
Code Optimization I:
Machine Independent Optimizations

TopicsTopics
 Machine-Independent Optimizations

 Code motion
 Reduction in strength
 Common subexpression sharing

 Tuning
 Identifying performance bottlenecks

Systems I

2

Great Reality
ThereThereʼ̓s more to performance than asymptotics more to performance than asymptotic

complexitycomplexity
Constant factors matter too!Constant factors matter too!

 Easily see 10:1 performance range depending on how code
is written

 Must optimize at multiple levels:
 algorithm, data representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
 How programs are compiled and executed
 How to measure program performance and identify

bottlenecks
 How to improve performance without destroying code

modularity and generality

3

Optimizing Compilers
Provide efficient mapping of program to machineProvide efficient mapping of program to machine

 register allocation
 code selection and ordering
 eliminating minor inefficiencies

DonDonʼ̓t (usually) improve asymptotic efficiencyt (usually) improve asymptotic efficiency
 up to programmer to select best overall algorithm
 big-O savings are (often) more important than constant

factors
 but constant factors also matter

Have difficulty overcoming Have difficulty overcoming ““optimization blockersoptimization blockers””
 potential memory aliasing
 potential procedure side-effects

4

Limitations of Optimizing Compilers
Operate Under Fundamental ConstraintOperate Under Fundamental Constraint

 Must not cause any change in program behavior under any
possible condition

 Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

Behavior that may be obvious to the programmer can beBehavior that may be obvious to the programmer can be
obfuscated by languages and coding stylesobfuscated by languages and coding styles
 e.g., data ranges may be more limited than variable types suggest

Most analysis is performed only within proceduresMost analysis is performed only within procedures
 whole-program analysis is too expensive in most cases

Most analysis is based only on Most analysis is based only on staticstatic information information
 compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservativeWhen in doubt, the compiler must be conservative

5

Machine-Independent Optimizations
 Optimizations you should do regardless of processor /

compiler

Code MotionCode Motion
 Reduce frequency with which computation performed

 If it will always produce same result
 Especially moving code out of loop

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

for (i = 0; i < n; i++) {
 int ni = n*i;
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
}

6

Compiler-Generated Code Motion
 Most compilers do a good job with array code + simple loop

structures

Code Generated by GCCCode Generated by GCC
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

 imull %ebx,%eax # i*n
 movl 8(%ebp),%edi # a
 leal (%edi,%eax,4),%edx # p = a+i*n (scaled by 4)
Inner Loop
 movl 12(%ebp),%edi # b
.L40:
 movl (%edi,%ecx,4),%eax # b+j (scaled by 4)
 movl %eax,(%edx) # *p = b[j]
 addl $4,%edx # p++ (scaled by 4)
 incl %ecx # j++
 cmpl %ebx,%ecx # loop if j<n
 jl .L40

for (i = 0; i < n; i++) {
 int ni = n*i;
 int *p = a+ni;
 for (j = 0; j < n; j++)
 *p++ = b[j];
}

7

Reduction in Strength
 Replace costly operation with simpler one
 Shift, add instead of multiply or divide

16*x --> x << 4
 Utility machine dependent
 Depends on cost of multiply or divide instruction
 On Pentium II or III, integer multiply only requires 4 CPU cycles

 Recognize sequence of products

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

8

Make Use of Registers
 Reading and writing registers much faster than

reading/writing memory

LimitationLimitation
 Compiler not always able to determine whether variable can

be held in register
 Possibility of Aliasing
 See example later

9

Machine-Independent Opts. (Cont.)
Share Common Share Common SubexpressionsSubexpressions

 Reuse portions of expressions
 Compilers often not very sophisticated in exploiting

arithmetic properties
/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

 leal -1(%edx),%ecx # i-1
 imull %ebx,%ecx # (i-1)*n
 leal 1(%edx),%eax # i+1
 imull %ebx,%eax # (i+1)*n
 imull %ebx,%edx # i*n

10

Time Scales
Absolute TimeAbsolute Time

 Typically use nanoseconds
 10–9 seconds

 Time scale of computer instructions

Clock CyclesClock Cycles
 Most computers controlled by high frequency clock signal
 Typical Range

 100 MHz
» 108 cycles per second
» Clock period = 10ns

 2 GHz
» 2 X 109 cycles per second
» Clock period = 0.5ns

11

Example of Performance
Measurement
Loop unrollingLoop unrolling

 Assume even number of elements

void vsum1(int n) {
 int i;
 for(i=0; i<n; i++)
 c[i] = a[i] + b[i];
}

void vsum2(int n) {
 int i;
 for(i=0; i<n; i+=2) {
 c[i] = a[i] + b[i];
 c[i+1] = a[i+1] + b[i+1];
}

12

Cycles Per Element
 Convenient way to express performance of program that

operators on vectors or lists
 Length = n
 T = CPE*n + Overhead

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

Elements

C
y
c
le
s

vsum1
Slope = 4.0

 vsum2
Slope = 3.5

13

void lower(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Code Motion Example
Procedure to Convert String to Lower CaseProcedure to Convert String to Lower Case

14

Lower Case Conversion Performance

 Time quadruples when string length doubles
 Quadratic performance

lower1

0.0001

0.001

0.01

0.1

1

10

100

1000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

C
P

U
 S

e
c
o

n
d

s

15

Convert Loop To Goto Form

 strlen executed every iteration
 strlen linear in length of string

 Must scan string until finds '\0'
 Overall performance is quadratic

void lower(char *s)
{
 int i = 0;
 if (i >= strlen(s))
 goto done;
 loop:
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
 i++;
 if (i < strlen(s))
 goto loop;
 done:
}

16

Improving Performance

 Move call to strlen outside of loop
 Since result does not change from one iteration to another
 Form of code motion

void lower(char *s)
{
 int i;
 int len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

17

Lower Case Conversion Performance
 Time doubles when double string length
 Linear performance

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

C
P

U
 S

e
c

o
n

d
s

lower1 lower2

18

Optimization Blocker: Procedure Calls
Why couldnWhy couldn ʼ̓t the compiler move t the compiler move strlenstrlen out of the innerout of the inner

loop?loop?
 Procedure may have side effects

 Alters global state each time called
 Function may not return same value for given arguments

 Depends on other parts of global state
 Procedure lower could interact with strlen

Why doesnWhy doesnʼ̓t compiler look at code for t compiler look at code for strlenstrlen??
 Linker may overload with different version

 Unless declared static
 Interprocedural optimization is not used extensively due to cost

Warning:Warning:
 Compiler treats procedure call as a black box
 Weak optimizations in and around them

19

Summary
TodayToday

 Improving program performance (machine independent)
 Mostly focusing on instruction count

Next timeNext time
 Optimization blocker: procedure calls
 Optimization blocker: memory aliasing
 Tools (profiling) for understanding performance

