
Code Optimization I:
Machine Independent Optimizations

TopicsTopics
 Machine-Independent Optimizations

 Code motion
 Reduction in strength
 Common subexpression sharing

 Tuning
 Identifying performance bottlenecks

Systems I

2

Great Reality
ThereThereʼ̓s more to performance than asymptotics more to performance than asymptotic

complexitycomplexity
Constant factors matter too!Constant factors matter too!

 Easily see 10:1 performance range depending on how code
is written

 Must optimize at multiple levels:
 algorithm, data representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
 How programs are compiled and executed
 How to measure program performance and identify

bottlenecks
 How to improve performance without destroying code

modularity and generality

3

Optimizing Compilers
Provide efficient mapping of program to machineProvide efficient mapping of program to machine

 register allocation
 code selection and ordering
 eliminating minor inefficiencies

DonDonʼ̓t (usually) improve asymptotic efficiencyt (usually) improve asymptotic efficiency
 up to programmer to select best overall algorithm
 big-O savings are (often) more important than constant

factors
 but constant factors also matter

Have difficulty overcoming Have difficulty overcoming ““optimization blockersoptimization blockers””
 potential memory aliasing
 potential procedure side-effects

4

Limitations of Optimizing Compilers
Operate Under Fundamental ConstraintOperate Under Fundamental Constraint

 Must not cause any change in program behavior under any
possible condition

 Often prevents it from making optimizations when would only affect
behavior under pathological conditions.

Behavior that may be obvious to the programmer can beBehavior that may be obvious to the programmer can be
obfuscated by languages and coding stylesobfuscated by languages and coding styles
 e.g., data ranges may be more limited than variable types suggest

Most analysis is performed only within proceduresMost analysis is performed only within procedures
 whole-program analysis is too expensive in most cases

Most analysis is based only on Most analysis is based only on staticstatic information information
 compiler has difficulty anticipating run-time inputs

When in doubt, the compiler must be conservativeWhen in doubt, the compiler must be conservative

5

Machine-Independent Optimizations
 Optimizations you should do regardless of processor /

compiler

Code MotionCode Motion
 Reduce frequency with which computation performed

 If it will always produce same result
 Especially moving code out of loop

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

for (i = 0; i < n; i++) {
 int ni = n*i;
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
}

6

Compiler-Generated Code Motion
 Most compilers do a good job with array code + simple loop

structures

Code Generated by GCCCode Generated by GCC
for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

 imull %ebx,%eax # i*n
 movl 8(%ebp),%edi # a
 leal (%edi,%eax,4),%edx # p = a+i*n (scaled by 4)
Inner Loop
 movl 12(%ebp),%edi # b
.L40:
 movl (%edi,%ecx,4),%eax # b+j (scaled by 4)
 movl %eax,(%edx) # *p = b[j]
 addl $4,%edx # p++ (scaled by 4)
 incl %ecx # j++
 cmpl %ebx,%ecx # loop if j<n
 jl .L40

for (i = 0; i < n; i++) {
 int ni = n*i;
 int *p = a+ni;
 for (j = 0; j < n; j++)
 *p++ = b[j];
}

7

Reduction in Strength
 Replace costly operation with simpler one
 Shift, add instead of multiply or divide

16*x --> x << 4
 Utility machine dependent
 Depends on cost of multiply or divide instruction
 On Pentium II or III, integer multiply only requires 4 CPU cycles

 Recognize sequence of products

for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++)
 a[ni + j] = b[j];
 ni += n;
}

8

Make Use of Registers
 Reading and writing registers much faster than

reading/writing memory

LimitationLimitation
 Compiler not always able to determine whether variable can

be held in register
 Possibility of Aliasing
 See example later

9

Machine-Independent Opts. (Cont.)
Share Common Share Common SubexpressionsSubexpressions

 Reuse portions of expressions
 Compilers often not very sophisticated in exploiting

arithmetic properties
/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

 leal -1(%edx),%ecx # i-1
 imull %ebx,%ecx # (i-1)*n
 leal 1(%edx),%eax # i+1
 imull %ebx,%eax # (i+1)*n
 imull %ebx,%edx # i*n

10

Time Scales
Absolute TimeAbsolute Time

 Typically use nanoseconds
 10–9 seconds

 Time scale of computer instructions

Clock CyclesClock Cycles
 Most computers controlled by high frequency clock signal
 Typical Range

 100 MHz
» 108 cycles per second
» Clock period = 10ns

 2 GHz
» 2 X 109 cycles per second
» Clock period = 0.5ns

11

Example of Performance
Measurement
Loop unrollingLoop unrolling

 Assume even number of elements

void vsum1(int n) {
 int i;
 for(i=0; i<n; i++)
 c[i] = a[i] + b[i];
}

void vsum2(int n) {
 int i;
 for(i=0; i<n; i+=2) {
 c[i] = a[i] + b[i];
 c[i+1] = a[i+1] + b[i+1];
}

12

Cycles Per Element
 Convenient way to express performance of program that

operators on vectors or lists
 Length = n
 T = CPE*n + Overhead

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

Elements

C
y
c
le
s

vsum1
Slope = 4.0

 vsum2
Slope = 3.5

13

void lower(char *s)
{
 int i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Code Motion Example
Procedure to Convert String to Lower CaseProcedure to Convert String to Lower Case

14

Lower Case Conversion Performance

 Time quadruples when string length doubles
 Quadratic performance

lower1

0.0001

0.001

0.01

0.1

1

10

100

1000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

C
P

U
 S

e
c
o

n
d

s

15

Convert Loop To Goto Form

 strlen executed every iteration
 strlen linear in length of string

 Must scan string until finds '\0'
 Overall performance is quadratic

void lower(char *s)
{
 int i = 0;
 if (i >= strlen(s))
 goto done;
 loop:
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
 i++;
 if (i < strlen(s))
 goto loop;
 done:
}

16

Improving Performance

 Move call to strlen outside of loop
 Since result does not change from one iteration to another
 Form of code motion

void lower(char *s)
{
 int i;
 int len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

17

Lower Case Conversion Performance
 Time doubles when double string length
 Linear performance

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144

String Length

C
P

U
 S

e
c

o
n

d
s

lower1 lower2

18

Optimization Blocker: Procedure Calls
Why couldnWhy couldn ʼ̓t the compiler move t the compiler move strlenstrlen out of the innerout of the inner

loop?loop?
 Procedure may have side effects

 Alters global state each time called
 Function may not return same value for given arguments

 Depends on other parts of global state
 Procedure lower could interact with strlen

Why doesnWhy doesnʼ̓t compiler look at code for t compiler look at code for strlenstrlen??
 Linker may overload with different version

 Unless declared static
 Interprocedural optimization is not used extensively due to cost

Warning:Warning:
 Compiler treats procedure call as a black box
 Weak optimizations in and around them

19

Summary
TodayToday

 Improving program performance (machine independent)
 Mostly focusing on instruction count

Next timeNext time
 Optimization blocker: procedure calls
 Optimization blocker: memory aliasing
 Tools (profiling) for understanding performance

