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Simple curves have well-known formulas:

What to do in general?
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Piecewise Linear Interpolation

“Pyramid Notation”

(division by sum implicit)
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Easy, but “chunky” – only 

Continuity notation:      means continuous 
after taking n derivatives

Piecewise Linear Interpolation
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Given some points, find polynomial

n points  degree (n-1)

• 2: linear interpolation

• 3: quadratic interp.

Curves are         smooth

What’s the problem?
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Lagrange Interpolation

No oscillation control

Worse as degree

becomes larger

Lagrange interpolation

not practical for large no. of points



Introducing Splines
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Bézier Curves

Spline building block

Polynomial

Variation-diminishing: curve lies in 
convex hull of points

Cost: only interpolates endpoints



de Casteljau’s Algorithm

Given:

- sequence of control points

- single value of

Computes:

- location of 
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de Casteljau’s Algorithm

Four control points  cubic Bézier curve



de Casteljau’s Algorithm

More control points  smoother curve                                              
(more pyramid levels)
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de Casteljau’s Algorithm

Time complexity?

O(n^2) for each evaluation

Also, for long curve, may
not want global influence
of control points
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B-Splines (“Basis Splines”)

Piecewise polynomial

• (cubic common)

Used in Illustrator,

Inkscape, etc

Arbitrary number of control points

• only first and last interpolated
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Pyramid algorithm, like de Casteljau

Final answer depends on four control pts

six knots

de Boor’s Algorithm
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de Boor’s Algorithm

Knots triplicated at boundaries

Higher degree  more pyramid levels

more duplicates at bdry
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Other Spline Types

Hermite

• can also specify derivatives at 
boundary

Catmull-Rom

• interpolatory



Spline Keywords

Interpolatory

• spline goes through all control points

Linear 

• curve pts linear in control points

Degree n

• curve pts depend on nth power of t

Uniform

• knots evenly spaced


