzd

800 1600
0

20

40

60

zdcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

50

100

G
F

LO
P

S

cdcs

800 1600
0

50

100

cdzs

800 1600
0

20

40

60

zszd

800 1600
0

20

40

60

zscd

800 1600
0

50

100

G
F

LO
P

S

zscs

800 1600
0

50

100

zszs

800 1600
0

20

40

60

cdzd

800 1600
0

20

40

60

cdcd

800 1600
 m = n = k

0

50

100

G
F

LO
P

S

zdcs

800 1600
 m = n = k

0

50

100

zdzs

800 1600
 m = n = k

0

20

40

60

cszd

800 1600
 m = n = k

0

20

40

60

cscd

800 1600
0

50

100

G
F

LO
P

S

ccss

800 1600
0

50

100

ccds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

20

40

60

zzdd

800 1600
0

20

40

60

zzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

800 1600
0

50

100

G
F

LO
P

S

czss

800 1600
0

50

100

czds

800 1600
0

20

40

60

zcdd

800 1600
0

20

40

60

zcsd

800 1600
0

50

100

G
F

LO
P

S

zcss

800 1600
0

50

100

zcds

800 1600
0

20

40

60

czdd

800 1600
0

20

40

60

czsd

800 1600
 m = n = k

0

50

100

G
F

LO
P

S

zzss

800 1600
 m = n = k

0

50

100

zzds

800 1600
 m = n = k

0

20

40

60

ccdd

800 1600
 m = n = k

0

20

40

60

ccsd

Fig. 26. Sequential performance of “Internal” and “Ad-hoc” implementations of GEMM for all precision com-
binations within mixed-domain Cases 2BC (top) and 2AC (bottom) on an Intel Xeon Platinum 8167M pro-
cessor. The 16 graphs on the left side and right sides report computation in single- and double-precision,
respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–18 F. G. Van Zee et al.

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

ssss

2500 5000
0

50

100

ssds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

dddd

2500 5000
0

20

40

60

ddsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

sdss

2500 5000
0

50

100

sdds

2500 5000
0

20

40

60

dsdd

2500 5000
0

20

40

60

dssd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

dsss

2500 5000
0

50

100

dsds

2500 5000
0

20

40

60

sddd

2500 5000
0

20

40

60

sdsd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

ddss

2500 5000
 m = n = k

0

50

100

ddds

2500 5000
 m = n = k

0

20

40

60

ssdd

2500 5000
 m = n = k

0

20

40

60

sssd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

cccs

2500 5000
0

50

100

cczs

Ref (cgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

zzzd

2500 5000
0

20

40

60

zzcd

Ref (zgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

czcs

2500 5000
0

50

100

czzs

2500 5000
0

20

40

60

zczd

2500 5000
0

20

40

60

zccd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

zccs

2500 5000
0

50

100

zczs

2500 5000
0

20

40

60

czzd

2500 5000
0

20

40

60

czcd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

zzcs

2500 5000
 m = n = k

0

50

100

zzzs

2500 5000
 m = n = k

0

20

40

60

cczd

2500 5000
 m = n = k

0

20

40

60

cccd

Fig. 27. Multithreaded (26 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 0 (top) and 3 (bottom) on an Intel Xeon Platinum
8167M processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–19

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

sscs

2500 5000
0

50

100

sszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

ddzd

2500 5000
0

20

40

60

ddcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

sdcs

2500 5000
0

50

100

sdzs

2500 5000
0

20

40

60

dszd

2500 5000
0

20

40

60

dscd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

dscs

2500 5000
0

50

100

dszs

2500 5000
0

20

40

60

sdzd

2500 5000
0

20

40

60

sdcd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

ddcs

2500 5000
 m = n = k

0

50

100

ddzs

2500 5000
 m = n = k

0

20

40

60

sszd

2500 5000
 m = n = k

0

20

40

60

sscd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

scss

2500 5000
0

50

100

scds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

dzdd

2500 5000
0

20

40

60

dzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

szss

2500 5000
0

50

100

szds

2500 5000
0

20

40

60

dcdd

2500 5000
0

20

40

60

dcsd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

dcss

2500 5000
0

50

100

dcds

2500 5000
0

20

40

60

szdd

2500 5000
0

20

40

60

szsd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

dzss

2500 5000
 m = n = k

0

50

100

dzds

2500 5000
 m = n = k

0

20

40

60

scdd

2500 5000
 m = n = k

0

20

40

60

scsd

Fig. 28. Multithreaded (26 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 1A (top) and 1B (bottom) on an Intel Xeon Platinum
8167M processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–20 F. G. Van Zee et al.

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

sccs

2500 5000
0

50

100

sczs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

dzzd

2500 5000
0

20

40

60

dzcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

szcs

2500 5000
0

50

100

szzs

2500 5000
0

20

40

60

dczd

2500 5000
0

20

40

60

dccd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

dccs

2500 5000
0

50

100

dczs

2500 5000
0

20

40

60

szzd

2500 5000
0

20

40

60

szcd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

dzcs

2500 5000
 m = n = k

0

50

100

dzzs

2500 5000
 m = n = k

0

20

40

60

sczd

2500 5000
 m = n = k

0

20

40

60

sccd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

csss

2500 5000
0

50

100

csds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

zddd

2500 5000
0

20

40

60

zdsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

cdss

2500 5000
0

50

100

cdds

2500 5000
0

20

40

60

zsdd

2500 5000
0

20

40

60

zssd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

zsss

2500 5000
0

50

100

zsds

2500 5000
0

20

40

60

cddd

2500 5000
0

20

40

60

cdsd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

zdss

2500 5000
 m = n = k

0

50

100

zdds

2500 5000
 m = n = k

0

20

40

60

csdd

2500 5000
 m = n = k

0

20

40

60

cssd

Fig. 29. Multithreaded (26 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 2AB (top) and 1C (bottom) on an Intel Xeon Platinum
8167M processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–21

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

cscs

2500 5000
0

50

100

cszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

zdzd

2500 5000
0

20

40

60

zdcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

cdcs

2500 5000
0

50

100

cdzs

2500 5000
0

20

40

60

zszd

2500 5000
0

20

40

60

zscd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

zscs

2500 5000
0

50

100

zszs

2500 5000
0

20

40

60

cdzd

2500 5000
0

20

40

60

cdcd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

zdcs

2500 5000
 m = n = k

0

50

100

zdzs

2500 5000
 m = n = k

0

20

40

60

cszd

2500 5000
 m = n = k

0

20

40

60

cscd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

ccss

2500 5000
0

50

100

ccds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

zzdd

2500 5000
0

20

40

60

zzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

czss

2500 5000
0

50

100

czds

2500 5000
0

20

40

60

zcdd

2500 5000
0

20

40

60

zcsd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

zcss

2500 5000
0

50

100

zcds

2500 5000
0

20

40

60

czdd

2500 5000
0

20

40

60

czsd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

zzss

2500 5000
 m = n = k

0

50

100

zzds

2500 5000
 m = n = k

0

20

40

60

ccdd

2500 5000
 m = n = k

0

20

40

60

ccsd

Fig. 30. Multithreaded (26 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 2BC (top) and 2AC (bottom) on an Intel Xeon Plat-
inum 8167M processor. The 16 graphs on the left side and right sides report computation in single- and
double-precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–22 F. G. Van Zee et al.

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

ssss

2500 5000
0

50

100

ssds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

dddd

2500 5000
0

20

40

60

ddsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

sdss

2500 5000
0

50

100

sdds

2500 5000
0

20

40

60

dsdd

2500 5000
0

20

40

60

dssd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

dsss

2500 5000
0

50

100

dsds

2500 5000
0

20

40

60

sddd

2500 5000
0

20

40

60

sdsd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

ddss

2500 5000
 m = n = k

0

50

100

ddds

2500 5000
 m = n = k

0

20

40

60

ssdd

2500 5000
 m = n = k

0

20

40

60

sssd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

cccs

2500 5000
0

50

100

cczs

Ref (cgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

zzzd

2500 5000
0

20

40

60

zzcd

Ref (zgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

czcs

2500 5000
0

50

100

czzs

2500 5000
0

20

40

60

zczd

2500 5000
0

20

40

60

zccd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

zccs

2500 5000
0

50

100

zczs

2500 5000
0

20

40

60

czzd

2500 5000
0

20

40

60

czcd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

zzcs

2500 5000
 m = n = k

0

50

100

zzzs

2500 5000
 m = n = k

0

20

40

60

cczd

2500 5000
 m = n = k

0

20

40

60

cccd

Fig. 31. Multithreaded (52 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 0 (top) and 3 (bottom) on an Intel Xeon Platinum
8167M processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–23

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

sscs

2500 5000
0

50

100

sszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

ddzd

2500 5000
0

20

40

60

ddcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

sdcs

2500 5000
0

50

100

sdzs

2500 5000
0

20

40

60

dszd

2500 5000
0

20

40

60

dscd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

dscs

2500 5000
0

50

100

dszs

2500 5000
0

20

40

60

sdzd

2500 5000
0

20

40

60

sdcd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

ddcs

2500 5000
 m = n = k

0

50

100

ddzs

2500 5000
 m = n = k

0

20

40

60

sszd

2500 5000
 m = n = k

0

20

40

60

sscd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

scss

2500 5000
0

50

100

scds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

dzdd

2500 5000
0

20

40

60

dzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

szss

2500 5000
0

50

100

szds

2500 5000
0

20

40

60

dcdd

2500 5000
0

20

40

60

dcsd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

dcss

2500 5000
0

50

100

dcds

2500 5000
0

20

40

60

szdd

2500 5000
0

20

40

60

szsd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

dzss

2500 5000
 m = n = k

0

50

100

dzds

2500 5000
 m = n = k

0

20

40

60

scdd

2500 5000
 m = n = k

0

20

40

60

scsd

Fig. 32. Multithreaded (52 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 1A (top) and 1B (bottom) on an Intel Xeon Platinum
8167M processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

App–24 F. G. Van Zee et al.

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

sccs

2500 5000
0

50

100

sczs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

dzzd

2500 5000
0

20

40

60

dzcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

szcs

2500 5000
0

50

100

szzs

2500 5000
0

20

40

60

dczd

2500 5000
0

20

40

60

dccd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

dccs

2500 5000
0

50

100

dczs

2500 5000
0

20

40

60

szzd

2500 5000
0

20

40

60

szcd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

dzcs

2500 5000
 m = n = k

0

50

100

dzzs

2500 5000
 m = n = k

0

20

40

60

sczd

2500 5000
 m = n = k

0

20

40

60

sccd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

csss

2500 5000
0

50

100

csds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

zddd

2500 5000
0

20

40

60

zdsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

cdss

2500 5000
0

50

100

cdds

2500 5000
0

20

40

60

zsdd

2500 5000
0

20

40

60

zssd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

zsss

2500 5000
0

50

100

zsds

2500 5000
0

20

40

60

cddd

2500 5000
0

20

40

60

cdsd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

zdss

2500 5000
 m = n = k

0

50

100

zdds

2500 5000
 m = n = k

0

20

40

60

csdd

2500 5000
 m = n = k

0

20

40

60

cssd

Fig. 33. Multithreaded (52 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 2AB (top) and 1C (bottom) on an Intel Xeon Platinum
8167M processor. The 16 graphs on the left side and right sides report computation in single- and double-
precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

Supporting mixed-domain mixed-precision matrix multiplication within the BLIS framework App–25

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

cscs

2500 5000
0

50

100

cszs

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

zdzd

2500 5000
0

20

40

60

zdcd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

cdcs

2500 5000
0

50

100

cdzs

2500 5000
0

20

40

60

zszd

2500 5000
0

20

40

60

zscd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

zscs

2500 5000
0

50

100

zszs

2500 5000
0

20

40

60

cdzd

2500 5000
0

20

40

60

cdcd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

zdcs

2500 5000
 m = n = k

0

50

100

zdzs

2500 5000
 m = n = k

0

20

40

60

cszd

2500 5000
 m = n = k

0

20

40

60

cscd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

ccss

2500 5000
0

50

100

ccds

Ref (sgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

20

40

60

zzdd

2500 5000
0

20

40

60

zzsd

Ref (dgemm)
Intern (+xm)
Intern (-xm)
Ad-hoc

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

czss

2500 5000
0

50

100

czds

2500 5000
0

20

40

60

zcdd

2500 5000
0

20

40

60

zcsd

2500 5000
0

50

100

G
F

LO
P

S
/c

or
e

zcss

2500 5000
0

50

100

zcds

2500 5000
0

20

40

60

czdd

2500 5000
0

20

40

60

czsd

2500 5000
 m = n = k

0

50

100

G
F

LO
P

S
/c

or
e

zzss

2500 5000
 m = n = k

0

50

100

zzds

2500 5000
 m = n = k

0

20

40

60

ccdd

2500 5000
 m = n = k

0

20

40

60

ccsd

Fig. 34. Multithreaded (52 threads) performance of “Internal” and “Ad-hoc” implementations of GEMM for
all precision combinations within mixed-domain Cases 2BC (top) and 2AC (bottom) on an Intel Xeon Plat-
inum 8167M processor. The 16 graphs on the left side and right sides report computation in single- and
double-precision, respectively. The theoretical peak performance coincides with the top of each graph.

ACM Transactions on Mathematical Software, Vol. 0, No. 0, Article 0, Publication date: 20xx.

