## Orthogonal Functions and Fourier Series

## Vector Spaces

- Set of vectors
- Closed under the following operations
- Vector addition: $\mathbf{v}_{1}+\mathbf{v}_{2}=\mathbf{v}_{3}$
- Scalar multiplication: $s \mathbf{v}_{1}=\mathbf{v}_{2}$

■ Linear combinations: $\sum_{i=1}^{n} a_{i} \mathbf{v}_{i}=\mathbf{v}$
■ Scalars come from some field $\mathbf{F}$
■ e.g. real or complex numbers

- Linear independence
- Basis

■ Dimension

## Vector Space Axioms

- Vector addition is associative and commutative
$■$ Vector addition has a (unique) identity element (the $\mathbf{0}$ vector)
- Each vector has an additive inverse
$■$ So we can define vector subtraction as adding an inverse
$■$ Scalar multiplication has an identity element (1)
- Scalar multiplication distributes over vector addition and field addition
■ Multiplications are compatible $(\mathrm{a}(\mathrm{bv})=(\mathrm{ab}) \mathbf{v})$


## Coordinate Representation

$■$ Pick a basis, order the vectors in it, then all vectors in the space can be represented as sequences of coordinates, i.e. coefficients of the basis vectors, in order.

- Example:
-Cartesian 3-space
■Basis: [i j k]
■Linear combination: $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$
■Coordinate representation: $\left[\begin{array}{lll}x & y & z\end{array}\right]$
$a\left[\begin{array}{lll}x_{1} & y_{1} & z_{1}\end{array}\right]+b\left[\begin{array}{lll}x_{2} & y_{2} & z_{2}\end{array}\right]=\left[\begin{array}{lll}a x_{1}+b x_{2} & a y_{1}+b y_{2} & a z_{1}+b z_{2}\end{array}\right]$
University of Texas at Austin CS384G - Computer Graphics Spring 2010 Don Fussell


## Functions as vectors

■ Need a set of functions closed under linear combination, where
$\square$ Function addition is defined
$\square$ Scalar multiplication is defined
■ Example:
■Quadratic polynomials
$■$ Monomial (power) basis: $\left[\begin{array}{lll}\mathbf{x}^{2} & \mathbf{x} & 1\end{array}\right]$
■Linear combination: $a \mathbf{x}^{2}+b \mathbf{x}+c$
■Coordinate representation: $\left[\begin{array}{lll}a & b & c\end{array}\right]$

## Metric spaces

$\square$ Define a (distance) metric $\mathrm{d}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right) \Rightarrow R$ s.t.
$\square \mathrm{d}$ is nonnegative $\forall \mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}} \in \mathbf{V}: \mathrm{d}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right) \geq 0$
$\square \mathrm{d}$ is symmetric $\quad \forall \mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}} \in \mathbf{V}: \mathrm{d}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right)=\mathrm{d}\left(\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{i}}\right)$
■Indiscernibles are identical

$$
\forall \mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}} \in \mathbf{V}: \mathrm{d}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right)=0 \Leftrightarrow \mathbf{v}_{\mathbf{i}}=\mathbf{v}_{\mathbf{j}}
$$

■The triangle inequality holds

$$
\forall \mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}} \in \mathbf{V}: \mathrm{d}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right)+\mathrm{d}\left(\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}}\right) \geq \mathrm{d}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{k}}\right)
$$

## Normed spaces

- Define the length or norm of a vector

■ Nonnegative $\quad \forall \mathbf{v} \in \mathbf{V}:\|\mathbf{v}\| \geq 0$

- Positive definite

$$
\|\mathbf{v}\|=0 \Rightarrow \mathbf{v}=\mathbf{0}
$$

- Symmetric

$$
\forall \mathbf{v} \in \mathbf{V}, a \in F:\|a \mathbf{v}\|=|a|\|\mathbf{v}\|
$$

$■$ The triangle inequality holds

$$
\forall \mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}} \in \mathbf{V}:\left\|\mathbf{v}_{\mathbf{i}}\right\|+\left\|\mathbf{v}_{\mathbf{j}}\right\| \geq\left\|\mathbf{v}_{\mathbf{i}}+\mathbf{v}_{\mathbf{j}}\right\|
$$

$■$ Banach spaces - normed spaces that are complete (no holes or missing points)
$\square$ Real numbers form a Banach space, but not rational numbers
■ Euclidean $n$-space is Banach

## Norms and metrics

■ Examples of norms:
■ p norm:

- $\mathrm{p}=1$ manhattan norm
$\square \mathrm{p}=2$ euclidean norm

$$
\left(\sum_{i=1}^{D}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
$$

- Metric from norm

$$
d\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\left\|\mathbf{v}_{1}-\mathbf{v}_{2}\right\|
$$

- Norm from metric if
$\square \mathrm{d}$ is homogeneous

$$
\forall \mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}} \in \mathbf{V}, a \in F: \mathrm{d}\left(a \mathbf{v}_{\mathbf{i}}, a \mathbf{v}_{\mathbf{j}}\right)=|a| \mathrm{d}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right)
$$

$\square \mathrm{d}$ is translation invariant

$$
\forall \mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}, \mathbf{t} \in \mathbf{V}: \mathrm{d}\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right)=\mathrm{d}\left(\mathbf{v}_{\mathbf{i}}+\mathbf{t}, \mathbf{v}_{\mathbf{j}}+\mathbf{t}\right)
$$

then

$$
\|\mathbf{v}\|=\mathrm{d}(\mathbf{v}, \mathbf{0})
$$

## Inner product spaces

- Define [inner, scalar, dot] product $\left\langle\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right\rangle \Rightarrow R \quad$ (for real spaces) s.t.

$$
\begin{aligned}
\left\langle\mathbf{v}_{\mathbf{i}}+\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}}\right\rangle & =\left\langle\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{k}}\right\rangle+\left\langle\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{k}}\right\rangle \\
\left\langle a \mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right\rangle & =a\left\langle\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right\rangle \\
\left\langle\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right\rangle & =\left\langle\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{i}}\right\rangle \\
\langle\mathbf{v}, \mathbf{v}\rangle & \geq 0 \\
\langle\mathbf{v}, \mathbf{v}\rangle & =0 \Leftrightarrow \mathbf{v}=\mathbf{0}
\end{aligned}
$$

■ For complex spaces: $\left\langle\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right\rangle=\overline{\left\langle\mathbf{v}_{\mathbf{j}}, \mathbf{v}_{\mathbf{i}}\right\rangle} \quad\left\langle\mathbf{v}_{\mathbf{i}}, a \mathbf{v}_{\mathbf{j}}\right\rangle=\bar{a}\left\langle\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{j}}\right\rangle$

- Induces a norm: $\quad\|\mathbf{v}\|=\sqrt{\langle\mathbf{v}, \mathbf{v}\rangle}$


## Some inner products

- Multiplication in R

■ Dot product in Euclidean n-space

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle=\sum_{i=1}^{D} \mathbf{v}_{1, i} \mathbf{v}_{2, i}
$$

■ For real functions over domain $[\mathrm{a}, \mathrm{b}$ ]

$$
\langle f, g\rangle=\int f(x) g(x) d x
$$

$\square$ For complex functíons over domain $[\mathrm{a}, \mathrm{b}]$

$$
\langle f, g\rangle=\int_{a}^{b} f(x) \overline{g(x)} d x
$$

- Can add nonnegativie weight function

$$
\langle f, g\rangle_{w}=\int_{a} f(x) g(x) w(x) d x
$$

## Hilbert Space

$\square$ An inner product space that is complete wrt the induced norm is called a Hilbert space

- Infinite dimensional Euclidean space
$■$ Inner product defines distances and angles
$■$ Subset of Banach spaces


## Orthogonality

■ Two vectors $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are orthogonal if

$$
\left\langle\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\rangle=0
$$

$\square \mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are orthonormal if they are orthogonal and

$$
\left\langle\mathbf{v}_{1}, \mathbf{v}_{1}\right\rangle=\left\langle\mathbf{v}_{2}, \mathbf{v}_{2}\right\rangle=1
$$

■ Orthonormal set of vectors

$$
\left\langle\mathbf{v}_{i}, \mathbf{v}_{j}\right\rangle=\delta_{i, j} \quad(\text { Kronecker delta })
$$

## Examples

- Linear polynomials over [-1,1] (orthogonal)

$$
\mathrm{B}_{0}(x)=1, \mathrm{~B}_{1}(x)=x \quad \int_{-1}^{1} x d x=0
$$

■Is $x^{2}$ orthogonal to these?
-Is $\frac{3 x^{2}+1}{2}$ orthogonal to them? (Legendre)

## Fourier series

Cosine series $\quad f(\theta)=\sum_{i=0}^{\infty} a_{i} C_{i}(\theta)$

$$
C_{0}(\theta)=1, \quad C_{1}(\theta)=\cos (\theta), \quad C_{n}(\theta)=\cos (n \theta)
$$

$$
\left\langle C_{m}, C_{n}\right\rangle=\int_{0}^{2 \pi} \cos (m \theta) \cos (n \theta) d \theta
$$

$$
=\int_{0}^{2 \pi} \frac{1}{2}(\cos [(m+n) \theta]+\cos [(m-n) \theta])
$$

$$
=\left.\left(\frac{1}{2(m+n)} \sin [(m+n) \theta]+\frac{1}{2(m-n)} \sin [(m-n) \theta]\right)\right|_{0} ^{2 \pi}=0
$$

for $m \neq n \neq 0$

## Fourier series

$=\int_{0}^{2 \pi}\left(\frac{1}{2} \cos (2 n \theta)+\frac{1}{2}\right) d \theta=\left.\left(\frac{1}{4 n} \sin (2 n \theta)+\frac{\theta}{2}\right)\right|_{0} ^{2 \pi}=\pi \quad$ for $m=n \neq 0$
$=\int_{0}^{2 \pi} \frac{1}{2} 2 \cos (0) d \theta=2 \pi \quad$ for $m=n=0$
$■$ Sine series

$$
f(\theta)=\sum_{i=0}^{\infty} b_{i} S_{i}(\theta)
$$

$$
S_{0}(\theta)=0, \quad S_{1}(\theta)=\sin (\theta), \quad S_{n}(\theta)=\sin (n \theta)
$$

$$
\left\langle S_{m}, S_{n}\right\rangle=\int_{0}^{2 \pi} \sin (m \theta) \sin (n \theta) d \theta=0 \quad \text { for } m \neq n \text { or } m=n=0
$$

$=\pi$ for $m=n \neq 0$

## Fourier series

- Complete series $\quad f(\theta)=\sum_{n=0}^{\infty} a_{n} \cos (n \theta)+b_{n} \sin (n \theta)$

$$
\left\langle C_{m}, S_{n}\right\rangle=\int_{0}^{2 \pi} \cos (m \theta) \sin (n \theta) d \theta=0
$$

- Basis functions are orthogonal but not orthonormal
- Can obtain $a_{n}$ and $b_{n}$ by projection

$$
\begin{aligned}
& \left\langle f, C_{k}\right\rangle=\int_{0}^{2 \pi} f(\theta) \cos (k \theta) d \theta=\int_{0}^{2 \pi} \cos (k \theta) d \theta \sum_{n=0}^{\infty} a_{i} \cos (n \theta)+b_{i} \sin (n \theta) \\
& =\int_{0}^{2 \pi} a_{k} \cos ^{2}(k \theta) d \theta=\pi a_{k} \quad\left(\text { or } 2 \pi a_{k} \text { for } k=0\right) \\
& \text { University of Texas at Austin } \quad \text { CS384G - Computer Graphics } \quad \text { Spring } 2010 \text { Don Fussell }
\end{aligned}
$$

## Fourier series

$$
\begin{aligned}
& a_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \cos (k \theta) d \theta \\
& a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta
\end{aligned}
$$

$\square$ Similarly for $b_{k}$

$$
b_{k}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \sin (k \theta) d \theta
$$

