
Spatial Partitioning Data 
Structures



A Quick Calculation

Number of pixels on screen (1080P):

• 1920 x 1080 = 2,073,600



A Quick Calculation

Number of pixels on screen (1080P):

• 1920 x 1080 = 2,073,600

Number of triangles

• ~millions

Number of ray-triangle intersections:

• ~10^12 intersections per frame



A Quick Calculation

Number of pixels on screen (1080P):

• 1920 x 1080 = 2,073,600

Number of triangles

• ~millions

Number of ray-triangle intersections:

• ~10^12 intersections per frame

Now add antialiasing, shadow rays, 
reflection rays, ……



Bounding Boxes

Fit boxes around objects



Bounding Boxes

Fit boxes around objects

Check ray-box first



Bounding Boxes

Fit boxes around objects

Check ray-box first

Then check objects



Bounding Boxes

What if we have a single complex object?

Cut into pieces, treat as separate?



Bounding Volume Hierarchy

For points:
root



Bounding Volume Hierarchy

For points:
root



Bounding Volume Hierarchy

For points:
root



Bounding Volume Hierarchy

For points:
root



Bounding Volume Hierarchy

Top-down approach:

BuildBVH(points P)

if P contains one point

return leaf;

compute bounding box

find longest axis

split points into groups {L, R} along this axis

return { BuildBVH(L), BuildBVH(R) };



Bounding Volume Hierarchy

Bottom-up approach (faster, harder):

• sort along space-filling
fractal (z-order curve)

• implement using bit
fiddling (Morton codes)



BVH Traversal

For points:
root



BVH Traversal

For points:
root



BVH Traversal

For points:
root



BVH Traversal

For points:
root



BVH Traversal

For points:
root



BVH Traversal

For points:
root



BVH Analysis

Build time: O(N log^2 N) (top-down)

Traverse time:



BVH Analysis

Build time: O(N log^2 N) (top-down)

Traverse time:

• worst case: O(N)

• typical case: O(log N)

Advanced traversal strategies possible



BVH in Practice

Build around triangle primitives

leaves are individual triangles

when building, sort by e.g.
triangle center

note: nodes can overlap



BVH Node Types

Most typical: AABBs

• “axis-aligned bounding boxes”

Other options possible:



BVH Node Types

Most typical: AABBs

• “axis-aligned bounding boxes”

Other options possible:

• sphere trees

• OBBs (oriented bounding boxes)



BVH Node Types

Most typical: AABBs

• “axis-aligned bounding boxes”

Other options possible:

• sphere trees

• OBBs 

• k-DOPs



BVH Node Types

Most typical: AABBs

• “axis-aligned bounding boxes”

Other options possible

Complex tradeoff between

• tightness of fit

• traverse cost

• build cost

• memory usage



BVH Visualized



Spatial Hashing

Divide space into coarse grid

Each grid cell stores its contents



Spatial Hashing

Divide space into coarse grid

Each grid cell stores its contents

How to build?



Spatial Hashing

Divide space into coarse grid

Each grid cell stores its contents

How to build?

• hash function maps points to their cell

• usually very fast (bit twiddling)

Why useful?



What if primitives aren’t point?

Spatial Hashing



What if primitives aren’t point?

Spatial Hashing

must rasterize
objects to grid

object overlaps
multiple cells
--> multiple refs



Spatial Hashing

Pros:

• (relatively) simple to build

• simple data structure (array of pointers)

Cons:

• must pick a good cell size

• works poorly on heterogeneous object 
distributions



Quadtree

Start with spatial hash

Split crowded cells into child squares



Quadtree

Works also for non-point primitives

Danger – must pick maximum depth



Quadtree

Pros:

• very space-efficient even for 
heterogeneous object distributions

• simple to build and traverse (bit tricks 
often used)

Cons:

• must pick max tree depth

• tree not balanced



Octree

3D version of quadtree





Binary Space Partition

Recursively split space using planes



Binary Space Partition

Recursively split space using planes

Each node stores splitting plane

Each leaf stores object references



Binary Space Partition

Recursively split space using planes

Each node stores splitting plane

Each leaf stores object references

How to pick good splitting plane?



Binary Space Partition

Recursively split space using planes

Each node stores splitting plane

Each leaf stores object references

How to pick good splitting plane?

• heuristics / black magic

• good partitioning vs good balance

• special case: axis-aligned planes



kD Tree

“k-Dimensional Tree”

BSP where each node is vertical or 
horizontal plane



kD Tree

How to pick splitting plane?

Goals:

• balance area of two children

• balance number of objects in children

• avoid splitting objects



kD Tree

How to pick splitting plane?

Common strategy: split next to median
object along longest direction



3D Tree



kD Tree

Pros:

• can tailor cell shape to fit objects

• balanced tree

Cons:

• cells not uniformly placed or shaped

• must pick good max tree depth



Devils Lurk in the Details

Building the leaves:

• what is the bounding box? (AABBs)

• is my object inside, outside, or crossing 
a grid cell? (spatial hash/octree)

• is my object on the left, right, or both 
sides of the split plane? (BSP/kD tree)

• how do I duplicate object references
correctly? (all but BVHs)



Devils Lurk in the Details

Traversing the tree:

• how exactly do I do ray-node 
intersection?

• ray/box (AABBs, octree)

• ray/plane (BSP and kD trees)



Devils Lurk in the Details

Traversing the tree:

• how exactly do I do ray-node 
intersection?

• how do I do it efficiently?

• what if my ray starts inside the scene?



Kinetic Data Structures

During animation, objects move slowly

Cumulatively update data structures 
instead of rebuilding every frame



Kinetic Data Structures

During animation, objects move slowly

Cumulatively update data structures 
instead of rebuilding every frame

Easy:

• spatial hash

• octree

Annoying:

• BSP trees (kD trees)


