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Today: a quick taste of surface geometry
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Curvature x(s)

What is 1t?

v(s)

Some formula:v"(s) = —k(s)N(s)
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Curvature x(s)

What Is It really?
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Total Integrated Curvature

Theorem (Whitney-Graustein): for a closed
smooth curve, [ k(s)dL = 2mn.

/ s)dL = / dL—NdL = 27
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Inflation Theorem

Offset closed curve along normal direction

Ac=A+ el + 2€* [Kk(s)dL



Surfaces in Space




Surfaces in Space

What Is curvature now?




Idea #1: Normal Curvature




Mean Curvature

Average normal curvature at point




Idea #2: Look at Normals Again
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Theorema Egregrium

Theorem (Gauss, deep): Gaussian
curvature is an isometry invariant

allhave K = 0




Informativeness of Curvature

Theorem (easy). every curve can be
reconstructed (up to rigid motions) from its
curvature

Theorem (deep): every surface can be
reconstructed (up to rigid motions) from its
mean and Gaussian curvature



3D Analogues

Theorem [Gauss-Bonnet]: [ K dA = 47n

Theorem [Steiner]:

Vo=V +eAd+e [HdA+ i€’ [ KdA
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How do we Discretize Geometry?

Option 1: T" is not the “real curve.” It
approximates some smooth limit curve.




How do we Discretize Geometry?

Option 1: T" is not the “real curve.” It
approximates some smooth limit curve.

What is the refinementrule I'; — I'; 1 ?



Draw a circle

Draw a square around it

Perimeter = 4
.-"';.-. H
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Remove corners.
Perimeter is still 4!

T 1

Remove more corners.
Perimeter is still 4!
| T [ —

|

Repeat to infinity

e —

- T

Problem Archimedes?

Internet “proof”
that m = 4




How do we discretize geometry?

Option 2: T is the “real curve”! Construct
geometry axiomatically

Get the right answer at every level of
refinement



How do we discretize curvature?
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How do we discretize curvature?
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Discrete Surface
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Discrete Inflation Theorem
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Discrete Inflation Theorem
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Discrete Gauss-Bonnet
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Chladni Plates

Ernst Chladni




Isolines of Square Plate
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Chladni Plates

Properties of plate energy:
- Stretching negligible

- Uniform, local & isotropic
- Zero for flat plate

- Same in both directions

Sophie Germain
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Properties of plate energy:
- Stretching negligible

- Uniform, local & isotropic
- Zero for flat plate

- Same in both directions \’

Sophie Germain
Low-order approximation: E « [ H? dA




