
University of Texas at Austin    CS354  -   Computer Graphics     Spring 2009   Don Fussell 

Hierarchical Modeling and Scene Graphs 

Adapted from material prepared by Ed Angel 



Objectives 

 Examine the limitations of linear modeling 
Symbols and instances 

  Introduce hierarchical models 
Articulated models 
Robots 

  Introduce Tree and DAG models 
 Examine various traversal strategies 
 Generalize the notion of objects to include lights, 
cameras, attributes 
  Introduce scene graphs  

 
University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Instance Transformation 

 Start with a prototype object (a symbol) 
 Each appearance of the object in the model 
is an instance 

Must scale, orient, position 
Defines instance transformation 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Relationships in Car Model 

 Symbol-instance table does not show relationships 
between parts of model 
 Consider model of car 

Chassis + 4  identical wheels 
Two symbols 

 
 
 Rate of forward motion determined by rotational 
speed of wheels 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Structure Through Function Calls 

car(speed){ 
    chassis() 
    wheel(right_front); 
    wheel(left_front); 
    wheel(right_rear); 
    wheel(left_rear); 
} 
 
•  Fails to show relationships well 
•  Look at problem using a graph 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Graphs 

 Set of nodes and edges (links) 
 Edge connects a pair of nodes 

Directed or undirected 
 Cycle: directed path that is a loop 

loop 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Tree 

  Graph in which each node (except the root) has exactly one 
parent node 

May have multiple children 
Leaf or terminal node: no children 

root node 

leaf node 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Tree Model of Car 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



DAG Model 

  If we use the fact that all the wheels are identical, 
we get a directed acyclic graph 

Not much different than dealing with a tree 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Modeling with Trees  

 Must decide what information to place in nodes 
and what to put in edges 
 Nodes 

What to draw 
Pointers to children 

 Edges 
May have information on incremental changes to 
transformation matrices (can also store in nodes) 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Robot Arm 

robot arm 
parts in their own  
coodinate systems 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Articulated Models 

 Robot arm is an example of an articulated 
model 

Parts connected at joints 
Can specify state of model by  

giving all joint angles 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Relationships in Robot Arm 

 Base rotates independently 
Single angle determines position 

 Lower arm attached to base 
Its position depends on rotation of base 
Must also translate relative to base and rotate 
about connecting joint 

 Upper arm attached to lower arm 
Its position depends on both base and lower arm 
Must translate relative to lower arm and rotate 
about joint connecting to lower arm 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Required Matrices 

 Rotation of base: Rb 

Apply M = Rb to base 
 Translate lower arm relative to base: Tlu 

 Rotate lower arm around joint: Rlu 

Apply M = Rb Tlu Rlu to lower arm 

 Translate upper arm relative to upper arm: Tuu 

 Rotate upper arm around joint: Ruu 

Apply M = Rb Tlu Rlu Tuu Ruu to upper arm 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



OpenGL Code for Robot 

robot_arm(){ 
    glRotate(theta, 0.0, 1.0, 0.0); 
    base(); 
    glTranslate(0.0, h1, 0.0); 
    glRotate(phi, 0.0, 0.0, 1.0); 
    lower_arm(); 
    glTranslate(0.0, h2, 0.0); 
    glRotate(psi, 0.0, 0.0, 1.0); 
    upper_arm(); 
} 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Tree Model of Robot 

 Note code shows relationships between 
parts of model 

Can change “look” of parts easily without 
altering relationships 

 Simple example of tree model 
 Want a general node structure 

for nodes 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Possible Node Structure 

Code for drawing part or 
pointer to drawing function  

linked list of pointers to children 

matrix relating node to parent 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Generalizations 

 Need to deal with multiple children 
How do we represent a more general tree? 
How do we traverse such a data structure? 

 Animation 
How to use dynamically? 
Can we create and delete nodes during 
execution? 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Humanoid Figure 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Building the Model 

 Can build a simple implementation using quadrics: 
ellipsoids and cylinders 
 Access parts through functions 

torso() 
left_upper_arm() 

 Matrices describe position of node with respect to 
its parent 

Mlla positions left lower leg with respect to left upper 
arm 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Tree with Matrices 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Display and Traversal 

 The position of the figure is determined by 11 
joint angles (two for the head and one for each 
other part) 
 Display of the tree requires a graph traversal 

Visit each node once 
Display function at each node that describes the part 
associated with the node, applying the correct 
transformation matrix for position and orientation 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Transformation Matrices 

 There are 10 relevant matrices 
M positions and orients entire figure through 
the torso which is the root node 
Mh positions head with respect to torso 
Mlua, Mrua, Mlul, Mrul position arms and legs 
with respect to torso 
Mlla, Mrla, Mlll, Mrll position lower parts of 
limbs with respect to corresponding upper 
limbs 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Stack-based Traversal 

 Set model-view matrix to M and draw torso 
 Set model-view matrix to MMh and draw 
head 
 For left-upper arm need MMlua and so on 
 Rather than recomputing MMlua from scratch 
or using an inverse matrix, we can use the 
matrix stack to store M and other matrices as 
we traverse the tree 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Traversal Code 
figure() { 
   glPushMatrix() 
   torso(); 
   glRotate3f(…); 
   head(); 
   glPopMatrix(); 
   glPushMatrix(); 
   glTranslate3f(…); 
   glRotate3f(…); 
   left_upper_arm(); 
   glPopMatrix(); 
   glPushMatrix(); 

save present model-view matrix 

update model-view matrix for head 

recover original model-view matrix 

save it again 

update model-view matrix  
for left upper arm 

recover and save original  
model-view matrix again 

rest of code 
University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Analysis 

 The code describes a particular tree and a 
particular traversal strategy 

Can we develop a more general approach? 

 Note that the sample code does not include 
state changes, such as changes to colors 

May also want to use glPushAttrib and 
glPopAttrib to protect against unexpected 
state changes affecting later parts of the code 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



General Tree Data Structure 

 Need a data structure to represent tree and 
an algorithm to traverse the tree 
 We will use a left-child right sibling 
structure 

Uses linked lists 
Each node in data structure is two pointers 
Left: next node 
Right: linked list of children 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Left-Child Right-Sibling Tree 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Tree node Structure 

 At each node we need to store  
Pointer to sibling 
Pointer to child 
Pointer to a function that draws the object represented 
by the node 
Homogeneous coordinate matrix to multiply on the 
right of the current model-view matrix 
 Represents changes going from parent to node 
 In OpenGL this matrix is a 1D array storing matrix 
by columns  

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



C Definition of treenode 

typedef struct treenode { 
   GLfloat m[16]; 
   void (*f)(); 
   struct treenode *sibling; 
   struct treenode *child; 
} treenode; 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Defining the torso node 

treenode torso_node, head_node, lua_node, … ; 
 /* use OpenGL functions to form matrix */ 
glLoadIdentity(); 
glRotatef(theta[0], 0.0, 1.0, 0.0); 
 /* move model-view matrix to m */ 
glGetFloatv(GL_MODELVIEW_MATRIX, torso_node.m) 

 
torso_node.f = torso; /* torso() draws torso */ 
Torso_node.sibling = NULL; 
Torso_node.child = &head_node; 

  

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Notes 

 The position of figure is determined by 11 joint 
angles stored in theta[11] 
 Animate by changing the angles and redisplaying 
 We form the required matrices using glRotate 
and glTranslate  

More efficient than software 
Because the matrix is formed in model-view 
matrix, we may want to first push original 
model-view matrix on matrix stack 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Preorder Traversal 
void traverse(treenode *root){ 
  if(root == NULL) return; 
  glPushMatrix(); 
  glMultMatrix(root->m); 
  root->f(); 
  if(root->child != NULL)  
     traverse(root->child); 
  glPopMatrix(); 
  if(root->sibling != NULL)  
     traverse(root->sibling); 
} 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Notes 

 We must save model-view matrix before 
multiplying it by node matrix  

Updated matrix applies to children of node but not to 
siblings which contain their own matrices 

 The traversal program applies to any left-child 
right-sibling tree 

The particular tree is encoded in the definition of the 
individual nodes 

 The order of traversal matters because of possible 
state changes in the functions 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Dynamic Trees 

  If we use pointers, the structure can be dynamic 

typedef treenode *tree_ptr; 
tree_ptr torso_ptr; 
torso_ptr = malloc(sizeof(treenode)); 
 

 Definition of nodes and traversal are essentially 
the same as before but we can add and delete 
nodes during execution 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Limitations of Immediate Mode 
Graphics 

 When we define a geometric object in an 
application, upon execution of the code the 
object is passed through the pipeline  
 It then disappears from the graphical system 
 To redraw the object, either changed or the 
same, we must reexecute the code 
 Display lists provide only a partial solution 
to this problem 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



OpenGL and Objects 

 OpenGL lacks an object orientation 
 Consider, for example, a green sphere 

We can model the sphere with polygons or use 
OpenGL quadrics 
Its color is determined by the OpenGL state and 
is not a property of the object 

 Defies our notion of a physical object 
 We can try to build better objects in code 
using object-oriented languages/techniques 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Imperative Model 

 Example: rotate a cube 

 The rotation function must know how the cube is 
represented 

Vertex list 
Edge list 

Application glRotate 

cube data 

results 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Object-Oriented Model 

•  In this model, the representation is stored with the object  

 
•  The application sends a message to the object 
•  The object contains functions (methods) which allow it 

to transform itself 

Application Cube Object 
message 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



C/C++ 

 Can try to use C structs to build objects  
 C++ provides better support 

Use class construct 
Can hide implementation using public, private, 
and protected members in a class 
Can also use friend designation to allow classes 
to access each other 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Cube Object 

 Suppose that we want to create a simple cube 
object that we can scale, orient, position and 
set its color directly through code such as 

cube mycube; 
mycube.color[0]=1.0; 
mycube.color[1]= 
mycube.color[2]=0.0; 

mycube.matrix[0][0]=………  

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Cube Object Functions 

 We would also like to have functions that act 
on the cube such as  
mycube.translate(1.0, 0.0,0.0); 
mycube.rotate(theta, 1.0, 0.0, 
0.0); 
setcolor(mycube, 1.0, 0.0, 0.0); 

 We also need a way of displaying the cube 
mycube.render(); 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Building the Cube Object 
class cube { 
   public: 
      float color[3]; 
      float matrix[4][4]; 
   // public methods 
 
   private: 
 
   // implementation 
 
} 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



The Implementation 

 Can use any implementation in the private part 
such as a vertex list 
 The private part has access to public members and 
the implementation of class methods can use any 
implementation without making it visible 
 Render method is tricky but it will invoke the 
standard OpenGL drawing functions such as 
glVertex 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Other Objects 

 Other objects have geometric aspects 
Cameras 
Light sources 

 But we should be able to have nongeometric 
objects too 

Materials 
Colors 
Transformations  (matrices) 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Application Code 

cube mycube; 
material plastic; 
mycube.setMaterial(plastic); 
 
camera frontView; 
frontView.position(x ,y, z); 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Light Object 

class light {    // match Phong model 
  public: 
   boolean type; //ortho or perspective 
   boolean near; 
   float position[3]; 
   float orientation[3]; 
   float specular[3]; 
   float diffuse[3]; 
   float ambient[3]; 
} 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Scene Descriptions 

  If we recall figure model, we saw that  
We could describe model either by tree or by equivalent 
code 
We could write a generic traversal to display 

  If we can represent all the elements of a scene 
(cameras, lights,materials, geometry) as C++ 
objects, we should be able to show them in a tree 

Render scene by traversing this tree 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Scene Graph 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Preorder Traversal 
glPushAttrib 
glPushMatrix  
glColor 
glTranslate 
glRotate 
Object1 
glTranslate 
Object2 
glPopMatrix 
glPopAttrib 
… 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Separator Nodes 

 Necessary to isolate state chages 
Equivalent to OpenGL Push/Pop 

 Note that as with the figure model 
We can write a universal traversal algorithm 
The order of traversal can matter  
 If we do not use the separator node, state 
changes can propagate 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



Inventor and Java3D 

  Inventor and Java3D provide a scene graph API  
  Scene graphs can also be described by a file (text or 
binary) 

Implementation independent way of transporting scenes 
Supported by scene graph APIs 

  However, primitives supported should match capabilities 
of graphics systems 

Hence most scene graph APIs are built on top of 
OpenGL or DirectX (for PCs) 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 



VRML 

 Want to have a scene graph that can be used 
over the World Wide Web 
 Need links to other sites to support 
distributed data bases 
Virtual Reality Markup Language 

Based on Inventor data base 
Implemented with OpenGL 

University of Texas at Austin    CS354  -   Computer Graphics     Don Fussell 


