Texture Mapping

o EmmmEmESSSE

University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

What adds visual realism?

Geometry only

Phong shading

Phong shading +
Texture maps

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Without texture

With texture

Textures Make Graphics Pretty

Texture — detail,
detail — immersion,
immersion — fun

CS 354

Microsoft Flight Simulator X

Texture mapping (Woo et al., fig. 9-1)
m Texture mapping allows you to take a simple polygon and
give 1t the appearance of something much more complex.
® Due to Ed Catmull, PhD thesis, 1974
m Refined by Blinn & Newell, 1976

m Texture mapping ensures that “all the right things” happen
as a textured polygon is transformed and rendered.

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Non-parametric texture mapping

m With “non-parametric texture mapping :
m Texture size and orientation are fixed
m They are unrelated to size and orientation of polygon
m Gives cookie-cutter effect

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Parametric texture mapping

o R

m With “parametric texture mapping, texture size and
orientation are tied to the polygon.
m [dea:

m Separate “texture space” and “screen space”
m Texture the polygon as before, but in texture space

m Deform (render) the textured polygon into screen space

® A texture can modulate just about any parameter — diffuse
color, specular color, specular exponent, ...
University of Texas at Austin CS354 - Computer Graphics Don Fussell

Implementing texture mapping

m A texture lives in it own abstract image coordinates parameterized by
(u,v) n the range ([0..1], [0..1]): v
1

u
0 1

m It can be wrapped around many different surfaces:

y =
u=xmw u=0¢/2m
v=yh v=0/n
¢
s
u=0.2mn

l I v=yh v

\/ u

m Computing (u,v) texture coordinates 1n a ray tracer 1s fairly
straightforward.

m Note: if the surface moves/deforms, the texture goes with it.

Y
..

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Mapping to texture image coords

m The texture 1s usually stored as an image. Thus, we need to
convert from abstract texture coordinate:

(u,v) 1n the range ([0..1], [0..1])
to texture 1mage coordinates:

(utex,vtex) in the range ([0.. Wiorls [0.. htex])

2 Y .
C:) A Ktex V ey
_/“/ vQ o b P ,).
Q \(yQ’ q)Q)) S
) T
~ “o U= o/2m Ca v;x V Wy
Ray intersection Mapping to Mapping to
abstract texture coords texture pixel coords

® Q: What do you do when the texture sample you need lands
between texture pixels?

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Texture resampling

® We need to resample the texture:

Viex = V Myex
T(i,5 + 1] CT[i+1,5+1]
.....
..... Ax (@ D)
Ay |
s @i R B
Tli,j] "Tl+1,7]
Mapping t
appnis o Close-up

texture pixel coords

® A common choice 1s bilinear interpolation:
T(ab)=T[i+A_j+A]
=(1-A)A-A)DTi,jl+ A (1-A)T[i + 1, /]
+(I-ADA T, j+ 1]+ A A Tli+1,j+1]

University of Texas at Austin CS354 - Computer Graphics Don Fussell

texture coordinates , _
window coordinates

world coordinates

CS 354

m Assigned ad-hoc by artist
m Tedious!
m Has gift wrapping problem

m Computed based on XYZ position
m Texture coordinate generation (“texgen’)
® Hard to map to “surface space”
m Function maps (x,y,z) to (s,2,7,q)

®m From bi-variate parameterization of geometry

B

® Good when geometry R
1s generated from patches

® So (u,v) of patch maps to
(x,y,z) and (s,?)

Texture Arrays

® Multiple skins packed in texture array

m Motivation: binding to one multi-skin texture
array avoids texture bind per object

Texture array index

Mipmap level index

CS 354

Key-frame
model
geomeltry

Result

CS 354

Multiple Textures

X

(modulate)

lightmaps only

* Id Software’s Quake 2
circa 1997

combined scene

CS 354

Can define material by program

m A ‘surface shader’ computes the color of each ray that hits
the surface.

m Example: Renderman surface shader
/*

* Checkerboard
*/

surface checker (float Kd=.5, Ka=.1l) {
float smod = mod(10*s, 1);

float tmod = mod(10*t, 1) ;
if (smod < 0.5) {

if (tmod < 0.5) Ci=Cs; else Ci=color(0,0,0);
} else {

if (tmod < 0.5) Ci=color(0,0,0); else Ci=Cs;
}
Oi = Os;
Ci = Oi*Ci~*(
Ka*ambient () +
Kd*diffuse (faceforward(normalize (N) ,I)));

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Solid textures

® Q: What kinds of artifacts might you see from using a
marble veneer instead of real marble?

A)’

—

a’
<

® One solution 1s to use solid textures:
m Use model-space coordinates to index into a 3D texture

m Like “carving” the object from the material

® One difficulty of solid texturing 1s coming up with the

textures.

University of Texas at Austin CS354 - Computer Graphics

Don Fussell

Solid textures (cont'd)

m Here's an example for a vase cut from a solid marble
texture:

m Solid marble texture by Ken Perlin, (Foley, IV-21)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Displacement and Bump Mapping

m Use surface offsets stored in texture
m Perturb or displace the surface

m Shade on the resulting surface normals

P(u,v)

S(u.v) = dP(u,v) T(uv) = dP(u,v)
u dv

N(u,v)=SXT

Bl Displacement
P'(u,v) =P(u,v)+ h(u,v)N(u,v)
B Perturbed normal

N'(u,v) =P xP’
=N+ (TXxN)+h (SXN)

From Blinn 1976

CS 354

Normal Mapping

® Bump mapping via a normal map texture
® Normal map — x,y,z components of actual normal
m Instead of a height field 1 value per pixel
® The normal map can be generated from the height field

m Otherwise have to orient the normal coordinates to the surface

CS 354

Displacement vs. bump mapping

® Input texture

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Displacement vs. bump mapping (cont'd)

Original rendering Rendering with bump map

wrapped around a
cylinder

Bump map and rendering by Wyvern Aldinger

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Bump mapping example

Texture #1 Texture #2

(diffuse color) (bump map) Rendered Image

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Combining texture maps

Using texture maps in combination gives even better effects.

Final Object

Diffuse Specular Material
color coefficient properties

Environment map | COifﬁgl:em‘S
(not necessary isSaciig
in ray tracer) equation)

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Key-frame
model
geometry
Decal
skin
texture

Gloss
skin
texture

CS 354

Specular Gloss

Final result!

CS 354

Environment mapping

Jo

In environment mapping (also known as reflection mapping), a
texture 1s used to model an object's environment:

m Rays are bounced off objects into environment
m Color of the environment used to determine color of the illumination
m Really, a simplified form of ray tracing

m Environment mapping works well when there is just a single object — or in
conjunction with ray tracing

Under simplifying assumptions, environment mapping can be
implemented in hardware.

With a ray tracer, the concept is easily extended to handle refraction as
well as reflection.

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Cube Map Textures

m Instead of one 2D 1mages

m Six 2D images arranged
like the faces of a cube

m+X, -X, +Y,-Y, +Z, -Z
® Indexed by 3D (s,£7) un-
normalized vector
m Instead of 2D (s,7)

®m Where on the cube images
does the vector “poke

through”? I 5{(

m That’ s the texture result e

vy |+ (3, 1.5, 0.9)

/

+1

)

A
\
\

- - —dy - ———— -
+
\
x \

CS 354

CS 354

Access texture
by surface reflection
vector

CS 354

Dynamic Cube Map Textures

Image credit:
“Guts” GeForce 2 GTS demo,
Thant Thessman

Rendered scene

Dynamically created
cube map image

How do we anti-alias textures?

®m We could just super-sample.

m But textures (and shader programs) are a special case; we
can use true area integration!

NG /
N

>

pixel space texture space

pixel's
cell

- Approximate footprint as parallelogram
- Determine this approximate
footprint using discrete differences

pixel corner's
translation

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Pre-filtered Image Versions

m Base texture 1image 1s say 256x256

® Then down-sample 128x128, 64x64, 32x32, all the way
down to 1x1

Trick: When sampling the texture, pixel the
mipmap level with the closest mapping of pixel
to texel size

Why? Hardware wants to sample just a small (1 to
8) number of samples for every fetch—and

want constant time access
CS 354

® During texture lookup, read from appropriate
level of the pyramid.

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Mipmap LOD Selection

® Tri-linear mip-mapping means compute
appropriate mipmap level

m Hardware rasterizes in 2x2 pixel entities
m Typically called quad-pixels or just guad

m Finite difference with neighbors to get change in u and v
with respect to window space
® Approximation to ou/0x, ou/0y, 0v/0x, ov/0y olo

m Means 4 subtractions per quad (1 per pixel) }

® Now compute approximation to gradient length

® p = max(sqrt((0u/ox)*+(0u/oy)?),
sqrt((0v/0x)*+(0v/0y)?))

o
o

one-pixel separation

CS 354

LOD Bias and Clamping

m Convert p length to power-of-two level-of-detail
and apply LOD bias

m A =log2(p) + lodBias
®m Now clamp A to valid LOD range
®)\ = max(minLOD, min(maxLOD, 1))

CS 354

Determine Levels and Interpolant

® Determine lower and upper mipmap levels
m b = floor(L)) is bottom mipmap level
m t = floor(A’ +1) is top mipmap level

m Determine filter weight between levels
mw = frac()') is filter weight

CS 354

Determine Texture Sample Point

m Get (u,v) for selected top and bottom mipmap levels
m Consider a level 1 which could be either level t or b
m With (u,v) locations (ul,vl)
m Perform GL CLAMP TO EDGE wrap modes

mu = max(1/2*widthOfLevel(l),
min(1-1/2*widthOfLevel(l), u))

m v = max(1/2*heightOfLevel(l), 4
min(1-1/2*heightOfLevel(l), v))
m Get integer location (1,)) within
each level
® (1,)) = (floor(u,* widthOfLevel(l)), t edge

ﬂO Or(VW*)) border

CS 354

Determine Texel Locations

® Bilinear sample needs 4 texel locations
m (10,50), 10,41), 11,50), 11 41)
m With integer texel coordinates
m 10 = floor(1-1/2)
mil = floor(1+1/2)
® 0 = floor(3-1/2)
m)l = floor(j+1/2)
® Also compute fractional weights for bilinear
filtering
m a = frac(1-1/2)
m b = frac(j-1/2)

CS 354

Determine Texel Addresses

® Assuming a texture level image’ s base pointer, compute a
texel address of each texel to fetch

m Assume bytesPerTexel =4 bytes for RGBAS texture

m Example

m addr00 = baseOfLevel(l) +
bytesPerTexel*(10+)0*widthOfLevel(l))

m addrO1 = baseOfLevel(l) +
bytesPerTexel*(10+1*widthOfLevel(l))

m addrl10 = baseOfLevel(l) +
bytesPerTexel*(11+j0*widthOfLevel(l))

m addrl1 = baseOfLevel(l) +
bytesPerTexel*(11+)1*widthOfLevel(l))

m More complicated address schemes are needed for good
texture locality!

CS 354

Mipmap Texture Filtering

point linear
sampling filtering
mipn_vapped mipmapped
pom%‘ linear
sampling filtering

|

E. Angel and D. Shreiner. Interactive Computer Graphics 6E © Addison-Wesley 2012 CS 354

Anisotropic Texture Filtering

m Standard (1sotropic) mipmap LOD selection
m Uses magnitude of texture coordinate gradient (not direction)

m Tends to spread blurring at shallow viewing angles

® Anisotropic texture filtering considers gradients direction

® Minimizes blurring

/ mn ,I m
zZ8
’ s L S -
i

Isotropic Anisotropic

CS 354

