Review: Linear and Vector Algebra

Points in Euclidean Space \mathbb{R}^n

Location in space

Tuple of n coordinates x, y, z, etc

$$p = (p_x, p_y, p_z)$$

Cannot be added or multiplied together

Vectors: "Arrows in Space"

Vectors are **point changes** Also number tuple: coordinate changes

$$\vec{v} = (4,2)$$
$$\Delta y = 2$$
$$\Delta x = 4$$

Exist independent of any reference point

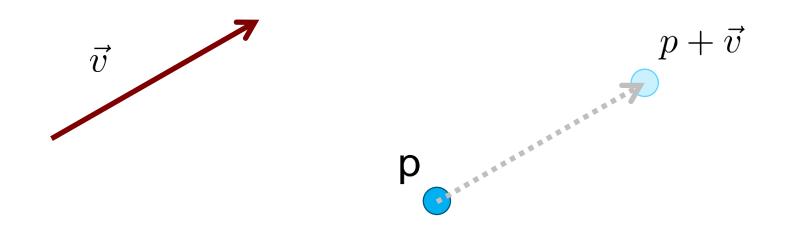
Subtracting points gives vectors

Vector between p and q: q - p

Subtracting points gives vectors

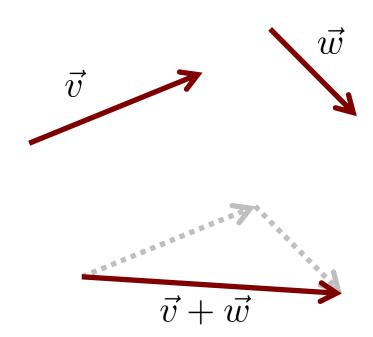
Vector between p and q: q – p

Add vector to point to get new point



Vectors can be

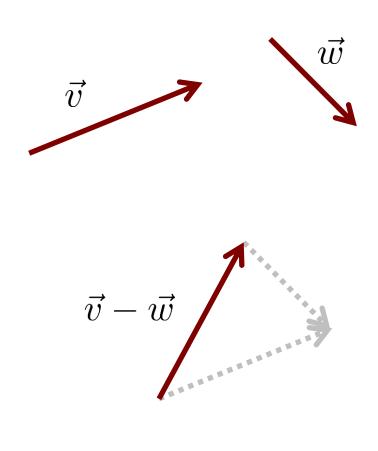
• added (tip to tail)



Vectors can be

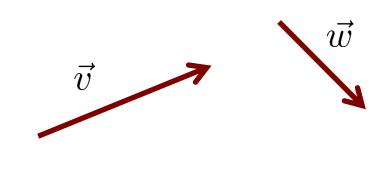
• added (tip to tail)

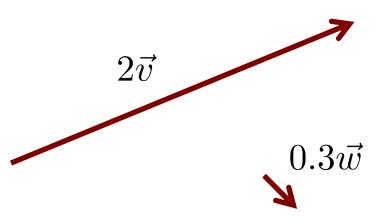
subtracted



Vectors can be

added (tip to tail)



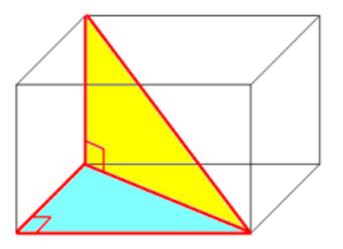


Vector Norm

Vectors have magnitude (length or norm)

$$\|\vec{v}\| = \sqrt{v_x^2 + v_y^2 + v_z^2 + \cdots}$$

n-dimensional Pythagorean theorem

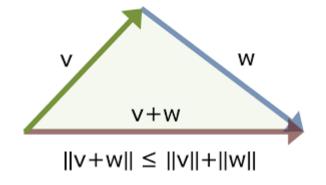


Vector Norm

Vectors have magnitude (length or norm)

$$\|\vec{v}\| = \sqrt{v_x^2 + v_y^2 + v_z^2 + \cdots}$$

Triangle inequality: $\|\vec{v} + \vec{w}\| \le \|\vec{v}\| + \|\vec{w}\|$



Unit Vectors

Vectors with $\|\vec{v}\| = 1$ unit or normalized

encode pure direction

Borrowed from physics: "hat notation" $\hat{\textit{v}}$

Unit Vectors

Vectors with $\|\vec{v}\| = 1$ unit or normalized

encode pure direction

Borrowed from physics: "hat notation" \hat{v}

Any non-zero vector can be normalized:

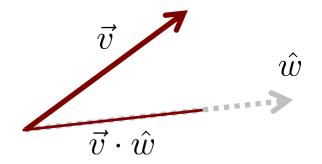
$$\hat{v} = \frac{\vec{v}}{\|\vec{v}\|}$$

Dot Product

Takes two vectors, returns scalar $\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y + v_z w_z + \cdots$

• (works in any dimension)

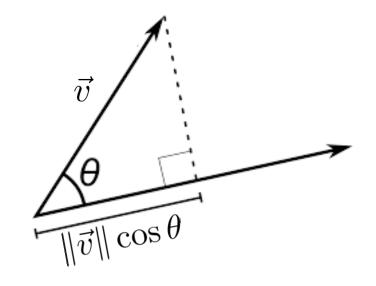
 $\vec{v} \cdot \hat{w}$ is length of \vec{v} "in the \hat{w} direction"



Dot Product

Takes two vectors, returns scalar $\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y + v_z w_z + \cdots$

Alternate formula: $\vec{v} \cdot \hat{w} = \|\vec{v}\| \cos \theta$



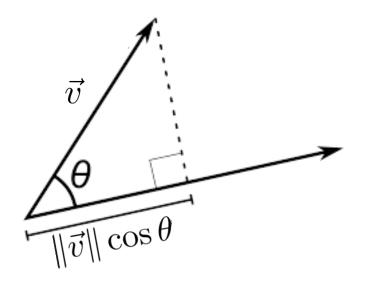
Dot Product

Takes two vectors, returns scalar $\vec{v} \cdot \vec{w} = v_x w_x + v_y w_y + v_z w_z + \cdots$

Alternate formula:

$$\vec{v} \cdot \hat{w} = \|\vec{v}\| \cos \theta$$

$$\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta$$



Dot Product Properties

Symmetry: $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$

Linearity:
$$\vec{v} \cdot (\vec{w} + \vec{u}) = \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{u}$$

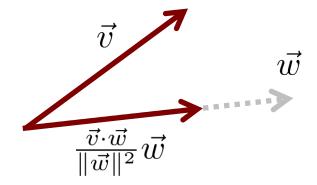
 $\vec{v} \cdot (\alpha \vec{w}) = \alpha (\vec{v} \cdot \vec{w})$

Perpendicular vectors: $\vec{v} \cdot \vec{w} = 0$

Also note: $\vec{v} \cdot \vec{v} = \|v\|^2$

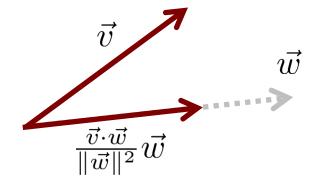
Projection

Projection of \vec{v} onto \vec{w}



Projection

Projection of \vec{v} onto \vec{w}



Can also project **out** component along \vec{w}

Dot Product and Angles

Note $\cos \theta = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}$ requires only multiplications and sqrts

Useful because trig calls are **slow**

Also in a pinch (slow): $\theta = \arccos \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}$

Cross Product

Takes two vectors, returns vector $\vec{v} \times \vec{w} = (v_y w_z - v_z w_y, v_z w_x - v_x w_z, v_x w_y - v_y w_x)$

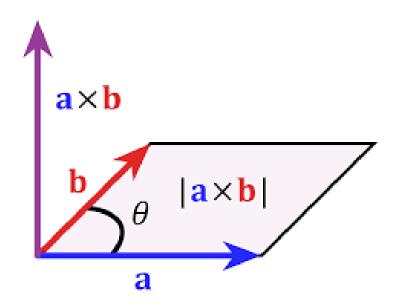
works only in 3D

Direction: perpendicular to both \vec{v}, \vec{w}

Magnitude: $\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \|\vec{w}\| \sin \theta$

Cross Product Intuition

Magnitude is **area of parallelogram** formed by vectors

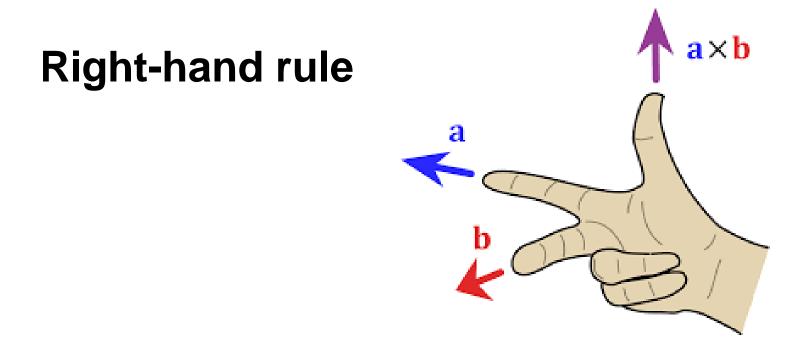


Cross Product Intuition

There are two perpendicular directions. Which direction is $\vec{v} \times \vec{w}$?

Cross Product Intuition

There are two perpendicular directions. Which direction is $\vec{v} \times \vec{w}$?



Cross Product Properties

Anti-symmetry: $\vec{v} \times \vec{w} = -\vec{w} \times \vec{v}$ (why?)

Linearity:
$$\vec{v} \times (\vec{w} + \vec{u}) = \vec{v} \times \vec{w} + \vec{v} \times \vec{u}$$

 $\vec{v} \times (\alpha \vec{w}) = \alpha (\vec{v} \times \vec{w})$

Also note: $\vec{v} \times \vec{v} = 0$ (why?)

Cross Product Uses

Easily computes unit vector perpendicular to two given vectors

 $\hat{n} = \frac{u \times v}{\|u \times v\|}$ (which one? right-hand rule)

Cross Product Uses

Easily computes unit vector perpendicular to two given vectors

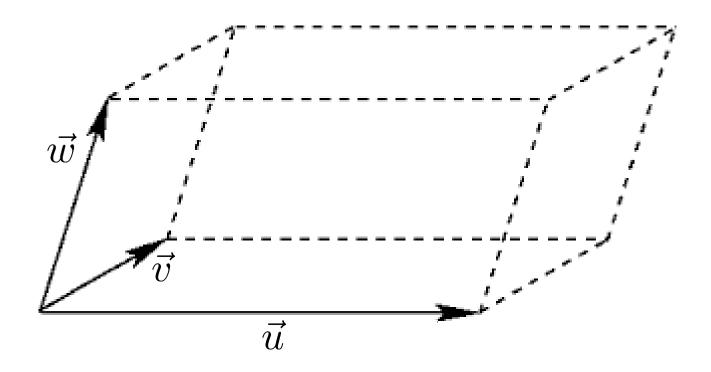
 $\hat{n} = \frac{u \times v}{\|u \times v\|}$ (which one? right-hand rule)

Relation to angles: $\sin \theta = \frac{\|u \times v\|}{\|u\| \|v\|}$

Even better: $\tan \theta = \frac{\|u \times v\|}{u \cdot v}$ no sqrts!

Vector Triple Product

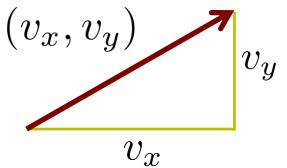
 $\vec{w} \cdot (\vec{u} \times \vec{v})$ signed volume of parallelepiped



Euclidean Coordinates

A vector in 2D (v_x, v_y) can be interpreted as instructions

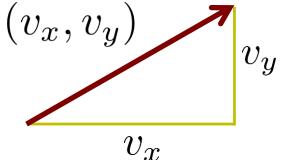
"move to the right v_x and up v_y "



Euclidean Coordinates

A vector in 2D (v_x, v_y) can be interpreted as instructions

"move to the right v_x and up v_y "



In other words:
$$(v_x, v_y) = v_x \hat{x} + v_y \hat{y}$$

(Finite) Vector Spaces

- We say: 2D vectors are vector space of vectors spanned by basis vectors $\{\hat{x}, \hat{y}\}$
- basis vectors: "directions" to travel
- span: all linear combinations

(Finite) Vector Spaces

- We say: 2D vectors are vector space of vectors spanned by basis vectors $\{\hat{x}, \hat{y}\}$
- basis vectors: "directions" to travel
- span: all linear combinations

What is span of $\{(1,1), (1,-1)\}$?

(Finite) Vector Spaces

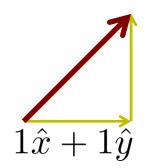
- We say: 2D vectors are vector space of vectors spanned by basis vectors $\{\hat{x}, \hat{y}\}$
- basis vectors: "directions" to travel
- span: all linear combinations

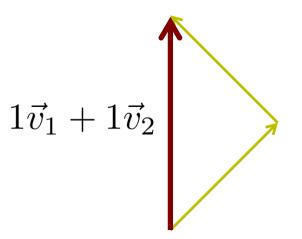
What is span of $\{(1,1), (1,-1)\}$? Of $\{(1,1), (-1,-1)\}$?

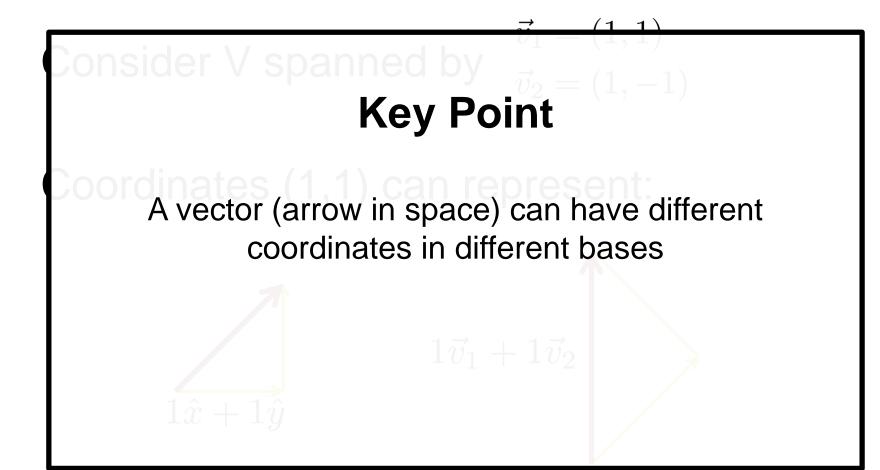
Consider V spanned by
$$\vec{v}_1 = (1,1)$$

 $\vec{v}_2 = (1,-1)$

Coordinates (1,1) can represent:







Consider V spanned by $\vec{v}_2 = (1, -1)$ **Key Point**

A vector (arrow in space) can have different coordinates in different bases

The same coordinates can represent different vectors

Consider V spanned by $\vec{v}_2 = (1, -1)$ **Key Point**

A vector (arrow in space) can have different coordinates in different bases

The same coordinates can represent different vectors

Default basis: Euclidean

Linear Dependence

Informal: vectors linearly dependent if they are redundant

$$v_1 = (0, 1, 0)$$

 $v_2 = (1, 0, 0)$
 $v_3 = (2, 1, 0)$

$$v_3 = 2v_1 + v_2$$

Linear Dependence

Informal: vectors linearly dependent if they are redundant

$$v_1 = (0, 1, 0)$$

 $v_2 = (1, 0, 0)$
 $v_3 = (2, 1, 0)$

$$v_3 = 2v_1 + v_2$$

 $\operatorname{span}\{v_1, v_2, v_3\} = \operatorname{span}\{v_1, v_2\}$

Linear Dependence

Informal: vectors linearly dependent if they are redundant

Formal: basis $\{\vec{b}_i\}$ linearly independent if

$$\sum_{i} \alpha_i \vec{b}_i = 0 \quad \Rightarrow \quad \alpha_i = 0$$

Dimension

Dimension is size of biggest set of linearly independent basis vectors

Examples: $\dim{\{\hat{x}, \hat{y}, \hat{z}\}} = 3$

Dimension

Dimension is size of biggest set of linearly independent basis vectors

Examples:

 $\dim\{\hat{x},\hat{y},\hat{z}\}=3$

 $\dim\{(1,1,0),(1,-1,0),(0,0,1)\}=3$

Dimension

Dimension is size of biggest set of linearly independent basis vectors

Examples:

 $\dim\{\hat{x},\hat{y},\hat{z}\}=3$

$$\dim\{(1,1,0),(1,-1,0),(0,0,1)\}=3$$

 $\dim\{(1,1),(0,0),(-3,-3)\}=1$

Geometry of Dimension

Adding all vectors of vector space V to \boldsymbol{p}

If $\dim V = :$

• 0:

Geometry of Dimension

Adding all vectors of vector space V to \boldsymbol{p}

If $\dim V = :$

- 0: just *p*
- 1:

Geometry of Dimension

Adding all vectors of vector space V to \boldsymbol{p}

- If $\dim V = :$
- 0: just *p*
- 1: line through p
- 2: plane through p
- 3+: hyperplane through p

Matrix

Matrix $A_{n \times m}$ array with n rows, m columns

$$A_{2\times3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Notes:

• 1) first row, then column

Matrix

Matrix $A_{n \times m}$ array with n rows, m columns

$$A_{2\times3} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

Notes:

- 1) first row, then column
- 2) one-indexed

Matrix Addition and Scaling

Can add two matrices of same size:

 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix}$

Matrix Addition and Scaling

Can add two matrices of same size:

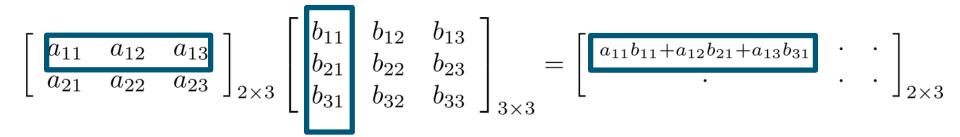
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix}$$

Scalar multiplication works as expected:

$$\alpha \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\ \alpha a_{21} & \alpha a_{22} & \alpha a_{23} \end{bmatrix}$$

Can multiply matrices $A_{n \times m}$, $B_{m \times p}$; get $(AB)_{n \times p}$

Can multiply matrices $A_{n \times m}$, $B_{m \times p}$; get $(AB)_{n \times p}$



Term $(ab)_{ij}$ is dot product of i-th **row** of A with j-th **column** of B

Can multiply matrices $A_{n \times m}$, $B_{m \times p}$; get $(AB)_{n \times p}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}_{2\times 3} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}_{3\times 3} = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & a_{21}b_{12}+a_{22}b_{22}+a_{23}b_{32} & \cdot \end{bmatrix}_{2\times 3}$$

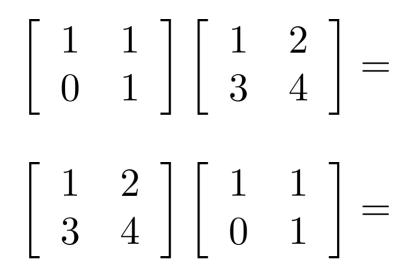
Term $(ab)_{ij}$ is dot product of i-th **row** of A with j-th **column** of B

Can multiply matrices $A_{n \times m}$, $B_{m \times p}$; get $(AB)_{n \times p}$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}_{2\times 3} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}_{3\times 3} = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & a_{21}b_{12}+a_{22}b_{22}+a_{23}b_{32} & \cdot \end{bmatrix}_{2\times 3}$$

Term $(ab)_{ij}$ is dot product of i-th **row** of A with j-th **column** of B Is associative: (AB)C = A(BC)

Multiplication Not Commutative!



Multiplication Not Commutative!

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 3 & 4 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 3 & 7 \end{bmatrix}$$

Has tripped up even professors...

Special Case: Vectors

Vectors are represented using **column** matrices:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} a_{11}v_1 + a_{12}v_2 + a_{13}v_3 \\ a_{21}v_1 + a_{22}v_2 + a_{23}v_3 \\ a_{31}v_1 + a_{32}v_2 + a_{33}v_3 \end{bmatrix}$$

Can treat vectors like $n \times 1$ matrix

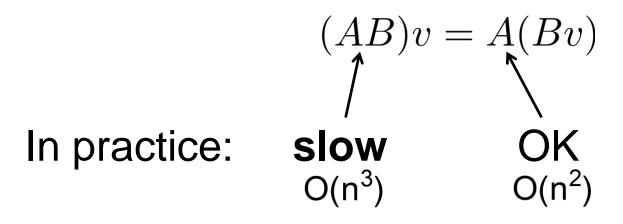
Special Case: Vectors

Mathematically,

(AB)v = A(Bv)

Special Case: Vectors

Mathematically,



Avoid matrix-matrix multiplies

What Is A Matrix?

Interpretation 1: Row Products

Matrix multiplication is dot product of vector with **rows**

$$\begin{bmatrix} \vec{a}_{1\star} \\ \hline \vec{a}_{2\star} \\ \hline \vec{a}_{3\star} \end{bmatrix} \begin{bmatrix} \vec{v} \\ \vec{v} \end{bmatrix} = \begin{bmatrix} \vec{a}_{1\star} \cdot \vec{v} \\ \vec{a}_{2\star} \cdot \vec{v} \\ \vec{a}_{3\star} \cdot \vec{v} \end{bmatrix}$$
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} a_{11}v_1 + a_{12}v_2 + a_{13}v_3 \\ a_{21}v_1 + a_{22}v_2 + a_{23}v_3 \\ a_{31}v_1 + a_{32}v_2 + a_{33}v_3 \end{bmatrix}$$

Interpretation 2: Column Sums

Matrix multiplication is linear combination of **columns**

$$\begin{bmatrix} \vec{a}_{\star 1} & \vec{a}_{\star 2} & \vec{a}_{\star 3} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} v_1 \vec{a}_{\star 1} + v_2 \vec{a}_{\star 2} + v_3 \vec{a}_{\star 3} \end{bmatrix}$$
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} a_{11}v_1 + a_{12}v_2 + a_{13}v_3 \\ a_{21}v_1 + a_{22}v_2 + a_{23}v_3 \\ a_{31}v_1 + a_{32}v_2 + a_{33}v_3 \end{bmatrix}$$

Interpretation 3: Change of Coord

Matrix A transforms vector:

- from basis $\{\vec{a}_{\star 1}, \vec{a}_{\star 2}, \vec{a}_{\star 3}\}$
- to Euclidean basis

$$\begin{bmatrix} \vec{a}_{\star 1} & \vec{a}_{\star 2} & \vec{a}_{\star 3} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} v_1 \vec{a}_{\star 1} + v_2 \vec{a}_{\star 2} + v_3 \vec{a}_{\star 3} \end{bmatrix}$$

Identity Matrix

Square diagonal matrix

$$I_{n \times n} = \begin{bmatrix} 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Satisfies

•
$$I_{n \times n} A_{n \times m} = A_{n \times m}$$

•
$$A_{n \times m} I_{m \times m} = A_{n \times m}$$

•
$$I\vec{v} = \vec{v}$$

For some square matrices, inverse exists $A^{-1}A = AA^{-1} = I$ $Ax = b \Rightarrow x = A^{-1}b$

Useful identity:

$$(AB)^{-1} = B^{-1}A^{-1}$$

For some square matrices, inverse exists $A^{-1}A = AA^{-1} = I$ $Ax = b \Rightarrow x = A^{-1}b$

Matrix A^{-1} transforms vector:

- from Euclidean basis
- **to** basis $\{\vec{a}_{\star 1}, \vec{a}_{\star 2}, \vec{a}_{\star 3}\}$

For some square matrices, inverse exists $A^{-1}A = AA^{-1} = I$ $Ax = b \Rightarrow x = A^{-1}b$

When does inverse exist?

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}^{-1} = ?$$

For some square matrices, inverse exists $A^{-1}A = AA^{-1} = I$ $Ax = b \Rightarrow x = A^{-1}b$

Note:

• Computing A^{-1} is slow: $O(n^3)$

For some square matrices, inverse exists $A^{-1}A = AA^{-1} = I$ $Ax = b \Rightarrow x = A^{-1}b$

Note:

- Computing A^{-1} is slow: $O(n^3)$
- For small matrices (4 x 4), not too bad
- For big matrices, inverse is never computed explicitly

Determinant

Maps square matrix to real number

In 2D: det
$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Measures signed volume of parallelogram

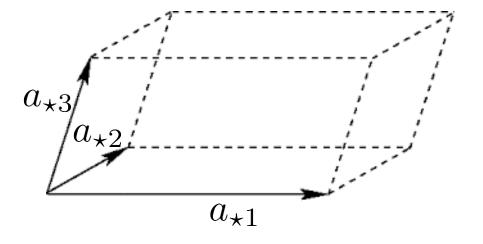
$$a_{\star 2}$$
 $a_{\star 1}$

Determinant

Maps matrix to real number

In 3D: det
$$\begin{bmatrix} \vec{a}_{\star 1} & \vec{a}_{\star 2} & \vec{a}_{\star 3} \end{bmatrix}$$
 vol. of parallelepiped

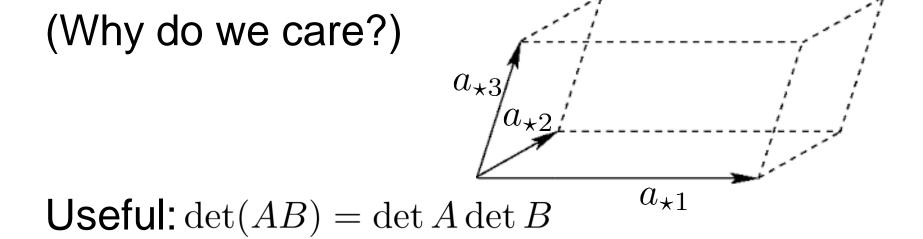
(Why do we care?)



Determinant

Maps matrix to real number

In 3D: det
$$\begin{bmatrix} \vec{a}_{\star 1} & \vec{a}_{\star 2} & \vec{a}_{\star 3} \end{bmatrix}$$
 vol. of parallelepiped



Transpose

Flips indices; "reflect about diagonal"

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

Transpose of vector is row vector

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}^T = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$$

Transpose

Flips indices; "reflect about diagonal"

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

What is $v^T w$? What is $v^T v$?

Transpose

Flips indices; "reflect about diagonal"

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

What is $v^T w$? What is $v^T v$? Useful identity: $(AB)^T = B^T A^T$

What Is A Matrix?

Interpretation 4: Any Linear Func.

For every linear function $f : \mathbb{R}^n \to \mathbb{R}^m$ of vectors to vectors, there exists $A_{m \times n}$ with: f(v) = Av

Interpretation 4: Any Linear Func.

- For every linear function $f : \mathbb{R}^n \to \mathbb{R}^m$ of vectors to vectors, there exists $A_{m \times n}$ with: f(v) = Av
- Linear: f(v+w) = f(v) + f(w) $f(\alpha v) = \alpha f(v)$

Interpretation 4: Any Linear Func.

- For every linear function $f : \mathbb{R}^n \to \mathbb{R}^m$ of vectors to vectors, there exists $A_{m \times n}$ with: f(v) = Av
- Linear: f(v + w) = f(v) + f(w) $f(\alpha v) = \alpha f(v)$
- Why true? Look at basis elements