### Viewing and Projections

Don Fussell
Computer Science Department
The University of Texas at Austin



### A Simplified Graphics Pipeline





### A few more steps expanded





### Conceptual Vertex Transformation





### Eye Coordinates (not NDC)





### Planar Geometric Projections

- Standard projections project onto a plane
- Projectors are lines that either
  - converge at a center of projection
  - are parallel
- Such projections preserve lines
  - but not necessarily angles
- Nonplanar projections are needed for applications such as map construction



### Classical Projections



University of Texas at Austin CS354 - Computer Graphics Don Fussell



### Perspective vs Parallel

- Computer graphics treats all projections the same and implements them with a single pipeline
- Classical viewing developed different techniques for drawing each type of projection
- Fundamental distinction is between parallel and perspective viewing even though mathematically parallel viewing is the limit of perspective viewing



### Taxonomy of Projections





### Parallel Projection





### Perspective Projection



University of Texas at Austin CS354 - Computer Graphics Don Fussell



### Orthographic Projection

#### Projectors are orthogonal to projection surface





### Multiview Orthographic Projection

- Projection plane parallel to principal face
- Usually form front, top, side views

isometric (not multiview orthographic view)



in CAD and architecture, we often display three multiviews plus isometric

top





### Advantages and Disadvantages

- Preserves both distances and angles
  - Shapes preserved
  - Can be used for measurements
    - Building plans
    - ■Manuals
- Cannot see what object really looks like because many surfaces hidden from view
  - Often we add the isometric



### Projections and Normalization

- The default projection in the eye (camera) frame is orthogonal
- For points within the default view volume

$$x_p = x$$
$$y_p = y$$
$$z_p = 0$$

- Most graphics systems use view normalization
  - All other views are converted to the default view by transformations that determine the projection matrix
  - Allows use of the same pipeline for all views



### Default Projection

#### Default projection is orthographic





### Orthogonal Normalization

glOrtho(left,right,bottom,top,near,far)

normalization ⇒ find transformation to convert specified clipping volume to default





### OpenGL Orthogonal Viewing

#### glOrtho(left, right, bottom, top, near, far)



near and far measured from camera



### Homogeneous Representation

#### default orthographic projection

$$\begin{aligned} \mathbf{x}_p &= \mathbf{x} \\ \mathbf{y}_p &= \mathbf{y} \\ \mathbf{z}_p &= 0 \\ \mathbf{w}_p &= 1 \end{aligned} \qquad \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

In practice, we can let M = I and set the z term to zero later

### Orthographic Eye to NDC

- Two steps
  - Move center to origin

    T(-(left+right)/2, -(bottom+top)/2,-(near+far)/2))
  - Scale to have sides of length 2 S(2/(left-right),2/(top-bottom),2/(near-far))

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right + left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{near - far} & -\frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



### Orthographic Transform

#### Prototype

- ■glOrtho(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far)
- Post-concatenates an orthographic matrix

$$\begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$





### glOrtho Example



#### Consider

- glLoadIdentity();
  glOrtho(-20, 30, 10, 60, 15, -25)
  - left=-20, right=30, bottom=10, top=50, near=15, far=-25

#### Matrix

$$\begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{-2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{25} & 0 & 0 & -\frac{1}{5} \\ 0 & \frac{1}{20} & 0 & -\frac{3}{2} \\ 0 & 0 & \frac{1}{20} & -\frac{1}{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

University of Texas at Austin CS354 - Computer Graphics Don Fussell



### Axonometric Projections

#### Allow projection plane to move relative to object

classify by how many angles of a corner of a projected cube are the same

 $\theta$ 

none: trimetric

two: dimetric

three: isometric





### Types of Axonometric Projections





### Advantages and Disadvantages

- Lines are scaled (foreshortened) but can find scaling factors
- Lines preserved but angles are not
  - Projection of a circle in a plane not parallel to the projection plane is an ellipse
- Can see three principal faces of a box-like object
- Some optical illusions possible
  - Parallel lines appear to diverge
- Does not look real because far objects are scaled the same as near objects
- Used in CAD applications



### Oblique Projection

## Arbitrary relationship between projectors and projection plane



University of Texas at Austin CS354 - Computer Graphics Don Fussell



### Advantages and Disadvantages

- Can pick the angles to emphasize a particular face
  - Architecture: plan oblique, elevation oblique
- Angles in faces parallel to projection plane are preserved while we can still see "around" side



■ In physical world, cannot create with simple camera; possible with bellows camera or special lens (architectural)



### Perspective Projection

#### Projectors coverge at center of projection





### Vanishing Points

- Parallel lines (not parallel to the projection plan) on the object converge at a single point in the projection (the *vanishing point*)
- Drawing simple perspectives by hand uses these vanishing point(s)





### Three-Point Perspective

- No principal face parallel to projection plane
- Three vanishing points for cube





### Two-Point Perspective

- On principal direction parallel to projection plane
- Two vanishing points for cube





### One-Point Perspective

- One principal face parallel to projection plane
- One vanishing point for cube





## Perspective in Art History 33



University of Texas at Austin CS354 - Complete Graphile energies 1482]



## Perspective in Art History 34



University of Texas at Austin CS354 - Compute Graphil's entagins 1482



# Humanist Analysis of Perspective



[Albrecht Dürer, 1471]



### Advantages and Disadvantages

- Objects further from viewer are projected smaller than the same sized objects closer to the viewer (diminution)
  - Looks realistic
- Equal distances along a line are not projected into equal distances (nonuniform foreshortening)
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand than parallel projections (but not more difficult by computer)



## 1-, 2-, and 3-point Perspective

- A 4x4 matrix can represent 1, 2, or 3 vanishing points
  - As well as zero for orthographic views





3-point perspective

1-point perspective 2-point perspective









# Simple Perspective

- Center of projection at the origin
- Projection plane z = d, d < 0



# Perspective Equations

#### Consider top and side views



$$x_{\rm p} = \frac{x}{z/d}$$
  $y_{\rm p} = \frac{y}{z/d}$   $z_{\rm p} = d$ 

# Homogeneous Form

consider 
$$\mathbf{q} = \mathbf{Mp}$$
 where 
$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix}$$

$$\mathbf{q} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \Rightarrow \mathbf{p} = \begin{bmatrix} x \\ y \\ z \\ z \end{bmatrix}$$



# OpenGL Perspective

glFrustum(left, right, bottom, top, near, far)



# Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at z = -1, and a 90 degree field of view determined by the planes

$$x = \pm z, y = \pm z$$





# Simple Eye to NDC

$$\mathbf{N} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

after perspective division, the point (x, y, z, 1) goes to

$$x' = x/z$$

$$y' = y/z$$

$$z' = -(\alpha + \beta/z)$$

which projects orthogonally to the desired point regardless of  $\alpha$  and  $\beta$ 

# Picking α and β

#### If we pick

$$\alpha = \frac{\text{near} + \text{far}}{\text{far} - \text{near}}$$

$$\beta = \frac{2\text{near} * \text{far}}{\text{near} - \text{far}}$$

the near plane is mapped to z = -1the far plane is mapped to z = 1and the sides are mapped to  $x = \pm 1$ ,  $y = \pm 1$ 

If we start from the simple eye frustum, we end up with the NDC clipping cube



### Normalization Transformation



### Frustum Transform

- Prototype
  - ■glFrustum(GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far)
- Post-concatenates a frustum matrix

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$





### glFrustum Matrix

### Projection specification

■glLoadIdentity(); glFrustum(-4, +4, -3, +3, 5, 80)



■left=-4, right=4, bottom=-3, top=3, near=5, far=80

#### ■ Matrix

symmetric left/right & top/bottom so zero

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{5}{4} & 0 & 0\\ 0 & \frac{5}{3} & 0 & 0\\ 0 & 0 & -\frac{85}{75} & -\frac{800}{75}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

University of Texas at Austin CS354 - Computer Graphics Don Fussell



## glFrustum Example

#### Consider

glLoadIdentity();
glFrustum(-30, 30, -20, 20, 1, 1000)



- left=-30, right=30, bottom=-20, top=20, near=1, far=1000
- Matrix

symmetric left/right & top/bottom so zero

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n} \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{30} & 0 & 0 \\ 0 & \frac{1}{20} & 0 \\ 0 & 0 & -\frac{1001}{999} & -\frac{2000}{999} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

University of Texas at Austin CS354 - Computer Graphics Don Fussell



### glOrtho and glFrustum

These OpenGL commands provide a parameterized transform mapping eye space into the "clip cube"

- Each command
  - glOrtho is orthographic
  - glFrustum is single-point perspective





- More viewing
- Transform from object to eye space