Barycentric Coordinates and Parameterization

Center of Mass

"Geometric center" of object

Center of Mass

"Geometric center" of object
Object can be balanced on CoM

How to calculate?

Finding the Center of Mass

Plumb line method

Special Case: Points

CoM is average
$c=\frac{1}{n} \sum_{i=1}^{n} p_{i}$

- p_{3}

$$
p_{2} \quad \bullet c
$$

$$
\bullet_{p_{1}} \quad \bullet p_{4}
$$

Special Case: Points

CoM is average
$c=\frac{1}{n} \sum_{i=1}^{n} p_{i}$
$p_{2} \quad \bullet$

$$
{ }^{\bullet} \quad p_{1} \quad p^{p_{4}}
$$

Center of mass is inside convex hull

Special Case: Points

CoM is average
$c=\frac{1}{n} \sum_{i=1}^{n} p_{i}$

- p_{3}

$$
\begin{array}{lll}
p_{2} & \bullet c & \\
& & \bullet p_{1}
\end{array} \quad \bullet p_{4}
$$

Center of mass is inside convex hull What if points have different mass?

Special Case: Points

Special Case: Points

Weighted average

$$
c=\frac{\sum_{i=1}^{n} m_{i} p_{i}}{\sum_{i=1}^{n} m_{i}}
$$

Still in convex hull
Scaling the masses doesn't affect CoM

Special Case: Points

Weighted average
$c=\frac{\sum_{i=1}^{n} m_{i} p_{i}}{\sum_{i=1}^{n} m_{i}}$

Still in convex hull
Scaling the masses doesn't affect CoM

- can assume masses sum to one

Inverse Problem

Given three points p_{i} and a target point c:
For what masses is c the CoM?

$$
p_{1}
$$

Inverse Problem

Given three points p_{i} and a target point c:
p_{2}
For what masses is c the CoM ?
Special case 1: $c=p_{i}$

Inverse Problem

Given three points p_{i} and a target point c :

- p_{3}
p_{2}
For what masses is c the CoM ?
Special case 1: $c=p_{i}$

$$
m_{j}= \begin{cases}1, & j=i \\ 0, & j \neq i\end{cases}
$$

Inverse Problem

Given three points p_{i} and a target point c:
For what masses is c the CoM?

Special case 1: $c=p_{i}$

Special case 2: c outside triangle

Inverse Problem

$$
\stackrel{c}{c}_{\bullet} p_{3}
$$

Given three points p_{i} and a target point c:
For what masses is c the CoM?

Special case 1: $c=p_{i}$

Special case 2: c outside triangle

- not possible (needs antigravity...)

Inverse Problem

Given three points p_{i} and a target point c:
p_{2}
For what masses is c the CoM ?

$$
c=\sum_{i} m_{i} p_{i}, \quad \sum m_{i}=1
$$

Observation: $m_{1}=1-m_{2}-m_{3}$

Inverse Problem

Given three points p_{i} and a target point c:

$$
c \quad \bullet p_{3}
$$ p_{2}

For what masses is c the CoM ?

$$
c=\left(1-m_{2}-m_{3}\right) p_{1}+m_{2} p_{2}+m_{3} p_{3}
$$

Inverse Problem

Given three points p_{i} and a target point c:

$$
c \quad \bullet p_{3}
$$ p_{2} For what masses is c the CoM ?

$$
\begin{gathered}
c=\left(1-m_{2}-m_{3}\right) p_{1}+m_{2} p_{2}+m_{3} p_{3} \\
c-p_{1}=m_{2}\left(p_{2}-p_{1}\right)+m_{3}\left(p_{3}-p_{1}\right)
\end{gathered}
$$

Inverse Problem

Given three points p_{i} and a target point c:
p_{2}
For what masses is c the CoM?
$c=\left(1-m_{2}-m_{3}\right) p_{1}+m_{2} p_{2}+m_{3} p_{3}$

$$
c-p_{1}=m_{2}\left(p_{2}-p_{1}\right)+m_{3}\left(p_{3}-p_{1}\right)
$$

$$
c-p_{1}=\left[\begin{array}{ll}
p_{2}-p_{1} & p_{3}-p_{1}
\end{array}\right]_{2 \times 2}\left[\begin{array}{c}
m_{2} \\
m_{3}
\end{array}\right]
$$

Inverse Problem

Given three points p_{i} and a target point c:
For what masses is c the CoM?

$$
{ }^{\bullet} p_{1}
$$

$\left[\begin{array}{l}m_{2} \\ m_{3}\end{array}\right]=\left[\begin{array}{cc}p_{2}-p_{1} & p_{3}-p_{1}\end{array}\right]^{-1}\left[c-p_{1}\right]$
These are barycentric coordinates of c

Barycentric Coordinates

$$
\left(m_{2}, m_{3}\right) \quad \bullet p_{3}
$$

Can be interpreted as

- weighted point sum

$$
p_{2}
$$

$$
\left(1-m_{2}-m_{3}\right) p_{1}+m_{2} p_{2}+m_{3} p_{3} \quad{ }^{\bullet} p_{1}
$$

- point in edge coordinates

$$
p_{1}+m_{2}\left(p_{2}-p_{1}\right)+m_{3}\left(p_{3}-p_{1}\right)
$$

Barycentric Coordinates

$$
\left(m_{2}, m_{3}\right) \quad \bullet p_{3}
$$

Properties:

- $0 \leq m_{i} \leq 1$
- $0 \leq m_{2}+m_{3} \leq 1$

Barycentric Coordinates

$$
\left(m_{2}, m_{3}\right) \quad \bullet p_{3}
$$

Properties:

- $0 \leq m_{i} \leq 1$
- $0 \leq m_{2}+m_{3} \leq 1$
- corners are $(0,0),(1,0),(0,1)$
- unique for any inside point

Barycentric Coordinates

$$
\left(m_{2}, m_{3}\right) \quad \bullet p_{3}
$$

Properties:

- $0 \leq m_{i} \leq 1$
- $0 \leq m_{2}+m_{3} \leq 1$

$$
{ }^{\bullet} p_{1}
$$

- corners are $(0,0),(1,0),(0,1)$
- unique for any inside point

Barycentric Coordinates

$$
\left(m_{2}, m_{3}\right) \bullet p_{3}
$$

Properties:

- $0 \leq m_{i} \leq 1$
- $0 \leq m_{2}+m_{3} \leq 1$ p_{2}
- corners are $(0,0),(1,0),(0,1)$
- unique for any inside point

Why do we care?

Barycentric Interpolation

Extends any function from corners to triangle

rom

$p_{1} \quad p_{2}$

$$
f_{c}=\left(1-m_{2}-m_{3}\right) f_{1}+m_{2} f_{2}+m_{3} f_{3}
$$

Barycentric Interpolation

Extends any function from corners to triangle

- colors
- normals
- whatever

Negative Barycentric Coordinates

Points outside triangle also have coords
p_{2}

Negative Barycentric Coordinates

Points outside triangle also have coords
p_{2}

Alternate inside-triangle check:

- compute barycentric coords
- check they're valid

Barycentric Coords in 3D

Given c in plane of tri:
 find coords with

$$
c-p_{1}=m_{2}\left(p_{2}-p_{1}\right)+m_{3}\left(p_{3}-p_{1}\right)
$$

Barycentric Coords in 3D

Given c in plane of tri: find coords with

$$
c-p_{1}=m_{2}\left(p_{2}-p_{1}\right)+m_{3}\left(p_{3}-p_{1}\right)
$$

Problem: too many equations!!

Barycentric Coords in 3D

Given c in plane of tri: find coords with

$$
c-p_{1}=m_{2}\left(p_{2}-p_{1}\right)+m_{3}\left(p_{3}-p_{1}\right)
$$

Problem: too many equations!!
Can we eliminate one of the variables?

Barycentric Coords in 3D

Given c in plane of tri: find coords with

$$
\begin{gathered}
c-p_{1}=m_{2}\left(p_{2}-p_{1}\right)+m_{3}\left(p_{3}-p_{1}\right) \\
\left(p_{3}-p_{1}\right) \times\left(c-p_{1}\right)=m_{2}\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)
\end{gathered}
$$

Both sides vectors in normal direction

Barycentric Coords in 3D

Given c in plane of tri: find coords with

$$
\begin{gathered}
c-p_{1}=m_{2}\left(p_{2}-p_{1}\right)+m_{3}\left(p_{3}-p_{1}\right) \\
\left(p_{3}-p_{1}\right) \times\left(c-p_{1}\right)=m_{2}\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)
\end{gathered}
$$

Both sides vectors in normal direction

$$
\left[\left(p_{3}-p_{1}\right) \times\left(c-p_{1}\right)\right] \cdot \hat{n}=m_{2}\left[\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)\right] \cdot \hat{n}
$$

Barycentric Coords in 3D

Given c in plane of tri: find coords with

$$
c-p_{1}=m_{2}\left(p_{2}-p_{1}\right)+m_{3}\left(p_{3}-p_{1}\right)
$$

$$
\left(p_{3}-p_{1}\right) \times\left(c-p_{1}\right)=m_{2}\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)
$$

Both sides vectors in normal direction

$$
\begin{aligned}
& {\left[\left(p_{3}-p_{1}\right) \times\left(c-p_{1}\right)\right] \cdot \hat{n}=m_{2}\left[\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)\right] \cdot \hat{n}} \\
& {\left[\left(p_{2}-p_{1}\right) \times\left(c-p_{1}\right)\right] \cdot \hat{n}=m_{3}\left[\left(p_{2}-p_{1}\right) \times\left(p_{3}-p_{1}\right)\right] \cdot \hat{n}}
\end{aligned}
$$

Barycentric Coords in 3D

Given c in plane of ri:
 find coors with

$$
\begin{aligned}
& m_{2}=\frac{\left[\left(p_{3}-p_{1}\right) \times\left(c-p_{1}\right)\right] \cdot \hat{n}}{\left[\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)\right] \cdot \hat{n}} \\
& m_{3}=\frac{\left[\left(p_{2}-p_{1}\right) \times\left(c-p_{1}\right)\right] \cdot \hat{n}}{\left[\left(p_{2}-p_{1}\right) \times\left(p_{3}-p_{1}\right)\right] \cdot \hat{n}}
\end{aligned}
$$

Barycentric Coords in 3D

Given c in plane of tri:
 find coords with

$$
\begin{aligned}
& m_{2}=\frac{\left[\left(p_{3}-p_{1}\right) \times\left(c-p_{1}\right)\right] \cdot \hat{n}}{\left[\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)\right] \cdot \hat{n}} \\
& m_{3}=\frac{\left[\left(p_{2}-p_{1}\right) \times\left(c-p_{1}\right)\right] \cdot \hat{n}}{\left[\left(p_{2}-p_{1}\right) \times\left(p_{3}-p_{1}\right)\right] \cdot \hat{n}}
\end{aligned}
$$

What if c is not in the plane of triangle?

Ray Tracing Triangles

1. Find point where ray hits triangle plane
2. Calculate barycentric coordinates
3. Check coords valid

4. Linearly interpolate normals etc.
5. Shade pixel

Beyond Triangles

Much carries over...

$$
\bullet p_{3}
$$

$p_{2}{ }^{\bullet}$

$$
\begin{aligned}
& \qquad{ }^{\bullet} p_{1} \quad \bullet p_{4} \\
& c=\left(1-m_{2}-m_{3}-m_{4}\right) p_{1}+m_{2} p_{2}+m_{3} p_{3}+m_{4} p_{4} \\
& \text { Are coords still unique? }
\end{aligned}
$$

Beyond Triangles

Much carries over...

- $\quad p_{3} \quad m_{1}=0$

$$
m_{4}=0 \longrightarrow \bullet_{p_{1}} \quad \bullet^{p_{4}}
$$

$$
c=\left(1-m_{2}-m_{3}-m_{4}\right) p_{1}+m_{2} p_{2}+m_{3} p_{3}+m_{4} p_{4}
$$

Are coords still unique? No!

Beyond Triangles

Much carries over...

- p_{3}

$$
m_{1}=0
$$

$$
m_{4}=0 \longrightarrow \bullet_{p_{1}} \quad \bullet p_{4}
$$

$c=\left(1-m_{2}-m_{3}-m_{4}\right) p_{1}+m_{2} p_{2}+m_{3} p_{3}+m_{4} p_{4}$
Are coords still unique? No!
Many generalized barycentric coords schemes exist

Barycentric Coords as a Map

Maps from a triangle in 2D to 3D triangle

Called parameterization of triangle

Barycentric Coords as a Map

Maps from a triangle in 2D to 3D triangle

Called parameterization of triangle

- from now on, 2D coords are \mathbf{u} and \mathbf{v}

Parameterization

Map between region of plane and arbitrary surface

why do we want to do this?

Parameterization

Map between region of plane and arbitrary surface

Can then use parameterization to paint image on 3D surface: texture map

Texture Map

Parameterization == texture map
== UV coordinates
== UV unwrapping

Texture Map

Parameterization == texture map

$$
\begin{aligned}
& ==\text { UV coordinates } \\
& ==\text { UV unwrapping }
\end{aligned}
$$

Usually means assigning U and V coordinates to every pixel

Texture Map

Parameterization == texture map

$$
\begin{aligned}
& ==\text { UV coordinates } \\
& ==\text { UV unwrapping }
\end{aligned}
$$

Usually means assigning U and V coordinates to every pixel
Or U and V for every vertex, then interpolate

Parameterization History

How to parameterize the earth (sphere)?

Very practical, important problem in Middle Ages...

Latitude \& Longitude

Distorts areas and angles

Planar Projection

Covers only half of the earth
Distorts areas and angles

Stereographic Projection

Distorts areas

Albers Projection

Preserves areas, distorts aspect ratio

Fuller Parameterization

No Free Lunch

Every parameterization of the earth either:

- distorts areas
- distorts distances
- distorts angles

Good Parameterizations

- low area distortion
- low angle distortion
- no obvious seams
- one piece

Soup Parameterization

Planar Parameterization

Project surface onto plane

Planar Parameterization

Project surface onto plane

- quite useful in practice

Planar Parameterization

Project surface onto plane

- quite useful in practice
- only partial coverage
- bad distortion when
 normals perpendicular

Planar Parameterization

In practice: combine multiple views

Cube Map

Cylindrical Parameterization

Conformal Parameterization

Conformal = angle-preserving

Conformal Parameterization

Conformal = angle-preserving

Riemann mapping theorem

- can map any surface conformally

Conformal Parameterization

Conformal = angle-preserving

Riemann mapping theorem

- can map any surface conformally

Area distortion can be bad

Texture Atlas

Break up surface into easy pieces, parameterize separately

Texture Atlas

Some automatic methods exist...

but often artists hand-paint UV coords

Projection Mapping

Projection Mapping

Scan 3D geometry, compute texture map

Then, project anything you want on object

