Linear and Affine Transformations Coordinate Systems

Recall

A transformation T is linear if

- $T(v+w)=T(v)+T(w)$
- $T(\alpha v)=\alpha T(v)$

Recall

A transformation T is linear if

- $T(v+w)=T(v)+T(w)$
- $T(\alpha v)=\alpha T(v)$

Every linear transformation can be represented as matrix

Linear Transformation Examples

Uniform Scaling
Non-uniform Scaling
Rotations
Reflections
Orthogonal Projections

Translations?

Problem with Translation

Translation by $\left(t_{x}, t_{y}, t_{z}\right)$ not linear!

$$
\begin{aligned}
T(\alpha v) & =\left(\alpha v_{x}+t_{x}, \alpha v_{y}+t_{y}, \alpha v_{z}+t_{z}\right) \\
\alpha T(v) & =\left(\alpha v_{x}+\alpha t_{x}, \alpha v_{y}+\alpha t_{y}, \alpha v_{z}+\alpha t_{z}\right)
\end{aligned}
$$

Would like a unified framework for handling all transformations...

Homogeneous Coordinates

Main idea: add a dummy $4^{\text {th }}$ dimension

- points: $\quad(x, y, z) \rightarrow(x, y, z, 1)$
- vectors: $(x, y, z) \rightarrow(x, y, z, 0)$

In Homogeneous Coordinates

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]=
$$

In Homogeneous Coordinates

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
p_{x}+t_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]
$$

In Homogeneous Coordinates

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
p_{x}+t_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]=}
\end{aligned}
$$

In Homogeneous Coordinates

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
p_{x}+t_{x} \\
p_{y} \\
p_{z} \\
1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]=\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]}
\end{aligned}
$$

Homogeneous Coordinates

Main idea: add a dummy $4^{\text {th }}$ dimension

- points: $\quad(x, y, z) \rightarrow(x, y, z, 1)$
- vectors: $(x, y, z) \rightarrow(x, y, z, 0)$

Now translation is matrix multiplication!
4×4 matrix transformations called affine

Linear Transformation Zoo

Translation:

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Linear Transformation Zoo

Translation:

$$
T=\left[\begin{array}{cccc}
1 & 0 & 0 & t_{x} \\
0 & 1 & 0 & t_{y} \\
0 & 0 & 1 & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \quad T^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & -t_{x} \\
0 & 1 & 0 & -t_{y} \\
0 & 0 & 1 & -t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Linear Transformation Zoo

Rotation:

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

Linear Transformation Zoo

Rotation:

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

$$
R^{T} R=I
$$

Linear Transformation Zoo

Rotation:

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \quad \text { homogeneous coordinates? }
$$

$$
R^{T} R=I
$$

Linear Transformation Zoo

 Rotation:$$
\begin{aligned}
& R=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R^{T} R=I
\end{aligned}
$$

Linear Transformation Zoo

Rotation:

$$
\begin{aligned}
& R=\left[\begin{array}{cccc}
r_{11} & r_{12} & r_{13} & 0 \\
r_{21} & r_{22} & r_{23} & 0 \\
r_{31} & r_{32} & r_{33} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad R^{-1}=R^{T} \\
& R^{T} R=I
\end{aligned}
$$

Linear Transformation Zoo

 Uniform scaling:

Linear Transformation Zoo

 Uniform scaling:$$
S=\left[\begin{array}{cccc}
s & 0 & 0 & 0 \\
0 & s & 0 & 0 \\
0 & 0 & s & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad S^{-1}=\left[\begin{array}{cccc}
\frac{1}{s} & 0 & 0 & 0 \\
0 & \frac{1}{s} & 0 & 0 \\
0 & 0 & \frac{1}{s} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Linear Transformation Zoo

Scaling:

$$
S=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{y} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] S^{-1}=\left[\begin{array}{cccc}
\frac{1}{s_{x}} & 0 & 0 & 0 \\
0 & \frac{1}{s_{y}} & 0 & 0 \\
0 & 0 & \frac{1}{s_{z}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

What About Non-Axis-Aligned?

What About Non-Axis-Aligned?

compose transformations!

What About Non-Axis-Aligned?

compose transformations!

Linear Transformation Zoo

Reflection:

Linear Transformation Zoo

Reflection:

$$
R f=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { axis to reflect }
$$

Linear Transformation Zoo

Reflection:

$$
R f=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad R f^{-1}=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Linear Transformation Zoo

Shear:

Linear Transformation Zoo

Shear:

$$
S h=\left[\begin{array}{cc}
1 & s h \\
0 & 1
\end{array}\right]
$$

Linear Transformation Zoo

Shear:

shear y-axis

$$
S h=\left[\begin{array}{cccc}
1 & s h & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \longleftarrow \text { in x-axis direction }
$$

Linear Transformation Zoo

Shear:

$$
S h=\left[\begin{array}{llll}
1 & s h & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] S h^{-1}=\left[\begin{array}{cccc}
1 & -s h & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Combining Transformations

matrix multiplication does not commute

Example: Rotate About Point

Example: Rotate About Point

I
T
$R T$
$T^{-1} R T$

Transforming Normals

The problem:

Transforming Normals

The problem:

Transforming Normals

The problem:

Points and vectors: T
Normals: $T^{-T}=\left(T^{-1}\right)^{T}$

What is a Coordinate System?

1. an origin

2. a frame of vectors spanning space

What is a Coordinate System?

1. an origin

2. a frame of vectors spanning space

- usually orthonormal
- usually right-handed

What is a Coordinate System?

1. an origin

2. a frame of vectors spanning space

- usually orthonormal
- usually right-handed

How represented?

What is a Coordinate System?

1. an origin
2. a frame of vectors spanning space

- usually orthonormal
- usually right-handed

How represented?

- in other coordinates...
(turtles all the way down?)

Cartesian "World" Coordinates

Canonical "root" coordinate system

Usually y points "up," x and z "horizontal"

But this is arbitrary

Transforming Coordinate Systems

Can define coordinate system in terms of world coordinates

Transforming Coordinate Systems

Can define coordinate system in terms of world coordinates

Given $o_{2}, \hat{x}_{2}, \hat{y}_{2}, \hat{z}_{2}$ in world coords

$$
(a, b, c)_{\mathrm{world}}=o_{2}+a \hat{x}_{2}+b \hat{y}_{2}+c \hat{z}_{2}
$$

O_{2}

Transforming Coordinate Systems

Can define coordinate system in terms of world coordinates

Given $o_{2}, \hat{x}_{2}, \hat{y}_{2}, \hat{z}_{2}$ in world coords

$$
(a, b, c)_{\text {world }}=o_{2}+a \hat{x}_{2}+b \hat{y}_{2}+c \hat{z}_{2}
$$

$$
(a, b, c)_{\text {world }}=\left[\begin{array}{ccc|c}
\hat{x}_{2} & \hat{y}_{2} & \hat{z}_{2} & o_{2} \\
\hline 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c \\
1
\end{array}\right] \quad \hat{x}_{2}^{\hat{x}_{*_{*}}}
$$

Change of Coordinates Matrix

$$
(a, b, c)_{\mathrm{world}}=\left[\begin{array}{ccc|c}
& \hat{x}_{2} & \hat{y}_{2} & \hat{z}_{2} \\
o_{2} \\
\hline 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
1
\end{array}\right]
$$

Maps from local to world coordinates

Change of Coordinates Matrix

$$
\left.(a, b, c)_{\mathrm{world}}=\begin{array}{|ccc|c}
& \hat{x}_{2} & \hat{y}_{2} & \hat{z}_{2} \\
o_{2} \\
\hline 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
1
\end{array}\right]
$$

Maps from local to world coordinates

How to map back?

More Coordinates Systems

More Coordinates Systems

Coordinate Systems in Graphics

world

camera

Coordinate Systems in Graphics

camera

Building the View Matrix

Three axes: tangent, up, look

Building the View Matrix

Three axes: tangent, up, look
Note: camera looks down negative look direction for extra confusion

Building the View Matrix

Three axes: tangent, up, look
Note: camera looks down negative look direction for extra confusion

Building the View Matrix

Three axes: tangent, up, look
Note: camera looks down negative look direction for extra confusion
big source of bugs!

Building the View Matrix

big source of bugs!

Coordinate Systems in Graphics

camera

Why Use Object Coordinates?

Why Use Object Coordinates?

Easier to work with / animate

Why Use Object Coordinates?

Easier to work with / animate

Instancing

Coordinate Systems in Graphics

camera

Transformations

Every transformation creates child coordinate system

Two Interpretations of $T R$

Backwards: transforms applied right to left in original coordinate system

Two Interpretations of $T R$

Forwards: transforms applied left to right in new coordinate systems

Two Interpretations of $T R$

Same answer either way, but both interpretations useful

Scene Graph

Represents hierarchy of transformations

