## (CS,CSE) 384G Course Introduction

Don Fussell Computer Science Department The University of Texas at Austin



## **Computer Graphics**

- Instructor: Don Fussell
  - fussell@cs.utexas.edu
  - Office: GDC 5.510
  - http://www.cs.utexas.edu/users/fussell/
  - Office Hours: TTh 11:30am-12:30pm



## Objectives

- Transformations and viewing
- Rasterization and ray tracing
- Lighting and shading
- Graphics hardware technology
- Mathematics for computer graphics
- Digital image and signal processing
- Animation and physical simulation
- Basics of geometry modeling
- Modeling surface properties
- OpenGL and shader programming



## **Course Expectations**

#### You should

- Attend regularly and keep up
- Do the programming assignments
  - Nearly everything you learn in this course will come from these
  - You need to know C/C++
  - Use email and/or office hours if you need help
  - No cheating (see syllabus and UT Austin policy)
  - If it's not fun, you're doing it wrong



Programming projects 90%
 Homework and quizzes 10% (if relevant, otherwise this 10% goes to programming projects)



## Recommended Textbook

*3D Computer Graphics, 3<sup>rd</sup> Edition*by Alan Watt
Addison-Wesley
Currently only recommended
Getting pretty old now
Expensive, like all textbooks today
Very helpful, but we don't require it



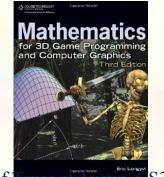

## **Other Useful Resources**

#### OpenGL

#### See links on course webpage

OpenGL Programming Guide "the red book"






**OpenGL SuperBible OpenGL A** Primer



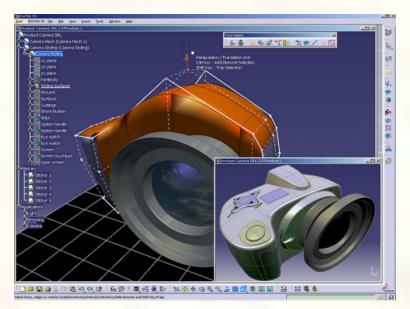
#### Supplemental books

**Eric Lengyel** Mathematics for 3D Game Programming and Computer Graphins of Texas at Austin CS384G – Computer Graphics Don Fussell





Real-Time Rendering **Eric Haines**, Tomas Akenine-Moller, Naty Hoffman




#### Film, television



#### [Pixar 2010]

#### Product design



#### [CATIA]



#### Games

#### Training





#### [Skyrim]

#### [Commercial simulators]



#### GUIs



[Android 4.0]





#### 2d and 3d printing

#### Digital imaging, computational photography

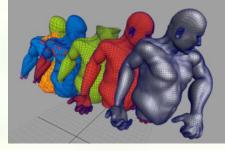


[MakerBot]

# RiverBox: Replicator



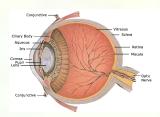
[Canon]



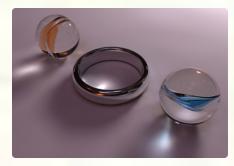

## Computer graphics

#### Very interdisciplinary compared to many CS topics




Geometry and Mathematics of Surfaces



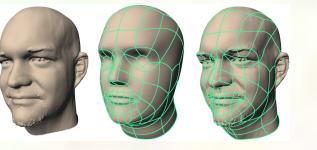

Animation & Simulation



Display & Input Technology



Human Perception Physics of Light Transport






#### What we will cover

#### Computer-based representation of

**Geometry** 



#### [Litke et.al. 2001]

#### Appearance



#### [george3738]

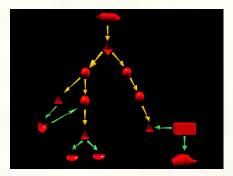
Motion



[Chai & Hodgins, 2005]



## What we won't cover


- Digital content creation
  - No Photoshop, no Maya or 3D Studio Max
  - Computer Science class, not an art class
- 2d stuff, GUIs
- C/C++ programming
  - You should already know C or C++ under Linux
    - Not just the language
    - Need to know debugging and software practices
    - Programming projects assume Linux supported in GDC labs
- Many advanced techniques



## Graphics and vision

#### Computer graphics

- Takes an abstract representation of a "scene" within a computer's memory and converts it to concrete representing a view of that scene
- 40 year old discipline now very advanced because this is the easy stuff
- Visual system
  - Takes concrete imagery and converts into an abstract representation of a scene in your brain (what you see is a model you construct).
  - Computer vision tries to do this with a computer, it's very hard

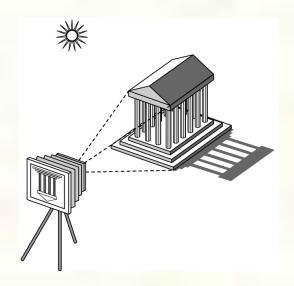


Computer graphics - easy

#### Computer vision - hard






## **Image Formation**

- In computer graphics, we form images which are generally two dimensional using a process analogous to how images are formed by physical imaging systems
  - Cameras
  - Microscopes
  - Telescopes
  - Human visual system



## **Elements of Image Formation**

Objects
Viewer
Light source(s)



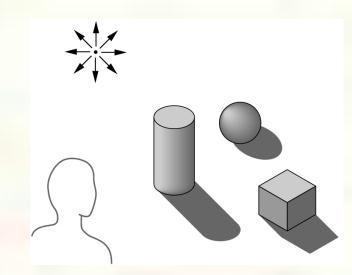
Attributes that govern how light interacts with the materials in the scene

Note the independence of the objects, the viewer, and the light source(s)



- Light is the part of the electromagnetic spectrum that causes a reaction in our visual systems
- Generally these are wavelengths in the range of about 350-750 nm (nanometers)
- Long wavelengths appear as reds and short wavelengths as blues

## **Ray Tracing and Geometric Optics**


В

One way to form an image is to follow rays of light from a point source finding which rays enter the lens of the camera. However, each ray of light may have multiple interactions with objects before being absorbed or going to infinity.



## Global vs Local Lighting

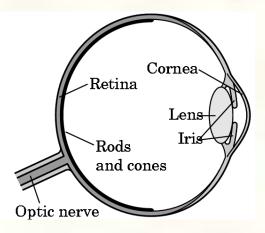
- Cannot compute color or shade of each object independently
  - Some objects are blocked from light
  - Light can reflect from object to object
  - Some objects might be translucent





## Luminance and Color Images

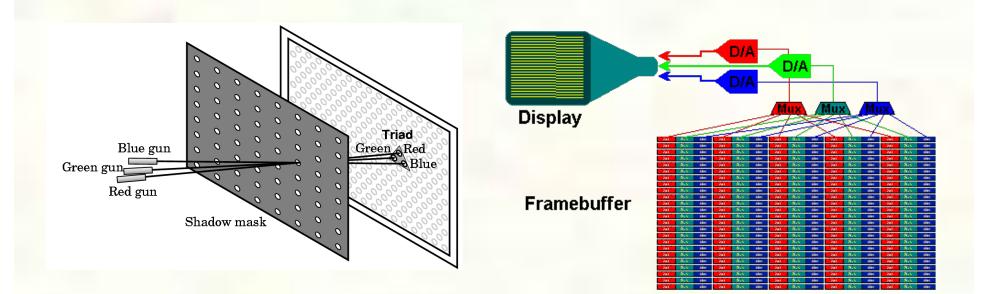
#### Luminance Image


- Monochromatic
- Values are gray levels
- Analogous to working with black and white film or television
- Color Image
  - Has perceptional attributes of hue, saturation, and lightness
  - Do we have to match every frequency in visible spectrum? No!



## Three-Color Theory

#### Human visual system has two types of sensors


- Rods: monochromatic, night vision
- Cones
  - Color sensitive
  - Three types of cones
  - Only three values (the *tristimulus*
  - values) are sent to the brain



- Need only match these three values
  - Need only three primary colors



## Raster Displays



- Images are 2-d array of numbers corresponding to pixels on screen
- Numbers are in frame buffer memory
- 1-1 correspondence between frame buffer pixels and screen pixels



## Additive and Subtractive Color

#### Additive color

- Form a color by adding amounts of three primaries
  - Monitors, projection systems, positive film
- Primaries are Red (R), Green (G), Blue (B)
- Subtractive color
  - Form a color by filtering white light with cyan (C), Magenta (M), and Yellow (Y) filters
    - Light-material interactions
    - Printing
    - Film



### Next Lecture

- Vector and affine math
- AssignmentsRay tracer
- Thanks to Mark Kilgard and Ed Angel for material in many of these slides