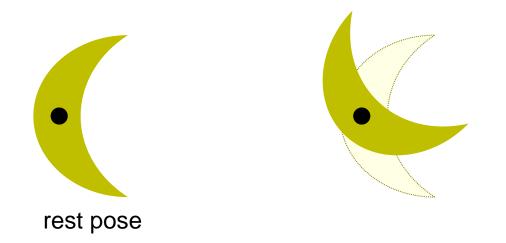
Rotations and Projective Space

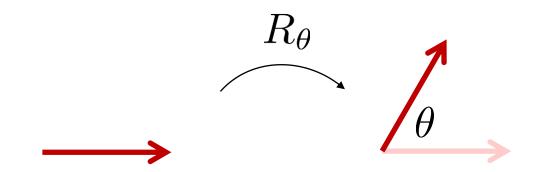
Spins **points** about origin; **vectors** about their tails

Rotation vs Orientation

Rotation is a **transformation** Rotation of **rest pose** is **orientation**

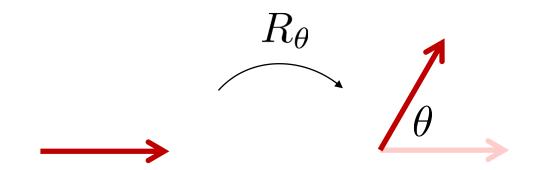


In 2D rotations are simple: parameterized by single **angle** θ



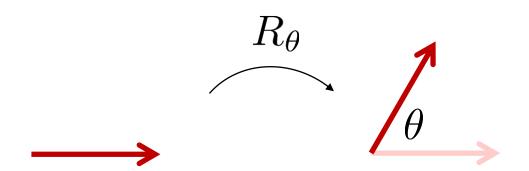
In 2D rotations are simple: parameterized by single **angle** θ

• "one dimensional"



In 2D rotations are simple: parameterized by single **angle** θ

- "one dimensional"
- periodic



Rotation Group

- 2D rotations form a **group** called SO(2)
- compositions of rotations are rotations $R_{\phi}R_{\theta}=R_{\phi+\theta}$

Rotation Group

- 2D rotations form a **group** called SO(2)
- compositions of rotations are rotations $R_{\phi}R_{\theta}=R_{\phi+\theta}$
- rotations have inverses $R_{-\theta}$

Rotation Matrices (in 2D)

Rotations are linear (why)?

Rotation Matrices (in 2D)

Rotations are linear (why)?

Rotations can be represented by matrix (why)?

Rotation Matrices (in 2D)

Rotations are linear (why)?

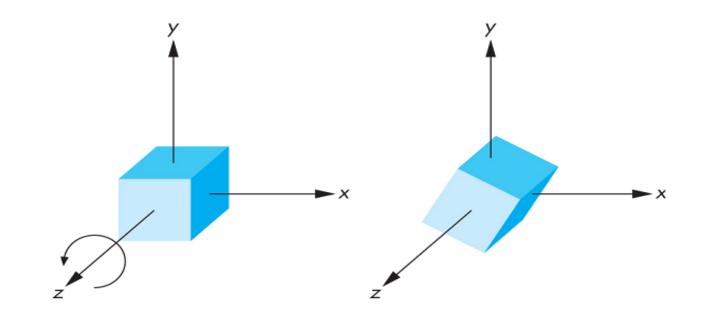
Rotations can be represented by matrix (why)?

Formula:
$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

3D Rotations and Orientations

3D rotations still linear, still form group SO(3)

rotations don't commute!!

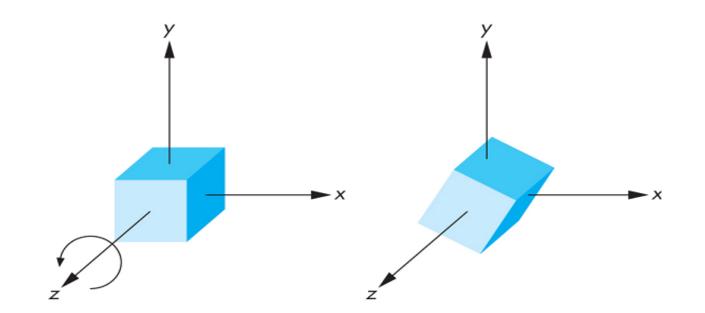


3D Rotations and Orientations

3D rotations still linear, still form group SO(3)

rotations don't commute!!

But compared to 2D, very tricky



1. Write them down (represent them)

- 1. Write them down (represent them)
- 2. Use them to rotate points/vectors

- 1. Write them down (represent them)
- 2. Use them to rotate points/vectors
- 3. Compose them

- 1. Write them down (represent them)
- 2. Use them to rotate points/vectors
- 3. Compose them
- 4. Interpolate them
 - interpolate: smoothly blend

Representation 1: Frames

Three orthogonal, unit vectors $R\hat{x}, R\hat{y}, R\hat{z}$

Representation 1: Frames

Three orthogonal, unit vectors $R\hat{x}, R\hat{y}, R\hat{z}$ Actually only need two: $R\hat{z} = R\hat{x} \times R\hat{y}$

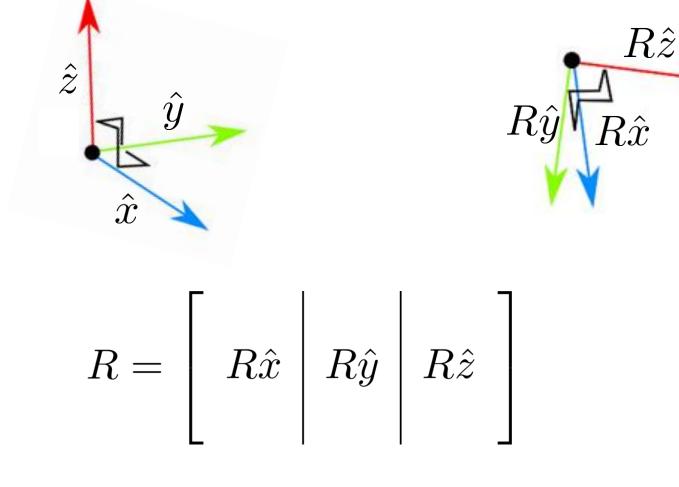
Representation 1: Frames

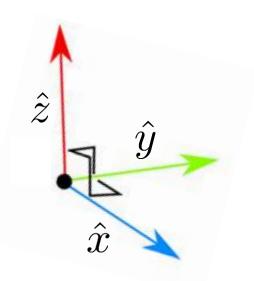
Pros:

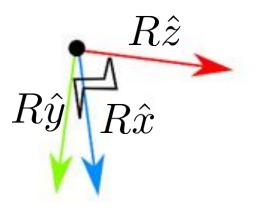
intuitive

Cons:

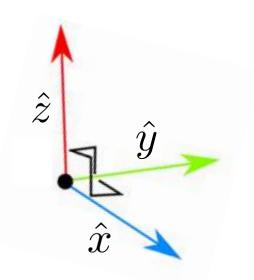
- needs six numbers
- complicated orthonormality condition
- composition: unclear
- interpolation: no chance

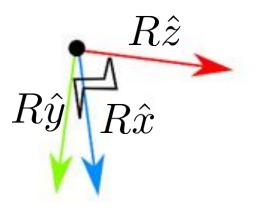






$$R = \left[\begin{array}{c|c} R\hat{x} & R\hat{y} & R\hat{z} \\ R\hat{x} & R\hat{y} & R\hat{z} \end{array} \right] \begin{array}{c} \text{columns unit vectors} \\ \text{columns orthogonal} \end{array}$$





$$R = \left[\begin{array}{c|c} R\hat{x} & R\hat{y} & R\hat{z} \\ R\hat{x} & R\hat{y} & R\hat{z} \end{array} \right] \begin{array}{c} \text{columns unit vectors} \\ \text{columns orthogonal} \\ R^T R = I \end{array}$$

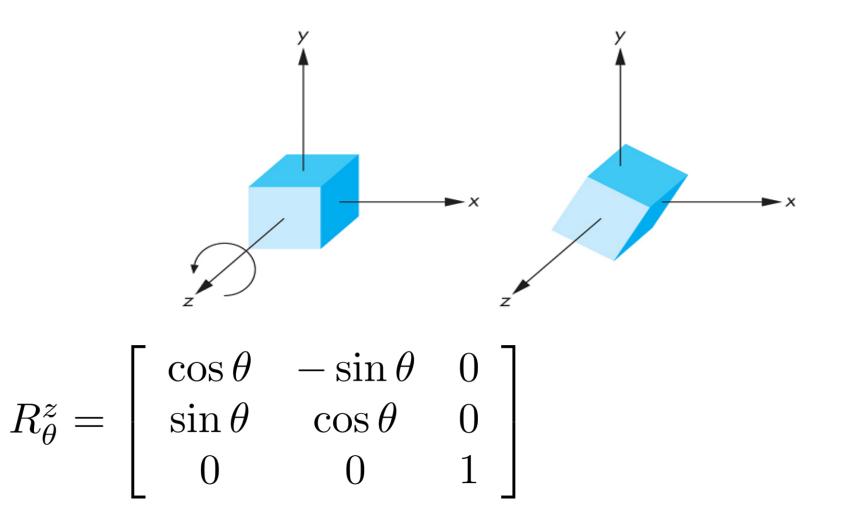
Pros

- composition easy
- applying rotation easy

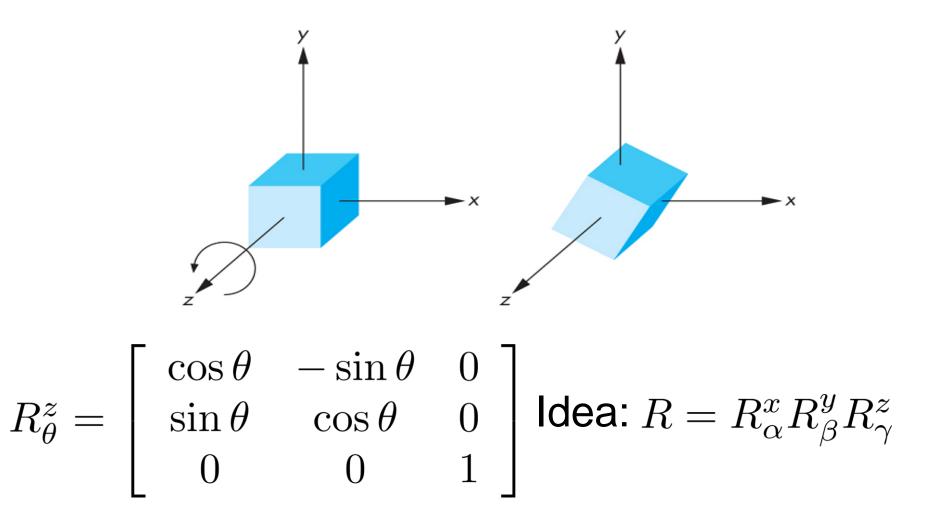
Cons

- needs nine numbers
- complicated condition $R^T R = I$
- interpolation: no chance

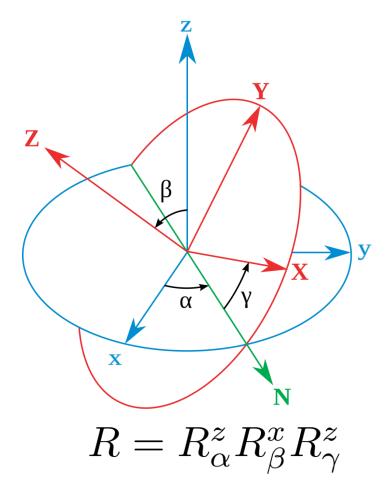
Special Case: Rotation about Axis



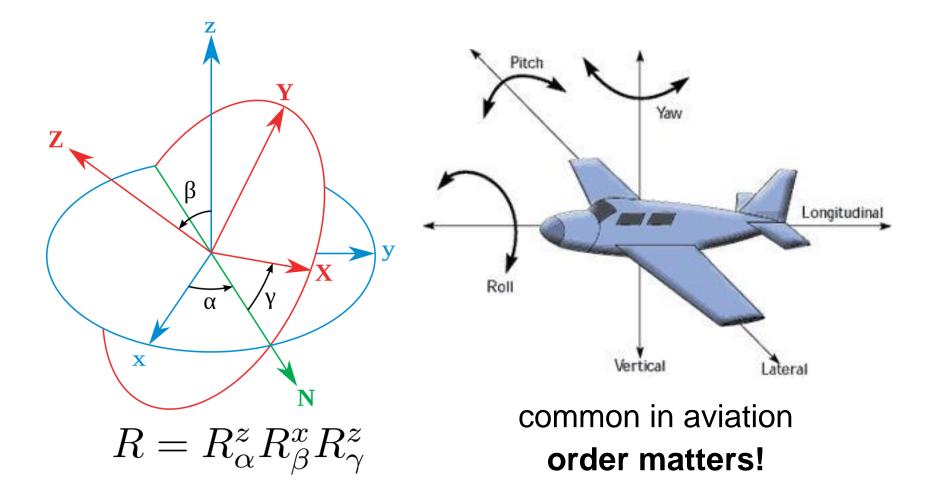
Special Case: Rotation about Axis



Representation 3: Euler Angles



Representation 3: Euler Angles



Gimbal Lock

When first rotation aligns other axes Rotations get "stuck"



Apollo 11 Gimbal Lock

Representation 3: Euler Angles

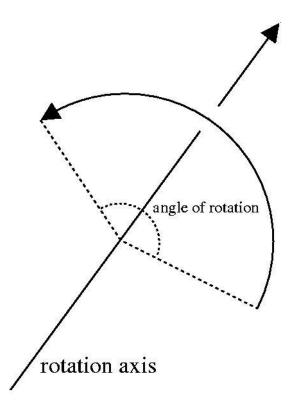
Pros:

- just three numbers
- easy to convert to matrix

Cons

- complicated to apply/compose
- interpolation: gimbal lock

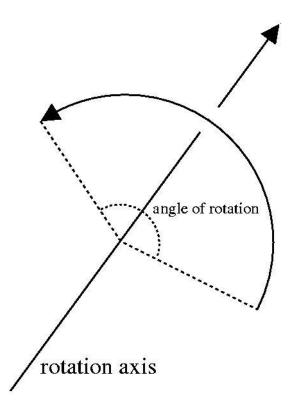
Geometry fact: every rotation fixes an axis



represent rotation as:

- axis \hat{a}
- angle θ

Geometry fact: every rotation fixes an axis



represent rotation as:

- axis \hat{a}
- angle θ

...or "axis-angle"
$$\vec{\theta} = \theta \hat{a}$$

Converting to matrix **not** simple

Rodrigues Rotation Formula:

$$R = I + \sin \theta \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} + (1 - \cos \theta) \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}^2$$

0

Pros:

- very intuitive
- only three numbers

Cons:

- complicated + slow to compose/apply
- interpolation: complicated

Representation 4: Quaternions

What is a quaternion?

 like complex numbers, but three imaginary dimensions

$$a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$$
$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$$

What is a quaternion?

- like complex numbers, but three imaginary dimensions $a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$$

• cyclic relationship

$$\mathbf{ij} = \mathbf{k}$$

 $\mathbf{jk} = \mathbf{i}$
 $\mathbf{ki} = \mathbf{i}$

J

Turns out rotations can be represented by **unit** quaternions

$$a^2 + b^2 + c^2 + d^2 = 1$$

Rotation about axis (v_x, v_y, v_z) : $q = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} (v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k})$

Turns out rotations can be represented by **unit** quaternions

$$a^2 + b^2 + c^2 + d^2 = 1$$

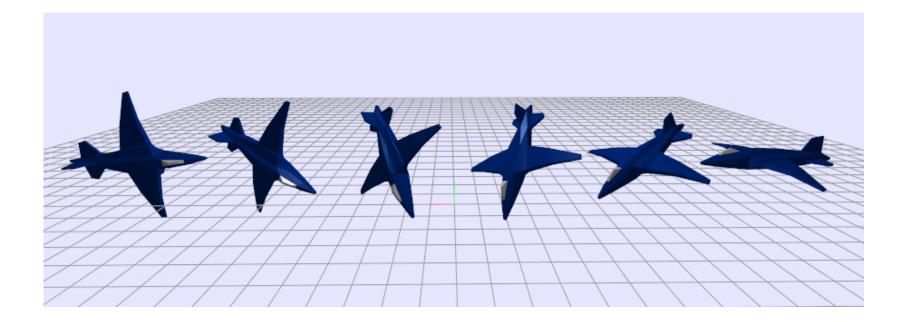
Rotation about axis (v_x, v_y, v_z) $q = \cos \frac{\theta}{2} + \sin \frac{\theta}{2} (v_x \mathbf{i} + v_y \mathbf{j} + v_z \mathbf{k})$ Acts on points/vectors by conjugation: $q (p_x \mathbf{i} + p_y \mathbf{j} + p_z \mathbf{k}) \bar{q}$

Why Are Quaternions Rotations?

SLERP

Spherical Linear Interpolation

smoothly blends two rotations



SLERP

Spherical Linear Interpolation

smoothly blends two rotations

Why not interpolate rotations?

$$R(t) = (1-t)R_1 + tR_2$$

SLERP

Spherical Linear Interpolation

smoothly blends two rotations

Turns out easy to do with quaternions $(q_2 \bar{q}_1)^t q_1$

• don't worry about the mechanics

Pros:

- just four numbers
- easy to compose
- easy to interpolate

Cons:

unintuitive

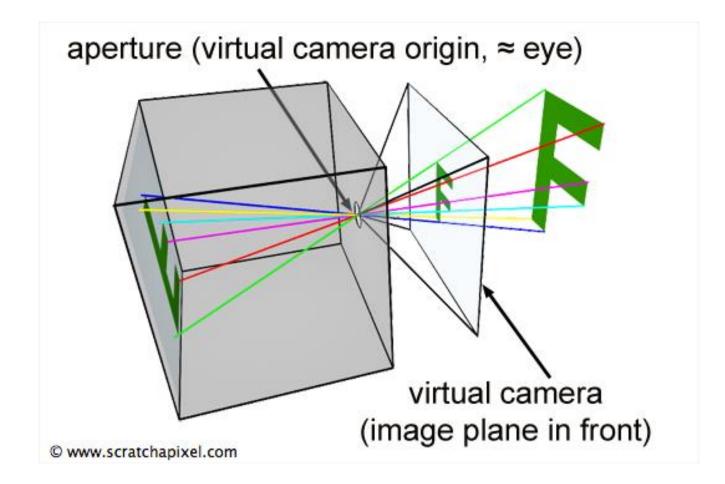
Rotations in Practice

Shaders work with matrices at end of day

High-performance intermediate computation is done with **quaternions**

Axis-angle most intuitive for camera controls and physics

Recall: Pinhole Camera



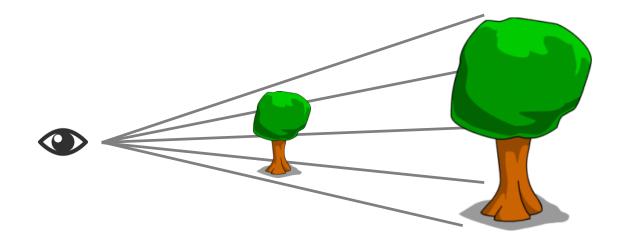
Pinhole Camera: Consequences

We see only projection of the world

Pinhole Camera: Consequences

We see only projection of the world

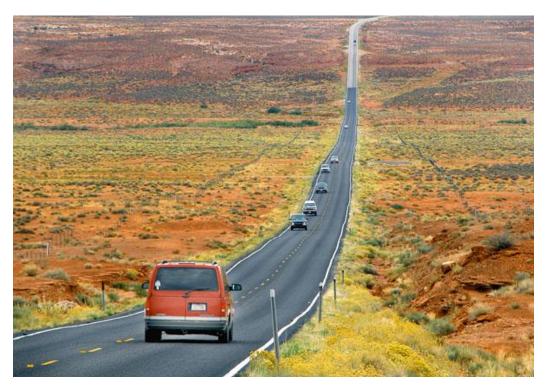
- many-to-one mapping
- distance vs scale ambiguity



Distance vs Scale Ambiguity

How we work around it:

- "deep learning"
- depth cues



Distance vs Scale Ambiguity

How we work around it:

- "deep learning"
- depth cues

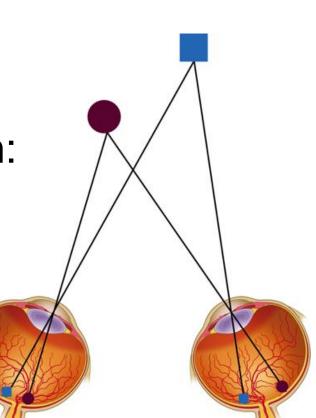
we assume: similar objects have similar shapes & sizes



Distance vs Scale Ambiguity

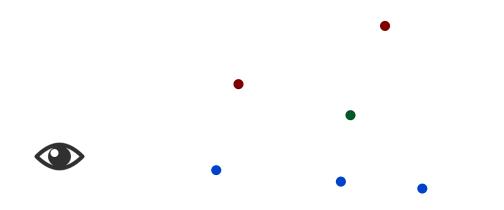
How we work around it:

- "deep learning"
- depth cues
- throw hardware at problem: binocular vision

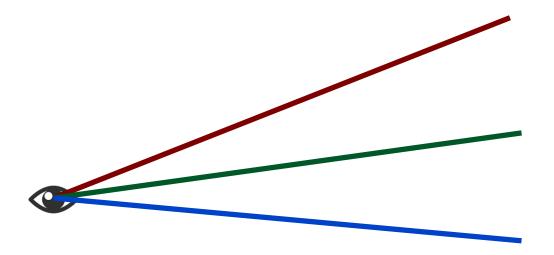


Monocular Vision Many-to-One

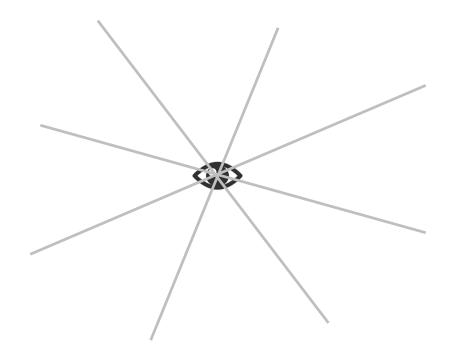
Points in space wrong abstraction



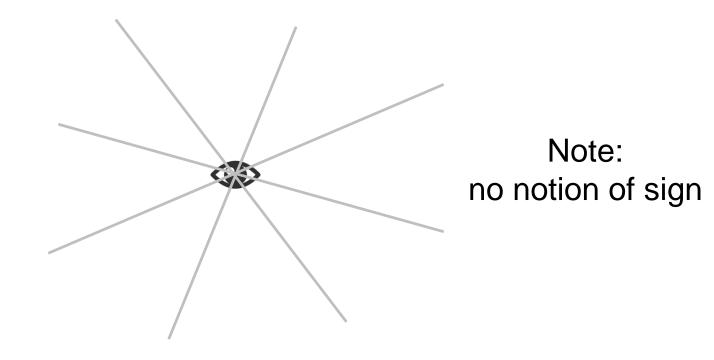
Space of lines through origin



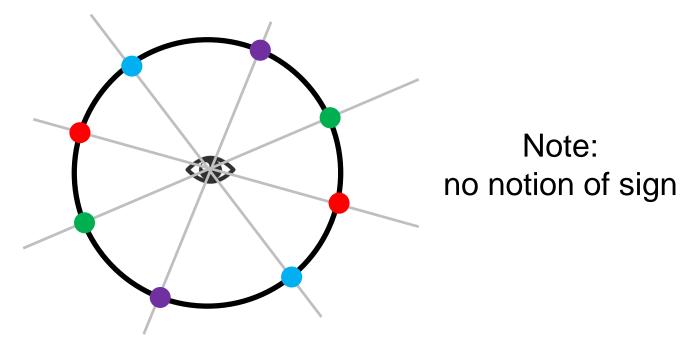
1. All lines through the origin



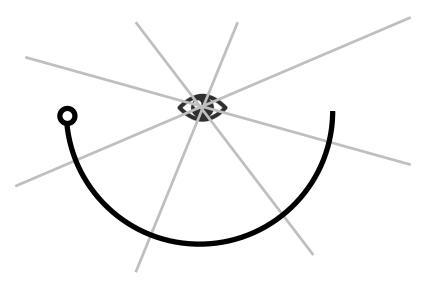
1. All lines through the origin



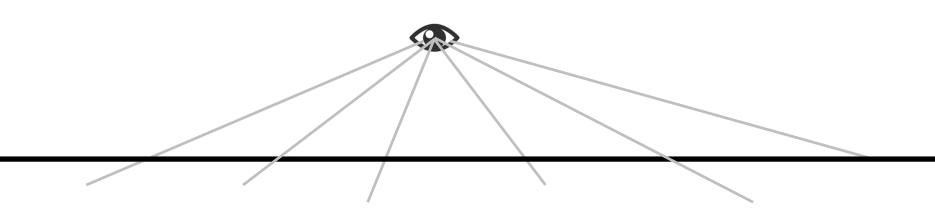
- 1. All lines through the origin
- 2. Circle with antipodal points glued



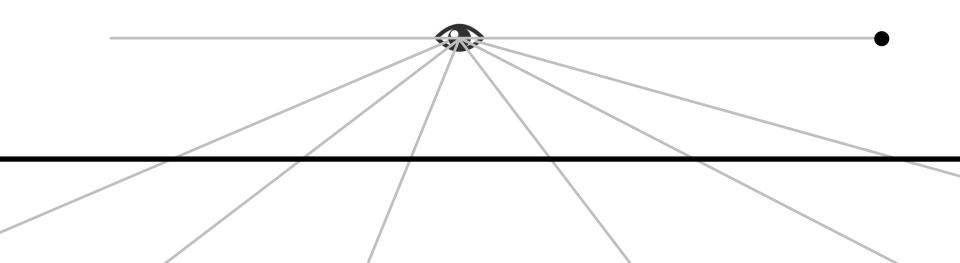
- 1. All lines through the origin
- 2. Circle with antipodal points glued
- 3. Interval $[0, \pi]$ with **boundary glued**



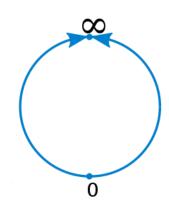
- 1. All lines through the origin
- 2. Circle with antipodal points glued
- 3. Interval $[0, \pi]$ with **boundary glued**
- 4. The real line...



- 1. All lines through the origin
- 2. Circle with antipodal points glued
- 3. Interval $[0, \pi]$ with **boundary glued**
- 4. The real line... plus "point at infinity"



- 1. All lines through the origin
- 2. Circle with antipodal points glued
- 3. Interval $[0, \pi]$ with **boundary glued**
- 4. The real line... plus "point at infinity"
 - "ends" of line meet at infinity



- 1. All lines through the origin
- 2. Circle with antipodal points glued
- 3. Interval $[0, \pi]$ with **boundary glued**
- 4. The real line... plus "point at infinity"
- 5. Homogeneous coordinates [x, w]

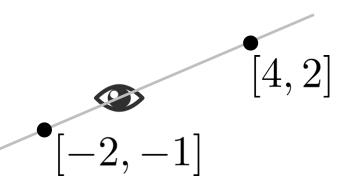
[4, 2]

All homogeneous coordinates $[\alpha x, \alpha w]$ represent **same** line

[20, 10]

All homogeneous coordinates $[\alpha x, \alpha w]$ represent **same** line

• say $[x, w] \sim [\alpha x, \alpha w]$ ("are equivalent")



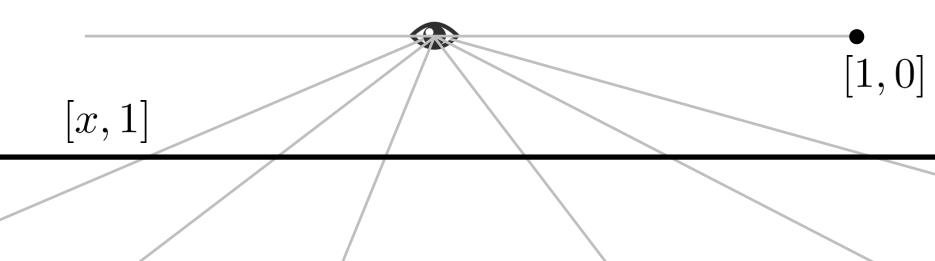
2

All homogeneous coordinates $[\alpha x, \alpha w]$ represent **same** line

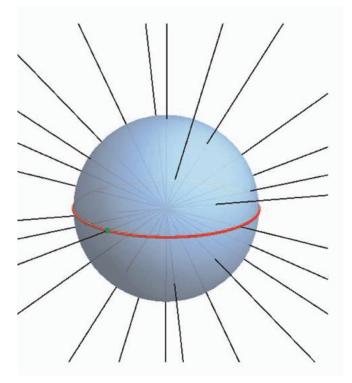
• say $[x, w] \sim [\alpha x, \alpha w]$ ("are **equivalent**") All points in 1D projective space equiv to:

All homogeneous coordinates $[\alpha x, \alpha w]$ represent **same** line

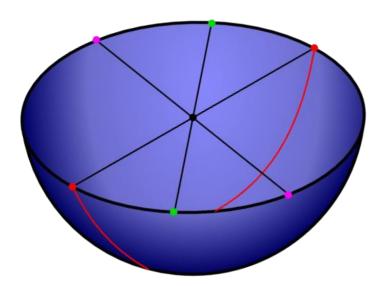
• say $[x, w] \sim [\alpha x, \alpha w]$ ("are **equivalent**") All points in 1D projective space equiv to:

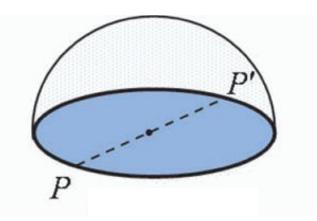


- 1. All lines through the origin
- 2. Sphere with antipodal points glued

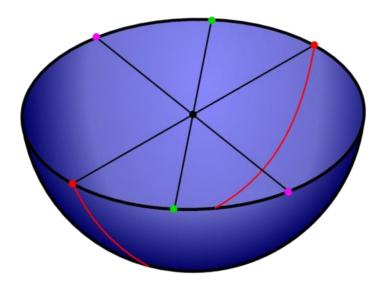


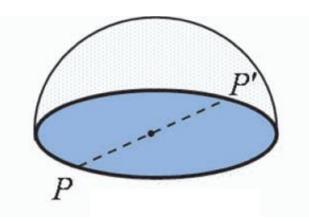
- 1. All lines through the origin
- 2. Sphere with antipodal points glued
- 3. Radius π disk with **boundary glued**





- 1. All lines through the origin
- 2. Sphere with antipodal points glued
- 3. Radius π disk with **boundary glued**

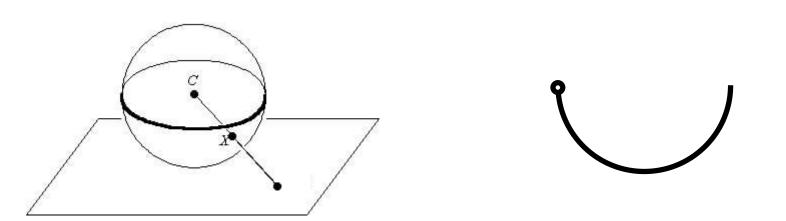




what does this look like?

Boy's Surface

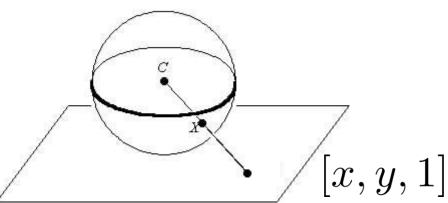
- 1. All lines through the origin
- 2. Sphere with antipodal points glued
- 3. Radius π disk with **boundary glued**
- 4. Plane plus "line at infinity"



- 1. All lines through the origin
- 2. Sphere with antipodal points glued
- 3. Radius π disk with **boundary glued**
- 4. Plane plus "line at infinity"
- 5. Homogeneous coordinates [x, y, w]

|1, 0, 0|

[x, 1, 0]



on projective plane, all lines intersect at one point

MARTHER

And a second sec

- Charles Contractions

ANNER!

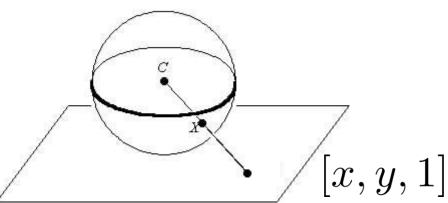
MACLENS NO

And the second second

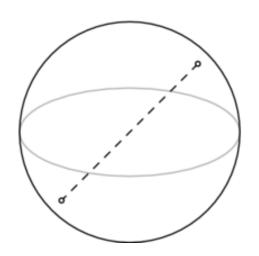
- 1. All lines through the origin
- 2. Sphere with antipodal points glued
- 3. Radius π disk with **boundary glued**
- 4. Plane plus "line at infinity"
- 5. Homogeneous coordinates [x, y, w]

|1, 0, 0|

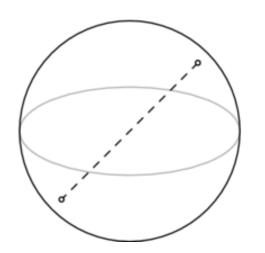
[x, 1, 0]



- 1. All lines through the origin
- 2. Hypersphere with antipodal pts glued
- 3. Radius π ball with **boundary glued**

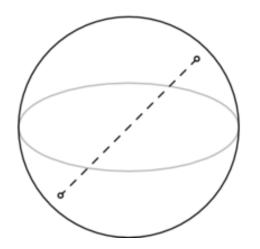


- 1. All lines through the origin
- 2. Hypersphere with antipodal pts glued
- 3. Radius π ball with **boundary glued**



remind you of anything?

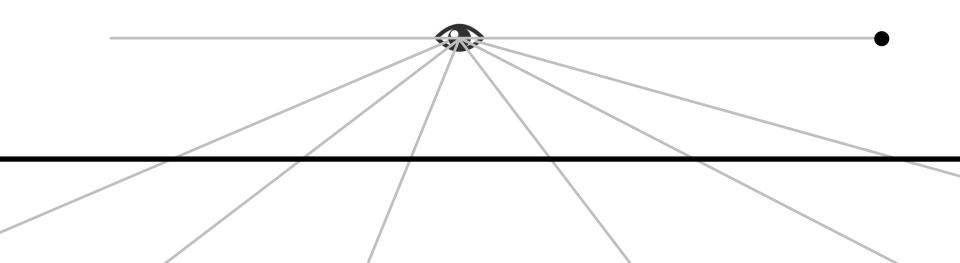
- 1. All lines through the origin
- 2. Hypersphere with antipodal pts glued
- 3. Radius π ball with **boundary glued**
- 4. Rotations in 3D (axis-angle)!



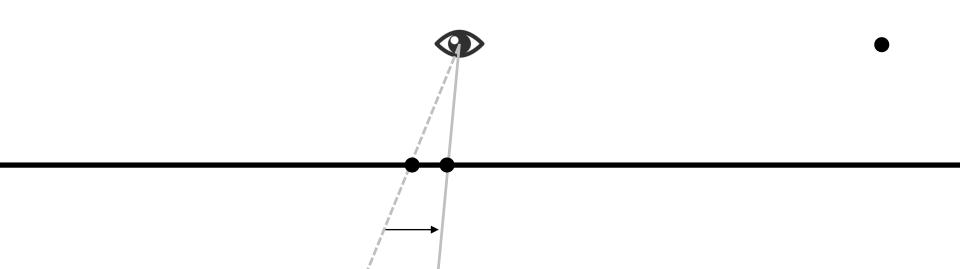
remind you of anything?

- 1. All lines through the origin
- 2. Hypersphere with antipodal pts glued
- 3. Radius π ball with **boundary glued**
- 4. Rotations in 3D (axis-angle)!
- 5. Homogeneous coordinates [x, y, z, w]

What does shear do in projective space?

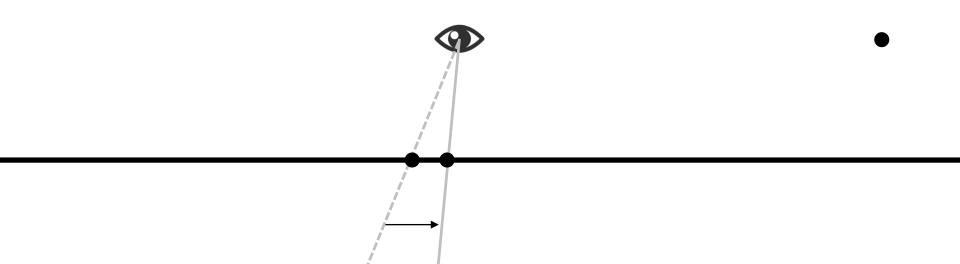


What does shear do in projective space?



What does shear do in projective space?

• points on line translate



What does shear do in projective space?

- points on line translate
- point at infinity untouched