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Vectors

A vector 1s a direction and a magnitude
Does NOT include a point of reference
Usually thought of as an arrow 1n space
Vectors can be added together and multiplied by scalars

Zero vector has no length or direction
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Vector Spaces

Set of vectors
Closed under the following operations

m Vector addition: v, + v, = v;

m Scalar multiplication: s v, =v,

n

® Linear combinations: 2 av,=yVv
=

Scalars come from some field F

m c.g. real or complex numbers
Linear independence
Basis

Dimension
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Vector Space Axioms

m Vector addition 1s associative and commutative

m Vector addition has a (unique) identity element
(the 0 vector)

m Each vector has an additive inverse

® So we can define vector subtraction as adding an
Inverse

m Scalar multiplication has an identity element (1)

m Scalar multiplication distributes over vector
addition and field addition

m Multiplications are compatible (a(bv)=(ab)v)
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Coordinate Representation

m Pick a basis, order the vectors 1n it, then all
vectors 1n the space can be represented as
sequences of coordinates, 1.e. coefficients of
the basis vectors, 1n order.

m Example:

m Cartesian 3-space

mBasis: [1 j K]

® Linear combination: xi + yj + zk

m Coordinate representation: [x y z]

alx, » zl+dlx, y, z]=lax +bx, ay +by, az +bz,]
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Row and Column Vectors

®m We can represent a vector, v = (Xx,y), in the plane

® as a column vector

M as a row vector [.X y]
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[inear Transformations

m Given vector spaces V and W

m A function f:V — W is a linear map or
l[inear transformation 1f

fav, +...4a v )=a,f(V)+...+a f(Vv )
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Transformation Representation

®m We can represent a 2-D transformation M by a matrix

M —
c d
m Ifvis acolumn vector, M goes on the left: v'=Mv
x| | a b X
y c d ||y

m [fvisarow vector, M goes on the right: v'=vM"
ESSUESd B
b d
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Two-dimensional transformations

m Here's all you get with a 2 x 2 transformation

matrix M:
x'| la bllx
Y| e d]|y

mSo: x'=ax+by

y =cx+dy

®m We will develop some intimacy with the
elements a, b, ¢, d...
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Identity

® Suppose we choose a=d=1, b=c=0:
m Gives the identity matrix:
4o
-O 1-

® Doesn't change anything
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Scaling

m Suppose b=c=0, but let a and d take on any positive value:
m Gives a scaling matrix: |[g O

0 d

m Provides differential (non-uniform) scaling in x and y:

Y
A

>\

[2 0} x'=ax

0 2 yl=dy

>

23 & [°8

1 2
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Reflection

m Suppose b=c=0, but let either a or d go negative.

m Examples:

-
>
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Shear

® Now leave a=d=1 and experiment with b

1 b
0 1

® The matrix

gives: X' =x+by
="y

1 1
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Effect on unit square

m Let's see how a general 2 x 2 transformation
M affects the unit square:

a bl
r s|l=(p q r ¢
Cd_[Pq |=[p" 4 ]
a bI[0O 1 1 0O O a a+b b
c d|l0 0 1 1] [0 ¢ c+d d
1 A
1S r
P 9 > X > X

1
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Effect on unit square, cont.

m Observe:
m Origin invariant under M

m M can be determined just by knowing how the
corners (1,0) and (0,1) are mapped

ma and d give x- and y-scaling

m) and c give x- and y-shearing
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Rotation

®m From our observations of the effect on the unit square, it
should be easy to write down a matrix for “rotation about

the origin”:

y y

A } 1]  [cos(6)
0] [sin(6)
! < 0] [-sin(6)
. 5 1] | cos(0)
Thus cos(8) -—sin(6
V= Ry =[O —5in®)

sin(0) cos(0)
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[Linear transformations

® The unit square observations also tell us the 2x2 matrix transformation
implies that we are representing a vector in a new coordinate system:

v =My

|

o

=
S

=X'U+y'W

®m where u=[a c]' and w=[b d]T are vectors that define a new basis for a
linear space.

m The transformation to this new basis (a.k.a., change of basis) is a
linear transformation.
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[_.imitations of the 2 x 2 matrix

m A 2 x 2 linear transformation matrix allows
m Scaling
m Rotation
m Reflection

m Shearing

® (Q: What important operation does that
leave out?
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® A point 1s a location 1n space
m Cannot be added or multiplied together
m Subtract two points to get the vector between them

m Points are not vectors p

©

Q—-R
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Aftine transtormations

® In order to incorporate the 1dea that both the basis and the
origin can change, we augment the linear space u, w with
an origin t.

m Note that while u and w are basis vectors, the origin tis a
point.

m We call u, w, and t (basis and origin) a frame for an affine
space.

®m Then, we can represent a change of frame as:
P=xu+y w+t

m This change of frame 1s also known as an affine
transformation.

®m How do we write an affine transformation with matrices?
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Basic Vector Arithmetic

r X r+Xx ax
u=| s v=| y u+v=| s+y av=| ay

[V[=yx*+y*+2>  norm(v)=—"
vl
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Parametric line segment

® Or line, or ray, or just linear interpolation
P =P, +1(P, =P)=(1-1)p, +1P,
VN | X, | . X, — X, I~ (1-1)x,+1x

Y (=] Yo [T Y=o (I-0)y, +ty,
i < J ZO ZI_ZO (l_t)ZO +tZ1

mLine segment O=t=<1l
mRay O<st=so
m[ine —0 <<
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Vector dot product

‘l

u-v=rx+sy+z=|ufv|cos(¢)
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. " u-'v
m Projection (u component paralleltov) W=——V
V'V

mRejection (u component orthogonal tov) U—w

m Particularly useful when vectors are normalized
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i jJ k SZ— 1ty
w=uxv=|r § [ |[=| tx-rZ
X y z ry — SX

mw 1s orthogonal to u and v

= [[w] = Jul]]v]sin()

m |w|| area of parallelogram

m use right-hand rule
muxv=—(vxu)
(UXV)XW=zUX(VXW) JJul|
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Determinants

a b
=ad —bc
c d
a b c
d
RN f o R R
A hoi g i g h

mdet(M?) = det(M)
mdet(AB) = det(A)det(B)

mif det(M) = 0, M 1s singular, has no inverse
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Plane equation

® Given normal vector N orthogonal to the
plane and any point p in the plane N-p+d =0

X

[abc]y

m For a triangle

4

+d=ax+by+cz+d=0
Normal

Vertex 2

Vertex 1

N =norm((v,-v,)x(v,—-V,))

® Order matters, usually CCW

Vertex 0
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Homogeneous Coordinates

m To represent transformations among affine frames, we can loft the
problem up into 3-space, adding a third component to every point:

p'=Mp
4 b t, X
=l ¢ d 1, y
o0 1| 1
X
=[u w t] y
1_

=x'u+y w+l-t
® Note that [a ¢ 0]" and [b d 0]" represent vectors and
[z, ¢, 11", [x y 1]" and [x'y" 1]" represent points.
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Homogeneous coordinates

This allows us to perform translation as well as the linear
transformations as a matrix operation:
p, = MTp
] [1 0 £][x

y =10 1 «z{|y

1] (0 0 TIj[1
x'=x+1t,
y=y+t,
Yy Yy
I 0 1
1 1 0 1 12
0 0 1

> X t > X

1 1
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Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, R,
about any point q = [q, g, 1]" with a matrix:

v . y y y
AT s A AQ

- .

q

1. Translate q to origin
2. Rotate

3. Translate back
Line up the matrices for these step in right to left order and multiply.

Note: Transformation order is important!!
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Points and vectors

From now on, we can represent points as have an additional coordinate of w=1.

Vectors have an additional coordinate of w=0. Thus, a change of origin has no
effect on vectors.

Q: What happens if we multiply a matrix by a vector?

These representations reflect some of the rules of affine operations on points and

vectors:
vector + vector —

vector - vector —
point —point —
point + vector —
point + point —

One useful combination of affine operations is: P(?) =P, + 1V

Q: What does this describe?
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Barycentric coordinates

A set of points can be used to create an affine frame. Consider a

triangle ABC and a point p:

C

A

B

We can form a frame with an origin C and the vectors from C to the

other vertices:

u=A-C v=B-C t=C

We can then write P in this coordinate frame p=ocu+ v+t

The coordinates («, B, y) are called the barycentric coordinates of

p relative to A, B, and C.
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Computing barycentric coordinates

For the triangle example we can compute the barycentrlc
coordinates of P: A B Clla] [p,

aA+pBB+yC=|A, B, C,||B|=|p,
1 1 1]|y| |1]

Cramer s rule gives the solution:

p, B, C, A, p, C, A, B, p,

py By Cy Ay py Cy Ay B)’ py

1 1 1 1 1 1 1 1 1
o= b= Y=

Ax Bx Cx Ax Bx Cx Ax Bx Cx

Ay B)’ Cy Ay By Cy Ay By Cy

1 1 1 1 1 1 1 1 1

Computing the determinant of the denominator gives:
B.C,-BC,+AC,-AC, +AB, -AB,
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Barycentric coords from area ratios

Now, let’ s rearrange the equation from two slides ago:
BC -BC +AC.-AC +AB -AB,
=(B,-A)C,-A)-(B,-A)C,-A)

The determinant is then just the z-component of
(B-A) x (C-A), which 1s two times the area of triangle ABC!
Thus, we find:

- SArea(pBC)
SArea(ABC)

_ SArea(ApC) _ SArea(ABp)
SArea(ABC) 4 SArea(ABC)

p

Where SArea(RST) is the signed area of a triangle, which can
be computed with cross-products.
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Affine and convex combinations

Note that we seem to have added points together, which we said was
illegal, but as long as they have coefficients that sum to one, it’ s ok.

We call this an affine combination. More generally pP=Q,p; +...+ &, p,
n

is a proper affine combination if: 2(1, =1
/=

Note that if the ¢; ‘s are all positive, the result is more specifically called a

convex combination.

Q: Why is it called a convex combination?
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Basic 3-D transformations: scaling

Some of the 3-D transformations are just like
the 2-D ones.

For example, scaling:

i y X'l [s. 0 0 O][x
y| 10 s, 0 0Oy
Z| o o s, 0]|z
""" 2 7 ] oo oo 1
2 z
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Translation in 3D

X'l [1 0 0 ¢]|[x
y|1 10 1 0 ¢]|y
Zl |0 0 1 ]|z
1] o 0 0 1|1
3
b | y
------ X - > X
z z
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Rotation 1n 3D

Rotation now has more possibilities in 3D:

1 0 0 0
0O cos(@) -sin(6) O
RO=| A
0O sin(@) cos(6) O 4R,
0 0 0 1
(cos(@) 0 sin(@) O O x
0 1 0 0 R Ry
R(O)=| . S
—sin(@) 0 cos(8) 0
[0 0 0 1 Use right hand rule
‘cos(8) -sin(@) 0 O
sin(f) cos(8) 0 O
R (@)-| O 5O
0 0 1 O
0 0 0 1
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Shearing 1n 3D

m Shearing 1s also more complicated. Here is one

example:

-x,-
yl
Zl

L 1 -

.........

z

1 b 0 0]

=) =) @)

"
y
2
1-

Ol —
o = O

0
0
1_

A

m We call this a shear with respect to the x-z plane.
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) Preservation of affine combinations

A transformation F'1s an affine transformation if 1t preserves affine

combinations: Flap,+...+op )= F{p)+...+a F(p,)

n
where the p, are points, and: a; = 1

=
Clearly, the matrix form of F has this property.
One special example is a matrix that drops a dimension. For example:

_ -x-
Y11 0o o0

yl=lo 1 0 ol
Sk _0001_i

This transformation, known as an orthographic projection, is an affine
transformation.

We’ 1l use this fact later. ..
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Properties of affine transtormations

m Here are some useful properties of affine
transformations:

® Lines map to lines
m Parallel lines remain parallel

® Midpoints map to midpoints (in fact, ratios are
always preserved)

University of Texas at Austin  CS354 - Computer Graphics Don Fussell



Next Lecture

m More about ray tracing, math, and transforms
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Thanks

® Some material for these slides provided by
Christian Miller
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