
The Graphics Pipeline

Ray Tracing: Why Slow?

Basic ray tracing: 1 ray/pixel

Ray Tracing: Why Slow?

Basic ray tracing: 1 ray/pixel

But you really want shadows, reflections,
global illumination, antialiasing…

• 100-1000 rays/pixel

Rendering: Rasterization

Tessellate objects into primitives

Rendering: Rasterization

Tessellate objects into primitives

Draw each separately:

• determine position and color

• draw pixels to screen

Rendering: Rasterization

Tessellate objects into primitives

Draw each separately:

• determine position and color

• draw pixels to screen

Embarrassingly parallel

Fast

Rendering: Rasterization

How to deal with overlaps?

Rendering: Rasterization

How to deal with overlaps?

Keep track of depth of
previously-drawn pixels

Depth image or depth
buffer

Rendering: Rasterization

How to deal with overlaps?

• depth buffer

How to deal with shadows/reflections?

Rendering: Rasterization

How to deal with overlaps?

• depth buffer

How to deal with shadows/reflections?

• hmm…

Ray Tracing vs Rasterization

Ray Tracing

Loop over pixels

Light effects “easy”

Slow-ish

Used in movies

Rasterization

Loop over triangles

Light effects require
hacks and tricks

Blazingly fast

Used in games

shadows, reflections, caustics, …

Ray Tracing vs Rasterization

Rasterization Algorithms

Actually rasterizing objects not so easy…

Rasterization Algorithms

Actually rasterizing objects not so easy…

…so use specialized hardware to do it

Vertex List

Triangle List

Vertex Shader

Rasterization

Fragment Shader

Primitive Assembly

Textures

Framebuffer Screen

GPUCPU

Tessellation/
Geometry Shaders

Vertices and Triangles

Sending Data to the GPU

One vertex/triangle at a time: very slow

Vertex Buffer Objects: big arrays of data

• vertex positions

• vertex colors

• texture info

• etc

Shaders

Small arbitrary programs that run on GPU

Massively parallel

Shaders

Small arbitrary programs that run on GPU

Massively parallel

Four kinds: vertex, tessellation, geometry,
fragment

Shaders

Small arbitrary programs that run on GPU

Massively parallel

Four kinds: vertex, tessellation, geometry,
fragment

These days: used for many non-rendering
applications (GPGPU)

Vertex Shader

Runs in parallel on every vertex

• no access to triangles or other verts

Vertex Shader

Runs in parallel on every vertex

• no access to triangles or other verts

Main job: transform vertex positions

Vertex Shader

Runs in parallel on every vertex

• no access to triangles or other verts

Main job: transform vertex positions

Also used for shading

Vertex List

Triangle List

Vertex Shader

Rasterization

Fragment Shader

Primitive Assembly

Textures

Framebuffer Screen

GPUCPU

Tessellation/
Geometry Shaders

Processing Primitives

Assembly: group verts into polygons

Processing Primitives

Assembly: group verts into polygons

Tessellation shader: runs on each triangle

• can split triangles into subtriangles

• increase level of detail near camera, etc

Processing Primitives

Assembly: group verts into polygons

Tessellation shader: runs on each triangle

• can split triangles into subtriangles

• increase level of detail near camera, etc

Geometry shader: runs on each triangle

• can access verts and neighbors

• more general than tessellation, slower

Vertex List

Triangle List

Vertex Shader

Rasterization

Fragment Shader

Primitive Assembly

Textures

Framebuffer Screen

GPUCPU

Tessellation/
Geometry Shaders

Fragment Shader

Runs in parallel on each fragment (pixel)

• rasterization: one tri -> many fragments

Writes color and depth for one pixel (only)

Final texturing/coloring of the pixels

Fragment Shader

Many fragments per triangle…

Fragment Shader

Many fragments per triangle…

GPU automatically applies
barycentric interpolation

UV coords, normals,
colors, …

Vertex List

Triangle List

Vertex Shader

Rasterization

Fragment Shader

Primitive Assembly

Textures

Framebuffer Screen

GPUCPU

Tessellation/
Geometry Shaders

Normalized Device Coordinates

Before rasterization, must decide what
geometry to show and where

Normalized Device Coordinates

Before rasterization, must decide what
geometry to show and where

GPU draws everything

in unit cube

Normalized Device Coordinates

Before rasterization, must decide what
geometry to show and where

GPU draws everything

in unit cube

Everything clipped

Normalized Device Coordinates

X & Y axes map to screen width & height

Normalized Device Coordinates

X & Y axes map to screen width & height

Z used for depth

Normalized Device Coordinates

Notice: deeper points have higher z

(not right-handed)

Notice: look down negative z direction

Camera Coordinates

Notice: look down negative z direction

Projection: transform from camera to NDC

Camera Coordinates

(typically in vertex shader)

Coordinate Systems in Graphics

world

camera normalized device

perspective
matrix

view matrix
object

model
matrix

For Extra Confusion

Screen coordinates

Framebuffer

Memory region containing pixel data

The old days: mapped to RAM with DMA

• CPU could write to it directly

Framebuffer

Memory region containing pixel data

The old days: mapped to RAM with DMA

• CPU could write to it directly

Now: GPU controls it

Framebuffer

Several layers:

• Color buffer: RGB of each pixel

Framebuffer

Several layers:

• Color buffer: RGB of each pixel

• Depth buffer

Framebuffer

Several layers:

• Color buffer: RGB of each pixel

• Depth buffer

• Stencil buffer, etc

Framebuffer

Several layers:

• Color buffer: RGB of each pixel

• Depth buffer

• Stencil buffer, etc

Can be saved to file, to texture, to screen

Displaying the Framebuffer

CRTs: beam sweeps across screen
drawing pixels

• one pass: 1/60 secs

Displaying the Framebuffer

CRTs: beam sweeps across screen
drawing pixels

• one pass: 1/60 secs

LCDs: grabs framebuffer
every 1/60 secs

Flickering and Tearing

Framebuffer changes while monitor draws

Double-Buffering to Stop Tearing

Use two framebuffers

Render to back buffer while showing
front buffer

Then swap

Double-Buffering to Stop Tearing

On CRTs: must wait for vertical retrace
to swap

Double-Buffering to Stop Tearing

On CRTs: must wait for vertical retrace
to swap

• “vsync”

• occurs 1/60 sec

Double-Buffering to Stop Tearing

On CRTs: must wait for vertical retrace
to swap

• “vsync”

• occurs 1/60 sec

On LCDs: swap when
not reading

Communicating with GPU

Very low level / awkward

Communicating with GPU

Very low level / awkward

Two types of data:

• vertex attributes in VBOs

• global variables (“uniforms”)

CPUGPU

VBOs

vertPos[]
vertNormals[]

Uniforms

view
lightPos

Shaders

Communicating with GPU

Very low level / awkward

Two types of data:

• vertex attributes in VBOs

• global variables (“uniforms”)

GPU stores no variable names – just
location numbers

CPUGPU

VBOs

vertPos[]
vertNormals[]

Uniforms

view
lightPos

Shaders

Vertex
Attributes

1
2
3

Global
Memory

1
2
3

Communicating with GPU

Very low level / awkward

Two types of data:

• vertex attributes in VBOs

• global variables (“uniforms”)

GPU stores no variable names – just
location numbers

GPU programming is lots of “plumbing”

• binding inputs and outputs correctly

CPUGPU

VBOs

vertPos[]
vertNormals[]

Uniforms

view
lightPos

Shaders

Vertex
Attributes

1
2
3

Global
Memory

1
2
3

Inputs

position
normal

Uniforms

view
lightPos

CPUGPU

VBOs

vertPos[]
vertNormals[]

Uniforms

view
lightPos

Shaders

Vertex
Attributes

1
2
3

Global
Memory

1
2
3

Inputs

position
normal

Uniforms

view
lightPos

when shader is compiled

CPUGPU

VBOs

vertPos[]
vertNormals[]

Uniforms

view
lightPos

Shaders

Vertex
Attributes

1
2
3

Global
Memory

1
2
3

Inputs

position
normal

Uniforms

view
lightPos

glBindAttribLocation()

CPUGPU

VBOs

vertPos[]
vertNormals[]

Uniforms

view (2)
lightPos (1)

Shaders

Vertex
Attributes

1
2
3

Global
Memory

1
2
3

Inputs

position
normal

Uniforms

view
lightPos

glGetUniformLocation()

CPUGPU

VBOs

vertPos[]
vertNormals[]

Uniforms

view (2)
lightPos (1)

Shaders

Vertex
Attributes

1
2
3

Global
Memory

1
2
3

Inputs

position
normal

Uniforms

view
lightPos

at render time:
glVertexAttribPointer()

CPUGPU

VBOs

vertPos[]
vertNormals[]

Uniforms

view (2)
lightPos (1)

Shaders

Vertex
Attributes

1
2
3

Global
Memory

1
2
3

Inputs

position
normal

Uniforms

view
lightPos

at render time:
glVertexAttribPointer()
glUniform**()

CPUGPU

VBOs

vertPos[]
vertNormals[]

Uniforms

view (2)
lightPos (1)

Shaders

Vertex
Attributes

1
2
3

Global
Memory

1
2
3

Inputs

position
normal

Uniforms

view
lightPos

VAOs store the VBO state

Ray Tracing: Why Slow? Reprise

Basic ray tracing: 1 ray/pixel

But you really want shadows, reflections,
global illumination, antialiasing…

• 100-1000 rays/pixel

Much less hardware support

• inhomogeneous / unpredictable work

