
HIGH-PERFORMANCE AND PARALLEL INVERSION OF A
SYMMETRIC POSITIVE DEFINITE MATRIX ∗

PAOLO BIENTINESI† , BRIAN GUNTER‡ , AND ROBERT A. VAN DE GEIJN†

Abstract. We present families of algorithms for operations related to the computation of
the inverse of a Symmetric Positive Definite (SPD) matrix: Cholesky factorization, inversion of a
triangular matrix, multiplication of a triangular matrix by its transpose, and one-sweep inversion of
an SPD matrix. These algorithms are systematically derived and implemented via the Formal Linear
Algebra Methodology Environment (FLAME), an approach for developing linear algebra algorithms.
How different members of these families of algorithms are more or less suited for a given architecture
is demonstrated via implementations for sequential, shared-memory, and distributed memory parallel
architectures. Performance on various platforms is reported.

Key words. Matrix Inversion, Parallel Computing, Covariance Matrix, Formal Derivation.

AMS subject classifications. 65F05, 65Y10.

1. Introduction. We demonstrate how to create a set of provably correct dense
linear algebra algorithms to attain high performance for a variety of settings and
architectures. Our derivation methods [17, 3] have successfully been used to derive
linear algebra operations such as the level-3 BLAS [10] and LU factorization [17], in
addition to the more complex solution of the triangular Sylvester equation [21, 4].
This paper applies the methods to the inverse of a Symmetric Positive Definite (SPD)
matrix. Our implementations were developed for the computation of the covariance
matrix of a linear least-squares problem. This operation has a particular value to the
Earth science and aerospace communities, where the solution of large overdetermined
dense linear systems is still a common procedure, and the statistics of the solution
are often desired [18, 27, 23].

The inverse of an SPD matrix A, is typically obtained by first computing the
upper triangular Cholesky factor R of A, A = RT R, after which A−1 = (RT R)−1 =
R−1R−T can be computed by first inverting the matrix R (U = R−1) and then
multiplying the result by its transpose (A−1 = UUT). We will show that each of
these three operations can be orchestrated so that the result overwrites the input
without requiring temporary space. It will also be shown that A can be overwritten
by its inverse without the explicit computation of these intermediate results, requiring
only a single sweep through the matrix, as was already briefly mentioned in [22].

Another aspect of this work lies with the fact that different algorithmic variants
of the same operation will perform differently based on the system architecture being
used. Differences in memory configurations, BLAS implementations, compilers and
many other factors may favor one variant over another. The ability to derive a suite
of algorithms, and to then choose the most appropriate variant, allows the user to
obtain improved performance for their particular application.

This paper makes the following contributions:

∗ This work was supported in part by NSF grants ACR-0203685, ACI-0305163, and CCF-0342369.
Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

2Department of Computer Sciences, The University of Texas, Austin, TX 78712; phone: 512-
471-9720, fax: 512-471-8885, {pauldj,rvdg}@cs.utexas.edu.

3Center for Space Science, The University of Texas, Austin, TX 78712; phone: 512-471-7914,
fax: 512-471-3570, gunter@csr.utexas.edu.

1

2 P. BIENTINESI, B. GUNTER, R. VAN DE GEIJN

Algorithm: A := Chol unb var1(A)

Partition A→
ţ

ATL ATL

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition
ţ

ATL ATR

? ABR

ű
→

0
@

A00 a01 A02

? α11 aT
12

? ? A22

1
A

where α11 is a scalar

a01 := A−T
00 a01 (Trsv)

α11 := α11 − aT
01a01 (Dot)

α11 :=
√

α11

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 a01 A02

? α11 aT
12

? ? A22

1
A

endwhile

Algorithm: A := Chol blk var1(A)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

A01 := A−T
00 A01 (Trsm)

A11 := A11 −AT
01A01 (Syrk)

A11 := Chol(A11)

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Fig. 2.1. Unblocked and blocked algorithms for computing the Cholesky factorization (Variant 1).

• It provides what we believe to be the most complete treatment to date of
loop-based algorithms for computing the studied operations.

• It shows the benefit of using a single sweep algorithm for computing an op-
eration when the same can be computed via several intermediate steps [22].

• It demonstrates that on different architectures different algorithmic variants
achieve superior performance. This motivates the necessity for libraries like
LAPACK [2], ScaLAPACK [7], FLAME, and PLAPACK [28, 1] to include
multiple algorithmic variants for every supported operation.

• It highlights the benefits of deriving and implementing high-performance lin-
ear algebra algorithms via the Formal Linear Algebra Methodology Environ-
ment (FLAME) [17, 3, 5] approach.

The organization of the paper is as follows: Section 2 introduces the systematic
approach for deriving algorithms by applying it to the example of the Cholesky fac-
torization. Having demonstrated the method, Sections 3 and 4 illustrate how the
same technique can be applied to the problem of the triangular matrix inversion and
the multiplication of a triangular matrix by its transpose. Section 5 shows how the
three individual operations of the SPD matrix inversion can be combined into a single-
sweep algorithm using the same formal derivation methodology. Section 6 provides
some brief remarks regarding the numerical stability of the derived algorithms. Sec-
tion 7 highlights the performance of the newly derived algorithms. Section 8 gives a
final summary and comments.

2. Cholesky Factorization: A := Chol(A). We shall use the Cholesky fac-
torization to demonstrate the formal derivation approach. The Cholesky factorization
of an SPD matrix A is given by A = RT R where R is upper triangular. This is the
first step towards the inversion of an SPD matrix.

HIGH-PERFORMANCE AND PARALLEL INVERSION OF AN SPD MATRIX 3

Name Operation
Dot Dot product
Gemv General matrix-vector multiply
Syr Symmetric rank-1 update
Trsv Triangular solve
Gepp General rank-k update
Gemp Matrix times panel-of-columns multiply
Gepm Panel-of-rows times Matrix multiply
Symm Symmetric matrix multiply
Syrk Symmetric rank-k update
Trmm Triangular matrix multiplication
Trsm Triangular solve with multiple right-hand sides

Fig. 2.2. Basic operations used to implement the different algorithms.

2.1. Traditional derivation. Before demonstrating the FLAME approach, let
us review how one particular algorithm for the Cholesky factorization is usually mo-
tivated. Consider A = RT R and partition1

A =
(

A00 a01

? α11

)
and R =

(
R00 r01

0 ρ11

)
.

By substituting the partitioned matrices A and R into A = RT R we find that
(

A00 a01

? α11

)
=

(
R00 r01

0 ρ11

)T (
R00 r01

0 ρ11

)
=

(
RT

00R00 RT
00r01

? rT
01r01 + ρ2

11

)
,

from which we conclude that

R00 = Chol(A00) r01 = R−T
00 a01

? ρ11 =
√

(α11 − rT
01r01)

.

These three equalities motivate the algorithm in Fig. 2.1(left). To understand that
algorithm, consider that before every iteration, quadrant ATL has already been over-
written by RTL. In the body of the loop, a next row and column are exposed, and
updated. The row and the column are then included in ATL so that at the end of
the iteration, again ATL contains the result RTL. Eventually ATL envelops the entire
matrix, at which point A contains the desired R.

Remark 1. In the figures in this paper we further clarify the operations that
are being performed by indicating the BLAS-like operation that would be used to
implement it. These are tabulated in Fig. 2.2.

In order to attain high performance, the computation is typically cast in terms of
matrix-matrix multiplications by so-called blocked algorithms [11]. For the Cholesky
factorization, a blocked version of the algorithm can be derived by partitioning

A →
(

A00 A01

? A11

)
and R →

(
R00 R01

? R11

)
,

1We adopt the commonly used notation where Greek lower case letters refer to scalars, lower
case letters refer to (column) vectors, and upper case letters refer to matrices. The ? refers to the
symmetric part of A that neither stored nor updated.

4 P. BIENTINESI, B. GUNTER, R. VAN DE GEIJN

where A11 and R11 are b× b. By substituting into A = RT R we find that

R00 = Chol(A00) R01 = R−T
00 A01

? R11 = Chol(A11 −RT
01R01)

.

A blocked algorithm is then given in Fig. 2.1(right).

2.2. Systematic derivation. We now show how the same algorithmic variant
for the Cholesky factorization, as well as other variants, can be created systematically
using the FLAME methodology [3]. The idea is that the user fills out a “worksheet”
in a prescribed sequence of steps, so that various conditions are met at specific stages
of the computation. The manner in which the worksheet is populated guarantees the
correctness of the algorithm. As an example, the worksheet for the derivation of the
blocked algorithm from Section 2.1 is illustrated in Fig. 2.3. The order in which the
worksheet was filled out is given in the column marked “Step”. Assertions (predicates)
indicating the desired state of variables at various points in the algorithm are given
in the grey boxes. These desired states then dictate the updates to variables, in the
clear boxes. Further details for each of the various steps is provided below.

Step 1: Precondition and postcondition. The precondition and postcondition for
computing A := Chol(A) are given by

(
A = Â

)
and

(
A = R ∧R = Chol(Â)

)
, re-

spectively. Here Â denotes the original contents of the matrix A and the matrix R
is only introduced to express the postcondition as a constraint. The predicates are
entered in Steps 1(a) and 1(b) in Fig. 2.3.

Step 2: Loop Invariant Pinv . Next, we choose what the state (contents) of matrix
A must be before and after every iteration. For the algorithms in Section 2.1, the
state that is maintained is given by the loop-invariant:

(
ATL ATR

? ABR

)
=

(
RTL ÂTR

? ÂBR

)
∧RTL = Chol

(
ÂTL

)
.

The predicate Pinv is entered in four places, marked Step 2 in Fig. 2.3.
Steps 3 and 4: We first determine the loop-guard G, which is the condition under

which the computation remains in the loop. If we choose G to equal m(ATL) < m(A),
then the predicate ¬G means that the matrices ATL and ÂTL equal all of A and Â,
respectively. As a consequence, the predicate

((
ATL ATR

? ABR

)
=

(
RTL ÂTR

? ÂBR

)
∧RTL = Chol

(
ÂTL

))
∧ ¬G

implies the desired result Ppost : A = RTL ∧ RTL = Chol(Â). The loop-guard G is
entered in Step 3.

Remark 2. The postcondition and the loop-invariant prescribe a loop-guard.

Similarly, the initialization given in Step 4 in Figure 2.3 can be derived from the
fact that before the initialization the equality A = Â holds, while after the initializa-
tion the loop-invariant (Step 2) must hold. The initialization given in Step 4 performs
no computation: it is merely an indexing operation.

Remark 3. The precondition and the loop-invariant prescribe the initialization.

HIGH-PERFORMANCE AND PARALLEL INVERSION OF AN SPD MATRIX 5

Step Annotated Algorithm: [D, E, F, . . .] := op(A, B, C, D, . . .)

1a
n

A = Â
o

4 Partition X →
ţ

XT L XT R

? XBR

ű

where XT L, X ∈ {A, Â, R}, are 0× 0

2

(ţ
AT L AT R

? ABR

ű
=

Ã
RT L ÂT R

? ÂBR

!
∧ RT L = Chol

ş
ÂT L

ť)

3 while m(A) 6= m(AT L) do

2,3

(ţ
AT L AT R

? ABR

ű
=

Ã
RT L ÂT R

? ÂBR

!
∧ RT L = Chol

ş
ÂT L

ť
∧m(A) 6= m(AT L)

)

5a Determine block size b
Repartition

ţ
XT L XT R

? XBR

ű
→

0
@

X00 X01 X02

? X11 X12
? ? X22

1
A

where X11, X ∈ {A, Â, R}, are b× b

6

8
><
>:

0
@

A00 A01 A02

? A11 A12
? ? A22

1
A =

0
B@

R00 Â01 Â02

? Â11 Â12

? ? Â22

1
CA ∧ R00 = Chol

ş
Â00

ť
9
>=
>;

8
A01 := R01 = triu(A00)

−T A01 (= R−T
00 A01)

A11 := R11 = Chol
ş

A11 − triu(AT
01A01)

ť ş
= Chol

ş
A11 − triu(RT

01R01)
ťť

5b Continue withţ
XT L XT R

? XBR

ű
←

0
@

X00 X01 X02
? X11 X12

? ? X22

1
A, X ∈ {A, Â, R}

7

8
>>>>><
>>>>>:

0
@

A00 A01 A02
? A11 A12

? ? A22

1
A =

0
B@

R00 R01 Â02

? R11 Â12

? ? Â22

1
CA∧

ţ
R00 R01
0 R11

ű
= Chol

ţ
Â00 Â01

? Â11

ű

9
>>>>>=
>>>>>;

2

(ţ
AT L AT R

? ABR

ű
=

Ã
RT L ÂT R

? ÂBR

!
∧ RT L = Chol

ş
ÂT L

ť)

endwhile

2,3

(ţ
AT L AT R

? ABR

ű
=

Ã
RT L ÂT R

? ÂBR

!
∧ RT L = Chol

ş
ÂT L

ť
∧ ¬ (m(A) 6= m(AT L))

)

1b
n

A = R ∧ R = Chol
ş

Â
ťo

Fig. 2.3. Worksheet for the computation of the Cholesky factorization of matrix A via Variant 1.

Steps 5a and 5b: For all variants, ATL, ÂTL, and RTL start as 0 × 0 matrices
and must end by encompassing all of A, Â, and RTL, respectively. Thus, to expand
these submatrices, we must identify submatrices of A, Â, and R to be added to ATL,
ÂTL, and RTL, respectively. This is accomplished through the repartitioning and
redefinition of the quadrants given in Steps 5a and 5b in Figure 2.3.

Remark 4. The initialization and loop-guard prescribe in what direction the
matrices are to be traversed.

Step 6: Now we finally get to the point where the loop-invariant dictates the
update of submatrices to be performed in the loop. The thick and thin lines in Step
5a have semantic meaning:

XTL = X00 XTR =
(

X01 X02

)

? XBR =
(

X11 X12

? X22

)
, X ∈ {A, Â,R}.

6 P. BIENTINESI, B. GUNTER, R. VAN DE GEIJN

Substituting the matrices A, Â and R into the loop-invariant we find that

A00

(
A01 A02

)
(

?
?

) (
A11 A12

? A22

)

 =

R00

(
Â01 Â02

)
(

?
?

) (
Â11 Â12

? Â11

)

∧R00 = Chol

(
Â00

)
,

which simplifies to the expression in Step 6 in Fig. 2.3.
Step 7: Similarly, the thick and thin lines in Step 5b have semantic meaning:

XTL =
(

X00 X01

? X11

)
XTR =

(
X02

X12

)

? XBR = X22

, X ∈ {A, Â,R}.

Again, by substituting A, Â and R into the loop-invariant shows that, after moving
the thick lines, the required contents of A are described by 5b:

(
A00 A01

? A11

) (
A02

A12

)

(
? ?

)
A22

 =

(
R00 R01

? R11

) (
Â02

Â12

)

(
? ?

)
Â22

 ∧

(
R00 R01

? R11

)
= Chol

((
Â00 Â01

? Â11

))
,

which simplifies to Step 7 in Fig. 2.3.

Remark 5. The expressions in Steps 6 and 7 are, in general, obtained via substi-
tution and algebraic manipulation.

Step 8: Finally, the updates in Step 8 of Figure 2.3 are determined by comparing
the states in Step 6 and 7 of that figure.

Final algorithm: The worksheet in Figure 2.3 includes the assertions required to
systematically derive the algorithm. Variables Â and R were only introduced to assist
the derivation. The final algorithm in Fig. 2.1(right) is obtained by deleting the extra
variables Â and R and the assertions.

2.3. Deriving the loop based algorithms. Section 2.2 showed how, given
the loop-invariant, the algorithm can be systematically derived. The fact that the
assertions dictate the actual computational steps then proves the correctness of the
algorithms as a byproduct. The question now becomes how to systematically derive
loop-invariants for a given operation. We show next that multiple loop-invariants exist
for the computation of the Cholesky factorization, each of which leads to a different
algorithm.

The operation to be computed is described by the precondition A = Â and post-
condition

(
A = R ∧R = Chol

(
Â

))
. The partitioning of A, Â, and R into quadrants,

X →
(

XTL XTR

? XBR

)
, X ∈ {A, Â,R}

tracks how the iteration moves through A and allows the current contents of A to be
related to Â and R.

HIGH-PERFORMANCE AND PARALLEL INVERSION OF AN SPD MATRIX 7

Invariant 1:
(

ATL ATR

? ABR

)
=

(
RTL ÂTR

? ÂBR

)
∧RTL = Chol

(
ÂTL

)

Invariant 2:(
ATL ATR

? ABR

)
=

(
RTL RTR

? ÂBR

)
∧

RTL = Chol(ÂTL) ∧RTR = R−T
TL ÂTR

Invariant 3:(
ATL ATR

? ABR

)
=

(
RTL RTR

? ÂBR −RT
TRRTR

)
∧

RTL = Chol(ÂTL) ∧RTR = R−T
TL ÂTR

Fig. 2.4. States maintained in matrix A corresponding to the algorithms given in Fig. 2.5 below.

Algorithm: A := Chol unb(A)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Repartition
ţ

ATL ATR

? ABR

ű
→

0
@

A00 a01 A02

? α11 aT
12

? ? A22

1
A

where α11 is 1× 1

Variant 1:

a01 := A−T
00 a01 (Trsv)

α11 := α11 − aT
01a01 (Dot)

α11 :=
√

α11

Variant 2:

α11 := α11 − aT
01a01 (Syr)

α11 :=
√

α11

aT
12 := aT

12 − aT
01A02 (Gemv)

aT
12 := aT

12/α11

Variant 3:

α11 :=
√

α11

aT
12 := aT

12/α11

A22 := A22 − a12aT
12 (Syr)

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 a01 A02

? α11 aT
12

? ? A22

1
A

endwhile

Algorithm: A := Chol blk(A)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

Variant 1:

A01 := A−T
00 A01 (Trsm)

A11 := A11 −AT
01A01 (Syrk)

A11 := Chol(A11)

Variant 2:

A11 := A11 −AT
01A01 (Syrk)

A11 := Chol(A11)

A12 := A12 −AT
01A02 (Gepm)

A12 := A−T
11 A12 (Trsm)

Variant 3:

A11 := Chol(A11)

A12 := A−T
11 A12 (Trsm)

A22 := A22 −AT
12A12 (Syrk)

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Fig. 2.5. Unblocked and blocked algorithms for computing the Cholesky factorization.

8 P. BIENTINESI, B. GUNTER, R. VAN DE GEIJN

Substituting the partitioned matrices A, Â and R into the postcondition yields
(

ATL ATR

? ABR

)
=

(
RTL RTR

? RBR

)
∧(2.1)

(
RTL RTR

? RBR

)
= Chol

((
ÂTL ÂTR

? ÂBR

))
.(2.2)

We call (2.1)–(2.2) the Partitioned Matrix Expression (PME) for the Cholesky fac-
torization. It defines the factorization as a recurrence relation. Equation (2.2) is
equivalent to the equalities:

RTL = Chol
(
ÂTL

)

RTR = R−T
TL ÂTR

RBR = Chol
(
ÂBR −RT

TRRTR

)
.

Remark 6. The PME represents all the computations that must be performed, as
a function of the quadrants that are tracked as the iteration proceeds.

A natural state (loop-invariant) for matrix A before and after any given iteration
is that some of the computations have been performed. Given constraints on the
order in which A can be overwritten, this leaves three loop-invariants that can be
maintained at the top of the loop, shown in Fig. 2.4. The unblocked and blocked
algorithms in Fig. 2.5 are obtained by applying the techniques in Section 2.2 with
each of these three loop-invariants.

Remark 7. The family of loop-invariants for computing a given operation is dic-
tated by the way operands are partitioned, the postcondition, and inherent contraints
on the order in which the result must be computed.

Remark 8. The question of whether these are indeed all possible loop-based algo-
rithms is not one that lies within the scope of this paper.

3. Inversion of an Upper Triangular Matrix: R := R−1. In this section
we discuss the “in-place” inversion of a triangular matrix, overwriting the original
matrix with the result. By in-place it is meant that no work space is required. The
derivation of this algorithms is very similar to those already described for the Cholesky
decomposition, so the step-by-step details of the worksheet will be left for the reader
to pursue.

We will concentrate on the inversion of an upper-triangular matrix, R := R̂−1,
where R̂ represents the initial contents of the matrix. The precondition and postcon-
dition are given by the predicates

(
R = R̂

)
and

(
R = R̂−1

)
, respectively. The fact

that both R̂ and the result are upper triangular will be implicitly assumed.
Recall from Section 2 that the loop-invariants prescribe the algorithms. Thus, we

will concentrate on the derivation of loop-invariants for this operation. Partition

R →
(

RTL RTR

0 RBR

)
and R̂ →

(
R̂TL R̂TR

0 R̂BR

)
,

HIGH-PERFORMANCE AND PARALLEL INVERSION OF AN SPD MATRIX 9

Invariant 1: Invariant 2:(
R̂−1

TL R̂TR

0 R̂BR

) (
R̂−1

TL −R̂−1
TLR̂TRR̂−1

BR

0 R̂BR

)

Invariant 3: Invariant 4:(
R̂−1

TL −R̂−1
TLR̂TR

0 R̂BR

) (
R̂−1

TL −R̂TRR̂−1
BR

0 R̂BR

)

Fig. 3.1. States maintained in matrix R corresponding to the algorithms given in Fig. 3.2 below.

Algorithm: R := R−1

Partition R→
ţ

RTL RTR

0 RBR

ű

where RTL is 0× 0

while m(RTL) 6= m(R) do
Determine block size b
Repartition

ţ
RTL RTR

0 RBR

ű
→

0
@

R00 R01 R02

0 R11 R12

0 0 R22

1
A

where R11 is b× b

Variant 1
R01 := −R00R01 (Trmm)

R01 := R01R−1
11 (Trsm)

R11 := R−1
11

Variant 2

R12 := −R12R−1
22 (Trsm)

R12 := R−1
11 R12 (Trsm)

R11 := R−1
11

Variant 3

R12 := −R−1
11 R12 (Trsm)

R02 := R02 + R01R12 (Gepp)

R01 := R01R−1
11 (Trsm)

R11 := R−1
11

Variant 4

R12 := −R12R−1
22 (Trsm)

R02 := R02 −R01R12 (Gepp)

R01 := R00R01 (Trmm)

R11 := R−1
11

Continue withţ
RTL RTR

0 RBR

ű
←

0
@

R00 R01 R02

0 R11 R12

0 0 R22

1
A

endwhile

Fig. 3.2. Four algorithmic variants for the inversion of an upper triangular matrix, R.

where RTL and R̂TL are square to exploit the triangular structure of the matrix.
Substituting these partitioned matrices into the postcondition yields the PME

(
RTL RTR

0 RBR

)
=

(
R̂TL R̂TR

0 R̂BR

)−1

=

(
R̂−1

TL −R̂−1
TLR̂TRR̂−1

BR

0 R̂−1
BR

)
.(3.1)

As with the Cholesky, this PME relates the quadrants of the overwritten R (the
output matrix, containing the inverse of R̂) to the quadrants of R̂ (the input matrix)
in the following way

RTL = R̂−1
TL RTR = −R̂−1

TLR̂TRR̂−1
BR

RBR = R̂−1
BR

.

10 P. BIENTINESI, B. GUNTER, R. VAN DE GEIJN

Invariant 1: Invariant 2:(
ÛTLÛT

TL ÛTR

? ÛBR

) (
ÛTLÛT

TL + ÛTRÛT
TR ÛTR

? ÛBR

)

Invariant 3:(
ÛTLÛT

TL + ÛTRÛT
TR ÛTRÛT

BR

? ÛBR

)

Fig. 4.1. States mantained in matrix U corresponding to the algorithms given in Fig. 4.2 below.

Algorithm: U := UUT

Partition U →
ţ

UTL UTR

? UBR

ű

where UTL is 0× 0

while m(UTL) 6= m(U) do
Determine block size b
Repartition

ţ
UTL UTR

? UBR

ű
→

0
@

U00 U01 U02

? U11 U12

? ? U22

1
A

where U11 is b× b

Variant 1: Variant 2:

U00 := U00 + U01UT
01 (Syrk) U01 := U01UT

11 (Trmm)

U01 := U01UT
11 (Trmm) U01 := U01 + U02UT

12 (Gemp)

U11 := U11UT
11 U11 := U11UT

11

U11 := U11 + U12UT
12 (Syrk)

Variant 3:

U11 := U11UT
11

U11 := U11 + U12UT
12 (Syrk)

U12 := U12UT
22 (Trmm)

Continue withţ
UTL UTR

? UBR

ű
←

0
@

U00 U01 U02

? U11 U12

? ? U22

1
A

endwhile

Fig. 4.2. Three algorithmic variants for multiplying an upper triangular matrix U with its own
transpose.

From the PME, the loop-invariants in Fig. 3.1 can be derived for four algorithms
that traverse the matrix from the top-left to the bottom-right. An additional four
loop-invariants exist that represent algorithms progressing from the bottom-right to
the top-left; however, we will focus only on the first four.

With the loop-invariants in place, the algorithms for each variant can now be
derived. The blocked algorithms are given in Fig. 3.2.

4. Triangular matrix multiplication by its transpose: C = UUT . We
shall now talk briefly about the in-place multiplication of an upper triangular matrix,
U , times its own transpose, overwriting the original matrix with the result. As before,
we shall focus the upper triangular case in which C := UUT , pointing out that C is
symmetric so that only its upper triangular portion is computed and it overwrites the

HIGH-PERFORMANCE AND PARALLEL INVERSION OF AN SPD MATRIX 11

upper triangular part of U .
The precondition and postcondition for this operation are given by

(
U = Û

)
and(

U = triu
(
Û ÛT

))
, respectively. Because of the symmetric structure of the output

matrix U and the triangular structure of Û , we partition

U →
(

UTL UTR

? UBR

)
, and Û =

(
ÛTL ÛTR

0 ÛBR

)
,

where UTL and ÛTL are square. Substituting these partitioned matrices into the
postcondition yields the PME:

(
UTL UTR

? UBR

)
=

(
ÛTL ÛTR

0 ÛBR

)(
ÛTL ÛTR

0 ÛBR

)T

=

(
ÛTLÛT

TL + ÛTRÛT
TR ÛTRÛT

BR

? ÛBRÛT
BR

)
.

By taking into account dependencies that arise from the fact that U is being over-
written, the three loop-invariants given in Fig. 4.1 are identified. Blocked algorithms
that are derived from these loop-invariants are presented in Figure 4.2.

5. Inversion of a Symmetric Positive Definite Matrix. Two algorithms are
derived for computing the inverse of an SPD matrix. We show how one of these algo-
rithms can also be obtained by merging carefully chosen algorithms from Sections 2–4
into a one-sweep algorithm.

5.1. Derivation of algorithms. Algorithms for computing the inverse can be
derived directly from the postcondition,

(
A = Â−1

)
. First, partition these matrices

into quadrants,

A →
(

ATL ATR

? ABR

)
and Â →

(
ÂTL ÂTR

? ÂBR

)

where ATL and ÂTL are square and of equal size. Substitution of the partitioned
matrices into the postcondition yields the PME:

(
ATL ATR

? ABR

)
=

(
ÂTL ÂTR

? ÂBR

)−1

=
(

Â−1
TL + Â−1

TLÂTRBBRÂT
TRÂ−1

TL −Â−1
TLÂTRBBR

? BBR

)
,

where we introduce BBR =
(
ÂBR − ÂT

TRÂ−1
TLÂTR

)−1

. A rather involved dependence
analysis done by the authors identified two loop-invariants, given in Fig. 5.1. Applying
the derivation techniques with these loop-invariants yields the algorithms in Fig. 5.2.

It is possible to identify more loop invariants other than the two shown in Fig. 5.1,
but the corresponding algorithms perform redundant computations and/or are numer-
ically instable. More loop invariants yet can be devised by considering the alternative

12 P. BIENTINESI, B. GUNTER, R. VAN DE GEIJN

Invariant 1: Invariant 2:(
Â−1

TL ÂTR

? ÂBR

) (
Â−1

TL −ATLÂTR

? ÂBR − ÂT
TRÂ−1

TLÂTR

)

Fig. 5.1. States maintained in matrix A corresponding to the algorithms given in Fig. 5.3 below.

Algorithm: A := A−1 (Variant 1)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while G do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

Aux := −A00A01 (Gemp)

A11 := A11 + AT
01Aux (Gepp)

A11 := Chol(A11)

Aux := Aux A−1
11 (Trsm)

A01 := Aux A−T
11 (Trsm)

A00 := A00 + Aux AuxT (Syrk)

A11 := A−1
11

A11 := A11AT
11

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Algorithm: A := A−1 (Variant 2)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

A11 := Chol(A11)

A01 := A01A−1
11 (Trsm)

A00 := A00 + A01AT
01 (Syrk)

A12 := A−T
11 A12 (Trsm)

A02 := A02 −A01A12 (Gepp)

A22 := A22 −AT
12A12 (Syrk)

A01 := A01AT
11 (Trsm)

A12 := −A−1
11 A12 (Trsm)

A11 := A−1
11

A11 := A11AT
11

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Fig. 5.2. One-sweep algorithms for inverting an SPD matrix.

PME
(

ATL ATR

ABL ABR

)
=

(
BTL −BTLÂTLÂ−1

BR

? Â−1
BR + Â−1

BRÂT
TRBTLÂTRÂ−1

BR

)

where BTL =
(
ÂTL − ÂTRÂ−1

BRÂT
TR

)−1

. The corresponding algorithms compute the
solution by sweeping the matrix from the bottow right corner as opposed to the two
algorithms that we present that sweep the matrix from the top left corner.

5.2. Merging three sweeps into a one-sweep algorithm. As mentioned in
the introduction, the inversion of an SPD matrix can be implemented by computing
the Cholesky factor (R := Chol(A)), inverting that factor (U := R−1), and mul-
tiplying the inverted factor by its own transpose (A−1 := UUT). We will call this
a three-sweep algorithm, where for each sweep any of the algorithmic variants can
be used. A one-sweep algorithm can be obtained by merging carefully chosen algo-
rithmic variants for each of the three sweeps. The result, in Fig. 5.3, is identical to

HIGH-PERFORMANCE AND PARALLEL INVERSION OF AN SPD MATRIX 13

Algorithm: A := A−1 (Variant 2)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

A11 := Chol(A11)

A12 := A−T
11 A12

A22 := A22 −AT
12A12

9
=
;

Chol
Var. 3

A12 := −A−1
11 A12

A02 := A02 + A01A12

A01 := A01A−1
11

A11 := A−1
11

9
>>>=
>>>;

R := R−1

Var. 3

A00 := A00 + A01AT
01

A01 := A01AT
11

A11 := A11AT
11

9
>=
>;

U := UUT

Var. 1

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Algorithm: A := A−1 (Variant 2, reordered)

Partition A→
ţ

ATL ATR

? ABR

ű

where ATL is 0× 0
while m(ATL) < m(A) do

Determine block size b
Repartition

ţ
ATL ATR

? ABR

ű
→

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

where A11 is b× b

A11 := Chol(A11)

A01 := A01A−1
11 (Trsm)

A12 := A−T
11 A12 (Trsm)

A00 := A00 + A01AT
01 (Syrk)

A02 := A02 + A01A12 (Gepp)

A22 := A22 −AT
12A12 (Syrk)

A01 := A01A−T
11 (Trsm)

A12 := −A−1
11 A12 (Trsm)

A11 := A−1
11

A11 := A11AT
11

Continue withţ
ATL ATR

? ABR

ű
←

0
@

A00 A01 A02

? A11 A12

? ? A22

1
A

endwhile

Fig. 5.3. One-sweep algorithm for inverting an SPD matrix as a merging of three sweeps.

Fig. 5.2 (right), which was obtained by applying the FLAME approach. The condi-
tions under which algorithms can be merged is a topic of current research and goes
beyond the scope of this paper.

5.3. Discussion. The real benefit of the one-sweep algorithm in Fig. 5.3 (left)
comes from the following observation: The order of the updates in that variant can
be changed as in Fig. 5.3 (right), so that the most time consuming computations
(A22 − AT

12A12, A00 + A01A
T
01, and A01 + A01A12) can be scheduled to be computed

simultaneously:

A00 + A01A
T
01 A02 + A01A12

?

? ? A22 −AT
12A12

.

On a distributed memory architecture, where the matrix is physically distributed
among memories, there is the opportunity to: 1) consolidate the communication
among processors by first performing the collective communications for the three up-
dates followed by the actual computations, and 2) improve load-balance since during

14 P. BIENTINESI, B. GUNTER, R. VAN DE GEIJN

every iteration of the merged algorithm, on each element of the quadrants A00, A02

and A22 the same amount of computation is performed.

6. Stability. Thus far, we have discussed how to compute the inverse of a sym-
metric positive definite matrix by means of a three-sweep approach and a single-sweep
approach. As part of the three-sweep approach, we described three algorithms for
computing the Cholesky factor of an SPD matrix, four algorithms to invert a trian-
gular matrix and three algorithms to multiply a triangular matrix and its transpose.
Alternatively, we described two variants to compute the inverse by a single sweep
only. In the following we comment on the stability of each of these variants.

Cholesky: In Golub-Van Loan [13], the three Variants presented in Table 2.5 are
derived (two unblocked and one blocked), and the stability is asserted based on an
early work of Wilkinson [31]. In that paper, Wilkinson proves the norm-wise backward
stability of the factorization, e.g. ŘT Ř = A + ∆A, for ‖∆A‖ ≤ k1n

3/2‖A‖, where
Ř is the computed Cholesky factor. Higham [20], proves instead that variant 1 is
element-wise backward stable, i.e., |∆A | ≤ k2n | ŘT || Ř |. Pete Stewart in [26] points
out that the difference between the Cholesky and the LU factorization (applied to an
SPD matrix) is that the former has no element growth, and therefore the algorithm
is “unconditionally stable”.

Triangular Inverse: Similar to the Cholesky factorization, the first analysis for the
inversion of a matrix has been performed by Wilkinson [30]. More recently, Higham
[9, 20] presented the analysis for Variants 1 and 3 from Table 3.1, and claimed the
equivalence of the rounding errors for Variant 1 to 2 and 3 under ‘suitable implementa-
tions’. The unblocked Variant 3 is used in LINPACK [12], while Variant 1 (unblocked
and blocked) is used in LAPACK [2]. Variant 4, (Table 3.1) is unstable because of
cancellation: it is possible to show that the non-diagonal entries are computed by
(unnecessarily) adding and subtracting many times similar quantities.

Computing UUT : The operation is a matrix multiplication and therefore perfectly
stable.

SPD Inverse: The stability analysis for the invertion of an SPD matrix by means of
a three-sweep process is given in [20]. Our presentation shows that the computations
performed by the one-sweep algorithm (Variant 2) is identical to that performed by
the three-sweep approach, and therefore the stability results carry over to the one-
sweep algorithm.

Numerical experiments were conducted that provide evidence that all algorithmic
variants, unblocked and blocked, for any of the operations that were discussed have, for
all practical purposes, equivalent numerical properties, with the exception of Variant
4 for inverting a triangular matrix. Also, using Mathematica [32], it was possible
to perform symbolic computations. The numeric computation was augmented so
that the accumulation (again symbolically) of roundoff error could be observed. The
results support the observation that the different variants are equally numerically
stable, except for Variant 4 for inverting a triangular matrix. We do note that some
care must be taken to use triangular solve with multiple right-hand sides whenever
possible over the explicit inversion of the triangular matrix combined with matrix
multiplication.

HIGH-PERFORMANCE AND PARALLEL INVERSION OF AN SPD MATRIX 15

7. Performance Experiments. To evaluate the performance of the algorithms
derived in the previous sections, both serial and parallel implementations were tested
on a variety of problem sizes and on different architectures.

Remark 9. Although the best algorithms for each operation attain very good
performance, this study is primarily about the qualitative differences between the
performance of different algorithms on different architectures.

7.1. Implementations. Implementing all the algorithms discussed in this paper
on sequential, SMP, and distributed memory architectures would represent a consider-
able coding effort. FLAME was already mentioned as the methodology used to derive
the families of algorithms in this paper. In addition, FLAME encompasses a set of
APIs for different programming environments, including MATLAB (FLAME@lab),
C (FLAME/C), and C interfaced with MPI (PLAPACK) [5, 28, 8, 16, 24]. These
APIs have the benefit that the code closely resembles the algorithms as they are pre-
sented in this paper. Most importantly, they hide the indexing that makes coding
in a traditional style time-consuming. For blocked algorithms, the cost of raising the
level of abstraction of the code is amortized over enough computation that it does not
noticeably affect performance.

The FLAME/C and PLAPACK APIs were used for all the implementations,
making the coding effort quite manageable. For examples see the paper [5].

7.2. Platforms. The two machines chosen for this study were designed to high-
light performance variations when using substantially different architectures and/or
programming models.

Shared Memory. IBM Power 4 SMP System. This architecture consists of SMP
nodes, each containing sixteen 1.3 GHz Power4 processors and 32 GBytes of shared
memory. The processors operate at four FLOPS (floating point operations per second)
per cycle for a peak theoretical performance of 5.2 GFLOPS/proc (billions of FLOPS,
per processor), with a dgemm (matrix-matrix multiply) benchmarked by the authors
at 3.7 GFLOPS/proc. We only measured performance within a single SMP node.

On this architecture, we compared performance when parallelism was attained in
two different ways: 1) Implementing the algorithms with PLAPACK, which uses mes-
sage passing via calls to IBM’s MPI library; and 2) invoking the sequential algorithms
with calls to the multithreaded BLAS that are part of IBM’s ESSL library.

Distributed Memory. Cray-Dell Linux Cluster. This system consists of an array
of Intel PowerEdge 1750 Xeon processors operating at 3.06 GHz. Each compute node
contains two processors and has 2 GB of total shared memory (1 Gb/proc). The
theoretical peak for each processor is 6.12 GFLOPS (2 FLOPS per clock cycle), with
the dgemm, as part of Intel’s MKL 7.2.1 library, benchmarked by the authors at
roughly 4.8 GFLOPS.

On this system we measured the performance of PLAPACK-based implementa-
tions, linked to the MPICH MPI implementation [15] and Intel’s MKL library as well
as to the GotoBLAS [14].

7.3. Reading the graphs. The performance attained by the different imple-
mentations is given in Figs. 7.1–7.4. The top line of most of the graphs represents the
performance attained on the architecture by matrix-matrix multiplication (dgemm).
Since all the algorithms cast most computation in terms of this operation, its perfor-
mance is the limiting factor. In the case where different BLAS implementations were
employed, the theoretical peak of the machine was used as the top line of the graph.

16 P. BIENTINESI, B. GUNTER, R. VAN DE GEIJN

0 3 6 9 12 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.00

0.14

0.27

0.41

0.54

0.68

0.81

0.95

x 103

Fr
ac

tio
n

of
 D

G
E

M
M

Performance of Serial Cholesky

 LAPACK
 Variant 1 (TRSM)
 Variant 2 (GEPM)
 Variant 3 (SYRK)

G
FL

O
P

S
/s

ec
/p

ro
c

Problem Dimension
0 3 6 9 12 15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.00

0.14

0.27

0.41

0.54

0.68

0.81

0.95

x 103

 LAPACK
 Variant 1 (TRMM)
 Variant 2 (TRSM)
 Variant 3 (GEPP)
 Variant 4 (GEPP)

Fr
ac

tio
n

of
 D

G
E

M
M

Performance of Serial Triangular Inverse

G
FL

O
P

S
/s

ec
/p

ro
c

Problem Dimension

0 3 6 9 12 15
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.00

0.14

0.27

0.41

0.54

0.68

0.81

0.95

x 103

 LAPACK
 Variant 1 (SYRK)
 Variant 2 (GEMP)
 Variant 3 (TRMM)

Fr
ac

tio
n

of
 D

G
E

M
M

 Performance of Serial Triangular UUT

G
FL

O
P

S
/s

ec
/p

ro
c

Problem Dimension
0 3 6 9 12 15

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.00

0.14

0.27

0.41

0.54

0.68

0.81

0.95

x 103

 LAPACK
 Variant 1 (GEMP-GEPP-SYRK)
 Variant 2 (SYRK-GEPP-SYRK)

Fr
ac

tio
n

of
 D

G
E

M
M

Performance of Serial SPD Inverse

G
FL

O
P

S
/s

ec
/p

ro
c

Problem Dimension

Fig. 7.1. Sequential performance on the IBM Power4 system.

The following operation counts were used for each of the algorithms: 1
3n3 for each of

Chol(A), R−1, and UUT , and n3 for the inversion of an SPD matrix. In the legends,
the variant numbers correspond to the numbering of Figs. 2.4, 3.1, 4.1, and 5.1, while
the operations within parentheses indicate the BLAS operation in which the bulk of
the computation for that variant is cast (See Fig. 2.2 for details).

7.4. Sequential performance. In Fig. 7.1 we show performance on a single
CPU of the IBM Power4 system. In these experiments, a block size of 96 was used
for all algorithms. Variant 4 for computing R := R−1 attains considerably worse
performance since it performs more computations than necessary. From the graphs,
it is obvious which algorithmic variant was incorporated in LAPACK.

7.5. Parallel performance. In Fig. 7.2 we report performance results from
experiments on a single sixteen CPU SMP node of the IBM Power4 system and on
16 processors (eight nodes with two processors each) of the Cray-Dell cluster. Since
the two systems attain different peak rates of computation, the fraction of dgemm
performance that is attained by the implementations is reported.

On the IBM system parallelism was attained in two different ways: by linking
sequential FLAME implementations to the ESSL multithreaded BLAS library and by
executing PLAPACK implementations. For the FLAME experiments an (algorithmic)

HIGH-PERFORMANCE AND PARALLEL INVERSION OF AN SPD MATRIX 17

5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 LAPACK (IBM SMP)
 FLAME (IBM SMP)
 PLAPACK (IBM MPI)
 PLAPACK (Dell MPI)

 Variant 1 (TRSM)
 Variant 2 (GEPM)
 Variant 3 (SYRK)

Performance of Parallel Cholesky

Fr
ac

tio
n

of
 D

G
E

M
M

Problem Dimension
x 103 5 10 15 20 25 30 35 40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 LAPACK (IBM SMP)
 FLAME (IBM SMP)
 PLAPACK (IBM MPI)
 PLAPACK (Dell MPI)

Performance of Parallel Triangular Inverse

 Variant 1 (TRMM)
 Variant 2 (TRSM)
 Variant 3 (GEPP)
 Variant 4 (GEPP)

Fr
ac

tio
n

of
 D

G
E

M
M

Problem Dimension
x 103

5 10 15 20 25 30 35 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

x 103

 LAPACK (IBM SMP)
 FLAME (IBM SMP)
 PLAPACK (IBM MPI)
 PLAPACK (Dell MPI)

Performance of Parallel Triangular UUT

 Variant 1 (SYRK)
 Variant 2 (GEMP)
 Variant 3 (TRMM)

Fr
ac

tio
n

of
 D

G
E

M
M

Problem Dimension
5 10 15 20 25 30 35 40

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
 LAPACK (IBM SMP)
 FLAME (IBM SMP)
 PLAPACK (IBM MPI)
 PLAPACK (Dell MPI)

Performance of Parallel SPD Inverse

Fr
ac

tio
n

of
 D

G
E

M
M

Problem Dimension

 Variant 1 (GEMP-GEPP-SYRK)
 Variant 2 (SYRK-GEPP-SYRK)

x 103

Fig. 7.2. Parallel Performance.

block size of 96 was used. The PLAPACK experiments distributed the matrix using
a block size of 32 and used an algorithmic block size of 96.

The experiments on the IBM systems show that linking to multithreaded BLAS
yields better performance than the PLAPACK implementations since exploiting the
SMP features of the system avoids much of the overhead of communication and load-
balancing.

For the Cholesky factorization the PLAPACK Variant 1 performs substantially
worse than the other variants. This is due to the fact that this variant is rich in
triangular solves with a limited number of right-hand sides. This operation inherently
does not parallelize well on distributed memory architectures due to dependencies.
Interestingly, Variant 1 for the Cholesky factorization attains the best performance
in the sequential experiment on the same machine.

The PLAPACK implementations of Variants 1 and 2 for computing R−1 do not
perform well. Variant 1 is rich in triangular matrix times panel-of-columns multiply
where the matrix being multiplied has a limited number of columns. It is not inherent
that that operation does not parallelize well. Rather, it is the PLAPACK implemen-
tation for that BLAS operation that is not completely optimized. Similar comments

18 P. BIENTINESI, B. GUNTER, R. VAN DE GEIJN

0 32 64 96 128 160 192 224 256
0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

4.4

4.8

G
FL

O
P
S
/s
ec
/p
ro
c

Processors

 Cholesky (Variant 3)
 Tri Inv (Variant 3)
 UUT (Variant 1)
 SPD Inv (Variant 2)

Scalability of Algorithms Using MKL BLAS

0 32 64 96 128 160 192 224 256
0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

4.4

4.8

Scalability of Algorithms Using GotoBLAS

G
FL

O
P
S
/s
ec
/p
ro
c

Processors

 Cholesky (Variant 3)
 Tri Inv (Variant 3)
 UUT (Variant 1)
 SPD Inv (Variant 2)

Fig. 7.3. Scalability on the Dell Cluster. Here the matrix size is scaled to equal 5000×√p so
that memory use per processor is held constant. Left: when linked to MKL 7.X. Right: when linked
to GotoBLAS 0.97.

apply to PLAPACK Variant 3 for computing UUT and PLAPACK Variant 2 for com-
puting the inversion of an SPD matrix. Note the cross-over between the curves for
the SMP Variants 2 and 3 for the parallel triangular inverse operation. This shows
that different algorithmic variants may be appropriate for different problem sizes.

It is again obvious from the graphs which algorithmic variant is used for each of
the three sweeps as part of LAPACK. The LAPACK curve does not match either of
the FLAME variants in the SPD inversion graph since LAPACK uses a three-sweep
algorithm.

7.6. Scalability. In Fig. 7.3 we report the scalability of the best algorithmic vari-
ants for each of the four operations. It is well-known that for these types of distributed
memory algorithms it is necessary to scale the problem size with the square-root of
the number of processors, so that memory-use per processor is kept constant [19, 25].
Notice that as the number of processors is increased, the rate of performance attained
eventually decreases very slowly, indicating that the implementations are essentially
scalable.

7.7. Comparison of the Three-Sweep and Single-Sweep Algorithms. Fi-
nally we examine the benefits of consolidating the collective communications and im-
proving the load balancing in the single-sweep algorithm. In Fig. 7.4 (left) we show
improvements in raw performance on the Cray-Dell system. The improvement over
three-sweep algorithm is quite substantial, in the 15-30% range. Fig. 7.4(right) shows
the time savings gained for the PLAPACK implementations of the SPD inverse algo-
rithms.

On serial and SMP architectures, essentially no performance improvements were
observed by using the single-sweep algorithms over the best three-sweep algorithm.
This is to be expected, since for these architectures the communications and load
balancing are not an issue.

8. Conclusion. In this paper, we have shown that it is beneficial to be able
to find different algorithmic variants for dense linear algebra operations. The best

HIGH-PERFORMANCE AND PARALLEL INVERSION OF AN SPD MATRIX 19

5 10 15 20 25 30 35 40
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0.00

0.08

0.16

0.25

0.33

0.41

0.49

0.57

0.65

0.74

0.82

0.90

0.98

 PLAPACK (Dell MPI), GotoBLAS

Fr
ac

tio
n

of
 P

ea
k

x 103

Single-Sweep vs. Three-Sweep Parallel SPD Inverse

G
FL

O
P

S
/s

ec
/p

ro
c

Problem Dimension

 Three-Sweep Algorithm Using Fastest Individual Variants
 Single-Sweep Algorithm (Variant 2)

5 10 15 20 25 30 35 40
0

3

6

9

12

15

18

21

24

27

30

33

36
(Time

3-Sweep
 - Time

1-Sweep
)/(Time

3-Sweep
)

x 103

Pe
rc

en
t I

m
pr

ov
em

en
t

Problem Dimension

 PLAPACK (IBM MPI), ESSL BLAS
 PLAPACK (IBM MPI), GotoBLAS
 PLAPACK (Dell MPI), MKL BLAS
 PLAPACK (Dell MPI), GotoBLAS

Fig. 7.4. Comparison of the Three-Sweep and Single-Sweep SPD inverse algorithms. The
left panel shows the performance difference for the case run on the Cray-Dell system linked to the
GotoBLAS. The right panel shows the wall-clock savings for all PLAPACK cases.

algorithm can be then be chosen for a given situation. This choice is often a func-
tion of the architecture, the problem size, and the optimized libraries to which the
implementations are linked. The FLAME approach to deriving algorithms enables a
systematic generation of such families of algorithms.

Another contribution of the paper lies with the link it establishes between the
three-sweep and one-sweep approach to computing the inverse of an SPD matrix.
The observation that the traditional three-sweep algorithm could be fused together so
that only a single pass through the matrix is required has a number of advantages. The
single-sweep method provides for greater flexibility because the sequence of operations
can be arranged differently than they would be if done as three separate sweeps. This
allows the operations of the SPD inverse to be organized to optimize load balance
and communication. The resulting single-sweep algorithm consistently outperforms
the three-sweep method.

The paper raises many new questions. In particular, the availability of many
algorithms and implementations means that a decision must be made as to when
to use what algorithm. One approach is to use empirical data from performance
experiments to tune the decision process. This is an approach that has been applied
in the simpler arena of matrix-matrix multiplication (dgemm) by the PHiPAC and
ATLAS projects [6, 29]. An alternative approach would be to carefully design every
layer of a library so that its performance can be accurately modeled. We intend to
pursue this second approach in the future.

9. Acknowledgements. The authors would like to acknowledge the Texas Ad-
vanced Computing Center (TACC) for providing access to the IBM Power4 and Cray-
Dell PC Linux cluster machines, along with other computing resources, used in the
development of this study.

More Information. For more information on FLAME and PLAPACK visit
http://www.cs.utexas.edu/users/flame

http://www.cs.utexas.edu/users/plapack

20 P. BIENTINESI, B. GUNTER, R. VAN DE GEIJN

REFERENCES

[1] P. Alpatov, G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, R. van de
Geijn, and Y.-J. Wu, PLAPACK: Parallel Linear Algebra Package, in Proceedings of the
SIAM Parallel Processing Conference, 1997.

[2] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra,
J. J. D. Croz, A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen,
LAPACK Users’ Guide, third ed., 1999.

[3] P. Bientinesi, J. A. Gunnels, M. E. Myers, E. S. Quintana-Ort́ı, and R. A. van de
Geijn, The science of deriving dense linear algebra algorithms, ACM Trans. Math. Soft.,
31 (2005), pp. 1–26.

[4] P. Bientinesi, S. Kolos, and R. van de Geijn, Automatic derivation of linear algebra algo-
rithms with application to control theory, in Proceedings of PARA’04 State-of-the-Art in
Scientific Computing, June 20-23 2004.

[5] P. Bientinesi, E. S. Quintana-Ort́ı, and R. A. van de Geijn, Representing linear algebra
algorithms in code: The FLAME application programming interfaces, ACM Trans. Math.
Soft., 31 (2005).

[6] J. Bilmes, K. Asanović, C. Whye Chin, and J. Demmel, Optimizing matrix multiply using
PHiPAC: a Portable, High-Performance, ANSI C coding methodology, in Proceedings of
International Conference on Supercomputing, Vienna, Austria, July 1997.

[7] J. Choi, J. Dongarra, R. Pozo, and D. Walker, ScaLAPACK: A Scalable Linear Algebra
Library for Distributed Memory Concurrent Computers, in Proceedings of the Fourth
Symposium on the Frontiers of Massively Parallel Computation, IEEE Comput. Soc. Press,
1992, pp. 120–127.

[8] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt, and R. van de Geijn, Parallel
Implementation of BLAS: General Techniques for Level 3 BLAS, Concurrency: Practice
and Experience, 9 (1997), pp. 837–857.

[9] J. J. D. Croz and N. J. Higham, Stability of methods for matrix inversion, IMA Journal of
Numerical Analysis, 12 (1992), pp. 1–19.

[10] J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, A set of level 3 basic linear algebra
subprograms, ACM Trans. Math. Soft., 16 (1990), pp. 1–17.

[11] J. Dongarra, I. Duff, D. Sorensen, and H. A. van der Vorst, Solving Linear Systems on
Vector and Shared Memory Computers, SIAM, Philadelphia, PA, 1991.

[12] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, LINPACK Users’ Guide,
1979.

[13] G. Golub and C. van Loan, Matrix Computations, 3rd Ed., The Johns Hopkins University
Press, Baltimore, MD, 1996.

[14] K. Goto and R. van de Geijn, Anatomy of high-performance matrix multiplication, ACM
Trans. Math. Soft. submitted.

[15] W. Gropp and E. Lusk, User’s guide for mpich, a portable implementation of MPI, Technical
Report ANL-06/6, Argonne National Laboratory, 1994.

[16] W. Gropp, E. Lusk, and A. Skjellum, Using MPI, The MIT Press, 1994.
[17] J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn, FLAME: Formal

linear algebra methods environment, ACM Trans. Math. Soft., 27 (2001), pp. 422–455.
[18] B. Gunter, Computational Methods and Processing Strategies for Estimating Earth’s Gravity

Field, PhD thesis, Department of Aerospace Engineering and Engineering Mechanics, The
University of Texas at Austin, 2004.

[19] B. Hendrickson and D. Womble, The torus-wrap mapping for dense matrix calculations on
massively parallel computers, SIAM J. Sci. Stat. Comput., 15 (1994), pp. 1201–1226.

[20] N. J. Higham, Accuracy and Stability of Numerical Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second ed., 2002.

[21] E. Quintana and R. van de Geijn, Formal derivation of algorithms for the triangular
Sylvester equation, ACM Trans. Math. Soft., 29 (2003), pp. 218–243.

[22] E. S. Quintana, G. Quintana, X. Sun, and R. van de Geijn, A note on parallel matrix
inversion, SIAM J. Sci. Comput., 22 (2001), pp. 1762–1771.

[23] R. Sanso and R. Rummel, eds., Theory of Satellite Geodesy and Gravity Field Determination,
vol. 25 of Lecture Notes in Earth Sciences, Springer-Verlag, Berlin, 1989.

[24] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra, MPI: The
Complete Reference, The MIT Press, 1996.

[25] G. Stewart, Communication and matrix computations on large message passing systems,
Parallel Computing, 16 (1990), pp. 27–40.

[26] G. W. Stewart, Introduction to Matrix Computations, Academic Press, Orlando, Florida,

HIGH-PERFORMANCE AND PARALLEL INVERSION OF AN SPD MATRIX 21

1973.
[27] B. Tapley, B. Schutz, and G. Born, Statistical Orbit Determination, Elsevier Academic

Press, 2004.
[28] R. A. van de Geijn, Using PLAPACK: Parallel Linear Algebra Package, The MIT Press,

1997.
[29] R. C. Whaley and J. J. Dongarra, Automatically tuned linear algebra software, in Proceed-

ings of SC’98, 1998.
[30] J. H. Wilkinson, Error analysis of direct methods of matrix inversion, J. ACM, 8 (1961),

pp. 281–330.
[31] , A priori error analysis of algebraic processes, in Proc. International Congress of Math-

ematicians, Moscow 1966, I. G. Petrovsky, ed., Mir Publishers, Moscow, 1968, pp. 629–640.
[32] S. Wolfram, The Mathematica Book: 3rd Edition, Cambridge University Press, 1996.

