Linear and Affine Transformations Coordinate Systems

Recall

A transformation T is linear if

- T(v+w) = T(v) + T(w)
- $T(\alpha v) = \alpha T(v)$

Recall

A transformation T is linear if

- T(v + w) = T(v) + T(w)
- $T(\alpha v) = \alpha T(v)$

Every linear transformation can be represented as matrix

Linear Transformation Examples

Uniform Scaling Non-uniform Scaling Rotations Reflections Orthogonal Projections

. . .

Translations?

Problem with Translation

Translation by (t_x, t_y, t_z) not linear!

$$T(\alpha v) = (\alpha v_x + t_x, \alpha v_y + t_y, \alpha v_z + t_z)$$

$$\alpha T(v) = (\alpha v_x + \alpha t_x, \alpha v_y + \alpha t_y, \alpha v_z + \alpha t_z)$$

Would like a unified framework for handling all transformations...

Main idea: add a dummy 4th dimension

- points: $(x, y, z) \rightarrow (x, y, z, 1)$
- vectors: $(x, y, z) \rightarrow (x, y, z, 0)$

$$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ p_z \\ 1 \end{bmatrix} =$$

Main idea: add a dummy 4th dimension

- points: $(x, y, z) \rightarrow (x, y, z, 1)$
- vectors: $(x, y, z) \rightarrow (x, y, z, 0)$

Now translation **is** matrix multiplication!

4 x 4 matrix transformations called affine

Translation:

FRAGILLE

$$T = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad T^{-1} = \begin{bmatrix} 1 & 0 & 0 & -t_x \\ 0 & 1 & 0 & -t_y \\ 0 & 0 & 1 & -t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Uniform scaling:

What About Non-Axis-Aligned?

What About Non-Axis-Aligned?

compose transformations!

What About Non-Axis-Aligned?

Reflection:

Reflection:

$$Rf = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 axis to reflect

Reflection:

$$Rf = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} Rf^{-1} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shear:

Combining Transformations

matrix multiplication does not commute

Example: Rotate About Point

Example: Rotate About Point

Transforming Normals

The problem:

Transforming Normals

The problem:

Transforming Normals

The problem:

Points and vectors: TNormals: $T^{-T} = (T^{-1})^T$

- 1. an **origin**
- 2. a frame of vectors spanning space

- 1. an **origin**
- 2. a frame of vectors spanning space
 - usually orthonormal
 - usually right-handed

- 1. an **origin**
- 2. a frame of vectors spanning space
 - usually orthonormal
 - usually right-handed

- 1. an **origin**
- 2. a frame of vectors spanning space
 - usually orthonormal
 - usually right-handed

• in other coordinates...

(turtles all the way down?)

Cartesian "World" Coordinates

Canonical "root" coordinate system

Usually y points "up," x and z "horizontal"

But this is arbitrary

Transforming Coordinate Systems

Can define coordinate system in terms of world coordinates

Transforming Coordinate Systems

Can define coordinate system in terms of world coordinates \hat{y} \hat{x}

 \hat{z}

 $O_{\mathcal{I}}$

 y_2

Given $o_2, \hat{x}_2, \hat{y}_2, \hat{z}_2$ in world coords $(a, b, c)_{\text{world}} = o_2 + a\hat{x}_2 + b\hat{y}_2 + c\hat{z}_2$

Transforming Coordinate Systems

Can define coordinate system in terms of world coordinates \hat{x}

Ŷ

 y_2

Given $o_2, \hat{x}_2, \hat{y}_2, \hat{z}_2$ in world coords $(a, b, c)_{\text{world}} = o_2 + a\hat{x}_2 + b\hat{y}_2 + c\hat{z}_2$

$$(a, b, c)_{\text{world}} =$$

$$\begin{bmatrix} \hat{x}_2 & \hat{y}_2 & \hat{z}_2 & o_2 \\ & & & \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix}$$

Change of Coordinates Matrix

$$(a, b, c)_{\text{world}} = \begin{bmatrix} \hat{x}_2 & \hat{y}_2 & \hat{z}_2 & o_2 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix}$$

Maps from local to world coordinates

Change of Coordinates Matrix

$$(a, b, c)_{\text{world}} = \begin{bmatrix} \hat{x}_2 & \hat{y}_2 & \hat{z}_2 & o_2 \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ 1 \end{bmatrix}$$

Maps from local to world coordinates

How to map back?

More Coordinates Systems

More Coordinates Systems

Coordinate Systems in Graphics

camera

Coordinate Systems in Graphics

Three axes: tangent, up, look

Three axes: tangent, up, look Note: camera looks down **negative** look direction for extra confusion

Three axes: tangent, up, look Note: camera looks down **negative** look direction for extra confusion

$$V = \begin{bmatrix} \frac{\mathsf{turrest}}{\mathsf{u}} & \mathsf{d} & \frac{\mathsf{v}}{\mathsf{o}} \\ 0 & 0 & 0 & 1 \end{bmatrix}^{-1} \qquad \begin{array}{c} \mathsf{up} & \mathsf{center} \\ \mathsf{up} & \mathsf{look} \\ \mathsf{eye} & \mathsf{look} \\ \mathsf{eye} & \mathsf{tangent} \end{array}$$

Three axes: tangent, up, look Note: camera looks down **negative** look direction for extra confusion big source of bugs! up center $V = \begin{vmatrix} \mathsf{e} \, \mathsf{d} \, \mathsf{e} \\ \mathsf{e} \, \mathsf{d} \, \mathsf{e} \\ \hline 0 & 0 & 0 & 1 \end{vmatrix}$ look tangent

Coordinate Systems in Graphics

Why Use Object Coordinates?

Why Use Object Coordinates?

Easier to work with / animate

Why Use Object Coordinates?

Easier to work with / animate

Instancing

Coordinate Systems in Graphics

Transformations

Every transformation creates child coordinate system

Two Interpretations of $T {\boldsymbol R}$

Backwards: transforms applied right to left in original coordinate system

Two Interpretations of $T {\boldsymbol R}$

Forwards: transforms applied left to right in new coordinate systems

Two Interpretations of $T {\boldsymbol R}$

Same answer either way, but both interpretations useful

Scene Graph

Represents hierarchy of transformations

