Ray Tracing

o EmmmEmESSSE

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

Geometric optics

®m Modern theories of light treat i1t as both a wave and
a particle.

m We will take a combined and somewhat simpler
view of light — the view of geometric optics.

m Here are the rules of geometric optics:

m Light 1s a flow of photons with wavelengths. We'll call
these flows “light rays.”

m Light rays travel in straight lines in free space.
m Light rays do not interfere with each other as they cross.
m Light rays obey the laws of reflection and refraction.

m Light rays travel form the light sources to the eye, but
the physics 1s invariant under path reversal (reciprocity).

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 2

Synthetic pinhole camera

® The most common imaging model in graphics is the synthetic pinhole
camera: light rays are collected through an infinitesimally small hole
and recorded on an image plane.

m For convenience, the image plane is usually placed in front of the
camera, giving a non-inverted 2D projection (image).

®m Viewing rays emanate from the center of projection (COP) at the
center of the lens (or pinhole).

m The image of an object point P is at the intersection of the viewing ray
through P and the image plane.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

3

Eye vs. light ray tracing

Where does light begin?

At the light: light ray tracing (a.k.a., forward ray tracing or photon
tracing)

We will generally follow rays from the eye into the scene.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

Precursors to ray tracing

m [ocal illumination

m Cast one eye ray, Q

then shade according to light

m Appel (1968)

m Cast one eye ray + one ray to light

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

5

Whitted ray-tracing algorithm

®m In 1980, Turner Whitted introduced ray tracing to the graphics
community.
m Combines eye ray tracing + rays to light
m Recursively traces rays

m Algorithm:
1. For each pixel, trace a primary ray in direction V to the first visible
surface.
2. For each intersection, trace secondary rays:
m Shadow rays in directions L; to light sources

m Reflected ray in direction R.
m Refracted ray or transmitted ray in direction T.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

6

Reflection rays Refracted rays

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

Shading

/N

\

N
/

A ray 1s defined by an origin P and a unit direction d and 1s
parameterized by t:

m P+

m Let /(P, d) be the intensity seen along that ray. Then:

1 (P) d) —]direct T Ireﬂected T [transmitted
where

® [y .. 1S computed from the Phong model

|]reﬂected: kr] (Qa R)
-]transmittedz kr[(Qa T)

Typically, we set k., =k and k,= 1 -k, .

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

8

m Law of reflection:
mo =0,
m Snell's law of refraction:
® 7), sinf, = n,sin 6,
® where 7, , 7, are indices of refraction.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

Total Internal Reflection

m The equation for the angle of refraction can be computed
from Snell's law:

= What happens when 1, > n,?

®m When 0, 1s exactly 90°, we say that 6, has achieved the
“critical angle” 6. .

m For 0,> 0., no rays are transmitted, and only reflection
occurs, a phenomenon known as “total internal reflection”

or TIR. \

Glass

Y

A

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 10

Ray-tracing pseudocode

We build a ray traced image by casting rays
through each of the pixels.

function fracelmage (scene):
for each pixel (1,)) in 1mage
S = pixelToWorld(1,))
P=COP
d=(S-P)||S-P|
I(1,)) = traceRay(scene, P, d)
end for
end function

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

11

Ray-tracing pseudocode, cont d

function fraceRay(scene, P, d):
(t, N, mtrl) < scene.intersect (P, d)
O € ray (P, d) evaluated at t
I = shade(q, N, mtrl, scene)
R = reflectDirection(N, -d)
[<= I+ mtrl. kr * traceRay(scene, O, R)
if ray 1s entering object then
n_1=1ndex of air
n_t = mtrl.index
else
n 1= mtrl.index
n t=index of air
if (mtrl k t>0and notTIR (n_i,n _t, N, -d)) then
= refractDirection (n_i,n _t, N, -d)
I < [+ mtrl.k; * traceRay(scene, O, T)
end if
return I
end function

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 12

Terminating recursion

® Q: How do you bottom out of recursive ray
tracing?

m Possibilities:

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 13

Shading pseudocode

Next, we need to calculate the color returned by
the shade function.

function shade(mtrl, scene, O, N, d):
[< mtrl.k_ + mtrl. k, * scene->1,
for each light source [?] do:
atten = [?] -> distanceAttenuation(Q) *
-> shadowAttenuation(scene, Q)
[< I + atten™(diffuse term + spec term)
end for
return I
end function

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

14

Shadow attenuation

m Computing a shadow can be as simple as checking to see if a ray makes it
to the light source.
m For a point light source:

function PointLight::shadowAttenuation(scene, P)
d = ([2]).position - P).normalize()
(t, N, mtrl) <= scene.intersect(P, d)

O < ray(t)

if O is before the light source then:
atten =0

else
atten = 1

end if

return atten
end function

®m Q: What if there are transparent objects along a path to the light source?

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 15

Ray-plane intersection

®m We can write the equation of a plane as:
ax+by+cz+d=0

m The coefficients a, b, and ¢ form a vector that 1s normal to
the plane, n = [a b ¢]'. Thus, we can re-write the plane
equation as: nep(r)+d=0

ne(P+ed)+d=0

®m We can solve for the intersection parameter (and thus the
point): ,__heP+d

ned

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

16

m To intersect with a triangle, we first solve for the equation

of its supporting plane:
D n=(A-C)x(B-C)

d=—(n*A)

m Then, we need to decide if the point is inside or outside of
the triangle.

m Solution 1: compute barycentric coordinates from 3D points.

m What do you do with the barycentric coordinates?

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

17

Barycentric coordinates

A set of points can be used to create an affine frame. Consider a
triangle ABC and a point p: A

C B

We can form a frame with an origin C and the vectors from C to the

other vertices:
u=A-C v=B-C t=C

We can then write P in this coordinate frame p=ocu+ v+t

The coordinates («, B, y) are called the barycentric coordinates of
p relative to A, B, and C.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 18

Computing barycentric coordinates

For the triangle example we can compute the barycentrlc
coordinates of P: A B. C]lla] [p.]
aA+pB+yC=|A, B, C||B|=|p,

11 1|ly] [1]

Cramer s rule gives the solution:

p, B, C, A, p, C, A, B, p,

py By Cy Ay py Cy Ay B)’ py

1 1 1 1 1 1 1 1 1
o= b= Y=

Ax Bx Cx Ax Bx Cx Ax Bx Cx

Ay B)’ Cy Ay By Cy Ay By Cy

1 1 1 1 1 1 1 1 1

Computing the determinant of the denominator gives:
B.C,-BC,+AC,-AC, +AB, -AB,

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

Cross products

Consider the cross-product of two vectors, u and v. What is the geometric
interpretation of this cross-product?

A cross-product can be computed as:

[__1J

uxyvs=

J Kk
U, U, U
v, v, v,

(uyvZ —uy, N+ (uy, —uy)j+ (uxvy —-uy,)k

uy, —uyv,
. uZVX _ MXVZ
uy, —uy,

What happens when u and v lie in the x-y plane? What is the area of the triangle
they span?

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 20

Barycentric coords from area ratios

Now, let’ s rearrange the equation from two slides ago:
BC -BC +AC -AC +AB —-AB,
=(B,-A)C,-A)-(B,-A)C,-A)
The determinant is then just the z-component of

(B-A) x (C-A), which is two times the area of triangle ABC!
Thus, we find:

o - SArea(pBC)
SArea(ABC)

_ SArea(ApC) _ SArea(ABp)
SArea(ABC) 4 SArea(ABC)

p

Where SArea(RST) is the signed area of a triangle, which can be computed with
cross-products.

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

21

Ray-triangle intersection

m Solution 2: project down a dimension and compute
barycentric coordinates from 2D points.

® Why i1s solution 2 possible? Why is it legal? Why i1s it
desirable? Which axis should you “project away’ ?

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

22

Interpolating vertex properties

m The barycentric coordinates can also be used to
interpolate vertex properties such as:

® material properties
m texture coordinates
® normals

m For example:
k,(Q) =0k, (A)+ pk,(B)+ vk, (C)

® Interpolating normals, known as Phong
interpolation, gives triangle meshes a smooth
shading appearance. (Note: don’ t forget to
normalize interpolated normals.)

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

23

Epsilons

® Due to finite precision arithmetic, we do not
always get the exact intersection at a surface.

® Q: What kinds of problems might this cause?

® Q: How might we resolve this?

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

24

) Intersecting with xformed geometry

® [n general, objects will be placed using
transformations. What if the object being
intersected were transformed by a matrix

M?

= Apply M"! to the ray first and intersect in
object (local) coordinates!

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 25

) Intersecting with xformed geometry

® The intersected normal 1s in object (local)
coordinates. How do we transform it to
world coordinates?

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell 26

