Projections

Orthographic Projection

Parallel-project everything onto viewing plane

No perspective

Orthographic Camera Params

Viewport width and height

Orthographic Camera Params

Viewport width and height

FAR PLANE
Near and far planes

Orthographic Camera Params

Viewport width and height

Near and far planes

- (why needed)?

Orthographic Projection

Valid X range: $[l, r] \quad$ Valid Z range: $[-f,-n]$ Valid Y range: $[b, t]$

Orthographic Projection

Transforms needed:

- translate axes
- flip Z axis
- scale axes

Orthographic Projection

Transforms needed:

- translate axes
- flip Z axis

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{l+r}{2} \\
0 & 1 & 0 & -\frac{b+t}{2} \\
0 & 0 & 1 & \frac{n+f}{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- scale axes

Orthographic Projection

Transforms needed:

- translate axes
- flip Z axis

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- scale axes

Orthographic Projection

Transforms needed:

- translate axes
- flip Z axis

$$
\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & \frac{2}{f-n} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- scale axes

Orthographic Projection

$$
\begin{gathered}
{\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & \frac{2}{f-n} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{l+r}{2} \\
0 & 1 & 0 & -\frac{b+t}{2} \\
0 & 0 & 1 & \frac{n+f}{2} \\
0 & 0 & 0 & 1
\end{array}\right]} \\
=\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{t-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{-t-b}{t-b} \\
0 & 0 & -\frac{2}{f-n} & -\frac{f+n}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Perspective Camera

"view frustum"
Lines map to pixels

Perspective Camera

Lines map to pixels

Parameters:

- near, far plane
- aspect ratio $a=l / h$
- field of view θ

Field of View

$3.6 m m-78^{\circ}$

Perspective Camera

Lines map to pixels

$$
\begin{aligned}
h & =2 n \tan (\theta / 2) \\
l & =2 a n \tan (\theta / 2)
\end{aligned}
$$

Parameters:

- near, far plane
- aspect ratio $a=l / h$
- field of view θ

Perspective Camera

Problem: perspective projection not linear

(Why?)

Idea \#1: Treat Points as Lines

Using homogeneous coordinate rep:

Idea \#1: Treat Points as Lines

Using homogeneous coordinate rep:

Idea \#1: Treat Points as Lines

Using homogeneous coordinate rep:

What is the problem?

Idea \#2: Use One Extra Dimension

Using homogeneous coordinate rep:

Idea \#2: Use One Extra Dimension

Using homogeneous coordinate rep:

How to do projection onto image plane?

Idea \#2: Use One Extra Dimension

Using homogeneous coordinate rep:

How to do projection onto image plane?

Idea \#2: Use One Extra Dimension

Using homogeneous coordinate rep:

How to do projection onto image plane? How to preserve depth?

Idea \#3: Also Translate

Using homogeneous coordinate rep:

Idea \#3: Also Translate

Using homogeneous coordinate rep:

Perspective Transformation

$$
\begin{aligned}
h & =2 n \tan (\theta / 2) \\
l & =2 a n \tan (\theta / 2)
\end{aligned}
$$

Perspective Transformation

Now in 3D:

$$
\begin{aligned}
h & =2 n \tan (\theta / 2) \\
l & =2 \operatorname{an} \tan (\theta / 2)
\end{aligned}
$$

Start with basic xform

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

then refine

After the Transformation

After the Transformation

Needs translation, flip, scaling
Midpoint: $\frac{1}{2 n}+\frac{1}{2 f}-1 \quad$ Extent: $\frac{f-n}{f n}$

Perspective Transformation

Transformations:

$$
\begin{aligned}
h & =2 n \tan (\theta / 2) \\
l & =2 a n \tan (\theta / 2)
\end{aligned}
$$

- Apply perspective
- Translate z axis
- Flip Z
- Scale axes
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1-\frac{1}{2 f}-\frac{1}{2 n} \\ 0 & 0 & 0 & 1\end{array}\right]$

Perspective Transformation

Transformations:

$$
\begin{aligned}
h & =2 n \tan (\theta / 2) \\
l & =2 a n \tan (\theta / 2)
\end{aligned}
$$

- Apply perspective
- Translate z axis
- Flip Z
- Scale axes

Perspective Transformation

$\left[\begin{array}{cccc}\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\ 0 & \cot (\theta / 2) & 0 & 0 \\ 0 & 0 & \frac{-2 f n}{f-n} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1-\frac{1}{2 f}-\frac{1}{2 n} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0\end{array}\right]$

Perspective Transformation

$$
\begin{gathered}
{\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & \frac{-2 f n}{f-n} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1-\frac{1}{2 f}-\frac{1}{2 n} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]} \\
=\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & \frac{-2 f n}{f-n} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{f+n}{2 f n} & 1 \\
0 & 0 & -1 & 0
\end{array}\right] \\
=\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right]
\end{gathered}
$$

Where does point $(0,0,-z)$ go for large z ?

Where does point $(0,0,-z)$ go for large z ?

$$
\begin{aligned}
{\left[0,0, z \frac{f+n}{f-n}+\frac{-2 f n}{f-n}, z\right] } & =\left(0,0, \frac{f+n}{f-n}-\frac{2 f n}{z(f-n)}\right) \\
& \rightarrow\left(0,0, \frac{f+n}{f-n}\right) \text { at finite depth! }
\end{aligned}
$$

Where does point $(0,0,-z)$ go for large z ?

$$
\begin{aligned}
{\left[0,0, z \frac{f+n}{f-n}+\frac{-2 f n}{f-n}, z\right] } & =\left(0,0, \frac{f+n}{f-n}-\frac{2 f n}{z(f-n)}\right) \\
& \rightarrow\left(0,0, \frac{f+n}{f-n}\right) \text { at finite depth! }
\end{aligned}
$$

Where do points behind camera (+z) go?

Where does point $(0,0,-z)$ go for large z ?

$$
\begin{aligned}
{\left[0,0, z \frac{f+n}{f-n}+\frac{-2 f n}{f-n}, z\right] } & =\left(0,0, \frac{f+n}{f-n}-\frac{2 f n}{z(f-n)}\right) \\
& \rightarrow\left(0,0, \frac{f+n}{f-n}\right) \text { at finite depth! }
\end{aligned}
$$

Where do points behind camera (+z) go?

$$
\left(0,0, \frac{f+n}{f-n}+\frac{2 f n}{z(f-n)}\right) \text { positive depth! }
$$

WTF

Why Did This Happen?

Translation during perspective step rotated the projective plane

Why Did This Happen?

Translation during perspective step rotated the projective plane

Far Plane At Infinity

Tempting to set far plane at infinity:

$$
\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right] \rightarrow[
$$

Far Plane At Infinity

Tempting to set far plane at infinity:

$$
\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & -1 & -2 n \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Usually bad idea: depth buffer loses all precision

Near Plane At Zero

Tempting to set near plane at zero:

$$
\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Near Plane At Zero

Tempting to set near plane at zero:

$$
\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & -\frac{f+n}{f-n} & \frac{-2 f n}{f-n} \\
0 & 0 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
\frac{\cot (\theta / 2)}{a} & 0 & 0 & 0 \\
0 & \cot (\theta / 2) & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Usually bad idea: all depths set to 1

