Curves and Splines

Curves in Spaces

Parametric function $\gamma(t)$

Curves in Spaces

Parametric function $\gamma(t)$

Simple curves have well-known formulas:

$$
\gamma(t)=(\cos t, \sin t)
$$

Curves in Spaces

Parametric function $\gamma(t)$
Simple curves have well-known formulas:

What to do in general?

Linear Interpolation

Straight line segment between two points

$$
\underbrace{\gamma(1)=P_{1}}_{\gamma(0)=P_{0}}
$$

Linear Interpolation

Straight line segment between two points

$$
\begin{aligned}
& \gamma(t)=P_{0}+t\left(P_{1}-P_{0}\right) \\
& \gamma(t)=(1-t) P_{0}+t P_{1}
\end{aligned}
$$

Linear Interpolation

Straight line segment between two points

Also works for arbitrary parameterization

Linear Interpolation

Straight line segment between two points

$$
\gamma(t)=\frac{u_{1}-t}{u_{1}-u_{0}} P_{0}+\frac{t-u_{0}}{u_{1}-u_{0}} P_{1}
$$

Also works for arbitrary parameterization

Piecewise Linear Interpolation

Straight line segment between point list

points in space (where curves goes)
points in parameter space (knots)
(how fast it goes)

Piecewise Linear Interpolation

Straight line segment between point list

points in space
(where curves goes)

$$
\gamma(t)=\frac{u_{i+1}-t}{u_{i+1}-u_{i}} P_{i}+\frac{t-u_{i}}{u_{i+1}-u_{i}} P_{i+1}
$$

points in parameter space (knots)
(how fast it goes)

Piecewise Linear Interpolation

"Pyramid Notation"

$$
\gamma(t)=\frac{u_{i+1}-t}{u_{i+1}-u_{i}} P_{i}+\frac{t-u_{i}}{u_{i+1}-u_{i}} P_{i+1}
$$

Piecewise Linear Interpolation

"Pyramid Notation"

$$
\gamma(t)=\frac{u_{i+1}-t}{u_{i+1}-u_{i}} P_{i}+\frac{t-u_{i}}{u_{i+1}-u_{i}} P_{i+1}
$$

(division by sum implicit)

Piecewise Linear Interpolation

Easy, but "chunky" - only C^{0}

Piecewise Linear Interpolation

Easy, but "chunky" - only C^{0}
Continuity notation: C^{n} means continuous after taking n derivatives

Lagrange Interpolation

Given some points, find polynomial

$$
\left\{\begin{array}{c}
P_{0}=\gamma\left(u_{0}\right) \\
P_{1}
\end{array}\right.
$$

Lagrange Interpolation

Given some points, find polynomial

$$
\left\{\begin{array}{c}
P_{0}=\gamma\left(u_{0}\right) \\
P_{1}
\end{array}\right.
$$

Notice: each coordinate is linear combination of a power of t

Lagrange Interpolation

Given some points, find polynomial

$$
\gamma(t)=\left[\begin{array}{llll}
a_{x} & b_{x} & c_{x} & \ldots \\
a_{y} & b_{y} & c_{y} & \ldots
\end{array}\right]\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
\vdots
\end{array}\right] \quad P_{0}=\gamma\left(u_{0}\right)
$$

Notice: each coordinate is linear combination of a power of t

Lagrange Interpolation

Given some points, find polynomial

$$
\gamma(t)=C_{2 \times k}\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
\vdots
\end{array}\right]_{k \times 1}
$$

Notice: each coordinate is linear combination of a power of t

Lagrange Interpolation

Given some points, find polynomial

$$
\gamma(t)=C_{2 \times k}\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
\vdots
\end{array}\right]_{k \times 1}
$$

How to pick k?

Lagrange Interpolation

Given some points, find polynomial

$$
P_{i}=C_{2 \times k}\left[\begin{array}{c}
1 \\
u_{i} \\
u_{i}^{2} \\
\vdots
\end{array}\right]_{k \times 1}
$$

How to pick k? Use known points

Lagrange Interpolation

Given some points, find polynomial

How to pick k? Use known points

Lagrange Interpolation

Given some points, find polynomial

How to pick k? Use $k=n$

Lagrange Interpolation

Given some points, find polynomial

How to pick k? Use $k=n$

Lagrange Interpolation

Given some points, find polynomial

How to pick k ? Use $k=n$

Lagrange Interpolation

Given some points, find polynomial n points \rightarrow degree ($n-1$)

- 2: linear interpolation
- 3: quadratic interp.

Lagrange Interpolation

Given some points, find polynomial n points \rightarrow degree ($n-1$)

- 2: linear interpolation
- 3: quadratic interp.

Curves are C^{n-2} smooth

Lagrange Interpolation

Given some points, find polynomial n points \rightarrow degree ($n-1$)

- 2: linear interpolation
- 3: quadratic interp.

Curves are C^{n-2} smooth
What's the problem?

Lagrange Interpolation

No oscillation control

Lagrange Interpolation

No oscillation control

Worse as degree becomes larger

Lagrange Interpolation

No oscillation control

Worse as degree becomes larger

Lagrange interpolation not practical for large no. of points

Introducing Spllines

Bézier Curves

Spline building block

Polynomial

Bézier Curves

Spline building block

Polynomial

Variation-diminishing: curve lies in convex hull of points

Bézier Curves

Spline building block

Polynomial

Variation-diminishing: curve lies in convex hull of points
Cost: only interpolates endpoints

de Casteljau's Algorithm

Given:

- sequence of control points P_{i}
- single value of $t \in[0,1]$

Computes:

- location of $\gamma(t)$

de Casteljau's Algorithm

Main idea: recursive linear interpolation Start with four points - control polygon

de Casteljau's Algorithm

Main idea: recursive linear interpolation Start with four points - control polygon Clip corners

de Casteljau's Algorithm

Main idea: recursive linear interpolation Start with four points - control polygon Clip corners

de Casteljau's Algorithm

Four control points \rightarrow cubic Bézier curve

de Casteljau's Algorithm

More control points \rightarrow smoother curve (more pyramid levels)

de Casteljau's Algorithm

Time complexity?

de Casteljau's Algorithm

Time complexity?
$O\left(n^{\wedge} 2\right)$ for each evaluation

de Casteljau's Algorithm

Time complexity?
$O\left(n^{\wedge} 2\right)$ for each evaluation

Also, for long curve, may not want global influence of control points

B-Splines ("Basis Splines")

Piecewise polynomial

- (cubic common)

Used in Illustrator, Inkscape, etc

B-Splines ("Basis Splines")

Piecewise polynomial

- (cubic common)

Used in Illustrator, Inkscape, etc

Arbitrary number of control points

- only first and last interpolated

de Boor's Algorithm

Pyramid algorithm, like de Casteljau

de Boor's Algorithm

Pyramid algorithm, like de Casteljau

$$
\frac{\alpha_{i+1}}{\beta_{i-2}+\alpha_{i+1}} P_{i-1}+\frac{\beta_{i-2}}{\beta_{i-2}+\alpha_{i+1}} P_{i}
$$

de Boor's Algorithm

Pyramid algorithm, like de Casteljau

de Boor's Algorithm

Pyramid algorithm, like de Casteljau Final answer depends on four control pts

de Boor's Algorithm

Pyramid algorithm, like de Casteljau
Final answer depends on four control pts

de Boor's Algorithm

Knots triplicated at boundaries

de Boor's Algorithm

Knots triplicated at boundaries

Higher degree \rightarrow more pyramid levels more duplicates at bdry

Other Spline Types

Hermite

- can also specify derivatives at boundary

Other Spline Types

Hermite

- can also specify derivatives at boundary

Catmull-Rom

- interpolatory

Spline Keywords

Interpolatory

- spline goes through all control points

Linear

- curve pts linear in control points

Degree \mathbf{n}

- curve pts depend on $\mathbf{n t h}$ power of \mathbf{t}

Uniform

- knots evenly spaced

