

Geometric optics

- Modern theories of light treat it as both a wave and a particle.
- We will take a combined and somewhat simpler view of light - the view of geometric optics.
- Here are the rules of geometric optics:
- Light is a flow of photons with wavelengths. We'll call these flows "light rays."
- Light rays travel in straight lines in free space.

■ Light rays do not interfere with each other as they cross.

- Light rays obey the laws of reflection and refraction.
- Light rays travel form the light sources to the eye, but the physics is invariant under path reversal (reciprocity).

Synthetic pinhole camera

- The most common imaging model in graphics is the synthetic pinhole camera: light rays are collected through an infinitesimally small hole and recorded on an image plane.

- For convenience, the image plane is usually placed in front of the camera, giving a non-inverted 2D projection (image).
- Viewing rays emanate from the center of projection (COP) at the center of the lens (or pinhole).
- The image of an object point P is at the intersection of the viewing ray through P and the image plane.

Eye vs. light ray tracing

- Where does light begin?
- At the light: light ray tracing (a.k.a., forward ray tracing or photon tracing)

- At the eye: eye ray tracing (a.k.a., backward ray tracing)

- We will generally follow rays from the eye into the scene.

Precursors to ray tracing

■ Local illumination

- Cast one eye ray,
then shade according to light

- Appel (1968)
- Cast one eye ray + one ray to light

Whitted ray-tracing algorithm

- In 1980, Turner Whitted introduced ray tracing to the graphics community.
- Combines eye ray tracing + rays to light
- Recursively traces rays
- Algorithm:

1. For each pixel, trace a primary ray in direction \mathbf{V} to the first visible surface.
2. For each intersection, trace secondary rays:

- Shadow rays in directions $\mathbf{L}_{\mathbf{i}}$ to light sources
\square Reflected ray in direction \mathbf{R}.
- Refracted ray or transmitted ray in direction T.

Whitted algorithm (cont'd)

Let's look at this in stages:

Shading

- A ray is defined by an origin \mathbf{P} and a unit direction \mathbf{d} and is parameterized by t :

$$
P+t \mathbf{d}
$$

- Let $I(P, \mathbf{d})$ be the intensity seen along that ray. Then:

$$
I(P, \mathbf{d})=I_{\text {direct }}+I_{\text {reflected }}+I_{\text {transmitted }}
$$

■ where

- $I_{\text {direct }}$ is computed from the Phong model
- $I_{\text {reflected }}=k_{r} I(Q, \mathbf{R})$
- $I_{\text {transmitted }}=k_{t} I(Q, \mathbf{T})$
- Typically, we set $k_{r}=k_{\mathrm{s}}$ and $k_{t}=1-k_{\mathrm{s}}$.

Reflection and transmission

- Law of reflection:

$$
\theta_{i}=\theta_{r}
$$

- Snell's law of refraction:

$$
\eta_{\mathrm{i}} \sin \theta_{\mathrm{I}}=\eta_{\mathrm{t}} \sin \theta_{\mathrm{t}}
$$

■ where $\eta_{\mathrm{i}}, \eta_{\mathrm{t}}$ are indices of refraction.

Total Internal Reflection

- The equation for the angle of refraction can be computed from Snell's law:
- What happens when $\eta_{\mathrm{i}}>\eta_{\mathrm{t}}$?
- When θ_{t} is exactly 90°, we say that θ_{I} has achieved the "critical angle" θ_{c}.
- For $\theta_{I}>\theta_{c}$, no rays are transmitted, and only reflection occurs, a phenomenon known as "total internal reflection" or TIR.

Reflected and transmitted rays

- For incoming ray $P(t)=P+t \boldsymbol{d}$
- Compute input cosine and sine vectors \boldsymbol{C}_{i} and \boldsymbol{S}_{i}
- Reflected ray vector $\boldsymbol{R}=\boldsymbol{C}_{i}+\boldsymbol{S}_{i}$
- Compute output cosine and sine vectors \boldsymbol{C}_{t} and \boldsymbol{S}_{t}
- Transmitted ray vector $\boldsymbol{T}=\boldsymbol{C}_{t}+\boldsymbol{S}_{t}$

$\mathbf{S}_{\mathrm{t}}=\left(\boldsymbol{\eta}_{\mathrm{i}} / \boldsymbol{\eta}_{\mathrm{t}}\right) \mathbf{S}_{\mathrm{i}}$

Ray-tracing pseudocode

We build a ray traced image by casting rays through each of the pixels.
function traceImage (scene): for each pixel (i, j) in image $S=$ pixelToWorld (i, j) $P=\mathbf{C O P}$
$\mathbf{d}=(S-P) /\|S-P\|$
$\mathrm{I}(\mathrm{i}, \mathrm{j})=\operatorname{traceRay}($ scene, $P, \mathbf{d})$
end for
end function

Ray-tracing pseudocode, cont" d

```
function traceRay(scene, \(P, \mathbf{d}\) ):
    ( \(\mathrm{t}, \mathbf{N}, \operatorname{mtrl}) \leftarrow\) scene.intersect \((P, \mathbf{d})\)
    \(Q \leftarrow \operatorname{ray}(P, \mathbf{d})\) evaluated at t
    \(\mathrm{I}=\operatorname{shade}(\mathbf{q}, \mathbf{N}, \mathrm{mtrl}\), scene \()\)
    \(\mathbf{R}=\operatorname{reflectDirection}(\mathbf{N},-\mathbf{d})\)
    \(\mathrm{I} \leftarrow \mathrm{I}+\mathrm{mtrl}_{\mathrm{l}} . \mathrm{k}_{\mathrm{r}} * \operatorname{traceRay}(\) scene \(, Q, \mathbf{R})\)
    if ray is entering object then
        n_i \(=\) index_of_air
        \(\mathrm{n}_{\mathrm{L}} \mathrm{t}=\) mtrl.index
    else
        n_i \(=\) mtrl.index
        \(\mathrm{n}^{-} \mathrm{t}=\) index_of_air
    if (mtrl.k_t \(>0\) and \(\operatorname{not} T I R\left(n_{-}, n_{-} \mathrm{t}, \mathbf{N},-\mathbf{d}\right)\) ) then
    \(\mathbf{T}=\operatorname{refractDirection}\left(\mathrm{n}_{-} \mathrm{i}, \mathrm{n}_{-} \mathrm{t}, \mathbf{N},-\mathbf{d}\right)\)
    \(\mathrm{I} \leftarrow \mathrm{I}+\) mtrl. \(\mathrm{k}_{\mathrm{t}} * \operatorname{traceRay}(\) scene \(, Q, \mathbf{T})\)
    end if
    return I
end function
```


Terminating recursion

$■$ Q: How do you bottom out of recursive ray tracing?

■ Possibilities:

Shading pseudocode

Next, we need to calculate the color returned by the shade function.
function shade(mtrl, scene, $Q, \mathbf{N}, \mathbf{d})$:
$I \leftarrow$ mtrl. $_{\mathrm{e}}+$ mtrl. $_{\mathrm{k}}^{\mathrm{a}} *$ scene- $>\boldsymbol{I}_{\mathrm{a}}$ for each light source L do:
atten $=\boldsymbol{L}->$ distanceAttenuation (Q)
atten $+=\boldsymbol{L}->$ shadowAttenuation(scene, Q) $\boldsymbol{I} \leftarrow \boldsymbol{I}+$ atten* (diffuse term + spec term)
end for
return I
end function

Shadow attenuation

- Computing a shadow can be as simple as checking to see if a ray makes it to the light source.
- For a point light source:

```
function PointLight::shadowAttenuation(scene, P)
    d = (L.position - P).normalize()
    (t, N, mtrl) = scene.intersect(P, d)
    Q = ray.intersection(t)
    if Q is before the light source then:
        atten =0
    else
        atten =1
    end if
    return atten
end function
```

- Q: What if there are transparent objects along a path to the light source?

Ray-plane intersection

- We can write the equation of a plane as:

$$
a x+b y+c z+d=0
$$

- The coefficients a, b, and c form a vector that is normal to the plane, $\mathbf{n}=\left[\begin{array}{ll}a b c\end{array}\right]^{\mathrm{T}}$. Thus, we can re-write the plane equation as:

$$
\begin{aligned}
& \mathbf{n} \cdot \mathbf{p}(t)+d=0 \\
& \mathbf{n} \cdot(\mathrm{P}+t \mathbf{d})+d=0
\end{aligned}
$$

■ We can solve for the intersection parameter (and thus the point): $\quad t=-\frac{\mathbf{n} \cdot P+d}{\mathbf{n} \cdot \mathbf{d}}$

Ray-triangle intersection

- To intersect with a triangle, we first solve for the equation of its supporting plane:

$$
\begin{aligned}
\mathbf{n} & =(\mathrm{A}-\mathrm{C}) \times(\mathrm{B}-\mathrm{C}) \\
d & =-(\mathbf{n} \cdot \mathrm{A})
\end{aligned}
$$

- Then, we need to decide if the point is inside or outside of the triangle.
- Solution 1: compute barycentric coordinates from 3D points.
- What do you do with the barycentric coordinates?

Barycentric coordinates

A set of points can be used to create an affine frame. Consider a triangle $A B C$ and a point \mathbf{p} :

We can form a frame with an origin C and the vectors from C to the other vertices:

$$
\mathbf{u}=\mathrm{A}-\mathrm{C} \quad \mathbf{v}=\mathrm{B}-\mathrm{C} \quad \mathrm{t}=\mathrm{C}
$$

We can then write P in this coordinate frame $\quad \mathbf{p}=\alpha \mathbf{u}+\beta \mathbf{v}+\mathbf{t}$

The coordinates (α, β, γ) are called the barycentric coordinates of p relative to A, B, and C.

Computing barycentric coordinates

For the triangle example we can compute the barycentric coordinates of P :

$$
\begin{aligned}
& \mathrm{P}: \\
& \alpha A+\beta B+\gamma C=\left[\begin{array}{ccc}
A_{x} & B_{x} & C_{x} \\
A_{y} & B_{y} & C_{y} \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p}_{\mathbf{x}} \\
\mathbf{p}_{y} \\
1
\end{array}\right]
\end{aligned}
$$

Cramer's rule gives the solution:

Computing the determinant of the denominator gives:

$$
B_{x} C_{y}-B_{y} C_{x}+A_{y} C_{x}-A_{x} C_{y}+A_{x} B_{y}-A_{y} B_{x}
$$

Cross products

Consider the cross-product of two vectors, \mathbf{u} and \mathbf{v}. What is the geometric interpretation of this cross-product?
A cross-product can be computed as:

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left\|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z}
\end{array}\right\| \\
& =\left(u_{y} v_{z}-u_{z} v_{y}\right) \mathbf{i}+\left(u_{z} v_{x}-u_{x} v_{z}\right) \mathbf{j}+\left(u_{x} v_{y}-u_{y} v_{x}\right) \mathbf{k} \\
& =\left[\begin{array}{l}
u_{y} v_{z}-u_{z} v_{y} \\
u_{z} v_{x}-u_{x} v_{z} \\
u_{x} v_{y}-u_{y} v_{x}
\end{array}\right]
\end{aligned}
$$

What happens when \mathbf{u} and \mathbf{v} lie in the $x-y$ plane? What is the area of the triangle they span?

Barycentric coords from area ratios

Now, let's rearrange the equation from two slides ago:

$$
\begin{aligned}
& B_{x} C_{y}-B_{y} C_{x}+A_{y} C_{x}-A_{x} C_{y}+A_{x} B_{y}-A_{y} B_{x} \\
& =\left(B_{x}-A_{x}\right)\left(C_{y}-A_{y}\right)-\left(B_{y}-A_{y}\right)\left(C_{x}-A_{x}\right)
\end{aligned}
$$

The determinant is then just the z-component of
$(\mathrm{B}-\mathrm{A}) \times(\mathrm{C}-\mathrm{A})$, which is two times the area of triangle $A B C$!
Thus, we find:

$$
\alpha=\frac{\operatorname{SArea}(\mathbf{p} B C)}{\operatorname{SArea}(A B C)} \quad \beta=\frac{\operatorname{SArea}(A \mathbf{p} C)}{\operatorname{SArea}(A B C)} \quad \gamma=\frac{\operatorname{SArea}(A B \mathbf{p})}{\operatorname{SArea}(A B C)}
$$

Where SArea(RST) is the signed area of a triangle, which can be computed with cross-products.

Ray-triangle intersection

- Solution 2: project down a dimension and compute barycentric coordinates from 2D points.

■ Why is solution 2 possible? Why is it legal? Why is it desirable? Which axis should you "project away"?

Interpolating vertex properties

- The barycentric coordinates can also be used to interpolate vertex properties such as:
- material properties
- texture coordinates
- normals
- For example:

$$
k_{d}(\mathrm{Q})=\alpha k_{d}(\mathrm{~A})+\beta k_{d}(\mathrm{~B})+\gamma k_{d}(\mathrm{C})
$$

■ Interpolating normals, known as Phong interpolation, gives triangle meshes a smooth shading appearance. (Note: don' t forget to normalize interpolated normals.)

Epsilons

- Due to finite precision arithmetic, we do not always get the exact intersection at a surface.
■ Q: What kinds of problems might this cause?

■ Q: How might we resolve this?

Intersecting with xformed geometry

- In general, objects will be placed using transformations. What if the object being intersected were transformed by a matrix M?
- Apply M^{-1} to the ray first and intersect in object (local) coordinates!

Intersecting with xformed geometry

\square The intersected normal is in object (local) coordinates. How do we transform it to world coordinates?

