
University of Texas at Austin CS354 - Computer Graphics Don Fussell

Orientation & Quaternions

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Orientation

Position and Orientation

 The position of an object can be represented
as a translation of the object from the origin
 The orientation of an object can be
represented as a rotation of an object from
its original unrotated orientation.

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Position

 Cartesian coordinates (x,y,z) are an easy
and natural means of representing a position
in 3D space
 Of course, there are many other frames such
as polar notation (r,θ,φ)

Orientation

 Several ways to represent a rotation:
Euler angles
Rotation vectors (axis/angle)
3x3 matrices
Quaternions
…

Direct Matrix Representation

 Matrices are how we apply rotations to geometric
data, so generally orientation representations need
to be converted to matrix form to actually perform
the rotation specified
 Why consider other representations?

Numerical issues
Storage issues
User interaction issues
Interpolation issues

Direct Matrix Representation

  Recall that an orthonormal matrix performs an arbitrary
rotation.
  Given 3 mutually orthogonal unit vectors:

  A rotation of a onto the x axis, b onto the y axis, and c onto
the z axis is performed by:

a = b× c b = c×a c = a×b
a = b = c = 1

ax ay az 0

bx by bz 0

cx cy cz 0

0 0 0 1

!

"

#
#
#
#
#

$

%

&
&
&
&
&

Euler’s Theorem

 Euler’s Theorem: Any two independent
orthonormal n-dimensional coordinate frames can
be related by a sequence of no more than n
rotations about basis vectors (coordinate axes)
such that consecutive rotations are about distinct
basis vectors.
 Leonhard Euler (1707-1783)
 Nothing to do with Euler integration, Newton-
Euler dynamics, Euler’s Formula, Euler equations,
Euler characteristic…

Euler Angles

  We can represent an orientation in 3-d Euclidean space
with 3 numbers
  Such a sequence of rotations around basis vectors is called
an Euler Angle Sequence
  We’ll normally use the sequence ijk (x y z)
  But we could also use:

 ikj iji iki jik
 jki jij jkj kij
 kji kik kjk

Matrix for Euler Angles

Matrix for our canonical ijk ordering:

RxRyRz =

1 0 0 0
0 cosx sin x 0
0 −sin x cosx 0
0 0 0 1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

cosy 0 −sin y 0

0 1 0 0
sin y 0 cosy 0

0 0 0 1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

cosz sinz 0 0
−sinz cosz 0 0
0 0 1 0
0 0 0 1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

=

cycz cysz −sy 0

sxsycz − cxsz sxsysz + cxcz sxcy 0

cxsycz + sxsz cxsysz − sxcz cxcy 0

0 0 0 1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

Local vs. World Coordinates

 Matrix multiplication is not commutative - the
order of operations is important
 Rotations are normally assumed to be relative to
world coordinate axes, not local object coordinates
 Reversing the sequence order gives a local object
coordinate representation

Vehicle Orientation

 Generally, for vehicles, it is most convenient to
rotate in roll (z), pitch (y), and then yaw (x)
 This is a local coordinate representation
 Note that it’s the reverse of our canonical world
coordinate order
 This is quite intuitive where

we have a well-defined up
direction

x

y

z

front of vehicle

Gimbal Lock

 A common problem with Euler angles is
gimbal lock
 This results when two axes coincide after a
rotation by some integer multiple of 90o
about a third axis, resulting in a singularity,
i.e. a loss of a degree of freedom
 What is the longitude at the north or south
pole?

Interpolating Euler Angles

 One can simply interpolate between the three
values independently
 This will result in the interpolation following a
different path depending on which of the 12
schemes you choose
  Interpolating near the ‘poles’ can be problematic

Pros and Cons of Euler Angles

 Pro
Compact (only 3 numbers)

 Con
Do not interpolate in a consistent way (pro or
con)
Gimbal lock
Not simple to concatenate rotations

Axis/Angle Representation

 Euler’s Theorem shows that any two orientations
can be related by a single rotation about some axis
vector (not necessarily a basis vector)
 This means that we can represent an arbitrary
orientation as a rotation about some unit axis
vector by some angle (4 numbers)

Axis/Angle Representation

  Storing an orientation as an axis and an angle uses 4
numbers, but Euler’s Theorem says that we only need 3
numbers to represent an orientation
  Thus there is redundant information, the magnitude of the
axis vector, in the axis/angle representation,
  Normalizing the axis vector constrains the extra degree of
freedom since if we know the vector is unit length, we can
get its third direction cosine if we know the other two.

Axis/Angle (OpenGL) Rotation Matrix

Given arbitrary unit axis vector a=(ax,ay,az)
and counterclockwise rotation angle θ:

ax
2 + cθ (1− ax

2) axay (1− cθ)+ azsθ axaz (1− cθ)− aysθ 0

axay (1− cθ)− azsθ ay
2 + cθ (1− ay

2) ayaz (1− cθ)+ axsθ 0

axaz (1− cθ)+ aysθ ayaz (1− cθ)− axsθ az
2 + cθ (1− az

2) 0

0 0 0 1

"

#

$
$
$
$
$
$

%

&

'
'
'
'
'
'

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Quaternions

Quaternions

 Quaternions are an extension of complex numbers
that provide a way of rotating vectors just as
vectors translate points
 Discovered by Hamilton in 1843 (and Gauss in
1819, but he didn’t publish)
 For graphics, they are most useful as a means of
representing orientations (rotations)

Quaternions

  Quaternions are an extension of complex numbers with 3
square roots of -1 (ijk) instead of just i
  The first component is a scalar real number, the other 3
form a vector in right-handed ijk space

  or you can write it explicitly as a scalar and a vector

q = s+ iq1 + jq2 + kq3 i2 = j2 = k2 = ijk = −1where

vq ,s= where v = q1 q2 q3!
"

#
$

Unit Quaternions

  For representing rotations or orientations, 4 numbers is
once again 1 too many, so as with axis/angle we use only
unit length quaternions

  These correspond to the set of vectors that form the
hypersurface of a 4D hypersphere of radius 1
  The hypersurface is actually a 3D volume in 4D space, but
it can sometimes be visualized as an extension to the
concept of a 2D surface on a 3D sphere

q = s2 + q1
2 + q2

2 + q3
2 =1

Unit Quaternions as Rotations

 A unit quaternion represents a rotation by an angle
θ around a unit axis vector a as:

  If a is unit length, q is too

q = cosθ
2

ax sin
θ
2

ay sin
θ
2

az sin
θ
2

!

"
#
#

$

%
&
&

or

q = cosθ
2
,asinθ

2

Unit Quaternions as Rotations

q = s2 + q1
2 + q2

2 + q3
2

= cos2 θ
2
+ ax

2 sin2 θ
2
+ ay

2 sin2 θ
2
+ az

2 sin2 θ
2

= cos2 θ
2
+ sin2 θ

2
ax
2 + ay

2 + az
2()

= cos2 θ
2
+ sin2 θ

2
a 2 = cos2 θ

2
+ sin2 θ

2
= 1 =1

Conjugation Performs Rotation
  Quaternions can represent vectors by setting the scalar part
to 0 (i.e. the axis vector with 0 rotation).
  This vector (quaternion) needn’t be unit length.
  Rotate the vector counterclockwise by angle θ about axis a
by conjugating it with a unit quaternion representing the
rotation

where

University of Texas at Austin CS354 - Computer Graphics Don Fussell

v = 0,v

q = cosθ
2
,asinθ

2
!v = qvq−1 !v = 0, !v

q−1 =
cos−θ

2
,asin −θ

2
q 2 = cosθ

2
,−asinθ

2

Quaternion Multiplication

  We can perform multiplication on quaternions if we
expand them into their complex number form

  If q represents a rotation and q’ represents a rotation, then
qq’ represents q rotated by q’
  This follows very similar rules as matrix multiplication (in
particular it is not commutative)

q = s+ iq1 + jq2 + kq3

q !q = s+ iq1 + jq2 + kq3() !s + i !q1 + j !q2 + k !q3()
= s !s − v ⋅ !v , s !v + !s v+ v× v

Quaternion Multiplication

 Note that, just like complex numbers, two unit
quaternions multiplied together will result in
another unit quaternion
 Multiplication by complex numbers can be
thought of as a rotation in the complex plane
 Quaternions extend the planar rotations of
complex numbers to 3D rotations in space
 So, in summary, multiplying unit quaternions in a
particular order results in a unit quaternion that
does the rotation that is performed by the two
original rotations in that order.

Unit Quaternion to Matrix

1− 2q2
2 − 2q3

2 2q1q 2+2sq 3 2q1q 3−2sq 2 0

2q1q 2−2sq 3 1− 2q1
2 − 2q3

2 2q 2q 3+2sq1 0

2q1q 3+2sq 2 2q 2q 3−2sq1 1− 2q1
2 − 2q2

2 0
0 0 0 1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

 Matrix for unit quaternion:

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Quaternion Interpolation

Linear Interpolation

  If we want to do a linear interpolation between two points
a and b in normal space

 Lerp(t,a,b) = (1-t)a + (t)b

 where t ranges from 0 to 1
  This is a (convex) affine combination of points
  It can of course also be written

 Lerp(t,a,b) = a + t(b-a)

Spherical Linear Interpolation

  If we want to interpolate between two points on a
sphere (or hypersphere), we don’t just want to
Lerp between them

  Instead, we will travel across the surface of the
sphere by following a great arc

Spherical Linear Interpolation

 Geometrically, the spherical linear
interpolation of two unit vectors in N
dimensional space is given by:

Slerp(t,a,b) =
sin 1− t()θ()

sinθ
a+
sin tθ()
sinθ

b

where θ = cos−1 a ⋅b()

Quaternion Interpolation

  Remember that there are two redundant vectors in
quaternion space for every unique orientation in 3D space
  What is the difference between:

 Slerp(t,a,b) and Slerp(t,-a,b) ?

  One of these will travel less than 90 degrees while the
other will travel more than 90 degrees across the sphere
  This corresponds to rotating the ‘short way’ or the ‘long
way’
  Usually, we want to take the short way, so we negate one
of them if their dot product is < 0

Quaternion Summary

  Quaternions are 4D vectors that can represent 3D rigid
body orientations
  We use unit quaternions for orientations (rotations)
  Quaternions are more compact than matrices to represent
rotations/orientations
  Key operations:

Quaternion multiplication: faster than matrix multiplication for
combining rotations
Quaternion conjugation: faster than matrix vector multiplication
for performing rotations
Quaternion to matrix: to combine quaternion rotations with other
affine transforms
Slerp: to interpolate between arbitrary orientations

