Geometry Processing

Understanding the math of **3D shape**... ...and applying that math to **discrete** shape

Understanding the math of **3D shape**... ...and applying that math to **discrete** shape Examples:

subdivision and decimation

Understanding the math of **3D shape**...

...and applying that math to **discrete** shape Examples:

subdivision and decimation

Understanding the math of **3D shape**...

...and applying that math to **discrete** shape Examples:

- subdivision and decimation
- parameterization
- remeshing

Understanding the math of **3D shape**...

...and applying that math to **discrete** shape Examples:

- subdivision and decimation
- parameterization
- remeshing
- smoothing/fairing

Understanding the math of **3D shape**... ...and applying that math to **discrete** shape Examples:

- subdivision and decimation
- parameterization
- remeshing
- smoothing/fairing

Today: a quick taste of surface geometry

Simple Geometry: Plane Curves

Simple Geometry: Plane Curves

Simple Geometry: Plane Curves

What is it?

Some formula: $\gamma''(s) = -k(s)N(s)$

What is it really?

What is it really?

"how quickly the normals turn"

What is it really?

"how quickly the normals turn"

What is it really?

$$k = \frac{dL_N}{dL}$$

Total Integrated Curvature

Total Integrated Curvature

Total Integrated Curvature

Theorem (Whitney-Graustein): for a closed smooth curve, $\int k(s)dL = 2\pi n$.

Surfaces in Space

Surfaces in Space

What is curvature now?

Idea #1: Normal Curvature

$\mathbf{Mean}\ \mathbf{Curvature}\ H$

Average normal curvature at point

Idea #2: Look at Normals Again

Idea #2: Look at Normals Again

Gaussian curvature $K = \frac{dA_N}{dA}$

Mean and Gaussian Curvatue

Theorema Egregrium

Theorem (Gauss, deep): Gaussian curvature is an **isometry invariant**

Informativeness of Curvature

Theorem (easy): every curve can be reconstructed (up to rigid motions) from its curvature

Theorem (deep): every surface can be reconstructed (up to rigid motions) from its mean and Gaussian curvature

3D Analogues

Theorem [Gauss-Bonnet]: $\int K dA = 4\pi n$

Theorem [Steiner]:

$$V_{\epsilon} = V + \epsilon A + \epsilon^2 \int H \, dA + \frac{1}{3} \epsilon^3 \int K \, dA$$

Discrete Curve

How do we Discretize Geometry?

Option 1: Γ is not the "real curve." It approximates some smooth limit curve.

How do we Discretize Geometry?

Option 1: Γ is not the "real curve." It approximates some smooth limit curve.

What is the refinement rule $\Gamma_i \rightarrow \Gamma_{i+1}$?

How do we discretize geometry?

Option 2: Γ is the "real curve"! Construct geometry axiomatically

Get the right answer at every level of refinement

How do we discretize curvature?

How do we discretize curvature?

How do we discretize curvature?

$$\kappa_{i} = \frac{2\angle (p_{i+1} - p_{i}, p_{i} - p_{i-1})}{\|p_{i+1} - p_{i}\| + \|p_{i} - p_{i-1}\|} dL_{N}$$

Discrete Surface

Discrete Inflation Theorem

Discrete Inflation Theorem

Discrete Gauss-Bonnet

Chladni Plates

Ernst Chladni

Isolines of Square Plate

Chladni Plates

Properties of plate energy:

- Stretching negligible
- Uniform, local & isotropic
- Zero for flat plate
- Same in both directions

Sophie Germain

Chladni Plates

Properties of plate energy:

- Stretching negligible
- Uniform, local & isotropic
- Zero for flat plate
- Same in both directions

Sophie Germain

Low-order approximation: $E \propto \int H^2 dA$