Ray Tracing

Geometric optics

- Modern theories of light treat it as both a wave and a particle.
- We will take a combined and somewhat simpler view of light the view of **geometric optics**.
- Here are the rules of geometric optics:
 - Light is a flow of photons with wavelengths. We'll call these flows "light rays."
 - Light rays travel in straight lines in free space.
 - Light rays do not interfere with each other as they cross.
 - Light rays obey the laws of reflection and refraction.
 - Light rays travel form the light sources to the eye, but the physics is invariant under path reversal (reciprocity).

Synthetic pinhole camera

The most common imaging model in graphics is the synthetic pinhole camera: light rays are collected through an infinitesimally small hole and recorded on an **image plane**.

- For convenience, the image plane is usually placed in front of the camera, giving a non-inverted 2D projection (image).
- Viewing rays emanate from the **center of projection** (COP) at the center of the lens (or pinhole).
- The image of an object point P is at the intersection of the viewing ray through P and the image plane.

Eye vs. light ray tracing

■ Where does light begin?

At the light: light ray tracing (a.k.a., forward ray tracing or photon

tracing)

■ At the eye: eye ray tracing (a.k.a., backward ray tracing)

We will generally follow rays from the eye into the scene.

Precursors to ray tracing

- Local illumination
 - Cast one eye ray,then shade according to light

- Appel (1968)
 - Cast one eye ray + one ray to light

Whitted ray-tracing algorithm

- In 1980, Turner Whitted introduced ray tracing to the graphics community.
 - Combines eye ray tracing + rays to light
 - Recursively traces rays

Algorithm:

- 1. For each pixel, trace a **primary ray** in direction **V** to the first visible surface.
- 2. For each intersection, trace **secondary rays**:
 - Shadow rays in directions L_i to light sources
 - Reflected ray in direction R.
 - Refracted ray or transmitted ray in direction T.

Whitted algorithm (cont'd)

Let's look at this in stages:

Shading

A ray is defined by an origin P and a unit direction d and is parameterized by t:

$$P + t\mathbf{d}$$

Let $I(P, \mathbf{d})$ be the intensity seen along that ray. Then:

$$I(P, \mathbf{d}) = I_{\text{direct}} + I_{\text{reflected}} + I_{\text{transmitted}}$$

- where
 - \blacksquare I_{direct} is computed from the Phong model
 - $I_{\text{reflected}} = k_r I(Q, \mathbf{R})$
 - $I_{\text{transmitted}} = k_t I(Q, \mathbf{T})$
- Typically, we set $k_r = k_s$ and $k_t = 1 k_s$.

Reflection and transmission

■ Law of reflection:

$$\theta_i = \theta_r$$

■ Snell's law of refraction:

$$\eta_{\rm i} \sin \theta_{\rm I} = \eta_{\rm t} \sin \theta_{\rm t}$$

lacksquare where $\eta_{\rm i}$, $\eta_{\rm t}$ are indices of refraction.

Total Internal Reflection

- The equation for the angle of refraction can be computed from Snell's law:
- What happens when $\eta_i > \eta_t$?
- When θ_t is exactly 90°, we say that θ_I has achieved the "critical angle" θ_c .
- For $\theta_I > \theta_c$, no rays are transmitted, and only reflection occurs, a phenomenon known as "total internal reflection" or TIR.

Reflected and transmitted rays

- For incoming ray P(t)=P+td
 - Compute input cosine and sine vectors C_i and S_i
 - Reflected ray vector $\mathbf{R} = \mathbf{C}_i + \mathbf{S}_i$
 - Compute output cosine and sine vectors C_t and S_t
 - Transmitted ray vector $T = C_t + S_t$

 $S_i = C_i + d$

Ray-tracing pseudocode

We build a ray traced image by casting rays through each of the pixels.

```
function traceImage (scene):

for each pixel (i,j) in image

S = pixelToWorld(i,j)

P = COP

d = (S - P)/||S - P||

I(i,j) = traceRay(scene, P, d)

end for

end function
```


Ray-tracing pseudocode, cont' d

```
function traceRay(scene, P, d):
    (t, N, mtrl) \leftarrow scene.intersect(P, d)
    Q \leftarrow \text{ray}(P, \mathbf{d}) evaluated at t
    I = shade(\mathbf{q}, \mathbf{N}, mtrl, scene)
    \mathbf{R} = reflectDirection(\mathbf{N}, -\mathbf{d})
    I \leftarrow I + mtrl.k_r * traceRay(scene, Q, R)

if ray is entering object then

n_i = index_of_air
       n t = mtrl.index
    else
       n i = mtrl.index
      n^{-}t = index of air
    if (\overline{m}trl.k\_t > \overline{0} and notTIR (n\_i, n\_t, N, -d)) then
       T = refractDirection (n_i, n_t, N, -d)
       I \leftarrow I + mtrl.k_t * traceRay(scene, Q, T)
    end if
    return I
end function
```


Terminating recursion

• Q: How do you bottom out of recursive ray tracing?

■ Possibilities:

Shading pseudocode

Next, we need to calculate the color returned by the *shade* function.

```
function shade(mtrl, scene, Q, N, d):

I \leftarrow mtrl.k_e + mtrl.k_a * scene->I_a

for each light source L do:

atten = L -> distanceAttenuation(Q)

atten += L -> shadowAttenuation(scene, Q)

I \leftarrow I + atten*(diffuse term + spec term)

end for

return I

end function
```


Shadow attenuation

- Computing a shadow can be as simple as checking to see if a ray makes it to the light source.
- For a point light source:

```
function PointLight::shadowAttenuation(scene, P)
    d = (L.position - P).normalize()
    (t, N, mtrl) = scene.intersect(P, d)
    Q = ray.intersection(t)
    if Q is before the light source then:
        atten = 0
    else
        atten = 1
    end if
    return atten
end function
```

■ **Q**: What if there are transparent objects along a path to the light source?

Ray-plane intersection

■ We can write the equation of a plane as:

$$ax + by + cz + d = 0$$

The coefficients a, b, and c form a vector that is normal to the plane, $\mathbf{n} = [a \ b \ c]^{\mathrm{T}}$. Thus, we can re-write the plane equation as: $\mathbf{n} \cdot \mathbf{p}(t) + d = 0$

$$\mathbf{n} \bullet (\mathbf{P} + t\mathbf{d}) + d = 0$$

We can solve for the intersection parameter (and thus the point): $t = -\frac{\mathbf{n} \cdot P + d}{\mathbf{n} \cdot \mathbf{d}}$

Ray-triangle intersection

■ To intersect with a triangle, we first solve for the equation of its supporting plane:

$$\mathbf{n} = (\mathbf{A} - \mathbf{C}) \times (\mathbf{B} - \mathbf{C})$$
$$d = -(\mathbf{n} \cdot \mathbf{A})$$

- Then, we need to decide if the point is inside or outside of the triangle.
 - Solution 1: compute barycentric coordinates from 3D points.
 - What do you do with the barycentric coordinates?

Barycentric coordinates

A set of points can be used to create an affine frame. Consider a triangle ABC and a point \mathbf{p} :

We can form a frame with an origin *C* and the vectors from *C* to the other vertices:

$$\mathbf{u} = \mathbf{A} - \mathbf{C}$$
 $\mathbf{v} = \mathbf{B} - \mathbf{C}$ $\mathbf{t} = \mathbf{C}$

We can then write P in this coordinate frame $\mathbf{p} = \alpha \mathbf{u} + \beta \mathbf{v} + \mathbf{t}$

The coordinates (α, β, γ) are called the **barycentric coordinates** of **p** relative to A, B, and C.

Computing barycentric coordinates

For the triangle example we can compute the barycentric coordinates of P: $\begin{bmatrix} A & B & C \end{bmatrix} \begin{bmatrix} G \end{bmatrix}$

$$\alpha A + \beta B + \gamma C = \begin{vmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ 1 & 1 & 1 \end{vmatrix} \begin{vmatrix} \alpha \\ \beta \\ \gamma \end{vmatrix} = \begin{vmatrix} \mathbf{p_x} \\ \mathbf{p_y} \\ 1 \end{vmatrix}$$

Cramer's rule gives the solution:

$$\alpha = \frac{\begin{vmatrix} \mathbf{p_{x}} & B_{x} & C_{x} \\ \mathbf{p_{y}} & B_{y} & C_{y} \\ 1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} A_{x} & B_{x} & C_{x} \\ A_{y} & B_{y} & C_{y} \\ 1 & 1 & 1 \end{vmatrix}} \beta = \frac{\begin{vmatrix} A_{x} & \mathbf{p_{x}} & C_{x} \\ A_{y} & \mathbf{p_{y}} & C_{y} \\ 1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} A_{x} & B_{x} & C_{x} \\ A_{y} & B_{y} & C_{y} \\ 1 & 1 & 1 \end{vmatrix}} \gamma = \frac{\begin{vmatrix} A_{x} & B_{x} & \mathbf{p_{x}} \\ A_{y} & B_{y} & \mathbf{p_{y}} \\ 1 & 1 & 1 \end{vmatrix}}{\begin{vmatrix} A_{x} & B_{x} & C_{x} \\ A_{y} & B_{y} & C_{y} \\ 1 & 1 & 1 \end{vmatrix}}$$

Computing the determinant of the denominator gives:

$$B_x C_y - B_y C_x + A_y C_x - A_x C_y + A_x B_y - A_y B_x$$

Cross products

Consider the cross-product of two vectors, **u** and **v**. What is the geometric interpretation of this cross-product?

A cross-product can be computed as:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{vmatrix}$$

$$= (u_y v_z - u_z v_y) \mathbf{i} + (u_z v_x - u_x v_z) \mathbf{j} + (u_x v_y - u_y v_x) \mathbf{k}$$

$$= \begin{bmatrix} u_y v_z - u_z v_y \\ u_z v_x - u_z v_z \\ u_x v_y - u_y v_x \end{bmatrix}$$

What happens when **u** and **v** lie in the *x-y* plane? What is the area of the triangle they span?

Barycentric coords from area ratios

Now, let's rearrange the equation from two slides ago:

$$B_{x}C_{y} - B_{y}C_{x} + A_{y}C_{x} - A_{x}C_{y} + A_{x}B_{y} - A_{y}B_{x}$$

$$= (B_{x} - A_{x})(C_{y} - A_{y}) - (B_{y} - A_{y})(C_{x} - A_{x})$$

The determinant is then just the z-component of $(B-A) \times (C-A)$, which is two times the area of triangle ABC! Thus, we find:

$$\alpha = \frac{\text{SArea}(\mathbf{p}BC)}{\text{SArea}(ABC)}$$
 $\beta = \frac{\text{SArea}(A\mathbf{p}C)}{\text{SArea}(ABC)}$ $\gamma = \frac{\text{SArea}(AB\mathbf{p})}{\text{SArea}(ABC)}$

Where SArea(RST) is the signed area of a triangle, which can be computed with cross-products.

Ray-triangle intersection

Solution 2: project down a dimension and compute barycentric coordinates from 2D points.

■ Why is solution 2 possible? Why is it legal? Why is it desirable? Which axis should you "project away"?

Interpolating vertex properties

- The barycentric coordinates can also be used to interpolate vertex properties such as:
 - material properties
 - texture coordinates
 - normals
- For example:

$$k_d(\mathbf{Q}) = \alpha k_d(\mathbf{A}) + \beta k_d(\mathbf{B}) + \gamma k_d(\mathbf{C})$$

Interpolating normals, known as Phong interpolation, gives triangle meshes a smooth shading appearance. (Note: don't forget to normalize interpolated normals.)

- Due to finite precision arithmetic, we do not always get the exact intersection at a surface.
- **Q**: What kinds of problems might this cause?

Q: How might we resolve this?

Intersecting with xformed geometry

- In general, objects will be placed using transformations. What if the object being intersected were transformed by a matrix M?
- Apply M⁻¹ to the ray first and intersect in object (local) coordinates!

Intersecting with xformed geometry

The intersected normal is in object (local) coordinates. How do we transform it to world coordinates?