CS352H: Computer Systems Architecture

Lecture 1: What Is Computer Architecture?

August 27, 2009

University of Texas Computer Science CS

CS352H Fall 2009

Don Fussell

- Understand the "how" and "why" of computer system organization
 - Instruction set architecture
 - System organization (processor, memory, I/O)
 - Micro-architecture
- Learn methods of evaluating performance
 - Metrics
 - Benchmarks
- Learn how to make systems go fast
 - Pipelining, caching
 - Parallelism
- Learn how to make systems less power hungry (maybe)

Logistics

- Lectures: TTh 3:30-5:00, WEL 3.260
- Instructor: Don Fussell
 - Office: ACES 2.120
 - Office hours: TTh 2:00-3:00 or by appointment
 - Email: <u>fussell@cs.utexas.edu</u>
- TA: Dong Li
 - Office:
 - Office Hours:
 - Email:
- Grading: Final exam 25% Midterm 20%
 ~6 Homework + ~5 paper critiques 30% Project 25%
 Homework/project late account - 3 days for the semester
- Course webpage: http://www.cs.utexas.edu/~fussell/courses/cs352h

Resources

Text: Patterson & Hennessy Computer Organization & Design: The Hardware/Software Interface, 4th Edition (required)

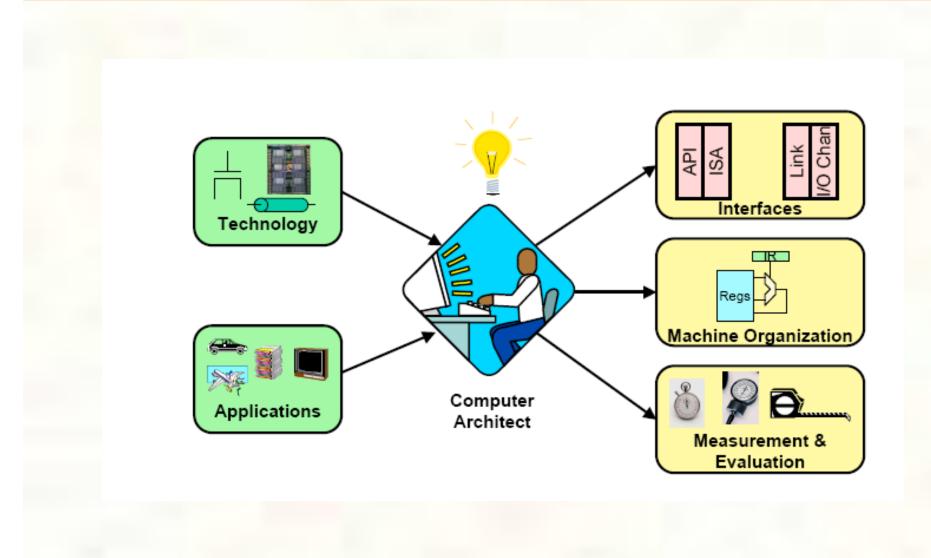
- Reference : Hennessy & Patterson Computer Architecture: A Quantitative Approach (not required)
- Software packages
 - SPIM for MIPS assembly
 - Verilog for class project
 - You will need a CS department Unix account
- Using Blackboard:
 - Messages about the class (make sure your e-mail address is correct)
 - Other resources as needed in addition to the webpage
 - For your own discussion groups

What is expected of you

Attend class and participate

- Published lecture notes are just "notes"
- Remember, Powerpoint was designed for content-free industrial presentations, there's more here than fits into bullets
- Discussions matter they're the best part of the course
- Be a hero ask stupid questions, you won't be the only one who is wondering
- Do the work the homework and project are more than half your grade for a reason, doing them is the heart of the course
- Things aren't always as simple as they look the devil is in the details, so sweat them
- Don't procrastinate
- Take initiative to follow up on your interests
- Don't cheat: follow code of conduct

www.cs.utexas.edu/users/ear/CodeOfConduct.html



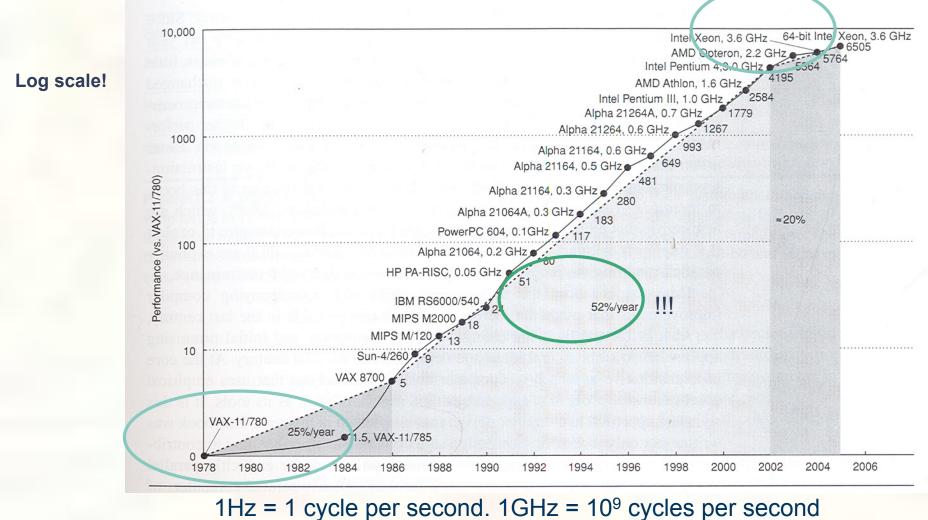
Computer Architecture

- "Computer architecture, like other architecture, is the art of determining the needs of the user of a structure and then designing to meet those needs as effectively as possible within economic and technological constraints." F.P. Brooks, Planning a Computer System, Project Stretch, 1962
- What does this "design" consist of?
 - A "programming" interface for software
 - Instructions
 - State changes
 - Organizational principles for processors, memory and I/O devices
 - Processors microarchitecture
 - Overall system design
 - In order to:
 - Meet functional and performance targets
 - Within constraints, such as cost and power
 - While taking advantage of advances in technology
- Architecture is about making tradeoffs

What Does a Computer Architect Do?

CS352H Topics

- Technology Trends
- Instruction set architectures
 - MIPS instruction set
- Designing for performance
 - Pipelining
 - Instruction level parallelism (ILP)
 - Static
 - Dynamic
- Memory hierarchies and caches
- Virtual memory
- Multiprocessors and multicore
- System measurement
- System implementation


Application constraints

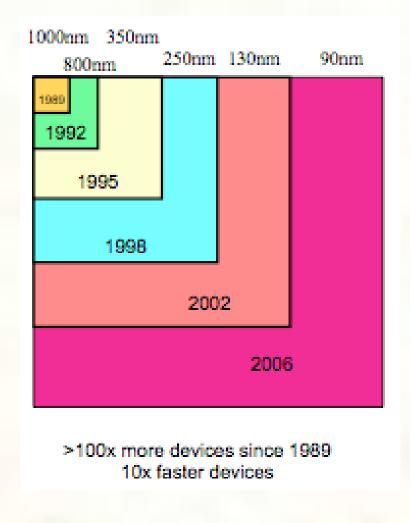
- Applications drive machine balance
- Numerical simulation, scientific computing, 3-d graphics/games
 - Floating point performance
 - Memory bandwidth
- Transaction processing, databases
 - I/O throughput
 - Integer CPU performance
- Decision support
 - I/O bandwidth
- Embedded controllers
 - I/O timing, interfaces
 - Power
- Video processing
- Low precision pixel arithmetic

CS352H

A Little Perspective: Processor Performance

$\Pi Z = \Gamma Cycle per second. \ \Gamma O \Pi Z = \Gamma C Cycles per second$

Taken from: Hennessy & Patterson Computer Architecture: A Quantitative Approach, 4th ed


University of Texas Computer Science CS352H Fall 2009 Don Fussell

Technology scaling

CPUs

- Device density: 2x every 1.5 years (~60% per year)
- Latency: 2x every 5 years (~15% per year)
- Memory (DRAM)
 - Capacity: 4x every 3 years (~60% per year) (2x every two years lately)
 - Latency: 1.5x every 10 years
 - Cost per bit: decreases about 25% per year
- Hard drives:
 - Capacity: 4x every 3 years (~60% per year)
 - Bandwidth: 2.5x every 4 years
 - Latency: 2x every 5 years
- Boards:
 - Wire density: 2x every 15 years
- Cables:
 - No change

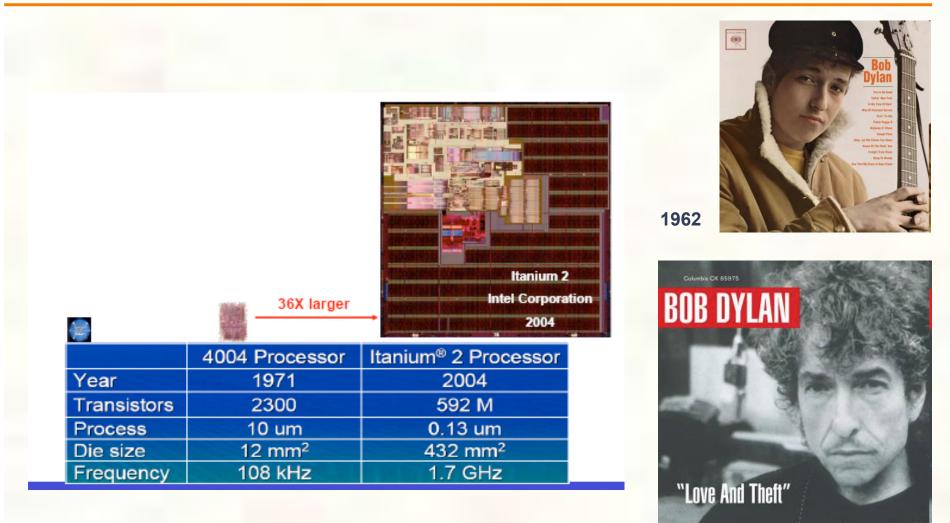
CS352H

Machines Adapt to Changes in Technology

1970s

- Multi-chip CPUs
- Semiconductor memory is very expensive
- Micro-coded control
- Complex instruction sets
- **1980s**
 - Single-chip CPUs
 - Some on-chip RAM
 - Simple, hard-wired control
 - Simple instruction sets
 - Small on-chip caches

1990s


- Lots of transistors
- Complex control to exploit ILP
- Lots of on-chip memory
- Multi-level caches

2000s

- Approaching 1B transistors!
- Slow wires
- Power becoming expensive
- Multicores

The Times They Are A-Changin'

CS352H Fall 2009

What is a Computer?

- Supercomputer?
- Web server?
- Game console?
- Desktop?
- Notebook?
- Microcontroller?
- Each of these "lives" in a different space with its own requirements and constraints
- We need to pick one for this course
 - Desktop
 - Using the MIPS ISA

Interface Design

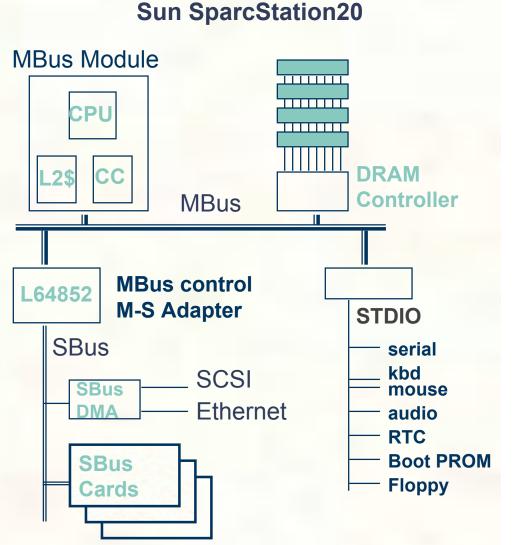
- Interface vs. Implementation
 - Visibility
- Three types of interfaces:
 - Between layers
 - API, ISA
 - Between modules
 - SCSI, PCI
 - Standard representations
 - IEEE floating point, ASCII
- A good interface
 - Lasts through several generations of implementations
 - Is simple 'economy of mechanism' (KISS)

Instruction-Set Architecture (ISA)

- HW/SW interface
- SW Impact
 - Support OS functions
 - Restartable instructions
 - Memory management
 - A good compiler target
 - Simple
 - Orthogonal
 - Dense
- HW Impact
 - Amenable to efficient implementation over time
 - Amenable to parallelization

OP R1 R2 R3 Imm

	OP	M1	R1		M2	R2	im2
--	----	----	----	--	----	----	-----

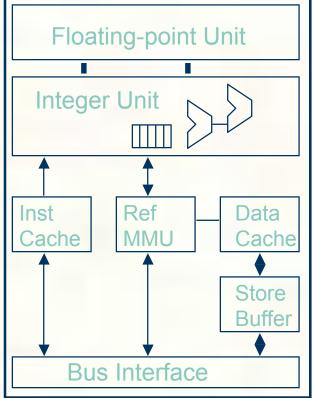

M3 R	₹3 im	2
------	-------	---

Don Fussell

System-Level Organization

- Design at the level of processors, memories, ...
- More important to application performance than CPU design
- Feeds and speeds
 - Constrained by pin counts and signaling rates
- System balance
 - Application-specific
- Driven by
 - Performance/cost goals
 - Available components
 - Technology constraints

CS352H Fall 2009


Don Fussell

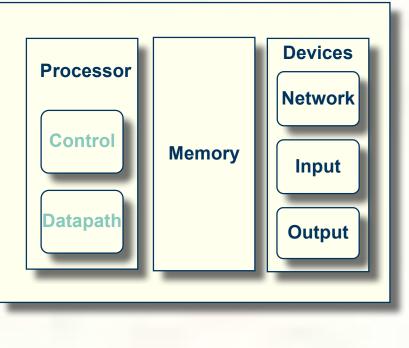
Micro-architecture

- Register-transfer-level (RTL)
- Implement instruction set
- Exploit technology capabilities
 - Locality & concurrency
- Iterative process
 - Generate architecture
 - Estimate cost
 - Evaluate performance
- Overcoming sequential nature of programs
 - Pipelining
 - Multiple issue
 - Dynamic scheduling
 - Branch prediction/speculation

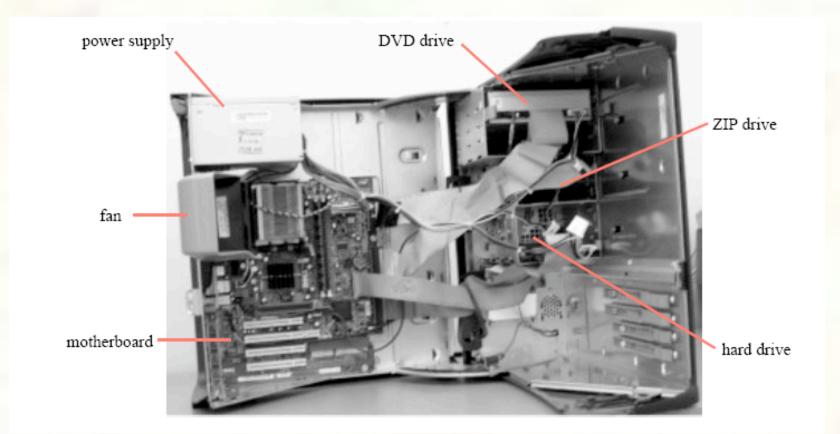
TI SuperSPARC™ TMS390Z50

CS352H

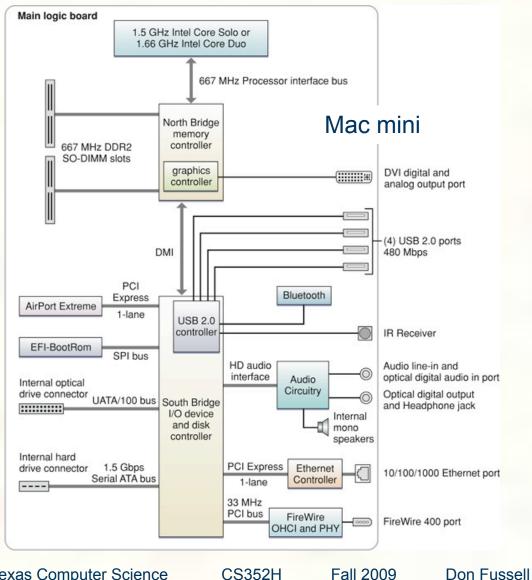
Fall 2009


Performance Evaluation

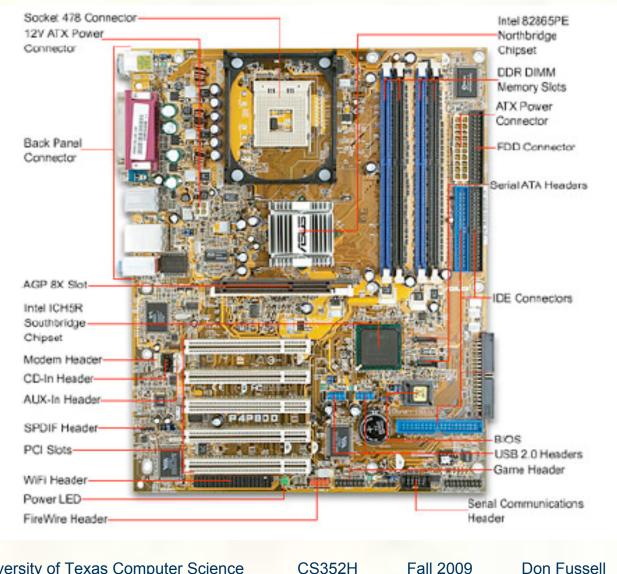
- What's the right measure?
 - Instruction count? cache b/w? I/O throughput?
 - Application response time? Application throughput?
- Measure what?
 - Benchmarks? Real applications? Traces?
- Measure how?
 - Simulation? Math models? Real tests?


Major Components of a Computer

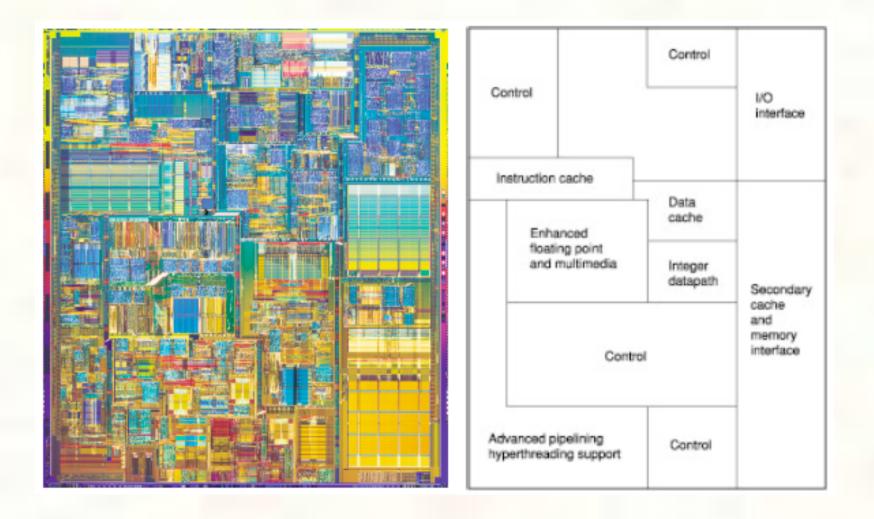
- Desktop design target
 - Processor: 25% of cost
 - Memory: 25% of cost
 - Rest (I/O devices, power supply, enclosure): 50%



PC Chassis



Motherboard organization


PC Motherboard

CS352H

Pentium 4 Chip

- Architecture: Structure of "things"
- Interplay between technology and architecture
- Computer architect uses quantitative methods to:
 - Design interfaces
 - Develop machine organization: system-level & micro-architecture
- This course: 888
 - Instruction-Set Architectures (ISAs)
 - Performance evaluation (a tiny bit)
 - Pipelining
 - Memory
 - System organization
 - Parallelism
 - Power

First Assignment

- Read the Moore paper (see webpage)
- Write a one page critique
 - Typewritten, font size 10-12
- Critique format
 - Headline message: a one sentence tag line for the paper
 - Elevator pitch: a one paragraph summary of the paper's key messages
 - A couple of paragraphs to support and analyze the elevator pitch
- Hand in your one page review at the beginning of next class
- You should use this format for all other papers as well

Next Time

- Hand in a hard copy of your one-page typewritten review of the Moore paper at the beginning of the class
- We'll discuss the paper
- Then, instruction set architectures, specifically the MIPS ISA
- Read Chap 1 for background
- Read Chap 2.1-2.10 for class prep