Projections

Parallel-project everything onto viewing plane

No perspective

Orthographic Camera Params

Viewport width and height

Orthographic Camera Params

Orthographic Camera Params

Valid X range: [l, r]Valid Y range: [b, t] Valid Z range: [-f, -n]

- translate axes
- flip Z axis
- scale axes

- translate axes
- flip Z axis
- scale axes

- translate axes
- flip Z axis
- scale axes

- translate axes
- flip Z axis
- scale axes

$$= \begin{bmatrix} \frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & -\frac{2}{f-n} & -\frac{f+n}{f-n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Perspective Camera

"view frustum"

Perspective Camera

Lines map to pixels

Parameters:

- near, far plane
- aspect ratio a = l/h
- field of view θ

Field of View

3.6mm - 78°

Perspective Camera

Lines map to pixels

Parameters:

- near, far plane
- aspect ratio a = l/h
- field of view θ

 $h = 2n \tan(\theta/2)$ $l = 2an \tan(\theta/2)$

Perspective Camera

Problem: perspective projection not linear

Idea #1: Treat Points as Lines

Using homogeneous coordinate rep:

Idea #1: Treat Points as Lines

Using homogeneous coordinate rep:

Idea #1: Treat Points as Lines

Using homogeneous coordinate rep:

What is the problem?

Using homogeneous coordinate rep:

Using homogeneous coordinate rep:

How to do projection onto image plane?

Using homogeneous coordinate rep: $\begin{array}{c} n \\ P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1/n & 0 & 0 \end{bmatrix}$ (a, b, -a/n) (a, b, 1)

How to do projection onto image plane?

Using homogeneous coordinate rep: $\begin{array}{c} n \\ P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1/n & 0 & 0 \end{bmatrix}$ (a, b, -a/n) (a, b, 1)

How to do projection onto image plane? How to preserve depth?

Idea #3: Also Translate

Using homogeneous coordinate rep:

Idea #3: Also Translate

Using homogeneous coordinate rep: $P = \left| \begin{array}{ccc} 1 & 0 & -n \\ 0 & 1 & 0 \\ -1/n & 0 & 0 \end{array} \right|$ P = (a, b, -a/n) \mathcal{N} (a - n, b, -a/n)(a, b, 1)

Start with basic xform

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

then refine

Now in 3D:

After the Transformation

After the Transformation

Needs translation, flip, scaling

Midpoint:
$$\frac{1}{2n} + \frac{1}{2f} - 1$$
 Extent: $\frac{f-n}{fn}$

Transformations:

- Apply perspective
- Translate z axis
- Flip Z
- Scale axes

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 - \frac{1}{2f} - \frac{1}{2n} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $h = 2n \tan(\theta/2)$ $l = 2an \tan(\theta/2)$

Transformations:

- Apply perspective
- Translate z axis
- Flip Z

 $\cot(\theta/2)$

 $\frac{a}{0}$

0

Scale axes

 $\mathbf{0}$

 $\cot(\theta/2)$

 $\mathbf{0}$

 $\frac{-2fn}{f}$

0

 $h = 2n \tan(\theta/2)$ $l = 2an \tan(\theta/2)$

$$\begin{bmatrix} \frac{\cot(\theta/2)}{a} & 0 & 0 & 0\\ 0 & \cot(\theta/2) & 0 & 0\\ 0 & 0 & \frac{-2fn}{f-n} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 1 - \frac{1}{2f} - \frac{1}{2n}\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{\cot(\theta/2)}{a} & 0 & 0 & 0\\ 0 & \cot(\theta/2) & 0 & 0\\ 0 & 0 & \frac{-2fn}{f-n} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 1 - \frac{1}{2f} - \frac{1}{2n} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 1\\ 0 & 0 & -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\cot(\theta/2)}{a} & 0 & 0 & 0\\ 0 & \cot(\theta/2) & 0 & 0\\ 0 & 0 & \frac{-2fn}{f-n} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & \frac{f+n}{2fn} & 1\\ 0 & 0 & -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\cot(\theta/2)}{a} & 0 & 0 & 0\\ 0 & \cot(\theta/2) & 0 & 0\\ 0 & \cot(\theta/2) & 0 & 0\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Where does point (0,0,-z) go for large z?

Where does point (0,0,-z) go for large z?

$$\begin{bmatrix} 0, \ 0, z \frac{f+n}{f-n} + \frac{-2fn}{f-n}, z \end{bmatrix} = \begin{pmatrix} 0, 0, \frac{f+n}{f-n} - \frac{2fn}{z(f-n)} \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 0, 0, \frac{f+n}{f-n} \end{pmatrix} \text{ at finite depth!}$$

Where does point (0,0,-z) go for large z?

$$\begin{bmatrix} 0, \ 0, z\frac{f+n}{f-n} + \frac{-2fn}{f-n}, z \end{bmatrix} = \begin{pmatrix} 0, 0, \frac{f+n}{f-n} - \frac{2fn}{z(f-n)} \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 0, 0, \frac{f+n}{f-n} \end{pmatrix} \text{ at finite depth!}$$

Where do points behind camera (+z) go?

Where does point (0,0,-z) go for large z?

$$\begin{bmatrix} 0, \ 0, z\frac{f+n}{f-n} + \frac{-2fn}{f-n}, z \end{bmatrix} = \begin{pmatrix} 0, 0, \frac{f+n}{f-n} - \frac{2fn}{z(f-n)} \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} 0, 0, \frac{f+n}{f-n} \end{pmatrix} \text{ at finite depth!}$$

Where do points behind camera (+z) go?

$$\left(0, 0, \frac{f+n}{f-n} + \frac{2fn}{z(f-n)}\right)$$
 positive depth!

Why Did This Happen?

Translation during perspective step rotated the projective plane

 ∞

Why Did This Happen?

Translation during perspective step rotated the projective plane

Far Plane At Infinity

Tempting to set far plane at infinity:

Far Plane At Infinity

Tempting to set far plane at infinity:

Usually **bad** idea: depth buffer loses all precision

Near Plane At Zero

Tempting to set near plane at zero:

Near Plane At Zero

Tempting to set near plane at zero:

Usually bad idea: all depths set to 1