Curves and Splines

Curves in Spaces

Parametric function $\gamma(t)$

Curves in Spaces

Simple curves have well-known formulas:

$$\bigcap \gamma(t) = (\cos t, \sin t)$$

Curves in Spaces

Parametric function $\gamma(t)$

Simple curves have well-known formulas:

$$\bigcap \gamma(t) = (\cos t, \sin t)$$

What to do in general?

Straight line segment between two points

 $\gamma(1) = P_1$ $(0) = P_0$

Straight line segment between two points

$$\gamma(t) = P_0 + t(P_1 - P_0)$$

$$\gamma(t) = (1 - t)P_0 + tP_1$$

$$\gamma(0) = P_0$$

Straight line segment between two points

 $\gamma(u_1) = P_1$ $\gamma(u_0) = P_0$

Also works for arbitrary parameterization

Straight line segment between two points

Also works for arbitrary parameterization

Straight line segment between point list

 u_0

 u_1

 u_2

points in space (where curves goes)

points in parameter space $u_3 \quad u_4 \quad u_5$ (how fast it goes)

Straight line segment between point list

"Pyramid Notation"

$$\gamma(t) = \frac{u_{i+1} - t}{u_{i+1} - u_i} P_i + \frac{t - u_i}{u_{i+1} - u_i} P_{i+1}$$

"Pyramid Notation"

$$\gamma(t) = \frac{u_{i+1} - t}{u_{i+1} - u_i} P_i + \frac{t - u_i}{u_{i+1} - u_i} P_{i+1}$$

after taking n derivatives

Given some points, find polynomial

Given some points, find polynomial

Notice: each coordinate is **linear combination** of a power of t

Given some points, find polynomial

Notice: each coordinate is **linear combination** of a power of t

Given some points, find polynomial

Notice: each coordinate is **linear combination** of a power of t

Given some points, find polynomial

How to pick k?

Given some points, find polynomial

How to pick k? Use known points

Given some points, find polynomial

How to pick k? Use known points

Given some points, find polynomial

$$\begin{bmatrix} P_0 & P_1 & P_2 \end{bmatrix} = C_{2 \times k} \begin{bmatrix} 1 & 1 & 1 \\ u_0 & u_1 & u_2 \\ u_0^2 & u_1^2 & u_2^2 \\ \vdots & \vdots & \vdots \end{bmatrix}_{k \times n} \begin{array}{c} P_0 = \gamma(u_0) \\ P_2 \\ P_1 \end{array}$$

4

How to pick k? Use k = n

Given some points, find polynomial

How to pick k? Use k = n

Given some points, find polynomial

How to pick k? Use k = n

Given some points, find polynomial n points \rightarrow degree (n-1)

- 2: linear interpolation
- 3: quadratic interp.

Given some points, find polynomial n points \rightarrow degree (n-1)

- 2: linear interpolation
- 3: quadratic interp.

Curves are C^{n-2} smooth

Given some points, find polynomial n points \rightarrow degree (n-1) $P_0 = \gamma(u_0)$

- 2: linear interpolation
- 3: quadratic interp.

Curves are
$$C^{n-2}$$
 smooth
What's the problem?

No oscillation control

No oscillation control

Worse as degree becomes larger

Worse as degree becomes larger

No oscillation control

Lagrange interpolation V not practical for large no. of points

Introducing Splines

1.7. 1

TRANSON SHAPE

1000 - 100" BL

with Wells

015.56.1

DIAG C

DIAG D

DINGE

Dinie F

DINE GO

Spline building block

Polynomial

Spline building block

Polynomial

Variation-diminishing: curve lies in convex hull of points

Spline building block

Polynomial

Variation-diminishing: curve lies in convex hull of points Cost: only interpolates endpoints

de Casteljau's Algorithm

Given:

- sequence of control points P_i
- single value of $t \in [0, 1]$

Computes:

- location of $\gamma(t)$

de Casteljau's Algorithm

Main idea: recursive linear interpolation Start with four points – **control polygon**

Main idea: recursive linear interpolation Start with four points – **control polygon** Clip corners

Main idea: recursive linear interpolation Start with four points – **control polygon** Clip corners

Four control points \rightarrow cubic Bézier curve

More control points → smoother curve (more pyramid levels)

Time complexity?

Time complexity?

O(n^2) for each evaluation

Time complexity?

O(n^2) for each evaluation

Also, for long curve, may not want global influence of control points

B-Splines ("Basis Splines")

Piecewise polynomial

• (cubic common)

Used in Illustrator, Inkscape, etc

B-Splines ("Basis Splines")

Piecewise polynomial

• (cubic common)

Used in Illustrator, Inkscape, etc

Arbitrary number of control points

only first and last interpolated

Pyramid algorithm, like de Casteljau

Pyramid algorithm, like de Casteljau

Pyramid algorithm, like de Casteljau

Pyramid algorithm, like de Casteljau Final answer depends on **four** control pts

 u_{i-3}

Pyramid algorithm, like de Casteljau Final answer depends on **four** control pts $\gamma(t)$ six knots α_{i+1} $\Lambda \alpha_{i+2}$ α_{i+1} $\alpha_i = u_i - t$ $\beta_i = t - u_i$ α_{i+2} α_{i+3} α_{i+1} u_{i-1} u_{i+1} u_{i+2} u_{i+4} u_i u_{i+3} $u_{i=2}$

Knots triplicated at boundaries

Knots triplicated at boundaries

Higher degree → more pyramid levels more duplicates at bdry

 $u_{n-2} = u_{n-1} = u_n$

Other Spline Types

Hermite

 can also specify derivatives at boundary

Other Spline Types

Hermite

 can also specify derivatives at boundary

- Catmull-Rom
- interpolatory

Spline Keywords

Interpolatory

- spline goes through all control points
 Linear
- curve pts linear in control points
 Degree n
- curve pts depend on **n**th power of **t** Uniform
- knots evenly spaced