
University of Texas at Austin CS354 - Computer Graphics Don Fussell

Intro to OpenGL

Don Fussell
Computer Science Department

The University of Texas at Austin

Synthetic Camera Model

center of projection

image plane

projector

p

projection of p

Pinhole Camera

xp= -x/z/d yp= -y/z/d

Use similar triangles to find perspective projection of point at (x,y,z)

zp= d

Objects and Scenes

  Programmers want to render “objects”
Say a fire truck or molecule
Arranged relative to other objects (a scene) & then viewed

  Graphics pipeline approach—used by OpenGL and GPUs
Break objects into geometry batches

 Batches may be meshes or “patches”
Batches reduce to polygonal primitives

  Typically triangles
 But also lines, points, bitmaps, or images

Geometric primitives are specified by vertices
  So vertices are assembled into primitives

Primitives are rasterized into fragments
Fragments are shaded
Raster operations take shaded fragments and
update the framebuffer

Advantages

 Separation of objects, viewer, light sources
 Two-dimensional graphics is a special case of
three-dimensional graphics
 Leads to simple software API

Specify objects, lights, camera, attributes
Let implementation determine image

 Leads to fast hardware implementation

CS 354

What is OpenGL?
 The OpenGL Graphics System

Not just for 3D graphics; imaging too
“GL” standard for “Graphics Library”
“Open” means industry standard meant for broad adoption
with liberal licensing

 Standardized in 1992
By Silicon Graphics
And others: Compaq, DEC, Intel, IBM, Microsoft
Originally meant for Unix and Windows workstations

 Now de facto graphics acceleration standard
Now managed by the Khronos industry consortium
Available everywhere, from supercomputers to cell phones
Alternative: Direct3D provides similar functionality with a
very different API for Microsoft Windows platforms

Student’s View of OpenGL

 You can learn OpenGL gradually
Lots of its can be ignored for now
The “classic” API is particularly nice
 “Deprecation” has ruined the pedagogical niceness
of OpenGL; ignore deprecation

 Plenty of documentation and sample code
 Makes concrete the abstract graphics
pipeline for rasterization

OpenGL API Example

glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES); // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

Initial Logical Coordinate System

 Think of drawing into a [-1,+1]3 cube

(-0.8, 0.8) (-0.8, 0.8)

(0, -0.8)

origin at (0,0)

Normalized Device Coordinates
  What does this simple triangle look like with the
[-1,+1]3 cube’s coordinate system?

We call this coordinate system “Normalize Device Coordinate” or
NDC space

Wire frame cube shows
boundaries of NDC space

From NDC views, you
can see triangle isn’t
“flat” in the Z direction

Two vertices have Z of -0.2—third has Z of 0.3

GLUT API Example

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
 // << insert code on prior slide here >>
 glutSwapBuffers();
}
void main(int argc, char **argv) {
 // request double-buffered color window with depth buffer
 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
 glutInit(&argc, argv);
 glutCreateWindow(“simple triangle”);
 glutDisplayFunc(display); // function to render window
 glutMainLoop();
}

CS 354

OpenGL Data Flow

vertex
shading

rasterization
& fragment

shading

texture
raster

operations framebuffer

pixel
unpack

pixel
pack

vertex
puller

client
memory

pixel
transfer

glReadPixels / glCopyPixels / glCopyTex{Sub}Image

glDrawPixels
glBitmap
glCopyPixels

glTex{Sub}Image
glCopyTex{Sub}Image

glDrawElements
glDrawArrays

selection / feedback / transform feedback

glVertex*
glColor*
glTexCoord*
etc.

blending
depth testing
stencil testing
accumulation

storage

operations

CS 354

Simplified Graphics Pipeline
Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update

OpenGL API

Framebuffer

NDC to window space

NDC = Normalized
Device Coordinates,
this is a [-1,+1]3 cube

Really lots more steps
than this but these
are the non-trivial operations
in our simple triangle
example

Depth buffer

Application

  What’s the app do?
Running on the CPU

  Initializes app process
Creates graphics resources
such as

 OpenGL context
 Windows

  Handles events
Input events, resize windows,
etc.
Crucial event for graphics:
Redisplay

 Window needs to be drawn
—so do it
 GPU gets involved at this
point

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

15
App Stuff

 GLUT is doing the heavy lifting
Talking to Win32, Cocoa, or Xlib for you
Other alternatives: SDL, etc.

#include <GL/glut.h> // includes necessary OpenGL headers

void display() {
 // << insert code on prior slide here >>
 glutSwapBuffers();
}

void main(int argc, char **argv) {
 // request double-buffered color window with depth buffer
 glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
 glutInit(&argc, argv);
 glutCreateWindow(“simple triangle”);
 glutDisplayFunc(display); // function to render window
 glutMainLoop();
} display function is being registered as a “callback”

Rendering - the display Callback
glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

glBegin(GL_TRIANGLES); { // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
} glEnd();

Graphics
state
setting

Framebuffer
buffer
clearing

Triangle
rendering

Graphics State Setting

 Within the draw routine
glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES); { // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
} glEnd(); graphics context state is “stateful” (sticky) so technically

doesn’t need to be done every time display is called

State Updates
ShadeModel(SMOOTH)
requests smooth color
interpolation

changes fragment shading state
alternative is “flat shading”

  Enable(DEPTH_TEST) enables
depth buffer-based hidden
surface removal algorithm

  State updates happen in
command sequence order

  In fact, all OpenGL commands
are in a stream that must
complete in order

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

University of Texas at Austin CS354 - Computer Graphics Don Fussell

19
Clearing the buffers

 Within the draw routine
glShadeModel(GL_SMOOTH); // smooth color interpolation
glEnable(GL_DEPTH_TEST); // enable hidden surface removal

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLES); // every 3 vertexes makes a triangle
 glColor4ub(255, 0, 0, 255); // RGBA=(1,0,0,100%)
 glVertex3f(-0.8, 0.8, 0.3); // XYZ=(-8/10,8/10,3/10)

 glColor4ub(0, 255, 0, 255); // RGBA=(0,1,0,100%)
 glVertex3f(0.8, 0.8, -0.2); // XYZ=(8/10,8/10,-2/10)

 glColor4ub(0, 0, 255, 255); // RGBA=(0,0,1,100%)
 glVertex3f(0.0, -0.8, -0.2); // XYZ=(0,-8/10,-2/10)
glEnd();

Buffer Clearing
  New frame needs to reset
entire color buffer to
“background” or “clear”
color

Avoids having remnants of
prior frame persist

 Needed if can’t guarantee
every pixel is touched every
frame

  Depth buffer needs to be
cleared to “farthest value”

More about depth buffering
later

  Special operation in OpenGL
Hardware wants clears to run at
memory-saturating speeds
Still in-band with command
stream

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Clear Values and Operations

  OpenGL commands to set clear values
glClearColor for RGBA color buffers

 Example: glClearColor(0,0,0,1);
  Clear to black with 100% opacity
  Initial clear value is (0,0,0,0) so black with 0% opacity

glClearDepth for depth buffers
 Example: glClearDepth(1.0);

  Clear to farthest depth value, for [0,1] range
  Initial depth clear value is 1.0 so farthest depth value

Neither commands does the actual clear operation…
  That’s done by glClear(mask)

Mask parameter indicates buffers to clear
 GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT
 Bitwise-OR (|) them together
 Also GL_STENCIL_BUFFER_BIT, GL_ACCUM_BUFFER_BIT

Allows multiple buffers (e.g. depth & color) to be cleared in single
operation, possibly in parallel

Batching and Assembling Vertices

  glBegin and glEnd designate
a batch of primitives

Begin mode of
GL_TRIANGLES means every
3 vertexes = triangle

  Various vertex attributes
Position attribute sent with
glVertex* commands
Also colors, texture
coordinates, normals, etc.

  glVertex* assembles a vertex
and puts it into the primitive
batch

Other vertex attribute
commands such as glColor*
have their attributes “latched”
when glVertex* assembles a
vertex

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Assembling a Vertex

R G B A

S T R Q

glColor4f

glColor3f
glColor4ub, etc.

glTexCoord2f
glTexCoord3s

glTexCoord4i, etc.

Nx Ny Nz
glNormal3f
glNormal3s

glNormal3b, etc.

glVertex2s glVertex3f glVertex4d

X Y Z W

Nx Ny Nz

S T R Q
R G B A

X Y Z W assemble a vertex
with all its attributes

to
triangle

assembly

glVertex* command assembles a complete vertex

Vertex Attribute Commands

  OpenGL vertex attribute commands follow a regular pattern
gl-prefix :: common to all OpenGL API calls
  Vertex, Normal, TexCoord, Color, SecondaryColor, FogCoord, VertexAttrib,
etc.

 Name the semantic meaning of the attribute
VertexAttrib is for generic attributes

  Used by vertex shaders where the shader determines “meaning” of attributes
  Attribute zero & Vertex are “special”—they latch the assembly of a vertex

  1, 2, 3, 4 :: Number of components for the attribute
  For an attribute with more components than the number, sensible defaults apply

  For example, 3 for Color means Red, Green, Blue & Alpha assumed 1.0
  f, i, s, b, d, ub, us, ui

  Type of components: float, integer, short, byte, double, unsigned byte, unsigned
short, unsigned integer

  v :: means parameters are passed by a pointer
  Instead of immediate values

Example

 Consider glColor4ub and glVertex3fv

glColor4ub(red, green, blue, alpha);

glVertex3fv(const GLfloat v[3]);

Belongs to
OpenGL

Meaning
of attribute

Number of
components

Type of
components

Vector arguments

Assemble a Triangle

 Within the draw routine
glBegin(GL_TRIANGLES);

 glColor4ub(255, 0, 0, 255);
 glVertex3f(-0.8, 0.8, 0.3);

 glColor4ub(0, 255, 0, 255);
 glVertex3f(0.8, 0.8, -0.2);

 glColor4ub(0, 0, 255, 255);
 glVertex3f(0.0, -0.8, -0.2);

glEnd();

First
vertex

Second
vertex

Third
vertex

First
triangle

glBegin Primitive Batch Types

Assembly State Machines

 Fixed-function hardware performs primitive assembly
Based on glBegin’s mode

 State machine for GL_TRIANGLES

initial

no
vertex

one
vertex

two
vertexes

Begin(TRIANGLES)
Vertex Vertex Vertex /

Emit Triangle

End End End

GL_TRIANGLE_STRIP

initial

no
vertex

one
vertex

two
vertexes

Begin(TRIANGLE_
STRIP)

Vertex Vertex
Vertex /
Emit Triangle

End End End

two
vertexes

Vertex /
Emit Reverse

Triangle

End

CS 354

GL_POINTS and GL_LINES

initial

no
vertex

one
vertex

Begin(LINES)

Vertex /
Emit Line

End End

initial

no
vertex

Begin(POINTS)

Vertex /
Emit Point

End

Actual hardware state machine handles all OpenGL begin modes, so rather complex

CS 354

Triangle Assembly

  Now we have a triangle
assembled
Later, we’ll generalize how
the vertex positions get
transformed

And other attributes might be
processed too

  For now, just assume the
XYZ position passed to
glVertex3f position is in
NDC space

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Our Newly Assembled Triangle

 Think of drawing into a [-1,+1]3 cube
(-1.8, 0.8, 0.3) (-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

Clipping
  What if any portion of our triangle extended beyond the NDC
range of the [-1,+1]3 cube?

Only regions of the triangle [-1,+1]3 cube should be rasterized!

  No clipping for our simple triangle
This situation is known as “trivial accept”
Because all 3 vertices in the [-1,+1]3 cube

(-0.8, 0.8, 0.3) (-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

! !

!

Triangles are
convex, so entire
triangle must also
be in the cube if the
vertexes are

Triangle Clipping

 Triangles can straddle
the NDC cube

Happens with lines too
  In this case, we must
“clip” the triangle to the
NDC cube

This is an involved
process but one that must
be done

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Consider a Different Triangle
 Move left vertex so it’s X = -1.8

Result is a clipped triangle

(-1.8, 0.8, 0.3)

(-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)
"

!

!

Clipped Triangle Visualized

Clipped and Rasterized Normally Visualization of NDC space

Notice triangle is “poking out” of the cube;
this is the reason that should be clipped

New triangles out

But how do we find these “new” vertices? 
 The edge clipping the triangle is the line at X = -1

so we know X = -1 at these points—but what about Y?

CS 354

Use Ratios to Interpolate Clipped Positions

(-1.8, 0.8, 0.3)

(-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

X = -1
Y = (1.8/2.6)×0.8 + (0.8/2.6)×0.8
 = 0.8
Z = (1.8/2.6)×0.3 + (0.8/2.6)×-0.2
 = 0.1461538

-1-(-1.8)=0.8

0.8-(-1)=1.8

0.8-(-1.8)=2.6
(-1,0.8,0.146153)

Straightforward because
all the edges are orthogonal

Weights:
 1.8/2.6
 0.8/2.6, sum to 1

Use Ratios to Interpolate Clipped Positions

(-1.8, 0.8, 0.3)

(-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

0-(-1.8) = 1.8

0-(-1) = 1

X = -1
Y = (1/1.8)×0.8 + (0.8/1.8)×-0.8
 = 0.08888…
Z = (1/1.8)×0.3 + (0.8/1.8)×-0.2
 = 0.07777…

(-1,0.0888,0.0777)

-1-(-1.8) = 0.8

Weights:
 1/1.8
 0.8/1.8, sum to 1

Clipping Complications

  Given primitive may be clipped by multiple cube faces
Potentially clipping by all 6 faces!

  Approach
Four possibilities

  Face doesn’t actually result in any clipping of a triangle
  Triangle is unaffected by this plane then

 Clipping eliminates a triangle completely
  All 3 vertices on “wrong” side of the face’s plane

  Triangle “tip” clipped away
  Leaving two triangles

  Triangle “base” is clipped away
  Leaving a single triangle

Strategy: implement recursive clipping process
  “Two triangle” case means resulting two triangles must be clipped by
all remaining planes

Attribute Interpolation

 When splitting triangles for clipping, must also
interpolate new attributes

For example, color
Also texture coordinates

 Back to our example
 BLUE×0.8/1.8 + RED×1/1.8

 (0,0,1,1)×0.8/1.8 + (1,0,0,1)×1/1.8
 (0.444,0,.555,1) or MAGENTA

Weights:
 1/1.8
 0.8/1.8, sum to 1

What to do about this?

 Several possibilities
Require applications to never send primitives that
require clipping

 Wishful thinking
 And a cop-out—makes clipping their problem

Rasterize into larger space than normal and discard
pixels outsize the NDC cube

 Increases useless rasterizer work
 Requires additional math precision in the rasterizer

 Worse, creates problems when rendering into a projective clip
space (needed for perspective)

  Something for a future lecture
Break clipped triangles into smaller triangles that
tessellate the clipped region…

Triangle clipped by Two Planes

Recursive process can make 4 triangles
And it gets worse with more non-trivial clipping

NDC to Window Space

 NDC is “normalized” to
the [-1,+1]3 cube

Nice for clipping
But doesn’t yet map to
pixels on the screen

 Next: a transform from
NDC space to window
space

Application

Vertex batching & assembly

Clipping

Rasterization

Fragment shading

Depth testing

Color update Framebuffer

NDC to window space

Depth buffer

Viewport and Depth Range

 OpenGL has 2 commands to configure the state to
map NDC space to window space

glViewport(GLint vx, GLint vy, GLsizei w, GLsizei h);
 Typically programmed to the window’s width and height for w
& h and zero for both vx & vy
 Example: glViewport(0, 0, window_width, window_height);

glDepthRange(GLclampd n, GLclampd f);
 n for near depth value, f for far depth value
 Normally set to glDepthRange(0,1)

 Which is an OpenGL context’s initial depth range state

 The mapping from NDC space to window space
depends on vx, vy, w, h, n, and d

OpenGL Data Type Naming

  The OpenGL specification allow an implementation to specify how
language data types map to OpenGL API data types

GLfloat is usually typedef’ed to float but this isn’t necessarily true
  Same for GLint, GLshort, GLdouble
  But is true in practice

GLbyte is byte-sized so expected it to be a char
GLubyte, GLushort, and GLuint are unsigned versions of GLbyte,
GLshort, and GLint

  Certain names clue you into their parameter usage
GLsizei is an integer parameter that is not allowed to be negative

  An GL_INVALID_VALUE is generated if a GLsizei parameter is ever
negative

GLclampd and GLclampf are the same as GLfloat and GLdouble, but
indicate the parameter will be clamped automatically to the [0,1] range

  Notice
glViewport uses GLsizei for width and height
glDepthRange uses GLclampd for near and far

OpenGL Errors

  OpenGL reports asynchronously from your commands
Effectively, you must explicitly call glGetError to find if any prior
command generated an error or was otherwise used incorrectly
glGetError returns GL_NO_ERROR if there is no error

  Otherwise an error such as GL_INVALID_VALUE is returned
  Rationale

OpenGL commands are meant to be executed in a pipeline so the error
might not be identified until after the command’s function has returned

  Errors might be detected by hardware that isn’t actually the CPU
Also forcing applications to check return codes of functions is slow

  It’s inappropriate for a high-performance API such as OpenGL
  So if you suspect errors, you have to poll for them

Learn to do this while you are debugging your code
If something fails to happen, suspect there’s an OpenGL errors

  Also commands that generated an error are ignored
The only exception is GL_OUT_OF_MEMORY which results in
undefined state

Mapping NDC to Window Space

 Assume (x,y,z) is the NDC coordinate that’s
passed to glVertex3f in our simple_triangle
example
 Then window-space (wx,wy,wz) location is

wx = (w/2)×x + vx + w/2

wy = (h/2)×y + vy + h/2

wz = [(f-n)/2]×z + (n+f)/2

× means scalar
multiplication here

Where is glViewport set?
  The simple_triangle program never calls glViewport

That’s OK because GLUT will call glViewport for you if you don’t
register your own per-window callback to handle when a window is
reshaped (resized)
Without a reshape callback registered, GLUT will simply call
glViewport(0, 0, window_width, window_height);

  Alternatively, you can use glReshapeFunc to register a
callback

Then calling glViewport or otherwise tracking the window height
becomes your application’s responsibility
Example reshape callback:
void reshape(int w, int h) {
 glViewport(0, 0, w, h);
}
Example registering a reshape callback:
glReshapeFunc(reshape);

  FYI: OpenGL maintains a lower-left window-space origin
Whereas most 2D graphics APIs use upper-left

What about glDepthRange?

 Simple applications don’t normally need to call
glDepthRange

Notice the simple_triangle program never calls
glDepthRange

 Rationale
The initial depth range of [0,1] is fine for most
application
It says the entire available depth buffer range should be
used

 When the depth range is [0,1] the equation for
window-space z simplifies to wz = ½×z + ½

Triangle Vertices in Window Space
 Assume the window is 500x500 pixels

So glViewport(0,0,500,500) has been called

(-0.8, 0.8, 0.3) (-0.8, 0.8, -0.2)

(0, -0.8, -0.2)

origin at (0,0,0)

Apply the Transforms

 First vertex :: (-0.8, 0.8, 0.3)
wx = (w/2)×x + vx + w/2 = 250×(-0.8) + 250 = 50
wy = (h/2)y + vy + h/2 = 250×(0.8) + 250 = 450
wz = [(f-n)/2]×z + (n+f)/2 = 0.65

 Second vertex :: (0.8, 0.8, -0.2)
wx = (w/2)×x + vx + w/2 = 250×(-0.8) + 250 = 50
wy = (h/2)y + vy + h/2 = 250×(0.8) + 250 = 450
wz = [(f-n)/2]×z + (n+f)/2 = 0.4

 Third vertex :: (0, -0.8, -0.2)
wx = (w/2)×x + vx + w/2 = 250×0 + 250 = 250
wy = (h/2)y + vy + h/2 = 250×(-0.8) + 250 = 50
wz = [(f-n)/2]×z + (n+f)/2 = 0.4

Still Left to Do

 Rasterize the clipped triangle
But our triangle’s vertexes are in window space
so we are ready

 Interpolate color values over the triangle
 Depth test the triangle
 Update pixel locations
 Swap buffers
 Next lecture!

Next Lecture
  Graphics Pipeline

What are the operations in the so-called “graphics pipeline”?
As usual, expect a short quiz on today’s lecture

  Know how to map clip space to NDC space to window space

  Assignments
Reading from “Interactive Computer Graphics” (Angel)

  Chapter 2, pages 43-107
Homework (a.k.a. Project Zero), deadline January 25th

  Get the ZIP for the “simple triangle” and “clip space” example programs
  Learn how to compile and run them on your CS account
  Modify either program to

  Change the clear color to burnt orange
  Change the title of the window to your name
  Instead of drawing a single triangle, make a simple arrangement of polygons

forming a letter from your name
  Use the turnin system to submit your modified source code and a screenshot
image of your modified example Purpose

Gain familiarity
with OpenGL programming
and submitting
projects

Programming tips
 3D graphics, whether OpenGL or Direct3D
or any other API, can be frustrating

You write a bunch of code and the result is

Nothing but black window; where did your
rendering go??

Things to Try
  Set your clear color to something other than black!

It is easy to draw things black accidentally so don’t make black the clear color
But black is the initial clear color

  Did you draw something for one frame, but the next frame draws nothing?
Are you using depth buffering? Did you forget to clear the depth buffer?

  Remember there are near and far clip planes so clipping in Z, not just X & Y
  Have you checked for glGetError?

Call glGetError once per frame while debugging so you can see errors that occur
For release code, take out the glGetError calls

  Not sure what state you are in?
Use glGetIntegerv or glGetFloatv or other query functions to make sure that
OpenGL’s state is what you think it is

  Use glutSwapBuffers to flush your rendering and show to the visible window
Likewise glFinish makes sure all pending commands have finished

  Try reading
http://www.slideshare.net/Mark_Kilgard/avoiding-19-common-opengl-pitfalls
This is well worth the time wasted debugging a problem that could be avoided

