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1/ A Simplified Graphics Pipeline

I Application I
—————————————— l————————————————-
Vertex batching & assembly
| |

v
I Triangle assembly I

¥
I Triangle clipping I
y
I NDC to window space I

v

I Triangle rasterization I

v
I Fragment shading I

‘ i
I Depth testing |1—> Depth buffer

¥
I Color update |—> Framebuffer T
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107 A few more steps expanded

| Application |

| Vertex batching & assembly |

v
| Vertex transformation H Lighting I"l Texture coordinate generation |->| Triangle assembly |

A 4
| User defined clipping H View frustum clipping I—->| Perspective divide |
v |

| NDC to window space |

v
| Back face culling H Triangle rasterization |
v
| Fragment shading |

| Depth testing |1—> Depth buffer

v
|Color update |—’ Framebuffer F—>
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Conceptual Vertex Transformation

1Vertex* :
iPI object-space coordinates Modelview eye-space coordinates User-defined
(XY o0rZorWo) matrix (XsYorZerW,) clip planes

commands (XooY 0rZos W)

clipped eye-space coordinates

(XerYerZesWe)

clip-space clipped clip-space
Projection coordinates coordinates _(Perspective
matrix (XY o Zo W) clip planes (XY erZerW,) 1d1v1510n

normalized device coordinates (NDC)

(XY Zo 1/W,)

Viewport + Depth Range
transformation
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window-space
coordinates . top rimitive
(YwzelWe) - pasterization




Pipeline View

homogeneous
// for perspectiv
nonsingula

;-

3D —= 2D

4D — 3D
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Computer Viewing

m There are three aspects of the viewing process, all
of which are implemented 1n the pipeline,

m Positioning the camera

mSetting the model-view matrix
m Selecting a lens

mSetting the projection matrix
m Clipping

mSetting the view volume
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The World and Camera Frames

® When we work with representations, we work with n-
tuples or arrays of scalars

m Changes in frame are then defined by 4 x 4 matrices

® In OpenGL, the base frame that we start with 1s the world
frame

m Eventually we represent entities in the camera frame by
changing the world representation using the model-view
matrix

m [nitially these frames are the same (M=I)
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Vertex Transtormation

m Object-space vertex position transformed by
a general linear projective transformation

m Expressed as a 4x4 matrix

Xe my m, Mg Myl | X,

Ve _ m, ms My M| ),

Z, m, mg My, Myl |2,
g % e TS |

University of Texas at Austin  CS354 - Computer Graphics Don Fussell



1w, The OpenGL Camera

® In OpenGL, 1nitially the object and camera
frames are the same

m Default model-view matrix 1s an 1dentity

® The camera 1s located at origin and points in
the negative z direction

® OpenGL also specifies a default view
volume that 1s a cube with sides of length 2
centered at the origin
m Default projection matrix 1s an identity
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Moving the Camera

If objects are on both sides of z=0, we must move
camera frame

M:

oS = O O
o O
S

c o o
o o = o

i 5 i
o /o

ﬁ yl yc
5 X'Xc XC
ZI ZC o ZC

(a) (b)
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Moving the Camera Frame

m [f we want to visualize object with both positive and negative
z values we can either

m Move the camera 1n the positive z direction
mTranslate the camera frame
m Move the objects in the negative z direction

mTranslate the world frame
m Both of these views are equivalent and are

determined by the model-view matrix

m Want a translation (glTranslatef(0.0,0.0,-d) ;)
md >0
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10/ Translate Transform

m Prototype
m gl Translatef(GLfloat x, GLfloat y, GLfloat z)

m Post-concatenates this matrix
1 0 O '
O 1 O

0 0 1
0 0 0

— N e =
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glTranslatef Matrix

m Modelview specification
m glloadldentity();
glTranslatef(0,0,-14)

m x translate=0, y translate=0, z translate=-14
m Point at (0,0,0) would move to (0,0,-14)

m Down the negative Z axis

m Matrix the translation vector
1 0 0 x] 1 0 0
01 0 y 0O 1 0
001 z| — |00 1 \-14
0O 0 0 O 0 0 0 1
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General Camera Motion

® We can position the camera anywhere by a
sequence of rotations and translations

m Example: side view A
®m Move camera to the origin
mRotate the camera
m Model-view matrix C = RT | -

A
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&/ OpenGL code

m Remember that last transformation specified
1s first to be applied

glMatrixMode (GL_MODELVIEW)
glLoadIdentity () ;

glRotatef (90.0, 0.0, 1.0, 0.0);
glTranslatef (0.0, 0.0, -d);
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A Better Viewing Matrix

m “Look at” Transform

m Concept
® Given the following
® a 3D world-space “eye” position

Primary OpenGL libraries
Link with —Iglut for GLUT
Link with —-IGLU for GLU
Link with —IGL for OpenGL

m a 3D world-space center of view position (looking “at”), and

= an 3D world-space “up” vector

® Then an affine (non-projective) 4x4 matrix can be constructed
m For a view transform mapping world-space to eye-space

® A ready implementation

® The OpenGL Utility library (GLU) provides it

m gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez,
GLdouble atx, GLdouble atz, GLdouble atz,
GLdouble upx, GLdouble upy, GLdouble upz);
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gluLookAt

gluLookAt (eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)

Y
(ot , at , ot ) i
\y z
(pr' Upy' UPZ) & (i
o | -X

7 (eye eye,, eye )
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“Look At~ in Practice

m Consider our prior view situation
m Instead of an arbitrary view...

® ...we just translated by 14 in negative Z direction
m gl Translatef(0,0,14)

® What this means in “Look At~ parameters
m (eyex,eyey,eyez) = (0,0,14)
m (atx,aty,atz) = (0,0,0)
® (upx,upy,upz) = (0,1,0)

Not surprising both are “just translates in Z”~
since the “Look At” parameters
already have use looking down the negative Z axis
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glTranslatef(0,0,-14)

1 0 0 O ]
01 0 O
0 01 -14
0 0 0 1

Same matrix,
same transform

glul.ookAt(0,0,14,
0,0,0,
0,1,0)

0 0]
0 O
1 -14
0 1

1 0O
0 1
0 0
0 0

Don Fussell




The “Look At Algorithm

® Vector math
m/=ecye—at
m 7 =normalize(Z) /* normalize means Z / length(Z) */
mY=up
m X=Y XZ /*xmeans vector cross product! */
mY=7xX /*orthgonalize */
m X = normalize(X)

® Y =normalize(Y)

® Then build the following affine 4x4 matrix

Warning: Algorithm is prone

G W€ y X, —-X-cepe] to failure if normalize divides
Y Yy Y. -Yeeype by zero (or very nearly does)
L, Z, Z, —ZLceye So
0 0 0 1 1. Don’t let Z or up be zero length vectors

2. Don’t let Z and up be coincident vectors
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gluLookAt(0,0,14, // eye (X,y,z)
0,0,0, //at(xy.,z)
0,1,0); //up (X,y,2)

Same as the glTranslatef(0,0,-14) as expected

gluLookAt(1,2.5,11, // eye (x,y,z)
0,0,0, // at (X,y,Z)
0,1,0); //up (X,Y,Z)

Similar to original, but just a little off angle
due to slightly perturbed eye vector
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gluLookAt(-2.5,11,1, // eye (x,y,z)
0,0,0, // at (X,y,Z)
0,1,0); /I'up (X,Y,Z)

. i’ ”
Eye is “above " the scene

gluLookAt(-2.5,-11,1, // eye (x,y,z)
0,0,0, // at (X,y,Z)
0,1,0); /I'up (X,Y,Z)

Eyeis “below” the scene
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gluLookAt(0,0,14, // eye (X,y,2)
2,-3,0, //at(x,y,z)
0,1,0); //up(x.y.2)

Original eye position, but “at” position shifted

gluLookAt(0,0,14, // eye (X,y,2)
0,0,0, // at (X,y,Z)
1,1,0);  //up (x,y,2)

Eyeis “below” the scene
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The LookAt Function

m The GLU library contains the function gluLookAt
to form the required modelview matrix through a
simple interface

m Note the need for setting an up direction
m Still need to initialize
m Can concatenate with modeling transformations

m Example: 1sometric view of cube aligned with axes

glMatrixMode (GL MODELVIEW) :
glLoadIdentity() ;
gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, O., 1.0. 0.0);
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Other Viewing APIs

® The LookAt function 1s only one possible
API for positioning the camera
® Others 1nclude

m View reference point, view plane normal, view
up (PHIGS, GKS-3D)

® Yaw, pitch, roll
m Elevation, azimuth, twist

m Direction angles
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Two Transforms 1in Sequence

® OpenGL thinks of the projective transform

as reall

FIRST
object-space
to

eye-space

SECOND
eye-space

to
clip-space

MV,
MV,
MV,

i
50U QU T T

M,
MY,
M,
M,

e o

0

LTS

1

MV

y two 4x4 matrix transforms

MV, | [x,
MI/B yo

MI/14 Zo

MV | |w

_xe_

Ve

Ze

We
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Another
16 Multiply-Add
operations



Modelview-Projection Transform

m Matrixes can associate (combine)

MVP,
MVP
MVP,
MVP,

mor often simply the “MVP” matrix

MVP, MVP,
MVP, MVP,

MVE,

MVP, MVP,

MVE,

MVE,
MVP,

MVP,

Matrix multiplication
1s associative (but not commutative)
A(BC) =(AB)C, but ABC£CBA

N\!

® Combination of the modelview and projection
matrix = modelview-projection matrix
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operations, done by OpenGL driver

R, P, R R,|[MY, MV, MV,,]
R £ L By |M) My, MV,
P, B B, B.DMY, MV, MV,
P E E, B |MY MYV, MV
N— 7

~""

concatenation is

64 Multiply-Add




Specifying the Transforms

m Specified in two parts

m First the projection Resulting projection matrix
m g|MatrixMode(GL _PROJECTION); 1125 0 0 0

m glFrustum(-4, +4, // left & right
-3, +3, // top & bottom 0 0 -1.1333 -10.667
5, 80); // near & far 0 0 -1 0

m Second the model-view
m glMatrixMode(GL MODELVIEW);

Resulting modelview matrix

m glloadldentity(); 1 0 0 0]
m glTranslatef(0, 0, -14); 0O 1 0 O
m So objects centered at (0,0,0) would 0 01 -14
be at (0,0,-14) in eye-space o o0 |
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Modelview-Projection Matrix

® Transform composition via matrix multiplication

125 0 0 0 1L 00 0°
0 1667 0 o |0 10 o
0 0 -L1333 -10.667| [0 0 1 -14

W o -1 0 |jo0oo0 1

125 0 0O |

0 1.667 0 0
0 0 -1.1333 5.2
0 0 -1 14

Resulting modelview-projection matrix

University of Texas at Austin  CS354 - Computer Graphics Don Fussell



) Now Draw Some Objects

m Draw a wireframe cube
m ¢lColor3f(1,0,0); // red
m glutWireCube(6);
® 6x6Xx6 unit cube centered at origin
(0,0,0)
m Draw a teapot in the cube
m ¢|Color3£(0,0,1); // blue

m glutSolidTeapot(2.0);
m centered at the origin (0,0,0)

® handle and spout point down the X
axis

m top and bottom in the Y axis

m As we d expect given a frustum
transform, the cube is in
perspective

m The teapot is too but more obvious
to observe with a wireframe cube
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What We’ ve Accomplished

® Simple perspective
m With glFrustum o

m Establishes how RS
eye-space maps to clip-space "
® Simple viewing m)
m With glTranslatef \
m Establishes how (0,0,14)

(0,0,0)
m All we really did was “wheel” the camera 14 units up the Z axis

® No actual “modeling transforms”, just viewing

®m Modeling would be rotating, scaling, or otherwise transform the
objects with the view

world-space maps to eye-space

m Arguably the modelview matrix is really just a “view™ matrix in this
example
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Some Simple Modeling

® Try some modeling transforms to move teapot
m But leave the cube alone for reference

-

glPushMatrix(); { glPushMatrix(); { glPushMatrix(); {
glTranslatef(1.5, -0.5, 0); glScalef(1.5, 1.0, 1.5); glRotatef(30, 1,1,1);
glutSolidTeapot(2.0); glutSolidTeapot(2.0); glutSolidTeapot(2.0);
} glPopMatrix(); } glPopMatrix(); } glPopMatrix();

We “bracket” the modeling transform with glPushMatrix/glPopMatrix commands
so the modeling transforms are “localized” to the particular object
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© O

glPushMatrix(); { glPushMatrix(); { glPushMatrix(); {
glTranslatef(1.5, -0.5, 0); glScalef(1.5, 1.0, 1.5); glRotatef(30, 1,1,1);
glutSolidTeapot(2.0); glutSolidTeapot(2.0); glutSolidTeapot(2.0);
} glPopMatrix(); } glPopMatrix(); } glPopMatrix();

We've not discussed lighting yet but per-vertex lighting allows
a virtual light source to “interact” with the object’s surface orientation and material properties
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Modelview-Projection Matrix ﬁt p.,

m [ et s consider the “combined” modelview matrix
with the rotation

m glRotate(30, 1,1,1) defines a £ 0.9107 -0.2440 03333 0
rotation matrix 0.3333 09107 -0.2440 0

. ~0.2440 03333 09107 0

m Rotating 30 degrees... . 0 o

® ...around an axis in the (1,1,1) direction

1.25 0 0 0 1 0 0 0 7] 7[09107 -0.2440 0.3333 O
0 1.667 0 0 0O 1 0 O 0.3333 09107 -0.2440 O
0 0 -1.1333 -10.667( {0 O 1 -14{( |-0.2440 0.3333 09107 O
0 0 -1 0 0 0 0 1 0 0 0 1
~ J\ J - _J
Y Y
projection view model
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Combining All Three

Matrix-by-matrix multiplication is 100 o0 1l 09107 —02440 03333
;S;;;lftg’e ;?\4 _— 010 0 03333 09107 —0.2440
~ Bl = P V) 0 0 1 -14 -0.2440 03333  0.9107
OpenGL keeps V and M “together” N L0 < 2 . 2
because eye-space is a convenient .Y B
space for lighting e model
125 0 0 0 09107 -0.2440 03333 O
0 1.667 0 0 0.3333 09107 -0.2440 O
0 0 -1.1333 -10.667 -0.2440 0.3333 09107 -14
0 0 -1 0 Il 0 0 0 1
g
a0 ~
ProjechoR modelview

1.1384 -0.3050 04167 O

0.5556 15178 -0.4067 O

0.2766 -0.3778 -1.0321 5.2
| 0.2440 -0.3333 -09107 14

) - 7

modelview-projection
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Object- to Clip-space

modelview
X,.] [0.9107 -02440 03333 0 1[Xe
o<t y 0.3333  0.910 0.2440 0 9
Xy ] [ 09107  —02440 0.3333 0] [Xpea Yoe | _ | ¥ I\ el Yobject
Voww | | 03333 09107 02440 0| |¥,pee Zge | [-0.2440 03333 09107 -14| 2.,
Zzoow | [-0.2440 03333 09107 0] |z, e 0 0 0 L[ Wotiea
Wworld 0 0 0 1 Wobject p?’O]QCthI/l
Xap] 125 0 0 0 Xye
_ o Yap|_| 0 1.667 0 0 Voye
Xe] 10 0 07X /. 0 0 -1.1333 -10.667||z,.
yeye _ 010 0 Yweorid Wclip 0 0 = 0 Weye
z,,| [0 0 1 -14||z,,, - B/
~—
Weel [0 0 0 1 ||w,. , _
: object-to-eye-to-clip
projection
Xap] [1.25 0 0 0 Xope
Vi 0 1.667 0 0 Vere dolvi =
= modelview-projection
Zap | | 0 0 -L1I333 -10.667| |z, X1 [1.1384 -03050 04167 07 [X,eu
Wap| [ 00 -1 0 ] [Woe Yap| 05556 15178 04067 0 ||V
7 Zyy | 102766 —-03778 -1.0321 52| |z
~—
Wap | [0.2440 -0.3333 09107 14| | W,y
object-to-world-to-eye-to-clip _J
~—
object-to-clip
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Each character, wall, ceiling, floor, and light have their own modeling transformation
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m Interested in object’ s boundary

m Various approaches 4

m Procedural representations
m Often fractal

L
P

>
AR R
£

)
2

43
<

%
U\
=

Fractal
tree
[Philip Winston]

1
"rr/r
Y h Q&
A4\ «’l‘:
X2

%

PN

'
=

m Explicit polygon (triangle) meshes
m By far, the most popular method

m Curved surface patches
m Often displacement mapped

IC1 ' Utah Teapot
m Implicit representation tah Teapot

= Blobby, volumetric

Blobby modeling in RenderMan
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Focus on Triangle Meshes

m Easiest approach to representing object boundaries

® So what 1s a mesh and how should it be stored?
m Simplest view
m A set of triangles, each with its “own” 3 vertices
m Essentially “triangle soup”
m Yet triangles in meshes share edges by design
m Sharing edges implies sharing vertices
m More sophisticated view
m Store single set of unique vertexes in array

® Then each primitive (triangle) specifies 3 indices into array of
vertexes

m More compact
m Vertex data size >> index size
® Avoids redundant vertex data

m Separates “topology~ (how the mesh is connected) from its
“geometry’ (vertex positions and attributes)
m Connectivity can be deduced more easily
m Makes mesh processing algorithms easier
m Geometry data can change without altering the topology
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Consider a Tetrahedron

m Simplest closed volume

m Consists of 4 triangles and 4 vertices
® (and 4 edges)

(x2,y2,72)
e triangle list  vertex list

0: vO,vl,v2 0: (x0,y0,z0)

V3 1:vl,v3,v2 1: (x1,yl,zl)
(x3,y3,23) 2:v3,v0,v2 2:(x2,y2,22)

- 3:vl,v0,v3 3:(x3,y3,z3)

(xLyl,zl) topology geometry
potentially on-GPU!

v0
(x0,y0,z1)
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Benefits of Vertex Array Approach

m Unique vertices are stored once

B Saves memory
m On CPU, on disk, and on GPU

m Matches OpenGL vertex array model of operation

® And this matches the efficient GPU mode of operation

® The GPU can “cache” post-transformed vertex results by
vertex index

m Saves retransformation and redundant vertex fetching
m Direct3D has the same model

m Allows vertex data to be stored on-GPU for even faster
vertex processing
m OpenGL supported vertex buffer objects for this
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Next Lecture

® More about triangle mesh representation
m Scene graphs
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