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Abstract. We give a concise outline of the theory of system stabiliza-
tion. Our primary objective is to demonstrate the richness, depth, and
ultimately the utility of this beautiful theory. Our secondary objective is
to identify a number of problems that arise in the theory, and so highlight
several research directions that can be pursued in the future. The stabi-
lization of a system is defined as the ability of the system to converge to
a closed (under execution) set of system states. We identify two forms
of convergence (strong and weak) and two forms of closed sets of states
(strong and weak), and so we end up with four forms of stabilization.
The outlined theory is based on these four forms of stabilization.

Dedication. This paper is dedicated to the memory of my grandparents Asma
(1897-1972) and Ahmed (1864-1967): on my mind and in my heart.

1 Introduction

The subject of this paper is the theory of system stabilization. This is a relatively
new theory, at least in the realm of computing science. Hence, only few results
have been attained in it. On the other hand, the evidence suggests that it is an
intriguing theory, intellectually satisfying and widely applicable, and what more
can a scientist ask for?

The theory of system stabilization deals with the ability of a system, start-
ing from any state, to converge to a specific set of states that is closed under
system execution. This theory is built around three important concepts: closure
(under system execution), convergence, and stabilization. The main thrust of
the theory is to answer two questions: how to verify the stabilization properties
of a given system, and how to design a system such that it has a given set of
stabilization properties. This theory can be used in explaining and investigating
several important areas of computing systems: system initialization and reset,
fault recovery, fault containment, and system adaptivity.

In this paper, we give an outline of the theory of system stabilization. The
objective is to present the important subjects in the theory without addressing
any of them in great detail. The presentation in the paper is intentionally concise
so that the paper can fit in the available space. Our apologies are in order for
not including proofs and examples.



2 Closure, Convergence, and Stabilization

A system is a pair (U, T), where U is a set of states, and T is a set of transitions:
cach transition in T is an ordered pair of states in U. For a transition (p, q) in T,
state p is called the pre-state of the transition and state q is called the post-state
of the transition.

A computation of a system (U, T) is a non-empty sequence (p.0, p.1, ... )
such that the following three conditions hold.

i. Every element p.i in the sequence is a state in U.
ii. Every pair (p.i, p.(i+1)) in the sequence is a transition in T.

iii. Either the sequence is infinite, or it is finite and its last state is not
a pre-state of any transition in T.

This abstract definition of a system applies to sequential, parallel, as well as
distributed systems. In the case of a parallel or distributed system, however, a
state of the system is a concatenation of the states of the system processes and
the states of the communication channels between them, if any.

In a system (U, T), a subset P of U is strongly closed iff for every transition
in T, if the pre-state of the transition is in P, then the post-state of the transition
is in P.

In a system (U, T), a subset P of U is weakly closed iff every computation of
the system, whose initial state is in P, has a non-empty suffix where each state
isin P.

It follows from these definitions that every strongly closed subset is also
weakly closed, but the reverse is not necessarily true. As an example, consider
a system (U, T) where U = {p.0, p.1, p.2, p.3} and T = {(p.0, p.1), (p-1, p-1),
(p-1,p.2), (p.2, p.3), (p-3, p-3)}. Bach of the following subsets is strongly closed:
the empty subset, {p.3}, {p.2, p.3}, {p.1, p.2, p.3}, and U. Thus, each of these
subsets is also weakly closed. On the other hand, the subset {p.1, p.3} is weakly
closed but not strongly closed.

One is tempted to think that each weakly closed subset P contains a strongly
closed subset Q such that each system computation, whose initial state is in P,
has a state in Q. If this was the case, the concept of weak closures would be
redundant, and only strong closures would be needed. However, this is not the
case. Consider the weakly closed subset {p.1, p.3} in the above example. Indeed,
this subset contains a strongly closed subset, namely {p.3}. However, not every
system computation whose initial state is in {p.1, p.3} has a state in {p.3}. In
particular, the system computation (p.1, p.1, ... ) does not have the state p.3.
Thus, the weakly closed subset {p.1, p.3} cannot be replaced by the strongly
closed subset {p.3}.

Let (U, T) be a system, P be a strongly closed subset of U, and Q be a
(strongly or weakly) closed subset of U. Subset P strongly converges to Q iff
every system computation, whose initial state is in P, has a state in Q.

Let (U, T) be a system, P be a strongly closed subset of U, and @ be a
(strongly or weakly) closed subset of U. Subset P weakly converges to Q 1iff for



every state r that occurs in a system computation, whose initial state is in P,
there is a system computation, whose initial state is r, and that computation
has a state in Q.

Weak convergence is related to “probabilistic convergence” in the following
sense. Consider a system (U, T), where the following three conditions hold.

i. P weakly converges to Q.
i1. The number of states in U is finite.

iii. For each state p in U, and each transition (p, q) in T, the prob-
ability, that transition (p, q) occurs in a computation whenever p
occurs in that computation, is non-zero.

Then, with probability one, every computation of system (U, T), whose initial
state is in P, has a state in Q.

This relationship between weak and probabilistic convergence can be proven
as follows. Consider an arbitrary computation c of system (U, T). Because U is
finite, at least one state r occurs infinitely many times in computation c. Because
the probability that each transition, whose pre-state is r, occurs in ¢ whenever
r occurs in ¢ is non-zero, then with probability one, each such transition occurs
infinitely many times in ¢. Therefore, with probability one, each state that follows
state r in system (U, T) occurs infinitely many times in c. This argument can be
repeated a finite number of times to show that with probability one, each state
that is reachable from state r in system (U, T) occurs infinitely many times in c.
Because P weakly converges to Q, there is a state in ) that is reachable from r.
With probability one, this state occurs (infinitely many times) in computation
&

It follows from this discussion that in systems with finite number of states,
weak convergence can be easily converted to probabilistic convergence: Merely
ensure that each transition has a non-zero probability of being executed, when-
ever the system reaches the pre-state of that transition. Henceforth, we ignore
probabilistic convergence, and focus only on strong and weak convergence.

It is straightforward to show that if P strongly converges to Q) then P weakly
converges to Q, and that the reverse is not necessarily true. The definitions of
strong and weak convergence yield four concepts.

i. Strong convergence to strong closure.
ii. Strong convergence to weak closure.
111. Weak convergence to strong closure.

iv. Weak convergence to weak closure.

These four concepts are related as follows: (i) implies both (ii) and (iii), and
each of (ii) and (iii) implies (iv).

Let P be a (strongly or weakly) closed subset of U in a system (U, T).
System (U, T) strongly stabilizes to P iff U strongly converges to P. System (U,
T) weakly stabilizes to P iff U weakly converges to P.



Because strong convergence implies weak convergence, it follows that strong
stabilization implies weak stabilization. The definitions of strong and weak sta-
bilization yield four concepts.

1. Strong stabilization to strong closure.
ii. Strong stabilization to weak closure.
iii. Weak stabilization to strong closure.

iv. Weak stabilization to weak closure.

These four concepts are related as follows: (i) implies both (ii) and (1ii), and
each of (ii) and (iii) implies (iv).

Having different degrees of stabilization i1s advantageous for two reasons.
First, it allows us to compare and rate the stabilization properties of different
systems. Second, because strong stabilization is costly or impossible to achieve
in some cases, a weaker degree of stabilization can be sought in these cases.

Examples of systems that strongly stabilize to strong closures are given in
(8], [9], [12], [13], [17], [18] [23], [29], and [30]. Examples of systems that strongly
stabilize to weak closures are given in [11]. Examples of systems that strongly
stabilize, with probability one, to strong closures are given in [7] and [15].

3 Laws of Stabilization

In this section, we state some laws concerning the closure, convergence, and
stabilization properties of systems. These laws can be derived from the definitions
in Section 2, and they can be used in reasoning about system stabilization. In
these laws, let (U, T) be an arbitrary system, and let P, Q, R, and S be subsets
of U.

i. Base:
U is strongly closed,
U strongly converges to U, and
(U, T) strongly stabilizes to U.

il. Junctivity of Closure:
If both P and Q are strongly closed,
then both PUQ and PNQ are strongly closed.

If  both P and Q are weakly closed,
then both PUQ and PNQ are weakly closed.

iii. Junctivity of Convergence:
If P strongly converges to Q,
and R strongly converges to S,
then PUR strongly converges to QUS,
and PNR strongly converges to QNS.



If P strongly converges to Q,

and R weakly converges to S,

then PUR weakly converges to QUS,
and PNR weakly converges to QNS.

If P weakly converges to Q,
and R weakly converges to S,
then PUR weakly converges to QUS.

iv. Junctivity of Stabilization:
If (U, T) strongly stabilizes to P,
and (U, T) strongly stabilizes to Q,
then (U, T') strongly stabilizes to both PUQ and PNQ.

If (U, T) strongly stabilizes to P,
and (U, T) weakly stabilizes to Q,
then (U, T) weakly stabilizes to both PUQ and PNQ.

)
U, T)
U, T) weakly stabilizes to P,
U, T) weakly stabilizes to Q,
T) weakly stabilizes to PUQ.

v. From Closure to Convergence:
If P isstrongly closed,
and Q is a weakly closed superset of P,
then P strongly converges to Q.

vi. From Convergence to Convergence
(Transitivity of Convergence):
If P strongly converges to Q,
and Q strongly converges to R,
then P strongly converges to R.

If P weakly converges to Q,
and @Q weakly converges to R,
then P weakly converges to R.

vii. From Convergence to Stabilization:
If (U, T) strongly stabilizes to P,
and P strongly converges to Q,
then (U, T) strongly stabilizes to Q.

If (U, T) weakly stabilizes to P,
and P weakly converges to Q,
then (U, T) weakly stabilizes to Q.

The first law, base, demonstrates that the three properties of closure, conver-
gence, and stabilization are meaningful. In particular, each of these properties
applies to the set of all system states. The next three laws, junctivity, show how
to use two instances of each of these properties to deduce two more instances of
the same property. The last three laws, from-to, show how to use an instance of



closure, convergence, and stabilization to deduce a new instance of convergence,
convergence, and stabilization, respectively.

4 Proof Obligations of Stabilization

In this section, we discuss the proof obligations needed for establishing the sta-
bilization properties of systems. In what follows, let (U, T) be an arbitrary
system, and let P, Q, Q.0, Q.1, ... be subsets of U. Also, let (D, <) denote a
well-founded domain, where each decreasing, with respect to the less-than rela-
tion <, sequence of the elements in D is finite.

4.1 Proving Strong Closure

In order to establish that subset P is strongly closed in system (U, T), prove
that for every state p in P, and every transition (p, q) in T, state g is in P.

4.2 Proving Weak Closure

In order to establish that subset P is weakly closed in system (U, T), exhibit
an infinite sequence (Q.0, Q.1, ... ) of subsets of U such that the following three
assertions hold.

1. Pis a subset of (U1, 0 <1, Q.1).
ii. For every k, (Ui, 0 <i < k, Q.i) is strongly closed.

iii. For every 1, 0 < i, every computation of system (U, T), whose states
are all in Q.i, has a non-empty suffix where every state is in P.

Two comments concerning this infinite sequence (Q.0, .1, ... ) are in.order.
First, if there is an integer n such that for every i, 1 > n, Q. = Q.n, then the
infinite sequence (Q.0, Q.1, ... ) is in effect finite. Second, if for every i,1 > 0,

Q.1 = P, then P is strongly closed.

Assertion (i) can be proven using predicate calculus. Assertion (ii) can be
proven as discussed in Section 4.1. Assertion (iii) can be proven for every i, 0 <
i, as follows. Exhibit a well-founded domain (D, <) and a total function f: Q.1
— D, such that for every transition (p, q) in T, where p and q are in Q.i,

(if q is not in P then f.q < f.p) and
(if p is in P then q is in P)
4.3 Proving Strong Convergence

In order to establish that subset P strongly converges to Q in system (U, T),
prove the following three assertions.

i. P is strongly closed.



. Q is (strongly or weakly) closed.
iii. Every computation of system (U, T), whose initial state is in P,

has a state in Q.

Assertions (1) and (ii) can be proven as discussed in Sections 4.1 and 4.2.
Assertion (iii) can be proven by exhibiting a well-founded domain (D, <) and a
total function f : P — D, such that for every state p in P, and every transition
(p, q) in T, if g is not in P then f.q < f.p.

A modular proof of the property (P strongly converges to Q) in system (U,
T) can be achieved by resorting to the transitivity of strong convergence. In
particular, one can identify a finite sequence (Q.0, ..., Q.(n-1)) of subsets of U
such that the following three conditions hold.

L. P = Q.0
. Q = Q.(n-1).
iii. For every i, 0 < i < n-1, Q.1 strongly converges to Q.(i+1).

We refer to the sequence (Q.0, ..., Q.(n-1)) as a strong convergence stair.

4.4 Proving Weak Convergence

In order to establish that subset P weakly converges to Q in system (U, T) prove
the following three assertions.

i. P is strongly closed.
ii. Q is (strongly or weakly) closed.

iii. For every state r that occurs in a system computation, whose initial
state is in P, there is a system computation, whose initial state is
r, and that computation has a state in Q.

Assertions (i) and (ii) can be proven as discussed in Sections 4.1 and 4.2.
Assertion (iii) can be proven by exhibiting an infinite sequence (Q.0, Q.1, ...)
of subsets of U such that the following three conditions hold.

a. P is a subset of (Ui, 0 < i, Q.i).

b. Q.0 is a subset of Q.

c. For every Q.], there is Q.1, 0 <1 < j, such that for every state p in
Q.J, there is a transition (p, q) in T, where q is in Q.1.

A modular proof of the property (P weakly converges to Q) in system (U,
T) can be achieved by resorting to the transitivity of weak convergence. In
particular, one can identify a finite sequence (Q.0, ... , Q.(n-1)) of subsets of U
such that the following three conditions hold.

1. P =0Q.0.



ii. Q@ = Q.(n-1).
iii. For every 1, 0 <1 < n-1, Q.1 weakly converges to Q.(i+1).

We refer to the sequence (Q.0, ..., Q.(n-1)) as a weak convergence stair.

5 System Composition Made Easy

In this section, we show that multiple systems can be combined into a single
composite system that has the same stabilization properties of the constituent
systems. Toward this goal, we need to change our view of a system from being
a pair (U, T) of states and transitions, to being a pair (V, C) of variables and
actions. The two views (U, T) and (V, C) of a system are related as follows.

i. There is one-to-one correspondence between the states in U and the
assignments of values to the variables in V. We adopt the notation
p ¢ X to mean that state p in U corresponds to assigning value x
to the V variables.

ii. There is one-to-one correspondence between the transitions in T
and the executions of actions in C. In particular, a transition (p,
q) in T corresponds to an execution of action ¢ in C il there are
two values x and y of the V variables such that the following three
conditions hold.

a. p & X.
b. q &y

c. Executing action ¢ when the V variables have value x
yields the V variables with value y.

Let (V, C) be a system, where V is a set of variables and C is a set of actions,
and let P be a subset of the system states. Subset P can be represented by a
first order predicate, also denoted P for convenience, over the V variables such
that for every system state p and every value x of the V variables, where p ¢ x,

(state p is in subset P

iff

assigning value x to the V variables makes predicate P true)

A predicate that represents a subset of the states of a system is called a state
predicate of the system.

A state predicate of a system is called strongly (or weakly) closed iff the
corresponding subset. of system states is strongly (or weakly, respectively) closed.
Having extended the concept of closure to state predicates, we can also extend
the concepts of convergence and stabilization to state predicates.

Let (V.0, C.0), ..., (V.(n-1), C.(n-1)) be n systems, where each V.iis a set of
variables, and each C.iis a set of actions. These systems can be combined into
a system (V, C) as follows.



V = Vou..UV. (o)
C Cou..UC.(n1)

In this case, the systems (V.0, C.0), ..., (V.(n-1), C.(n-1)) are called the con-
stituent systems of the composite system (V, C). In the remainder of this sec-
tion, we state sufficient conditions for ensuring that if the constituent systems
are all strongly (or weakly) stabilizing, then the composite system is strongly (or
wealkly, respectively) stabilizing. To state these conditions, we need to introduce
three concepts: input and output variables of a system and composition graph
of a composite system. We discuss these three concepts in order.

Let (V, C) be a system. A variable u in V is called an input variable iff no
action in C writes variable u. A variable in V, that is not an input variable, is
called an output variable.

Let (V, C) be a composite system whose constituent systems are (V.0, C.0),
.., (V.(n-1), C.(n-1)). System (V, C) can be represented by a directed graph G,
called the composition graph of (V, C), with two types of nodes. A node of the
first type, called a v-node, represents a variable in the set V.0 U ... U V.(n-1).
A node of the second type, called a c-node, represents one of the action sets
C.0, ..., or C.(n-1). In G, there is a directed edge from a v-node representing a
variable u to a c-node representing an action set C.i iff u is an input variable in
system (V.i, C.i). Also in G, there is a directed edge from a c-node representing
an action set C.i to a v-node representing a variable u iff u is an output variable
in system (V i, C.i).

Theorem of Hierarchical Composition:
Let (V, C) be a composite system whose constituent systems are (V.0, C.0), ...,
(V.(n-1), C.(n-1)).
If each constituent system (V.i, C.i) stabilizes to predicate P.i,
and  the composition graph G of (V, C) satisfies the two conditions:
i. each v-node has at most one incoming edge in G, and
ii. there are no directed cycles in G,
then system (V, C) stabilizes to the predicate P.0 A ... A P.(n-1).

Conditions (i) and (ii) in this theorem are somewhat severe. To relax condi-
tion (i), we introduce the concept of an isolation node.

Consider a v-node u with two incoming edges from two c-nodes C.i and Cj.
Node u is called an isolation node iff for each value combination of the input
variables of C.i and C.j, one of the following two conditions hold.

i. For each value of the output variables of C.i, executing each action
in C.i keeps the variables of C.j unchanged.

ii. For each value of the output variables of C.j, executing each action
in C.j keeps the variables of C.1 unchanged.

In this definition, node u is called an isolation node because the stabilization
of system (V.i, C.i) does not interfere with the stabilization of system (V.j, C.j),



or vice versa. We leave it for the reader to extend the definition of an isolation
node to a v-node with more than two incoming edges.

Theorem of Acyclic Composition:
Let (V, C) be a composite system whose constituent systems are (V=0,6.0) 50 5
(V.(n-1), C.(n-1)).
If each constituent system (V.i, C.i) stabilizes to predicate P.i,
and the composition graph G of (V, C) satisfies the two conditions:

i. each v-node with two or more incoming edges in G is an

isolation node, and

ii. there are no directed cycles in G,

then system (V, C) stabilizes to the predicate P.0 A ... A P.(n-1).

To relax condition (ii), we introduce the concept of a separation node. Con-
sider a v-node u with one incoming edge from c-node C.i and one outgoing edge
to c-node C.j. Node u is called a separation node iff for every value of variable
u, one of the following two conditions hold.

i. For each value of the variables of C.i, other than u, executing each
action in C.i keeps variable u unchanged.

ii. For each value of the variables of C.j, other than u, executing each
action in C.j keeps the output variables of C.j unchanged.

In this definition, node u is called a separation node iff the value of variable
u remains unchanged or system (V.j, C.j) has stabilized, in other words, the
stabilization of system (V.i, C.i) does not affect the stabilization of system (V.J,
C.j). We leave it for the reader to extend the definition of a separation node to
a v-node with multiple incoming and outgoing edges.

Theorem of General Composition:
Let (V, C) be a composite system whose constituent systems are (v.0,C.0), ...,
(V.(n-1), C.(n-1)).
If each constituent system (V.i, C.i) stabilizes to predicate P.i,
and the composition graph G of (V, C) satisfies the two conditions:

i. each v-node with two or more incoming edges in G is an

isolation node, and

ii. each directed cycle in G has at least one separation node,

then system (V, C) stabilizes to the predicate P.0 A ... A P.(n-1).

A preliminary version of this method of system composition is presented in
[19]. Other methods for composing stabilizing systems are presented in [24] and
[26].

6 Applications of System Stabilization

Stabilization properties can be used in studying several areas of computing sys-
tems: initialization and reset, fault recovery, fault containment, and system adap-



tivity. Next, we discuss each of these four areas in turn.

6.1 Initialization and Reset

The stabilization properties of a system can be used to simplify the initialization
and reset procedures for that system. This is beneficial especially for parallel and
distributed systems whose initialization and reset procedures are usually very
complicated.

Consider a system (V, C) whose initial or reset state is required to satisfy
some state predicate Q). If a state predicate P strongly converges to @ in this
system, then an initialization or reset procedure for the system is as follows. First,
the system is initialized or reset to any state that satisfies predicate P. Second,
the system is left to execute for some time until its current state satisfies Q. Note
that if the system strongly stabilizes to Q, then the first step in this procedure
is not needed.

Stabilizing systems for distributed reset are presented in [3] and [6].

6.2 Fault Recovery

Let (V, C) be a system, and let P and Q) be two state predicates of that system.
System (V, C) recovers from P to Q iff the following three conditions hold.

i. Each state of (V, C), that satisfies Q, satisfies P.
ii. Both P and Q are strongly closed in (V, C).
iii. P strongly converges to Q in (V, C).

In this definition of fault recovery, faults are not mentioned explicitly. Rather,
the definition implies that each fault occurrence may change the state of the
system from one that satisfies predicate @ to one that satisfies predicate P.
Further occurrences of faults keep the system in states that satisfy predicate P.
The ability of the system to recover from these fault occurrences is expressed
by saying that P strongly converges to Q. In other words, when faults cease to
occur for some time, the system returns to states that satisfy predicate Q during
that period. Predicate P represents the system invariant when faults do occur,
and predicate Q represents the system invariant when faults cease to occur.

One may feel uncomfortable about a definition of fault recovery that does not
explicitly mention faults. If so, one can introduce faults to the above definition
as follows. First, define a set F of faults, where each fault is an action that reads
and writes the V variables in system (V, C). Second, add the requirement, that
P is strongly closed in the fault system (V, F), to the above definition. Note that
the fault system (V, F) is the same as the original system (V, C) except that
set C of system actions is replaced by set I of fault actions. Third, the resulting
definition is identified as system (V, C) recovers from F via P to Q.

This augmented definition of fault recovery is based on the assumption that
the only effect of a fault on a system (V, C) is to change the current state of



(V, C). This assumption can always be realized by adding auxiliary variables
to set V and augmenting some actions in set C. For example, to represent a
fault that causes an action c in C to failstop and never be executed again, an
auxiliary variable, named up, is added to set V and action c is augmented so
that it cannot change the value of any variable when up = false. In this case,
the failstop fault can be represented by the fault action up := false. Other types
of faults such as Byzantine faults, stuck-at faults, and timing faults, can all be
represented in the same way.

Consider a system (V, C) that recovers from P to Q. If P = true, then the
fault recovery is called stabilizing, else it is called non-stabilizing. If P = S, then
the fault recovery is called masking, otherwise it is called non-masking.

In choosing a state predicate P so that a system (V, C) recovers from P to Q,
we are faced with two contradictory objectives. The first objective is to choose
P as weak as possible (i. e. close to true) so that system (V, C) can recover from
most faults. The second objective is to choose P as strong as possible (i. e. close
to Q) so that during recovery the system is guaranteed to remain in states close
to those satisfying Q. Fortunately, it is possible to achieve both these objectives.
First, define two state predicates P.0 and P.1 of system (V, C), where P.0 is
weak (1. e. close to true) and P.1 is strong (1. e. close to Q). Second, ensure that
system (V, C) recovers from P.0 to Q and from P.1 to Q.

The above definition of fault recovery admits the following three laws.

i. Union of Fault Recovery:
If  system (V, C) recovers from P to Q,
and system (V, C) recovers from R to Q,
then system (V, C) recovers from P V R to Q.

ii. Intersection of Fault Recovery:
If system (V, C) recovers from P to @,
and system (V, C) recovers from P to R,
then system (V, C) recovers from P to Q A R.

iii. Transitivity of Fault Recovery:
If  system (V, C) recovers from P to Q,
and system (V, C) recovers from Q to R,
then system (V, C) recovers from P to R,

For more details and many examples about this novel view of fault recovery,
the reader is referred to [2], [4], and [14].

6.3 Fault Containment

Let (V, C) be a system and P and Q be two state predicates of (V, C). Also, let
ef be a function that maps each state of (V, C) that satisfies predicate P, to a
non-negative integer. System (V, C) contains P to Q for ef iff the following three
conditions hold.

i. (V, C) recovers from P to Q.



ii. For every pair of states p and q that satisfy P, if there is an action
in C whose execution at state p yields a state q, then ef.p > ef.q.

u1. For every state p that satisfies S, ef.p = 0.

Function ef in this definition is called an effect of fault function. One example
of an effect of fault function for a mutual exclusion system is as follows.

eflp = max(0,xp-1)

where x.p is the number of processes in their critical sections at state p. Effect
of fault functions satisfy the following law.

Effect of Fault Functions:

If system (V, C) contains P to Q for ef|

and system (V, C) contains P to Q for eg,

and X, y, and z are non-negative integers,

then system (V, C) contains P to Q for xxel + yxeg + zxefreg.

6.4 System Adaptivity

An adaptive system is one whose computation adapts to the current state of its
environment. As shown below, system adaptivity can be explained formally as
a form of strong convergence. Before we define system adaptivity, we need to
introduce the concept of a fixed point.

Let (V, C) be a system and Q be a strongly closed predicate of (V, C). Also,
let U be a subset of V. Predicate QQ is a fixed point for U iff starting at any
state that satisfies Q, executing any action in C does not change the values of
the variables in U. Note that if U is empty, then any strongly closed predicate
is a fixed point for U.

Let (V, C) be a system and P and Q be two strongly closed predicates of (V,
C), and let U be a subset of V. System (V, C) is adaptive from P to Q for U iff
the following three conditions hold.

1. P is a boolean expression that involves only input variables in V.
ii. P strongly converges to Q.
iii. Q is a fixed point for U.

Consider a system (V, C) that is adaptive from P to Q for U. Each change
in the state of the environment of (V, C) causes a corresponding change in the
values of the input variables of (V, C). If the new values of the input variables
make predicate P true, then the system eventually reaches states that satisfy
predicate Q. System (V, C) stays within those states that satisfy Q at least until
a later change in the state of the environment causes P to become false. While
system (V, C) is within states that satisfy Q, the variables in set U have fixed
values.

This concept of system adaptivity can be generalized as follows. Let (V, C)
be a system, and let (P.0, ..., P.(r-1)) and (Q.0, ..., Q(r-1)) be two r-tuples of



strongly closed predicates of (V, C). Also, let (U.0, ..., U.(r-1)) be an r-tuple
of subsets of V. System (V, C) is adaptive from (P.0, ... , P.(r-1)) to (Q.0, ...,
Q.(r-1)) for (U.0, ..., U.(r-1)) iff the following three conditions hold.

i. Every P.is a boolean expression that involves only input variables
in V.

ii. Every P. strongly converges to Q.i.

iii. Every Q. is a fixed point for U.i.

An example of an adaptive system is an air-conditioner. When the measured
temperature (of the environment) is more than the required temperature, the
state of the air-conditioner becomes on and stays on until the measured temper-
ature is less than or equal the required temperature. In this case, the state of
the air-conditioner becomes off and stays off until the measured temperature is
more than the required temperature, and the cycle repeats.

7 Tribulations of System Stabilization

The above theory of system stabilization comes with several problems. In this
section, we briefly discuss three of these problems. The first problem of the
theory of stabilization is that some well-known models of parallel and distributed
systems cannot be used to represent stabilizing systems [20]. One example of such
models is Petrinets.

An informal explanation of why effective Petrinets cannot be stabilizing is
as follows. A stabilizing Petrinet N should be able to converge from an arbitrary
state where there is a large number of tokens in each place to a state where the
total number of tokens in the net is small. Thus, transition firings in N should
consume more tokens than they produce. Unfortunately, this means that N can
reach a state where there are not enough tokens to enable any transition in N.
In other words, N can reach a deadlock state. (One way to avoid this deadlock
state is to provide N with a special transition that can fire and produce tokens
when it detects that N has no tokens.)

Other models that cannot be used to represent stabilizing systems are systems
of CSP and finite state automata that communicate messages over unbounded
channels. These are all well-known models of parallel, concurrent, and distributed
systems, and the fact that they cannot represent stabilizing systems 1s disturbing
at best.

The second problem of the theory of stabilization is that some stabilization
properties of a system are fragile and can disappear if the system is transformed
using some seemingly harmless system transformations [20]. It follows that if a
system is designed to be stabilizing, then many natural implementations of that
design may not be stabilizing. This observation suggests that implementation
of stabilizing systems should proceed with care to ensure that the stabilization
properties, achieved in the design, are preserved in the implementation.



The third problem of the theory of stabilization is the great difficulty that one
encounters in verifying the stabilization properties of systems. It has been my
experience that the ratio of the time to design a stabilizing system to the time
to verify its stabilization properties is about one to ten. This is unacceptably
low ratio considering that the ratio for verifying standard safety and progress
properties is about one to three. Therefore, better proof systems are needed for
verifying stabilization properties.

8 What to Do in the Next Ten Years

The theory of system stabilization is relatively new, and so the arca has many
issues and problems that merit further consideration and research. Some of these
problems are mentioned in this section.

In Section 2, we introduced two forms of closure and two forms of conver-
gence, and ended up with four forms of stabilization. Are there other meaningful
forms of closure, convergence, and stabilization? To add some structure to this,
otherwise open ended, problem, I propose that any new forms of closure, con-
vergence, and stabilization should satisfy the laws in Section 3.

In Section 4, we discussed proof obligations for verifying the stabilization
properties of systems. Then in Section 8, we complained that it is very hard to
carry out such verifications. Is it possible to come up with stronger proof obliga-
tions that are easier to check? These stronger proof obligations would be useful
even if they are only applicable to special classes of stabilization properties or
special classes of systems. Also, what tools for automated verification of system
stabilization?

In Section b, we presented a method for combining systems while preserving
their stabilization properties. This method is provably sound, but its effective-
ness is yet to be investigated. In particular, the following questions needs to
be addressed. What types of systems can be composed using this method? Are
there other methods for composing other types of systems?

In Section 6, we discussed four applications of the theory of system stabiliza-
tion. In all these applications, we used only strong closure and strong conver-
gence. Can weak closure or weak convergence be used in these applications? Are
there other applications of the theory of stabilization? Early efforts to answer this
last question indicate that system diagnostics, system learning, network proto-
cols [5], [21], [22], [28], and hardware design [1] can all be viewed as applications
of the theory of stabilization.

Finally, we have ignored in the current paper the whole area of stabilization
complexity. Early efforts in this area are reported in [10], [16], [25] and [27].
Nonetheless, this area remains largely uncharted, and is now ripe for thorough
investigation.
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