Barycentric Coordinates and Parameterization

Center of Mass

"Geometric center" of object

Center of Mass

"Geometric center" of object Object can be balanced on CoM

How to calculate?

Finding the Center of Mass

Plumb line method

CoM is average $c = \frac{1}{n} \sum_{i=1}^{n} p_i$

CoM is average $c = \frac{1}{n} \sum_{i=1}^{n} p_i$

Center of mass is inside convex hull

Center of mass is inside **convex hull** What if points have different mass?

Still in convex hull

Scaling the masses doesn't affect CoM

Still in convex hull

Scaling the masses doesn't affect CoM

can assume masses sum to one

Given three points p_i and a target point c:

For what masses is c the CoM?

 p_3

 \mathcal{C}

 p_1

Special case 1: $c = p_i$

Given three points p_i and p_2 a target point c: p_2 For what masses is c the CoM? p_1

Special case 1: $c = p_i$

$$m_j = \begin{cases} 1, & j = i \\ 0, & j \neq i \end{cases}$$

Given three points p_i and a target point c:

For what masses is c the CoM?

С

 p_2

 p_3

 p_1

Special case 1: $c = p_i$

Special case 2: c outside triangle

Given three points p_i and a target point c:

For what masses is c the CoM?

С

 p_2

 p_3

 p_1

Special case 1: $c = p_i$

Special case 2: c outside triangle

• not possible (needs antigravity...)

Given three points p_i and a target point c:

For what masses is c the CoM?

$$c = \sum_{i} m_i p_i, \quad \sum m_i = 1$$

 p_3

 p_1

 p_2

Observation: $m_1 = 1 - m_2 - m_3$

Given three points p_i and a target point c:

For what masses is c the CoM?

$$c = (1 - m_2 - m_3)p_1 + m_2p_2 + m_3p_3$$

 p_3

 \mathcal{C}

 p_1

Given three points p_i and a target point c:

For what masses is c the CoM?

$$c = (1 - m_2 - m_3)p_1 + m_2p_2 + m_3p_3$$

$$c - p_1 = m_2(p_2 - p_1) + m_3(p_3 - p_1)$$

 p_3

 \mathcal{C}

 p_1

Given three points p_i and a target point c:

For what masses is c the CoM?

$$c = (1 - m_2 - m_3)p_1 + m_2p_2 + m_3p_3$$

$$c - p_1 = m_2(p_2 - p_1) + m_3(p_3 - p_1)$$

$$c - p_1 = \begin{bmatrix} p_2 - p_1 & p_3 - p_1 \end{bmatrix}_{2 \times 2} \begin{bmatrix} m_2 \\ m_3 \end{bmatrix}$$

 p_3

 \mathcal{C}

 p_1

Given three points p_i and a target point c:

For what masses is c the CoM?

$$\begin{bmatrix} m_2 \\ m_3 \end{bmatrix} = \begin{bmatrix} p_2 - p_1 & p_3 - p_1 \end{bmatrix}^{-1} \begin{bmatrix} c - p_1 \end{bmatrix}$$

 p_3

 p_1

 p_2

These are barycentric coordinates of c

Can be interpreted as

weighted point sum

$$(1 - m_2 - m_3)p_1 + m_2p_2 + m_3p_3$$

 $(m_2, m_3) \bullet p_3$

 p_1

 p_2

• point in edge coordinates $p_1 + m_2(p_2 - p_1) + m_3(p_3 - p_1)$

 $(m_2, m_3) \bullet p_3$

 p_1

 p_2

Properties:

- $0 \le m_i \le 1$
- $0 \le m_2 + m_3 \le 1$

 $(m_2, m_3) \bullet p_3$

 p_1

 p_2

Properties:

- $0 \le m_i \le 1$
- $0 \le m_2 + m_3 \le 1$
- corners are (0,0), (1,0), (0,1)
- unique for any inside point

Properties:

- $0 \le m_i \le 1$
- $0 \le m_2 + m_3 \le 1$
- corners are (0,0), (1,0), (0,1)
- unique for any inside point

 p_1

 $(m_2, m_3) \bullet p_3$

Properties:

- $0 \le m_i \le 1$
- $0 \le m_2 + m_3 \le 1$
- corners are (0,0), (1,0), (0,1)
- unique for any inside point

 p_1

 $(m_2, m_3) \bullet p_3$

 p_2

Why do we care?

Barycentric Interpolation

Extends any function from corners to triangle

 $f_c = (1 - m_2 - m_3)f_1 + m_2f_2 + m_3f_3$

 p_1

 p_3

Barycentric Interpolation

Extends any function from corners to triangle

- colors
- normals
- whatever

 $f_c = (1 - m_2 - m_3)f_1 + m_2f_2 + m_3f_3$

 p_1

 p_3

Negative Barycentric Coordinates

Points outside triangle also have coords

Negative Barycentric Coordinates

 p_{3}

 p_1

 p_2

(0.5, -0.5)

Points outside triangle also have coords

Alternate inside-triangle check:

- compute barycentric coords
- check they're valid

Given c in plane of tri: find coords with

 $c - p_1 = m_2(p_2 - p_1) + m_3(p_3 - p_1)$

 p_1

 p_3

DI

Given c in plane of tri: find coords with

n 3D
$$p_3$$
 p_2

 $c - p_1 = m_2(p_2 - p_1) + m_3(p_3 - p_1)$

Problem: too many equations!!

Given c in plane of tri: find coords with

 $c - p_1 = m_2(p_2 - p_1) + m_3(p_3 - p_1)$

Problem: too many equations!! Can we eliminate one of the variables?

Given c in plane of tri: find coords with

n 3D
$$p_3$$
 p_1 p_2

$$c - p_1 = m_2(p_2 - p_1) + m_3(p_3 - p_1)$$
$$(p_3 - p_1) \times (c - p_1) = m_2(p_3 - p_1) \times (p_2 - p_1)$$

Both sides vectors in normal direction

Given c in plane of tri: find coords with

n 3D
$$p_3$$
 p_2

$$c - p_1 = m_2(p_2 - p_1) + m_3(p_3 - p_1)$$
$$(p_3 - p_1) \times (c - p_1) = m_2(p_3 - p_1) \times (p_2 - p_1)$$

Both sides vectors in normal direction

$$[(p_3 - p_1) \times (c - p_1)] \cdot \hat{n} = m_2 [(p_3 - p_1) \times (p_2 - p_1)] \cdot \hat{n}$$

Given c in plane of tri: find coords with

n 3D
$$p_3$$
 p_1 p_2

$$c - p_1 = m_2(p_2 - p_1) + m_3(p_3 - p_1)$$
$$(p_3 - p_1) \times (c - p_1) = m_2(p_3 - p_1) \times (p_2 - p_1)$$

Both sides vectors in normal direction

$$[(p_3 - p_1) \times (c - p_1)] \cdot \hat{n} = m_2 [(p_3 - p_1) \times (p_2 - p_1)] \cdot \hat{n}$$
$$[(p_2 - p_1) \times (c - p_1)] \cdot \hat{n} = m_3 [(p_2 - p_1) \times (p_3 - p_1)] \cdot \hat{n}$$

Given c in plane of tri: find coords with

$$m_2 = \frac{[(p_3 - p_1) \times (c - p_1)] \cdot \hat{n}}{[(p_3 - p_1) \times (p_2 - p_1)] \cdot \hat{n}}$$

 p_1

 p_3

$$m_3 = \frac{[(p_2 - p_1) \times (c - p_1)] \cdot \hat{n}}{[(p_2 - p_1) \times (p_3 - p_1)] \cdot \hat{n}}$$

Barycentric Coords in 3D

Given c in plane of tri: find coords with

$$m_2 = \frac{[(p_3 - p_1) \times (c - p_1)] \cdot \hat{n}}{[(p_3 - p_1) \times (p_2 - p_1)] \cdot \hat{n}}$$

 p_1

 p_3

 $D \mathfrak{I}$

$$m_3 = \frac{[(p_2 - p_1) \times (c - p_1)] \cdot \hat{n}}{[(p_2 - p_1) \times (p_3 - p_1)] \cdot \hat{n}}$$

What if c is **not** in the plane of triangle?

Ray Tracing Triangles

- 1. Find point where ray hits triangle plane
- 2. Calculate barycentric coordinates
- 3. Check coords valid
- 4. Linearly interpolate normals etc.
- 5. Shade pixel

 $c = (1 - m_2 - m_3 - m_4)p_1 + m_2p_2 + m_3p_3 + m_4p_4$ Are coords still unique?

Beyond Triangles

 $c = (1 - m_2 - m_3 - m_4)p_1 + m_2p_2 + m_3p_3 + m_4p_4$

Are coords still unique? No!

Beyond Triangles

 $c = (1 - m_2 - m_3 - m_4)p_1 + m_2p_2 + m_3p_3 + m_4p_4$

Are coords still unique? No! Many generalized barycentric coords schemes exist

Barycentric Coords as a Map

Maps from a triangle in 2D to 3D triangle

Called parameterization of triangle

Barycentric Coords as a Map

Maps from a triangle in 2D to 3D triangle

Called **parameterization** of triangle

from now on, 2D coords are u and v

Parameterization

Map between **region of plane** and **arbitrary surface**

why do we want to do this?

Parameterization

Map between **region of plane** and **arbitrary surface**

Can then use parameterization to paint image on 3D surface: **texture map**

Texture Map

Parameterization == texture map == UV coordinates == UV unwrapping

Texture Map

Parameterization == texture map == UV coordinates == UV unwrapping

Usually means assigning U and V coordinates to every pixel

Texture Map

Parameterization == texture map == UV coordinates == UV unwrapping

Usually means assigning U and V coordinates to every pixel

Or U and V for every vertex, then interpolate

Parameterization History

How to parameterize the earth (sphere)?

Very practical, important problem in Middle Ages...

Latitude & Longitude

Distorts areas and angles

Planar Projection

Covers only half of the earth Distorts areas and angles

Stereographic Projection

Distorts areas

Albers Projection

Preserves areas, distorts aspect ratio

Fuller Parameterization

No Free Lunch

Every parameterization of the earth either:

- distorts areas
- distorts distances
- distorts angles

Good Parameterizations

- low area distortion
- low angle distortion
- no obvious seams
- one piece

Soup Parameterization

Project surface onto plane

Project surface onto plane

• quite useful in practice

Project surface onto plane

- quite useful in practice
- only partial coverage
- bad distortion when normals perpendicular

In practice: combine multiple views

Cube Map

Cylindrical Parameterization

Conformal Parameterization

Conformal = angle-preserving

Conformal Parameterization

Conformal = angle-preserving

Riemann mapping theorem

• can map any surface conformally

Conformal Parameterization

Conformal = angle-preserving

Riemann mapping theorem

can map any surface conformally

Area distortion can be bad

Texture Atlas

Break up surface into easy pieces, parameterize separately

Texture Atlas

Some automatic methods exist...

but often artists hand-paint UV coords

Projection Mapping

Projection Mapping

Scan 3D geometry, compute texture map

Then, project anything you want on object