
University of Texas at Austin CS354 - Computer Graphics Spring 2009 Don Fussell

Texture Mapping

University of Texas at Austin CS354 - Computer Graphics Don Fussell

What adds visual realism?

Geometry only

Phong shading

Phong shading +�
Texture maps

Textures Supply Rendering Detail

CS 354

Without texture

With texture

Textures Make Graphics Pretty

CS 354

Texture → detail,
detail → immersion,
immersion → fun

Unreal Tournament

Microsoft Flight Simulator X

Sacred 2

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Texture mapping

Texture mapping (Woo et al., fig. 9-1)

  Texture mapping allows you to take a simple polygon and
give it the appearance of something much more complex.

Due to Ed Catmull, PhD thesis, 1974
Refined by Blinn & Newell, 1976

  Texture mapping ensures that “all the right things” happen
as a textured polygon is transformed and rendered.

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Non-parametric texture mapping

 With “non-parametric texture mapping”:
Texture size and orientation are fixed
They are unrelated to size and orientation of polygon
Gives cookie-cutter effect

University of Texas at Austin CS354 - Computer Graphics Don Fussell

  With “parametric texture mapping,” texture size and
orientation are tied to the polygon.
Idea:

Separate “texture space” and “screen space”
Texture the polygon as before, but in texture space
Deform (render) the textured polygon into screen space

  A texture can modulate just about any parameter – diffuse
color, specular color, specular exponent, …

Parametric texture mapping

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Implementing texture mapping
  A texture lives in it own abstract image coordinates parameterized by

(u,v) in the range ([0..1], [0..1]):

  It can be wrapped around many different surfaces:

  Computing (u,v) texture coordinates in a ray tracer is fairly
straightforward.

  Note: if the surface moves/deforms, the texture goes with it.

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Mapping to texture image coords
  The texture is usually stored as an image. Thus, we need to
convert from abstract texture coordinate:
 (u,v) in the range ([0..1], [0..1])
 to texture image coordinates:
 (utex,vtex) in the range ([0.. wtex], [0.. htex])

  Q: What do you do when the texture sample you need lands
between texture pixels?

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Texture resampling
 We need to resample the texture:

 A common choice is bilinear interpolation:

€

T(a,b) = T[i + Δ x, j + Δ y]
= (1−Δ x)(1−Δ y)T[i, j]+ Δ x (1−Δ y)T[i +1, j]
+(1−Δ x)Δ yT[i, j +1]+ Δ xΔ yT[i +1, j +1]

CS 354

Texture Coordinates

 Interpolated over rasterized primitives

parametric coordinates

texture coordinates
world coordinates window coordinates

CS 354

Source of texture coordinates?
  Assigned ad-hoc by artist

Tedious!
Has gift wrapping problem

  Computed based on XYZ position
Texture coordinate generation (“texgen”)
Hard to map to “surface space”
Function maps (x,y,z) to (s,t,r,q)

  From bi-variate parameterization of geometry
Good when geometry
is generated from patches
So (u,v) of patch maps to
(x,y,z) and (s,t)

[PTex]

CS 354

Texture Arrays

 Multiple skins packed in texture array
Motivation: binding to one multi-skin texture
array avoids texture bind per object

Texture array index

0 1 2 3 4

0

1

2
3
4

M
ip

m
ap

 le
ve

l i
nd

ex

CS 354

Textured Polygonal Models

+

Result

Key-frame
model
geometry Decal�

skin

CS 354

Multiple Textures

×
(modulate)

=

lightmaps only

decal only

combined scene

* Id Software’s Quake 2�
 circa 1997

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Can define material by program
  A ‘surface shader’ computes the color of each ray that hits
the surface.
  Example: Renderman surface shader
/*
 * Checkerboard
 */
surface checker(float Kd=.5, Ka=.1) {
 float smod = mod(10*s, 1);
 float tmod = mod(10*t, 1);
 if (smod < 0.5) {
 if (tmod < 0.5) Ci=Cs; else Ci=color(0,0,0);
 } else {
 if (tmod < 0.5) Ci=color(0,0,0); else Ci=Cs;
 }
 Oi = Os;
 Ci = Oi*Ci*(
 Ka*ambient() +
 Kd*diffuse(faceforward(normalize(N),I)));
}

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Solid textures
  Q: What kinds of artifacts might you see from using a
marble veneer instead of real marble?

  One solution is to use solid textures:
Use model-space coordinates to index into a 3D texture
Like “carving” the object from the material

  One difficulty of solid texturing is coming up with the
textures.

x

y

z

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Solid textures (cont'd)
  Here's an example for a vase cut from a solid marble
texture:

  Solid marble texture by Ken Perlin, (Foley, IV-21)

CS 354

Displacement and Bump Mapping
 Use surface offsets stored in texture

Perturb or displace the surface
Shade on the resulting surface normals

CS 354

Normal Mapping
  Bump mapping via a normal map texture

Normal map – x,y,z components of actual normal
Instead of a height field 1 value per pixel
The normal map can be generated from the height field
Otherwise have to orient the normal coordinates to the surface

specular
× +

diffuse decal

=

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Displacement vs. bump mapping
  Input texture

  Rendered as displacement map over a rectangular surface

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Displacement vs. bump mapping (cont'd)

 Original rendering Rendering with bump map
 wrapped around a

cylinder

Bump map and rendering by Wyvern Aldinger

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Bump mapping example

Texture #1
(diffuse color)

Texture #2
(bump map) Rendered Image

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Combining texture maps
  Using texture maps in combination gives even better effects.

Diffuse
color

Environment map
(not necessary
in ray tracer)

Specular
coefficient

Material
properties
(coefficients
in shading
equation)

CS 354

Multiple Textures

Key-frame
model
geometry

Decal�
skin
texture

Bump�
skin
texture

Gloss �
skin
texture

+

CS 354

Multitexturing

× ×) + (() =

Diffuse GlossSpecularDecal

Final result!

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Environment mapping

  In environment mapping (also known as reflection mapping), a
texture is used to model an object's environment:

Rays are bounced off objects into environment
Color of the environment used to determine color of the illumination
Really, a simplified form of ray tracing
Environment mapping works well when there is just a single object – or in
conjunction with ray tracing

  Under simplifying assumptions, environment mapping can be
implemented in hardware.

  With a ray tracer, the concept is easily extended to handle refraction as
well as reflection.

CS 354

Cube Map Textures

  Instead of one 2D images
Six 2D images arranged
like the faces of a cube

  +X, -X, +Y, -Y, +Z, -Z

  Indexed by 3D (s,t,r) un-
normalized vector

Instead of 2D (s,t)
Where on the cube images
does the vector “poke
through”?

  That’s the texture result

CS 354

More Cube Mapping

CS 354

Omni-directional Lighting

Access texture�
by surface reflection �
vector

CS 354

Dynamic Cube Map Textures

Rendered scene

Dynamically created�
cube map image

Image credit:�
“Guts” GeForce 2 GTS demo,�
Thant Thessman

University of Texas at Austin CS354 - Computer Graphics Don Fussell

How do we anti-alias textures?
  We could just super-sample.
  But textures (and shader programs) are a special case; we
can use true area integration!

-  Approximate footprint as parallelogram
-  Determine this approximate�
 footprint using discrete differences

CS 354

Pre-filtered Image Versions
 Base texture image is say 256x256

Then down-sample 128x128, 64x64, 32x32, all the way
down to 1x1

Trick: When sampling the texture, pixel the
mipmap level with the closest mapping of pixel
to texel size

Why? Hardware wants to sample just a small (1 to
8) number of samples for every fetch—and
want constant time access

University of Texas at Austin CS354 - Computer Graphics Don Fussell

Cost of filtering can be reduced
  Store a pyramid of pre-filtered images:

  During texture lookup, read from appropriate
level of the pyramid.

CS 354

Mipmap LOD Selection

  Tri-linear mip-mapping means compute
appropriate mipmap level
  Hardware rasterizes in 2x2 pixel entities

Typically called quad-pixels or just quad
Finite difference with neighbors to get change in u and v
with respect to window space

 Approximation to ∂u/∂x, ∂u/∂y, ∂v/∂x, ∂v/∂y
 Means 4 subtractions per quad (1 per pixel)

  Now compute approximation to gradient length
p = max(sqrt((∂u/∂x)2+(∂u/∂y)2),
 sqrt((∂v/∂x)2+(∂v/∂y)2))

one-pixel separation

CS 354

LOD Bias and Clamping

 Convert p length to power-of-two level-of-detail
and apply LOD bias
λ = log2(p) + lodBias

 Now clamp λ to valid LOD range
λ’ = max(minLOD, min(maxLOD, λ))

CS 354

Determine Levels and Interpolant

 Determine lower and upper mipmap levels
b = floor(λ’)) is bottom mipmap level
t = floor(λ’+1) is top mipmap level

 Determine filter weight between levels
w = frac(λ’) is filter weight

CS 354

Determine Texture Sample Point

 Get (u,v) for selected top and bottom mipmap levels
Consider a level l which could be either level t or b

 With (u,v) locations (ul,vl)

 Perform GL_CLAMP_TO_EDGE wrap modes
uw = max(1/2*widthOfLevel(l),
 min(1-1/2*widthOfLevel(l), u))
vw = max(1/2*heightOfLevel(l),
 min(1-1/2*heightOfLevel(l), v))

 Get integer location (i,j) within
each level

(i,j) = (floor(uw* widthOfLevel(l)),
 floor(vw*)) border

edge

s

t

CS 354

Determine Texel Locations

 Bilinear sample needs 4 texel locations
(i0,j0), (i0,j1), (i1,j0), (i1,j1)

 With integer texel coordinates
i0 = floor(i-1/2)
i1 = floor(i+1/2)
j0 = floor(j-1/2)
j1 = floor(j+1/2)

 Also compute fractional weights for bilinear
filtering

a = frac(i-1/2)
b = frac(j-1/2)

CS 354

Determine Texel Addresses

  Assuming a texture level image’s base pointer, compute a
texel address of each texel to fetch

Assume bytesPerTexel = 4 bytes for RGBA8 texture
  Example

addr00 = baseOfLevel(l) +
 bytesPerTexel*(i0+j0*widthOfLevel(l))
addr01 = baseOfLevel(l) +
 bytesPerTexel*(i0+j1*widthOfLevel(l))
addr10 = baseOfLevel(l) +
 bytesPerTexel*(i1+j0*widthOfLevel(l))
addr11 = baseOfLevel(l) +
 bytesPerTexel*(i1+j1*widthOfLevel(l))

  More complicated address schemes are needed for good
texture locality!

CS 354

Mipmap Texture Filtering

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

 point
sampling

mipmapped
 point
sampling

mipmapped
 linear
 filtering

 linear
 filtering

CS 354

Anisotropic Texture Filtering

  Standard (isotropic) mipmap LOD selection
Uses magnitude of texture coordinate gradient (not direction)
Tends to spread blurring at shallow viewing angles

  Anisotropic texture filtering considers gradients direction
Minimizes blurring

Isotropic Anisotropic

