
Basic Ray Tracing



Rendering: Reality

Eye acts as pinhole camera

Photons from light
hit objects



Rendering: Reality

Eye acts as pinhole camera

Photons from light
hit objects



Rendering: Reality

Eye acts as pinhole camera

Photons from light
hit objects

Bounce everywhere

Extremely few
hit eye, form image



Rendering: Reality

Useful abstraction: virtual image plane



Rendering: Reality

Pros

• photorealistic

• embarrassingly parallel?

Cons

• SLOW for all but extremely trivial 
scenes



Rendering: Ray Tracing

Reverse of reality

• shoot rays through image plane

• see what they hit



Rendering: Ray Tracing

Reverse of reality

• shoot rays through image plane

• see what they hit

• reflections?
shadows?



Rendering: Ray Tracing

Reverse of reality

• shoot rays through image plane

• see what they hit

• reflections?
shadows?

• shoot secondary rays



Rendering: Ray Tracing

Reverse of reality

• shoot rays through image plane

• see what they hit

• reflections?
shadows?

• shoot secondary rays

Embarrassingly parallel



“Ray Tracing is Slow”

Very true in the past; still true today

But real-time ray tracing is coming

[Nvidia OptiX]



Why Slow?

What is the time complexity?



Why Slow?

What is the time complexity?

Naïve algorithm: O(NR)

• R: number of rays

• N: number of objects



Why Slow?

What is the time complexity?

Naïve algorithm: O(NR)

• R: number of rays

• N: number of objects

But rays can be cast in parallel

• each ray O(N)

• even faster with good culling



Why Slow?

Despite being parallel:

1. poor cache coherence

• nearby rays can hit different geometry



Why Slow?

Despite being parallel:

1. poor cache coherence

• nearby rays can hit different geometry

2. unpredictable

• must shade pixels whose rays hit object

• may require tracing rays recursively



Basic Algorithm

For each pixel:

• shoot ray from camera through pixel

• find first object it hits

• if it hit something

• shade that pixel



Basic Algorithm

For each pixel:

• shoot ray from camera through pixel

• find first object it hits

• if it hit something

• shade that pixel

• maybe shoot secondary rays



Shoot Rays From Camera

Ray has origin and direction



Shoot Rays From Camera

Ray has origin and direction

Points on ray are the positive span



Shoot Rays From Camera

Ray has origin and direction

Points on ray are the positive span

(why positive?)



Shoot Rays From Camera

How to pick ray?

• obviously origin is eye



Shoot Rays From Camera

How to pick ray?

• obviously origin is eye

• pick direction to pierce center of pixel



Shoot Rays From Camera

How to pick ray?

• obviously origin is eye

• pick direction to pierce center of pixel



Shoot Rays From Camera

How to pick ray?

• obviously origin is eye

• pick direction to pierce center of pixel

Antialiasing: 

multiple
rays/pixel



Find First Object Hit By Ray

Collision detection: find all values of t
where ray hits object boundary

Take smallest positive value of t



Find First Object Hit By Ray

Collision detection: find all values of t
where ray hits object boundary

Take smallest positive value of t



Plane specified by:

• point on plane

• plane normal

Ray-Plane Collision Detection



Plane specified by:

• point on plane

• plane normal

Ray-Plane Collision Detection



Plane specified by:

• point on plane

• plane normal

Ray-Plane Collision Detection

(what if t < 0?)



Plane specified by:

• point on plane

• plane normal

Ray-Plane Collision Detection

(what if t < 0?)
(what if denominator = 0?)



Ray-Triangle Collision Detection

First, intersect with triangle’s plane

Next: is P inside or outside
the triangle?



Normal:

Ray-Triangle Collision Detection



Normal:

Idea: if P inside, must be left
of line AB

Ray-Triangle Collision Detection



Normal:

Idea: if P inside, must be left
of line AB

Ray-Triangle Collision Detection



Normal:

Idea: if P inside, must be on
correct side of lines

Ray-Triangle Collision Detection



Ray-Sphere Collision Detection

Sphere specified by

• center

• radius



Ray-Sphere Collision Detection

Sphere specified by

• center

• radius



Ray-Sphere Collision Detection

Sphere specified by

• center

• radius

key idea: can square both sides



Ray-Sphere Collision Detection

Sphere specified by

• center

• radius

Quadratic equation!



Zero, One, or Two Roots



Ray-Box Collision Detection

Challenge: ray could hit any of six sides

Could do lots of ray-plane and point-in-
rectangle checks…



What is Shading?

Shading: coloring the pixels

What does color depend on?



What is Shading?

Shading: coloring the pixels

What does color depend on?

• object material

• incoming light

• angle of viewer



Shading Materials

Different materials can behave very 
differently

• opaque vs translucent vs transparent

• shiny vs dull



Shading Materials

Different materials can behave very 
differently

• opaque vs translucent vs transparent

• shiny vs dull

We classify different responses to light 
into “types”



Emissive Lighting

Light generated within material



Diffuse Reflection

Light comes in, bounces out randomly



Diffuse Reflection

Light comes in, bounces out randomly

Typical for “rough” unpolished materials

View angle doesn’t matter



Specular Reflection

Light reflects perfectly

Typical for smooth, “polished” surfaces



General Opaque Materials

Lie on diffuse-specular spectrum



General Opaque Materials

Lie on diffuse-specular spectrum

Pure diffuse: Lambertian

• idealized material common in CV…



General Opaque Materials

Lie on diffuse-specular spectrum

Pure diffuse: Lambertian

• idealized material common in CV…

Pure specular: mirror



What About Translucent?

Subsurface Scattering



What About Translucent?

Subsurface Scattering

Refraction



What About Translucent?

Subsurface Scattering

Refraction

Structural Color

…

Not today.



The Rendering Equation



The Rendering Equation



The Rendering Equation

BRDF
“Bidirectional Reflectance 

Distribution Function”
(encodes material)



Why the Cosine Term?

Light at angle hits surface more sparsely

• “Lambert’s Cosine Law”



Positive and bidirectional:

Captured for different materials, stored in 
libraries

BRDFs



Positive and bidirectional:

Captured for different materials, stored in 
libraries

More complicated versions exist that 
account for wavelength, subsurface 
scattering, transmission, etc etc

BRDFs



Often too slow for graphics

• approximate!

The Rendering Equation



Local Illumination

Simplifying assumptions:

• ignore everything 
except: 
eye, light, 
and object



Local Illumination

Simplifying assumptions:

• ignore everything except eye, light, and 
object

• basic version: no shadows, reflections, etc



Local Illumination

Simplifying assumptions:

• ignore everything except eye, light, and 
object

• basic version: no shadows, reflections, etc

• but can support basic shadows/reflection



Local Illumination

Simplifying assumptions:

• ignore everything except eye, light, and 
object

• basic version: no shadows, reflections, etc

• but can support basic shadows/reflection

• only point lights

• only simple (diffuse & specular) 
materials



Global Illumination


