Rotations and
 Projective Space

Rotations (in 2D)

Spins points about origin; vectors about their tails

Rotation vs Orientation

Rotation is a transformation
Rotation of rest pose is orientation

Rotations (in 2D)

In 2D rotations are simple: parameterized by single angle θ

Rotations (in 2D)

In 2D rotations are simple: parameterized by single angle θ

- "one dimensional"

Rotations (in 2D)

In 2D rotations are simple: parameterized by single angle θ

- "one dimensional"
- periodic

Rotation Group

2D rotations form a group called $\mathrm{SO}(2)$

- compositions of rotations are rotations

$$
R_{\phi} R_{\theta}=R_{\phi+\theta}
$$

Rotation Group

2D rotations form a group called $\mathrm{SO}(2)$

- compositions of rotations are rotations

$$
R_{\phi} R_{\theta}=R_{\phi+\theta}
$$

- rotations have inverses $R_{-\theta}$

Rotation Matrices (in 2D)

Rotations are linear (why)?

Rotation Matrices (in 2D)

Rotations are linear (why)?

Rotations can be represented by matrix (why)?

Rotation Matrices (in 2D)

Rotations are linear (why)?

Rotations can be represented by matrix (why)?

Formula: $R_{\theta}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$

3D Rotations and Orientations

3D rotations still linear, still form group SO(3)

- rotations don't commute!!

3D Rotations and Orientations

3D rotations still linear, still form group SO(3) - rotations don't commute!!

But compared to 2D, very tricky

What We Want To Do With Rots

1. Write them down (represent them)

What We Want To Do With Rots

1. Write them down (represent them)
2. Use them to rotate points/vectors

What We Want To Do With Rots

1. Write them down (represent them)
2. Use them to rotate points/vectors
3. Compose them

What We Want To Do With Rots

1. Write them down (represent them)
2. Use them to rotate points/vectors
3. Compose them
4. Interpolate them

- interpolate: smoothly blend

Representation 1: Frames

Three orthogonal, unit vectors $R \hat{x}, R \hat{y}, R \hat{z}$

Representation 1: Frames

Three orthogonal, unit vectors $R \hat{x}, R \hat{y}, R \hat{z}$ Actually only need two: $R \hat{z}=R \hat{x} \times R \hat{y}$

Representation 1: Frames

Pros:

- intuitive

Cons:

- needs six numbers
- complicated orthonormality condition
- composition: unclear
- interpolation: no chance

Representation 2: Matrices

$$
R=\left[\begin{array}{l|l|l}
R \hat{x} & R \hat{y} & R \hat{z}
\end{array}\right]
$$

Representation 2: Matrices

$$
R=\left[\begin{array}{l|l|l}
R \hat{x} & R \hat{y} & R \hat{z}
\end{array} \begin{array}{l}
\text { columns unit vectors } \\
\text { columns orthogonal }
\end{array}\right.
$$

Representation 2: Matrices

$$
R=\left[\begin{array}{l|l|l}
R \hat{x} & R \hat{y} & R \hat{z} \\
& &
\end{array} \begin{array}{l}
\text { columns unit vectors } \\
\text { columns orthogonal } \\
R^{T} R=I
\end{array}\right.
$$

Representation 2: Matrices

Pros

- composition easy
- applying rotation easy

Cons

- needs nine numbers
- complicated condition $R^{T} R=I$
- interpolation: no chance

Special Case: Rotation about Axis

$$
R_{\theta}^{z}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Special Case: Rotation about Axis

$$
R_{\theta}^{z}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \text { Idea: } R=R_{\alpha}^{x} R_{\beta}^{y} R_{\gamma}^{z}
$$

Representation 3: Euler Angles

Representation 3: Euler Angles

$$
R=R_{\alpha}^{z} R_{\beta}^{x} R_{\gamma}^{z}
$$

common in aviation order matters!

Gimbal Lock

When first rotation aligns other axes
Rotations get "stuck"

Apollo 11 Gimbal Lock

Representation 3: Euler Angles

Pros:

- just three numbers
- easy to convert to matrix

Cons

- complicated to apply/compose
- interpolation: gimbal lock

Representation 4: Axis-angle

Geometry fact: every rotation fixes an axis

represent rotation as:

- axis \hat{a}
- angle θ

Representation 4: Axis-angle

Geometry fact: every rotation fixes an axis

represent rotation as:

- axis \hat{a}
- angle θ
...or "axis-angle" $\vec{\theta}=\theta \hat{a}$

Representation 4: Axis-angle

Converting to matrix not simple

Rodrigues Rotation Formula:

$R=I+\sin \theta\left[\begin{array}{ccc}0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0\end{array}\right]+(1-\cos \theta)\left[\begin{array}{ccc}0 & -a_{3} & a_{2} \\ a_{3} & 0 & -a_{1} \\ -a_{2} & a_{1} & 0\end{array}\right]^{2}$

Representation 4: Axis-angle

Pros:

- very intuitive
- only three numbers

Cons:

- complicated + slow to compose/apply
- interpolation: complicated

Representation 4: Quaternions

What is a quaternion?

- like complex numbers, but three imaginary dimensions

$$
\begin{aligned}
& a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \\
& \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1
\end{aligned}
$$

Representation 4: Quaternions

What is a quaternion?

- like complex numbers, but three imaginary dimensions

$$
\begin{aligned}
& a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k} \\
& \mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1
\end{aligned}
$$

- cyclic relationship

$$
\begin{aligned}
\mathrm{ij} & =\mathrm{k} \\
\mathrm{jk} & =\mathrm{i} \\
\mathrm{ki} & =\mathrm{j}
\end{aligned}
$$

Representation 4: Quaternions

Turns out rotations can be represented by unit quaternions

$$
a^{2}+b^{2}+c^{2}+d^{2}=1
$$

Rotation about axis $\left(v_{x}, v_{y}, v_{z}\right)$:

$$
q=\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\left(v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}\right)
$$

Representation 4: Quaternions

Turns out rotations can be represented by unit quaternions

$$
a^{2}+b^{2}+c^{2}+d^{2}=1
$$

Rotation about axis $\left(v_{x}, v_{y}, v_{\dot{z}}\right)$

$$
q=\cos \frac{\theta}{2}+\sin \frac{\theta}{2}\left(v_{x} \mathbf{i}+v_{y} \mathbf{j}+v_{z} \mathbf{k}\right)
$$

Acts on points/vectors by conjugation:

$$
q\left(p_{x} \mathbf{i}+p_{y} \mathbf{j}+p_{z} \mathbf{k}\right) \bar{q}
$$

Why Are Quaternions Rotations?

SLERP

Spherical Linear Interpolation

- smoothly blends two rotations

SLERP

Spherical Linear Interpolation

- smoothly blends two rotations

Why not interpolate rotations?

$$
R(t)=(1-t) R_{1}+t R_{2}
$$

SLERP

Spherical Linear Interpolation

- smoothly blends two rotations

Turns out easy to do with quaternions $\left(q_{2} \bar{q}_{1}\right)^{t} q_{1}$

- don't worry about the mechanics

Representation 4: Quaternions

Pros:

- just four numbers
- easy to compose
- easy to interpolate

Cons:

- unintuitive

Rotations in Practice

Shaders work with matrices at end of day

High-performance intermediate computation is done with quaternions

Axis-angle most intuitive for camera controls and physics

Recall: Pinhole Camera

aperture (virtual camera origin, \approx eye)

Pinhole Camera: Consequences

We see only projection of the world

Pinhole Camera: Consequences

We see only projection of the world

- many-to-one mapping
- distance vs scale ambiguity

Distance vs Scale Ambiguity

How we work around it:

- "deep learning"
- depth cues

Distance vs Scale Ambiguity

How we work around it:

- "deep learning"
- depth cues
we assume:
similar objects have similar shapes \& sizes

Distance vs Scale Ambiguity

How we work around it:

- "deep learning"
- depth cues
- throw hardware at problem: binocular vision

Monocular Vision Many-to-One

Points in space wrong abstraction

1D Projective Space

Space of lines through origin

1D Projective Space Reps.

1. All lines through the origin

1D Projective Space Reps.

1. All lines through the origin

Note:
no notion of sign

1D Projective Space Reps.

1. All lines through the origin
2. Circle with antipodal points glued

Note:
no notion of sign

1D Projective Space Reps.

1. All lines through the origin
2. Circle with antipodal points glued 3. Interval $[0, \pi]$ with boundary glued

1D Projective Space Reps.

1. All lines through the origin
2. Circle with antipodal points glued 3. Interval $[0, \pi]$ with boundary glued 4. The real line...

1D Projective Space Reps.

1. All lines through the origin
2. Circle with antipodal points glued
3. Interval $[0, \pi]$ with boundary glued
4. The real line... plus "point at infinity"

1D Projective Space Reps.

1. All lines through the origin
2. Circle with antipodal points glued
3. Interval $[0, \pi]$ with boundary glued
4. The real line... plus "point at infinity"

- "ends" of line meet at infinity

1D Projective Space Reps.

1. All lines through the origin
2. Circle with antipodal points glued
3. Interval $[0, \pi]$ with boundary glued
4. The real line... plus "point at infinity"
5. Homogeneous coordinates $[x, w]$

Homogeneous Coordinates

All homogeneous coordinates $[\alpha x, \alpha w]$ represent same line

Homogeneous Coordinates

All homogeneous coordinates $[\alpha x, \alpha w]$ represent same line

- say $[x, w] \sim[\alpha x, \alpha w]$ ("are equivalent")
$[4,2]$
$[-2,-1]$

Homogeneous Coordinates

All homogeneous coordinates $[\alpha x, \alpha w]$ represent same line

- say $[x, w] \sim[\alpha x, \alpha w]$ ("are equivalent") All points in 1D projective space equiv to:

$$
\begin{aligned}
& \text { 1. }[x, 1] \\
& \text { 2. }[1,0]
\end{aligned}
$$

$$
[-2,-1]
$$

Homogeneous Coordinates

All homogeneous coordinates [$\alpha x, \alpha w]$ represent same line

- say $[x, w] \sim[\alpha x, \alpha w]$ ("are equivalent")

All points in 1D projective space equiv to:
$[x, 1]$
[1, 0]

2D Projective Plane

1. All lines through the origin
2. Sphere with antipodal points glued

2D Projective Plane

1. All lines through the origin
2. Sphere with antipodal points glued
3. Radius π disk with boundary glued

2D Projective Plane

1. All lines through the origin
2. Sphere with antipodal points glued
3. Radius π disk with boundary glued

what does this look like?

Boy's Surface

2D Projective Plane

1. All lines through the origin
2. Sphere with antipodal points glued
3. Radius π disk with boundary glued
4. Plane plus "line at infinity"

2D Projective Plane

1. All lines through the origin
2. Sphere with antipodal points glued
3. Radius π disk with boundary glued
4. Plane plus "line at infinity"
5. Homogeneous coordinates $[x, y, w]$

2D Projective Plane

1. All lines through the origin
2. Sphere with antipodal points glued
3. Radius π disk with boundary glued
4. Plane plus "line at infinity"
5. Homogeneous coordinates $[x, y, w]$

3D Projective Space

1. All lines through the origin
2. Hypersphere with antipodal pts glued
3. Radius π ball with boundary glued

3D Projective Space

1. All lines through the origin
2. Hypersphere with antipodal pts glued
3. Radius π ball with boundary glued

remind you of anything?

3D Projective Space

1. All lines through the origin
2. Hypersphere with antipodal pts glued
3. Radius π ball with boundary glued
4. Rotations in 3D (axis-angle)!

remind you of anything?

3D Projective Space

1. All lines through the origin
2. Hypersphere with antipodal pts glued
3. Radius π ball with boundary glued
4. Rotations in 3D (axis-angle)!
5. Homogeneous coordinates $[x, y, z, w]$

A Final Note

What does shear do in projective space?

A Final Note

What does shear do in projective space?

A Final Note

What does shear do in projective space?

- points on line translate

A Final Note

What does shear do in projective space?

- points on line translate
- point at infinity untouched

