Color and Perception

Why Should We Care?

Why Should We Care?

Human vision is quirky

- what we render is not what we see

Why Should We Care?

Human vision is quirky

- what we render is not what we see

Some errors (artifacts) more noticeable than others

Why Should We Care?

Human vision is quirky

- what we render is not what we see

Some errors (artifacts) more noticeable than others

Understand vision to minimize artifacts

Light

Light exhibits particle/wave duality:

- stream of photons with energy E
- light wave with wavelength λ

Light

Light exhibits particle/wave duality:

- stream of photons with energy E
- light wave with wavelength λ and frequency c / λ

Light

Light exhibits particle/wave duality:

- stream of photons with energy E
- light wave with wavelength λ
and frequency c / λ

relationship:

$$
E=c / \lambda
$$

Visible Light

Increasing energy

Spectral Power Distribution

How many photons of which wavelength emitted?

WAVELENGTH (nanometers)

The Eye

Eye enters pupil, focused by lens, strikes retina (back of eye)

The Eye

Eye enters pupil, focused by lens, strikes retina (back of eye)

We see blend of photons that hit retina

Retina

Two sensors in retina.

- cones (4.5 million)
- three kinds (red, green, blue)
- work best in bright light

Retina

Two sensors in retina.

- cones (4.5 million)
- three kinds (red, green, blue)
- work best in bright light
- rods (11 million)
- monochrome
- work in dim light

Ganglia

Connect rods \& cones to optic nerve

- (optic nerve sends signal to brain)

Perform blending of signals, and some other preprocessing

Eye is inside-out!

Trichromatic Vision

Each cone responds to different wavelengths

Trichromatic Vision

Each cone responds to different wavelengths

Key Point: many combinations of wavelengths look the same

- red \& yellow blend == "pure" orange

Trichromatic Vision

Each cone responds to different wavelengths

Key Point: many combinations of wavelengths look the same

- red \& yellow blend == "pure" orange

Basis of color displays, print dithering, ...

Retinal Density

Visual acuity drops off past two degrees

Retinal Density

$$
\begin{aligned}
& L_{L} L_{L} L^{L} L L L L \\
& L^{L} L^{L} L^{L} L_{L}^{L L} L L^{L} L^{\top} L \\
& L^{L} L L^{L} L^{L} L L^{L} L^{L} L L^{L} L \\
& \begin{array}{l}
L L L L L L L L L L L L \\
L L L L L L L L L L L L L
\end{array}
\end{aligned}
$$

What Do We See?

Sensor Distribution

Random, but isotropic

- "same in all directions"

This randomness called blue noise

Retinal Density: How We Deal

Saccades: short, quick jumps

Vergence: both eyes focus on a point

Pursuit: follow moving objects

Vestibulo-ocular reflex: compensate for head motion

Chroma and Luma

luminance = "brightness" chrominance = "color"

Eye Much More Luma-Sensitive

Ganglion Function

Ganglia perform some processing before signal goes to brain

Basically a convolutional neural network...

Ganglion Function

Stimulus situation

a. White stripe on a

Edge detection

Ganglion cell firing rate

Activation

Inhibition

d. Completely light field

Ganglion Function

Edge detection

Motion detection

Ganglion Function

Edge detection

Motion detection

Punchlines:

- spurious lines are very noticeable

Ganglion Function

Edge detection

Motion detection

Punchlines:

- spurious lines are very noticeable
- aliasing and tearing

Ganglion Function

Edge detection

Motion detection

Punchlines:

- spurious lines are very noticeable
- aliasing and tearing
- spurious motion (popping) noticeable

Color Spaces

Many ways to encode color

- RGB, HSV, CMYK most common

Color Spaces

Many ways to encode color

- RGB, HSV, CMYK most common

Very tenuous relationship between these color spaces and what we actually see

Adelson Illusion

Adelson Illusion

T

Helmholtz-Kohirausch effect

Color Spaces

Many ways to encode color

- RGB, HSV, CMYK most common

Very tenuous relationship between these color spaces and what we actually see
$(100,50,50)$ looks different depending on:

- device • background lighting
- surrounding color • etc

Perceptually-Normalized Colors

Idea: represent colors based on how they will be perceived

Perceptually-Normalized Colors

Idea: represent colors based on how they will be perceived

CIE 1931 XYZ color

- based on extensive experiments
- maps out all possible colors perceivable by the human eye

CIE XYZ

CIE XYZ

Devices can display some subregion of this space

Perceptually-Normalized Colors

Idea: represent colors based on how they will be perceived

CIE 1931 XYZ color

- based on extensive experiments
- maps out all possible colors perceivable by the human eye
Other such spaces exist (L*a*b*, etc)

How Fast Can The Eye See?

What FPS is the human eye?

How Fast Can The Eye See?

What FPS is the human eye?

- it depends... anywhere from 20-200

How Fast Can The Eye See?

What FPS is the human eye?

- it depends... anywhere from 20-200

Our brains trained for continuity of motion

- a few FPS is enough if motion gradual
- motion blur

Wagon Wheel Effect

Wagon Wheel Effect

Temporal aliasing

Very noticeable on film

Wagon Wheel Effect

Temporal aliasing

Very noticeable on film

- also in stroboscopic conditions
- CFLs
- humming

