Particle Systems
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Reading

m Required:
m Witkin, Particle System Dynamics, SIGGRAPH 97
course notes on Physically Based Modeling.
m Witkin and Baraff, Differential Equation Basics,
SIGGRAPH " 01 course notes on Physically Based
Modeling.

m Optional

m Hocknew and Eastwood. Computer simulation using
particles. Adam Hilger, New York, 1988.

® Gavin Miller. “The motion dynamics of snakes and
worms. Computer Graphics 22:169-178, 1988.
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What are particle systems?

m A particle system 1s a collection of point
masses that obeys some physical laws (e.g,
gravity, heat convection, spring behaviors,

)l

m Particle systems can be used to simulate all

sorts of physical phenomena:
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Particle 1n a flow field

®m We begin with a single particle with:
x] y
y

dx/ dt] \/

dy /dt

mPosition, X

N

. L dx
mVelocity, v=x=—-=
y, dt [

X

m Suppose the velocity 1s actually dictated by

some driving function g: -
X = g(X,?)
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Vector fields

® At any moment 1n time, the function g defines a
vector field over x:

/\

-~/

m How does our particle move through the vector
field?
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Diff egs and integral curves

m The equation et (%)
1s actually a first order differential equation.

m We can solve for x through time by starting at an 1initial
point and stepping along the vector field:

Start Here

m This 1s called an initial value problem and the solution is
called an integral curve.
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Euler s method

One simple approach is to choose a time step, A¢, and take linear steps
along the flow: 21 | Af) = R(1) + A+ X() = X(1) + At g(%.1)

Writing as a time 1teration: XM o ¥ ALV

This approach is called Euler’ s method and looks like:

B

Properties:

m Simplest numerical method

m Bigger steps, bigger errors. Error ~ O(A#).
Need to take pretty small steps, so not very efficient. Better (more

complicated) methods exist, e.g., “Runge-Kutta” and “implicit
integration.”
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Particle 1n a force field

m Now consider a particle in a force field f.
® In this case, the particle has:

m Mass, m " h,

% oo dv d°x

m Acceleration, =X = =
dt  dt’

—

m The particle obeys Newton’ s law: f =ma =mXx

m The force field f can in general depend on the position and
velocity of the particle as well as time.

® Thus, with some rearrangement, we end up with:

 _ f(x,x,1)

m
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Second order equations

This equation:

f(X,%,1)

X =

m

is a second order differential equation.

Our solution method, though, worked on first order differential equations.

We can rewrite this as:

where we have added a new variable v to get a pair of coupled first order

equations.
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[i] m Concatenate x and v to make a 6-
v vector: position in phase space.

X m Taking the time derivative: another
v 6-vector.

x| [ v m A vanilla 1%-order differential

v| |£/m equation.
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Differential equation solver

Starting with: X v
v| |f/m
Applying Euler’ s method:
X(t+At)=Xx(1)+At-X(¢)
X(t+At)=Xx(t)+ At-X(1)

And making substitutions:
X(t+At)=x(1) + At-v(¢)

X(1+At) = X(¢) + At £(X,%,0)/m

Writing this as an iteration, we have: _; = i
J Xt =X +At-V
° fl

Again, performs poorly for large At.
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Verlet Integration

m Also called Stermer’s Method

m Invented by Delambre (1791), Stermer (1907),
Cowell and Crommelin (1909), Verlet (1960)

and probably others

m More stable than Euler’s method (time-
reversible as well)
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Forces

m Each particle can experience a force which sends
it on 1ts merry way.
® Where do these forces come from? Some
examples:
m Constant (gravity)
m Position/time dependent (force fields)
m Velocity-dependent (drag)
m Combinations (Damped springs)

®m How do we compute the net force on a particle?
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Gravity and viscous drag

The force due to gravity is simply:

— —

=mG

grav

p->f += p->m * F->G

Often, we want to slow things down with viscous drag:

—

f,_. =-kv

drag

p->f -= F->k * p->v
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Damped spring

Recall the equation for the force due to a spring: f =-k_ ... (AX| - r)

(A%]-r) + kdamp\v\]

We can augment this with damping: f = [ spring

The resulting force equations for a spring between two particles

become:

AveAx || Ax
AX| )| |AX]

f1 7 sprmg (‘AX‘ - ) damp

—

-

-l

r = rest length
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derivEval

Clear forces A - s

Loop over particles, X || X2 X,
zero force = v v
accumulators Clear force e L

Calculate forces accumulators t f, f,

Sum all forces into

accumulators ] ] L
Return derivatives
Loop over particles,
return v and f/m Apply forces . E e TE | F
to particles L ;3 i
Bkl
Vl V2 Vn {’1 {’2 i;n
fl/ml fz/mz f, /mn . f|]L ‘ f
Return derivatives m|(m,| |m,
to solver
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Bouncing off the walls

m Add-on for a particle
simulator

® For now, just simple
point-plane collisions

A plane is fully specified by any point P on the plane and its normal N.
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Collision Detection

How do you decide when you’ ve crossed a plane?

University of Texas at Austin  CS384G - Computer Graphics  Fall 2010 Don Fussell 18



To compute the collision response, we need to consider the
normal and tangential components of a particle’ s velocity.
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Collision Response

before after

=, L _
vV = VT p krestitutionVN

Without backtracking, the response may not be enough to bring a
particle to the other side of a wall.

In that case, detection should include a velocity check:
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