Systems |

Code Optimization I:
Machine Independent Optimizations

Topics
= Machine-Independent Optimizations
e Code motion

® Reduction in strength
e Common subexpression sharing

m Tuning
e Ildentifying performance bottlenecks

Great Reality

There’s more to performance than asymptotic
complexity

Constant factors matter too!

m Easily see 10:1 performance range depending on how code
is written

m Must optimize at multiple levels:
e algorithm, data representations, procedures, and loops

Must understand system to optimize performance
= How programs are compiled and executed

m How to measure program performance and identify
bottlenecks

= How to improve performance without destroying code
modularity and generality

Optimizing Compilers

Provide efficient mapping of program to machine
m register allocation
m code selection and ordering
m eliminating minor inefficiencies

Don’t (usually) improve asymptotic efficiency
m up to programmer to select best overall algorithm

m big-O savings are (often) more important than constant
factors
e but constant factors also matter

Have difficulty overcoming “optimization blockers”
m potential memory aliasing
m potential procedure side-effects

Limitations of Optimizing Compilers

Operate Under Fundamental Constraint

m Must not cause any change in program behavior under any
possible condition

m Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

Behavior that may be obvious to the programmer can be
obfuscated by languages and coding styles

m e.g., data ranges may be more limited than variable types suggest

Most analysis is performed only within procedures
m whole-program analysis is too expensive in most cases

Most analysis is based only on static information
m compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservative

Machine-Independent Optimizations

m Optimizations you should do regardless of processor /
compiler

Code Motion

m Reduce frequency with which computation performed
e If it will always produce same result
e Especially moving code out of loop

for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
a[n*i + j] = b[]j];

Compiler-Generated Code Motion

m Most compilers do a good job with array code + simple loop
structures

Code Generated by GCC for (i =

int ni

for (i = 0; i < n; i++) int *p
for (j = 0; j < n; j++) for (3
a[n*i + j] = b[]j]; *p++

; 1 < n; i++) {
n*i;

atni;

0; j < n; j++)
b[j];

nmnn o

imull %ebx, %eax # i*n
movl 8 (%ebp) , %edi # a
leal (%edi,%eax,4) ,%edx # p = a+i*n (scaled by 4)
Inner Loop
movl 12 (%ebp), %edi # b
.L40:
movl (%edi,%ecx,4) ,%eax # b+j (scaled by 4)
movl %eax, (%edx) # *p = b[]]
addl $4, %edx # p++ (scaled by 4)
incl %ecx # Jj++
cmpl %ebx, %$ecx # loop if j<n
j1 .L40

Reduction in Strength

m Replace costly operation with simpler one
m Shift, add instead of multiply or divide
l6*x --> x << 4
e Utility machine dependent
® Depends on cost of multiply or divide instruction
® On Pentium Il or lll, integer multiply only requires 4 CPU cycles

m Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

a[n*i + j] = b[]];

Make Use of Registers

m Reading and writing registers much faster than
reading/writing memory

Limitation
m Compiler not always able to determine whether variable can
be held in register
m Possibility of Aliasing
m See example later

Machine-Independent Opts. (Cont.)

Share Common Subexpressions
m Reuse portions of expressions

m Compilers often not very sophisticated in exploiting
arithmetic properties

/* Sum neighbors of i,j */ int inj = i*n + j;
up = val[(i-1)*n + j]; up = val[inj - n];
down = val[(i+l)*n + j]; down = val[inj + n];
left = wval[i*n + j-11; left = wval[inj - 1];
right = val[i*n + j+1]; right = val[inj + 1];
sum = up + down + left + right; sum = up + down + left + right;
3 multiplications: i*n, (i-1)*n, (i+1)*n 1 multiplication: i*n

leal -1(%edx) ,%ecx # i-1

imull %ebx, %ecx # (i-1)*n

leal 1 (%edx),%eax # i+l

imull %ebx, %eax # (i+1l)*n

imull %ebx, $edx # i*n

Time Scales

Absolute Time
m Typically use nanoseconds
e 10-° seconds
m Time scale of computer instructions

Clock Cycles
m Most computers controlled by high frequency clock signal

m Typical Range
e 100 MHz
» 108 cycles per second
» Clock period = 10ns
e 2 GHz
» 2 X 10° cycles per second
» Clock period = 0.5ns

10

Example of Performance

Measurement

Loop unrolling

m Assume even number of elements

void wvsuml (int n) {
int i;
for (i=0; i<n; i++)
c[i] = a[i] + b[i]~;

void vsum2 (int n) {
int i;
for (i=0; i<n; i+=2) {
c[i] = a[i] + b[i]~;
c[i+l] = a[i+l1l] + b[i+1];

11

Cycles Per Element

m Convenient way to express performance of program that
operators on vectors or lists

m Length=n
m T = CPE*n + Overhead

1000

900

800
vsuml
700 Slope = 4.0 i: ;:
600
(7]
§. 500 /
S oo / vsum?2 L

o //%4?‘/ Slope = 3.5
200 /
100 /

0

0 50 100 150 200
Elements

Code Motion Example

Procedure to Convert String to Lower Case

void lower (char *s)
{
int 1i;
for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A' && s[i] <= 'Z")
s[i] -= ('A'" - 'a'");

13

Lower Case Conversion Performance

m Time quadruples when string length doubles
m Quadratic performance

lower1
1000
100
2 10
[
8 1
)
2] 0.1
2 0.01
o .
0.001 . I
0.0001 ——- :
512 1024 2048 4096 8192 16384 32768 65536 131072 262144
String Length

14

Convert Loop To Goto Form

void lower (char *s)

{
int i = 0;
if (i >= strlen(s))
goto done;

loop:
if (s[i] >= 'A' && s[i] <= 'Z')
s[i] -= ('A' - 'a'");
i++;
if (i < strlen(s))
goto loop;
done:

}

m strlen executed every iteration

m strlen linear in length of string
® Must scan string until finds '\0'

m Overall performance is quadratic

15

Improving Performance

void lower (char *s)
{
int 1i;
int len = strlen(s);
for (i = 0; i < len; i++)
if (s[i] >= 'A' && s[i] <= 'Z")
s[i] -= ('A' - 'a');

m Move call to strlen outside of loop
m Since result does not change from one iteration to another
m Form of code motion

Lower Case Conversion Performance

m Time doubles when double string length
m Linear performance

1000
100

10
1

0.1
0.01

0.001
0.0001 -

0.00001 +
0.000001 -

CPU Seconds

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

B lowerl B lower?2

17

Optimization Blocker: Procedure Calls

Why couldn’t the compiler move strlen out of the inner
loop?
m Procedure may have side effects
e Alters global state each time called

m Function may not return same value for given arguments
® Depends on other parts of global state
® Procedure lower could interact with strlen

Why doesn’t compiler look at code for strlen?

m Linker may overload with different version
® Unless declared static

m Interprocedural optimization is not used extensively due to cost

Warning:
m Compiler treats procedure call as a black box
m Weak optimizations in and around them

18

Summary

Today
= Improving program performance (machine independent)
m Mostly focusing on instruction count

Next time
m Optimization blocker: procedure calls
m Optimization blocker: memory aliasing
m Tools (profiling) for understanding performance

19

