Review: Linear and Vector Algebra

Points in Euclidean Space \mathbb{R}^{n}

Location in space

Tuple of n coordinates x, y, z, etc

$$
p=\left(p_{x}, p_{y}, p_{z}\right)
$$

Cannot be added or multiplied together

Vectors: "Arrows in Space"

Vectors are point changes
Also number tuple: coordinate changes

$$
\vec{v}=(4,2) \quad \Delta y=2
$$

Exist independent of any reference point

Vector Arithmetic

Subtracting points gives vectors

- Vector between p and q : q-p

Vector Arithmetic

Subtracting points gives vectors

- Vector between p and $q: q-p$

Add vector to point to get new point

$$
p+\vec{v}
$$

Vector Arithmetic

Vectors can be

- added (tip to tail)

Vector Arithmetic

Vectors can be

- added (tip to tail)
- subtracted

Vector Arithmetic

Vectors can be

- added (tip to tail)
- subtracted
- scaled

Vector Norm

Vectors have magnitude (length or norm)

$$
\|\vec{v}\|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}+\cdots}
$$

- n-dimensional Pythagorean theorem

Vector Norm

Vectors have magnitude (length or norm)

$$
\|\vec{v}\|=\sqrt{v_{x}^{2}+v_{y}^{2}+v_{z}^{2}+\cdots}
$$

Triangle inequality: $\|\vec{v}+\vec{w}\| \leq\|\vec{v}\|+\|\vec{w}\|$

Unit Vectors

Vectors with $\|\vec{v}\|=1$ unit or normalized

- encode pure direction

Borrowed from physics: "hat notation" \hat{v}

Unit Vectors

Vectors with $\|\vec{v}\|=1$ unit or normalized

- encode pure direction

Borrowed from physics: "hat notation" \hat{v}

Any non-zero vector can be normalized:

$$
\hat{v}=\frac{\vec{v}}{\|\vec{\pi}\|}
$$

Dot Product

Takes two vectors, returns scalar

$$
\vec{v} \cdot \vec{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}+\cdots
$$

- (works in any dimension)
$\vec{v} \cdot \hat{w}$ is length of \vec{v} "in the \hat{w} direction"

Dot Product

Takes two vectors, returns scalar

$$
\vec{v} \cdot \vec{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}+\cdots
$$

Alternate formula:

$$
\vec{v} \cdot \hat{w}=\|\vec{v}\| \cos \theta
$$

Dot Product

Takes two vectors, returns scalar

$$
\vec{v} \cdot \vec{w}=v_{x} w_{x}+v_{y} w_{y}+v_{z} w_{z}+\cdots
$$

Alternate formula:

$$
\begin{aligned}
& \vec{v} \cdot \hat{w}=\|\vec{v}\| \cos \theta \\
& \vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta
\end{aligned}
$$

Dot Product Properties

Symmetry: $\vec{v} \cdot \vec{w}=\vec{w} \cdot \vec{v}$

Linearity: $\vec{v} \cdot(\vec{w}+\vec{u})=\vec{v} \cdot \vec{w}+\vec{v} \cdot \vec{u}$

$$
\vec{v} \cdot(\alpha \vec{w})=\alpha(\vec{v} \cdot \vec{w})
$$

Perpendicular vectors: $\vec{v} \cdot \vec{w}=0$

Also note: $\vec{v} \cdot \vec{v}=\|v\|^{2}$

Projection

Projection of \vec{v} onto \vec{w}

Projection

Projection of \vec{v} onto \vec{w}

Can also project out component along \vec{w}

$$
\vec{v}-\frac{\vec{v} \cdot \vec{v}}{\|\vec{w}\|^{2}} \vec{w} \quad \vec{v} \quad \vec{v}
$$

Dot Product and Angles

Note $\cos \theta=\frac{\vec{v} \cdot \vec{u}}{\|\vec{v}\|\|\vec{w}\|}$ requires only multiplications and sqrts

Useful because trig calls are slow

Also in a pinch (slow): $\theta=\arccos \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}$

Cross Product

Takes two vectors, returns vector

$$
\vec{v} \times \vec{w}=\left(v_{y} w_{z}-v_{z} w_{y}, v_{z} w_{x}-v_{x} w_{z}, v_{x} w_{y}-v_{y} w_{x}\right)
$$

- works only in 3D

Direction: perpendicular to both \vec{v}, \vec{w}

Magnitude: $\|\vec{v} \times \vec{w}\|=\|\vec{v}\|\|\vec{w}\| \sin \theta$

Cross Product Intuition

Magnitude is area of parallelogram formed by vectors

Cross Product Intuition

There are two perpendicular directions. Which direction is $\vec{v} \times \vec{w}$?

Cross Product Intuition

There are two perpendicular directions. Which direction is $\vec{v} \times \vec{w}$?

Right-hand rule

Cross Product Properties

Anti-symmetry: $\vec{v} \times \vec{w}=-\vec{w} \times \vec{v} \quad$ (why?)

Linearity: $\vec{v} \times(\vec{w}+\vec{u})=\vec{v} \times \vec{w}+\vec{v} \times \vec{u}$

$$
\vec{v} \times(\alpha \vec{w})=\alpha(\vec{v} \times \vec{w})
$$

Also note: $\vec{v} \times \vec{v}=0 \quad$ (why?)

Cross Product Uses

Easily computes unit vector perpendicular to two given vectors
$\hat{n}=\frac{u \times v}{\|u \times v\|} \quad$ (which one? right-hand rule)

Cross Product Uses

Easily computes unit vector perpendicular to two given vectors
$\hat{n}=\frac{u \times v}{\|u \times v\|} \quad$ (which one? right-hand rule)
Relation to angles: $\sin \theta=\frac{\|u \times v\|}{\|u\|\|v\|}$

Even better: $\tan \theta=\frac{\|u \times v\|}{u \cdot v}$ no sqrts!

Vector Triple Product

$\vec{w} \cdot(\vec{u} \times \vec{v})$ signed volume of parallelepiped

Euclidean Coordinates

A vector in 2D $\left(v_{x}, v_{y}\right)$ can be interpreted as instructions
"move to the right v_{x} and up v_{y} "

Euclidean Coordinates

A vector in 2D $\left(v_{x}, v_{y}\right)$ can be interpreted as instructions
"move to the right v_{x} and up v_{y} "

In other words: $\left(v_{x}, v_{y}\right)=v_{x} \hat{x}+v_{y} \hat{y}$

$$
\overrightarrow{\hat{x}} \quad \hat{y} \uparrow
$$

(Finite) Vector Spaces

We say: 2D vectors are vector space of vectors spanned by basis vectors $\{\hat{x}, \hat{y}\}$

- basis vectors: "directions" to travel
- span: all linear combinations

(Finite) Vector Spaces

We say: 2D vectors are vector space of vectors spanned by basis vectors $\{\hat{x}, \hat{y}\}$

- basis vectors: "directions" to travel
- span: all linear combinations

What is span of $\{(1,1),(1,-1)\}$?

(Finite) Vector Spaces

We say: 2D vectors are vector space of vectors spanned by basis vectors $\{\hat{x}, \hat{y}\}$

- basis vectors: "directions" to travel
- span: all linear combinations

What is span of $\{(1,1),(1,-1)\}$?
Of $\{(1,1),(-1,-1)\}$?

Vectors and Bases

Consider V spanned by $\begin{gathered}\vec{v}_{1}=(1,1) \\ \vec{v}_{2}=(1,-1)\end{gathered}$
Coordinates $(1,1)$ can represent:

Vectors and Bases

Key Point

A vector (arrow in space) can have different coordinates in different bases

Vectors and Bases

Key Point

A vector (arrow in space) can have different coordinates in different bases

The same coordinates can represent different vectors

Vectors and Bases

Key Point

A vector (arrow in space) can have different coordinates in different bases

The same coordinates can represent different vectors
Default basis: Euclidean

Linear Dependence

Informal: vectors linearly dependent if they are redundant

$$
\begin{aligned}
& v_{1}=(0,1,0) \\
& v_{2}=(1,0,0) \\
& v_{3}=(2,1,0)
\end{aligned}
$$

Linear Dependence

Informal: vectors linearly dependent if they are redundant

$$
\begin{aligned}
& v_{1}=(0,1,0) \\
& v_{2}=(1,0,0) \\
& v_{3}=(2,1,0)
\end{aligned}
$$

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}=\operatorname{span}\left\{v_{1}, v_{2}\right\}
$$

Linear Dependence

Informal: vectors linearly dependent if they are redundant

Formal: basis $\left\{\vec{b}_{i}\right\}$ linearly independent if

$$
\sum_{i} \alpha_{i} \vec{b}_{i}=0 \quad \Rightarrow \quad \alpha_{i}=0
$$

Dimension

Dimension is size of biggest set of linearly independent basis vectors

Examples:

$$
\operatorname{dim}\{\hat{x}, \hat{y}, \hat{z}\}=3
$$

Dimension

Dimension is size of biggest set of linearly independent basis vectors

Examples:
$\operatorname{dim}\{\hat{x}, \hat{y}, \hat{z}\}=3$
$\operatorname{dim}\{(1,1,0),(1,-1,0),(0,0,1)\}=3$

Dimension

Dimension is size of biggest set of linearly independent basis vectors

Examples:
$\operatorname{dim}\{\hat{x}, \hat{y}, \hat{z}\}=3$
$\operatorname{dim}\{(1,1,0),(1,-1,0),(0,0,1)\}=3$
$\operatorname{dim}\{(1,1),(0,0),(-3,-3)\}=1$

Geometry of Dimension

Adding all vectors of vector space V to p

If $\operatorname{dim} V=$:

- 0:

Geometry of Dimension

Adding all vectors of vector space V to p

If $\operatorname{dim} V=$:

- 0: just p
- 1:

Geometry of Dimension

Adding all vectors of vector space V to p

If $\operatorname{dim} V=$:

- 0: just p
- 1: line through p
- 2: plane through p
- 3+: hyperplane through p

Matrix

Matrix $A_{n \times m}$ array with n rows, m columns

$$
A_{2 \times 3}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

Notes:

- 1) first row, then column

Matrix

Matrix $A_{n \times m}$ array with n rows, m columns

$$
A_{2 \times 3}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]
$$

Notes:

- 1) first row, then column
- 2) one-indexed

Matrix Addition and Scaling

Can add two matrices of same size:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]+\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]=\left[\begin{array}{lll}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{array}\right]
$$

Matrix Addition and Scaling

Can add two matrices of same size:

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]+\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]=\left[\begin{array}{lll}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{array}\right]
$$

Scalar multiplication works as expected:

$$
\alpha\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]=\left[\begin{array}{lll}
\alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\
\alpha a_{21} & \alpha a_{22} & \alpha a_{23}
\end{array}\right]
$$

Matrix Multiplication

Can multiply matrices $A_{n \times m}, B_{m \times p} ; \operatorname{get}(A B)_{n \times p}$

Matrix Multiplication

Can multiply matrices $A_{n \times m}, B_{m \times p} ; \operatorname{get}(A B)_{n \times p}$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]_{2 \times 3}\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right]_{3 \times 3}=\left[\begin{array}{lll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & \cdot & \cdot \\
\cdot & \cdot
\end{array}\right]_{2 \times 3}
$$

Term $(a b)_{i j}$ is dot product of i-th row of A with j-th column of B

Matrix Multiplication

Can multiply matrices $A_{n \times m}, B_{m \times p} ; \operatorname{get}(A B)_{n \times p}$

Term $(a b)_{i j}$ is dot product of i -th row of A with j-th column of B

Matrix Multiplication

Can multiply matrices $A_{n \times m}, B_{m \times p} ; \operatorname{get}(A B)_{n \times p}$

Term $(a b)_{i j}$ is dot product of i -th row of A with j-th column of B
Is associative: $(A B) C=A(B C)$

Multiplication Not Commutative!

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=} \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=}
\end{aligned}
$$

Multiplication Not Commutative!

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
4 & 6 \\
3 & 4
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 7
\end{array}\right]}
\end{aligned}
$$

Has tripped up even professors...

Special Case: Vectors

Vectors are represented using column matrices:

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{11} v_{1}+a_{12} v_{2}+a_{13} v_{3} \\
a_{21} v_{1}+a_{22} v_{2}+a_{23} v_{3} \\
a_{31} v_{1}+a_{32} v_{2}+a_{33} v_{3}
\end{array}\right]
$$

Can treat vectors like $n \times 1$ matrix

Special Case: Vectors

Mathematically,

$$
(A B) v=A(B v)
$$

Special Case: Vectors

Mathematically,

Avoid matrix-matrix multiplies

Interpretation 1: Row Products

Matrix multiplication is dot product of vector with rows

$$
\begin{gathered}
{\left[\frac{\vec{a}_{1 \star}}{\frac{\vec{a}_{2 \star}}{\vec{a}_{3 \star}}}\right]\left[\begin{array}{l}
\vec{v} \\
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
\vec{a}_{1 \star} \cdot \vec{v} \\
\vec{a}_{2 \star} \cdot \vec{v} \\
\vec{a}_{3 \star} \cdot \vec{v}
\end{array}\right]} \\
\end{array}\right]}
\end{gathered}
$$

Interpretation 2: Column Sums

Matrix multiplication is linear combination of columns

$$
\begin{aligned}
& {\left[\begin{array}{c|c|c}
\vec{a}_{\star 1} & \vec{a}_{\star 2} & \vec{a}_{\star 3} \\
& &
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \vec{a}_{\star 1}+v_{2} \vec{a}_{\star 2}+v_{3} \vec{a}_{\star 3}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{11} v_{1}+a_{12} v_{2}+a_{13} v_{3} \\
a_{21} v_{1}+a_{22} v_{2}+a_{23} v_{3} \\
a_{31} v_{1}+a_{32} v_{2}+a_{33} v_{3}
\end{array}\right]}
\end{aligned}
$$

Interpretation 3: Change of Coord

Matrix A transforms vector:

- from basis $\left\{\vec{a}_{\star 1}, \vec{a}_{\star 2}, \vec{a}_{\star 3}\right\}$
- to Euclidean basis

$$
\left[\begin{array}{c|c|c}
\vec{a}_{\star 1} & \vec{a}_{\star 2} & \vec{a}_{\star 3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
\left.v_{1} \vec{a}_{\star 1}+v_{2} \vec{a}_{\star 2}+v_{3} \vec{a}_{\star 3}\right]
\end{array}\right]
$$

Identity Matrix

Square diagonal matrix

$$
I_{n \times n}=\left[\begin{array}{cccc}
1 & 0 & 0 & \ldots \\
0 & 1 & 0 & \ldots \\
0 & 0 & 1 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Satisfies

- $I_{n \times n} A_{n \times m}=A_{n \times m}$
- $A_{n \times m} I_{m \times m}=A_{n \times m}$

$$
I \vec{v}=\vec{v}
$$

Inverse Matrix

For some square matrices, inverse exists

$$
\begin{gathered}
A^{-1} A=A A^{-1}=I \\
A x=b \Rightarrow x=A^{-1} b
\end{gathered}
$$

Useful identity:

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Inverse Matrix

For some square matrices, inverse exists

$$
\begin{gathered}
A^{-1} A=A A^{-1}=I \\
A x=b \Rightarrow x=A^{-1} b
\end{gathered}
$$

Matrix A^{-1} transforms vector:

- from Euclidean basis
- to basis $\left\{\vec{a}_{\star 1}, \vec{a}_{\star 2}, \vec{a}_{\star 3}\right\}$

Inverse Matrix

For some square matrices, inverse exists

$$
\begin{gathered}
A^{-1} A=A A^{-1}=I \\
A x=b \Rightarrow x=A^{-1} b
\end{gathered}
$$

When does inverse exist?

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]^{-1}=?
$$

Inverse Matrix

For some square matrices, inverse exists

$$
\begin{gathered}
A^{-1} A=A A^{-1}=I \\
A x=b \Rightarrow x=A^{-1} b
\end{gathered}
$$

Note:

- Computing A^{-1} is slow: $O\left(n^{3}\right)$

Inverse Matrix

For some square matrices, inverse exists

$$
\begin{aligned}
& A^{-1} A=A A^{-1}=I \\
& A x=b \Rightarrow x=A^{-1} b
\end{aligned}
$$

Note:

- Computing A^{-1} is slow: $O\left(n^{3}\right)$
- For small matrices (4×4), not too bad
- For big matrices, inverse is never computed explicitly

Determinant

Maps square matrix to real number
In 2D: $\operatorname{det}\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]=a_{11} a_{22}-a_{12} a_{21}$
Measures signed volume of parallelogram

Determinant

Maps matrix to real number
In 3D: $\operatorname{det}\left[\begin{array}{l|l|l}\vec{a}_{* 1} & \vec{a}_{* 2} & \vec{a}_{* 3}\end{array}\right]$ vol. of parallelepiped
(Why do we care?)

Determinant

Maps matrix to real number
In 3D: $\operatorname{det}\left[\begin{array}{l|l|l}\vec{a}_{\star 1} & \vec{a}_{* 2} & \vec{a}_{* 3}\end{array}\right]$ vol. of parallelepiped
(Why do we care?)

Useful: $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$

Transpose

Flips indices; "reflect about diagonal"

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]^{T}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right]
$$

Transpose of vector is row vector

$$
\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]^{T}=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]
$$

Transpose

Flips indices; "reflect about diagonal"

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]^{T}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right]
$$

What is $v^{T} w$?
What is $v^{T} v$?

Transpose

Flips indices; "reflect about diagonal"

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]^{T}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right]
$$

What is $v^{T} w ?$
What is $v^{T} v$?
Useful identity: $(A B)^{T}=B^{T} A^{T}$

Interpretation 4: Any Linear Func.

For every linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of vectors to vectors, there exists $A_{m \times n}$ with: $f(v)=A v$

Interpretation 4: Any Linear Func.

For every linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of vectors to vectors, there exists $A_{m \times n}$ with: $f(v)=A v$

- Linear: $f(v+w)=f(v)+f(w)$

$$
f(\alpha v)=\alpha f(v)
$$

Interpretation 4: Any Linear Func.

For every linear function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ of vectors to vectors, there exists $A_{m \times n}$ with: $f(v)=A v$

- Linear: $f(v+w)=f(v)+f(w)$

$$
f(\alpha v)=\alpha f(v)
$$

- Why true? Look at basis elements

