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A key goal of computer vision researchers is to create automated face 
recognition systems that can equal, and eventually surpass, human 
performance. To this end, it is imperative that computational researchers 
know of the key findings from experimental studies of face recognition by 
humans. These findings provide insights into the nature of cues that the 
human visual system relies upon for achieving its impressive performance, 
and serve as the building blocks for efforts to artificially emulate these 
abilities. In this paper, we present what we believe are 20 basic results, 
with direct implications for the design of computational systems. Each 
result is described briefly, illustrated, and appropriate pointers are 
provided to permit an in-depth study of any particular result. 

 
 
Introduction 
Notwithstanding the extensive research effort that has gone into computational face 
recognition algorithms, we are yet to see a system that can be deployed effectively in an 
unconstrained setting, with all of the attendant variability in imaging parameters such as 
sensor noise, viewing distance, and illumination. The only system that does seem to work 
well in the face of these challenges is the human visual system. It makes eminent sense, 
therefore, to attempt to understand the strategies this biological system employs, as a first 
step towards eventually translating them into machine-based algorithms. With this 
objective in mind, we review here twenty important results regarding face recognition by 
humans. While these observations do not constitute a coherent theory of face recognition 
in primate vision (we simply do not have all the pieces yet to construct such a theory), 
they do provide useful hints and constraints for one. We believe that for this reason, they 
are likely to be useful to computer vision researchers in guiding their ongoing efforts. 
 
We have endeavored to bring together in one place several diverse results, so as to be 
able to provide the reader a fairly comprehensive picture of our current understanding 
regarding how humans recognize faces. Each of the results is briefly described and, 
whenever possible, accompanied by its implications for computer vision. While the 
descriptions here are not extensive, for reasons of space, we have provided relevant 
pointers to the literature for a more in-depth study.  
 



Recognition as a function of available spatial resolution 
 
Result 1: Humans can recognize faces in extremely low-resolution images 
Progressive improvements in camera resolutions provide ever-greater temptation to use 
increasing amounts of detail in face representations in machine vision systems. Higher image 
resolutions allow recognition systems to discriminate between individuals on the basis of fine 
differences in their facial features. The advent of iris based biometric systems is a case in point. 
However, the problem that such details-based schemes often have to contend with is that high-
resolution images are not always available. This is particularly true in situations where 
individuals have to be recognized at a distance. In order to design systems more robust against 
image degradations, we can turn to the human visual system for inspiration. Everyday, we are 
confronted with the task of face identification at a distance and must extract the critical 
information from the resulting low-resolution images. Precisely how does face identification 
performance change as a function of image resolution? Pioneering work on face recognition with 
low-resolution imagery was done by Harmon and Julesz [1973a, 1973b]. Working with block 
averaged images of familiar faces, they found high recognition accuracies even with images 
containing just 16x16 blocks. Yip and Sinha (2002) found that subjects can recognize more than 
half of an unprimed set of familiar faces with image resolutions of merely 7x10 pixels, and 
recognition performance reaches ceiling level at a resolution of 19x27 pixels. While the 
remarkable tolerance of the human visual system to resolution reduction is now indisputable, we 
do not have a clear idea of exactly how this is accomplished. At the very least, this result 
demonstrates that fine featural details are not necessary to obtain good face recognition 
performance. Furthermore, given the indistinctness of the individual features at low resolutions, it 
appears likely that diagnosticity resides in their overall configuration. However, precisely which 
aspects of this configuration are important, and how we can computationally encode them, are 
open questions. 

 
Figure 1. Unlike current machine based systems, human observers are able to handle significant 
degradations in face images. For instance, subjects are able to recognize more than half of all 
familiar faces shown to them at the resolution depicted here. The individuals shown from left to 
right, are: Prince Charles, Woody Allen, Bill Clinton, Saddam Hussein, Richard Nixon and 
Princess Diana. 
 
Result 2: The ability to tolerate degradations increases with familiarity 
In trying to uncover the mechanisms underlying the human ability to recognize highly 
degraded face images, we might wonder whether this is the result of some general 
purpose compensatory processes, i.e. a biological instantiation of model-free ‘super-
resolution’. However, the story appears to be more complicated. The ability to handle 
degradations increases dramatically with amount of familiarity. Burton et al (1999) have 
shown that observers’ recognition performance with low-quality surveillance video is 
much better when the individuals pictured are familiar colleagues, rather than those with 
whom the observers have interacted infrequently. Additionally, body structure and gait 
information are much less useful for identification than facial information, even though 



the effective resolution in that region is very limited. Recognition performance changes 
only slightly after obscuring the gait or body, but is affected dramatically when the face is 
hidden, as illustrated in figure 2. This does not appear to be a skill that can be acquired 
through general experience; even police officers with extensive forensic experience 
perform poorly unless they are familiar with the target individuals. The fundamental 
question this finding, and others like it (Roark et al, 2003; Liu et al, 2003), bring up is the 
following: How does the facial representation and matching strategy used by the visual 
system change with increasing familiarity, so as to yield greater tolerance to 
degradations? We do not yet know exactly what aspect of the increased experience with a 
given individual leads to an increase in the robustness of the encoding; is it the greater 
number of views seen or is the robustness an epiphenomenon related to some biological 
limitations such as slow memory consolidation rates? Notwithstanding our limited 
understanding, some implications for computer vision are already evident. In considering 
which aspects of human performance to take as benchmarks, we ought to draw a 
distinction between familiar and unfamiliar face recognition. The latter may end up being 
a much more modest goal than the former, and might constitute a false goal towards 
which to strive. The appropriate benchmark for evaluating machine-based face 
recognition systems is human performance with familiar faces. 
 

 
(a)                                           (b)                                          (c) 

Figure 2. Frames from the video-sequences used in the Burton et al (1999) study. (a) 
Original input (b) Body obscured (c) Face obscured. Based on results from such 
manipulations, the researchers concluded that recognition of familiar individuals in low-
resolution video is based largely on facial information. 
 
Result 3: High-frequency information by itself does not lead to good face 
recognition performance 
We have long been enamored of edge-maps as a powerful initial representation for visual 
inputs. The belief is that edges capture the most important aspects of images (the 
discontinuities), while being largely invariant to shallow shading gradients that are often 
the result of illumination variations. In the context of human vision as well, line-drawings 
appear to be sufficient for recognition purposes. Caricatures and quick pen portraits are 
often highly recognizable. Do these observations mean that high spatial frequencies are 
critical, or at least sufficient, for face recognition? There is reason to doubt this assertion. 
Intuitively, line-drawings appear to contain primarily contour information and very little 
photometric information over which to define the luminance relations. However, 



experimental data suggest otherwise. Graham Davies and his colleagues have reported 
(Davies et al, 1978) that images which contain exclusively contour information are very 
difficult to recognize (specifically, they found that subjects could recognize only 47% of 
the line-drawings compared to 90% of the original photographs; see figure 3). How can 
we reconcile such findings with the observed recognizability of line-drawings in 
everyday experience? Bruce and colleagues (Bruce and Young, 1998; Bruce et al, 1992) 
have convincingly argued that such depictions do in fact contain significant photometric 
cues and that the contours included in such a depiction by an accomplished artist 
correspond not just to a low-level edge-map, but in fact embody a face’s photometric 
structure. It is the skillful inclusion of these photometric cues that is believed to make 
human generated line-drawings more recognizable than computer generated ones 
(Pearson and Robinson, 1985). The idea that 'line-drawings' contain important 
photometric cues leads to the prediction that recognition performance with line-drawings 
would be susceptible to contrast negation, just as for gray-scale images. This prediction is 
indeed supported by experimental data (Pearson, Hanna and Martinez, 1990). 

 
Figure 3. Images which contain exclusively contour information are very difficult to 
recognize, suggesting that high-spatial frequency information, by itself, is not an 
adequate cue for human face recognition processes. Shown here are Jim Carrey (left) 
and Kevin Costner. 
 
The nature of processing: Piecemeal versus Holistic 
 
Result 4: Facial features are processed holistically 
Can facial features (eyes, nose, mouth, eyebrows, etc.) be processed independently from 
the rest of the face? Faces can often be identified from very little information. Sadr et al 
(2003)  and others (Davies et al, 1977; Fraser et al, 1990) have shown that just one 
feature (such as the eyes or, notably, the eyebrows) can be enough for recognition of 
many famous faces. However, when features on the top half of one face are combined 
with the bottom half of another face, the two distinct identities are very difficult to 
recognize (Young et al, 1987) (see Figure 4). The holistic context seems to affect how 
individual features are processed. When the two halves of the face are misaligned, 



presumably disrupting normal holistic processing, the two identities are easily 
recognized. These results suggest that when taken alone, features are sometimes 
sufficient for facial recognition. In the context of a face, however, the geometric 
relationship between each feature and the rest of the face can override the diagnosticity of 
that feature. Although feature processing is important for facial recognition, this pattern 
of results suggests that configural processing is at least as important, and that facial 
recognition is dependent on ‘holistic’ processes involving an interdependency between 
featural and configural information. Recent work has explored how one might learn to 
use holistic information (Robbins and McKone, 2003) and the contribution of holistic 
processing to the analysis of facial expressions (Calder et al, 2000). 

 
Figure 4. Try to name the famous faces depicted in the two halves of the left image. Now 
try the right image. Subjects find it much more difficult to perform this task when the 
halves are aligned (left) compared to misaligned halves (right), presumably because 
holistic processing interacts (and in this case, interferes) with feature-based processing.  
 
Result 5: Of the different facial features, eyebrows are amongst the most 
important for recognition. 
Not all facial features are created equal in terms of their role in helping identify a face. 
Experimental results typically indicate the importance of eyes followed by the mouth and 
then the nose. However, one facial feature has, surprisingly, received little attention from 
researchers in this domain – the eyebrows. Sadr et al (2003) have presented striking new 
evidence suggesting that the eyebrows might not only be important features, but that they 
might well be the most important, eclipsing even the eyes. These researchers digitally 
erased the eyebrows from a set of 50 celebrity face images (figure 5). Subjects were 
shown these images individually and asked to name them. Subsequently, they were asked 
to recognize the original set of (unaltered) images. Performance was recorded as the 
proportion of faces a subject was able to recognize. Performance with the images lacking 
eyebrows was significantly worse relative to that with the originals, and even with the 
images lacking eyes. These results suggest that the eyebrows may contribute in an 
important way to the representations underlying identity assessments.  
How might one reasonably explain the perceptual significance of eyebrows in face 
recognition? There are several possibilities. First, eyebrows appear to be very important 
for conveying emotions and other nonverbal signals. Since the visual system may already 
be biased to attend to the eyebrows in order to detect and interpret such signals, it may be 
that this bias also extends to the task of facial identification. Second, for a number of 
reasons, eyebrows may serve as a very "stable" facial feature.  Because they tend to be 



relatively high-contrast and large facial features, eyebrows can survive substantial image 
degradations. For instance, when faces are viewed at a distance, the eyebrows continue to 
make an important contribution to the geometric and photometric structure of the 
observed image. Also, since eyebrows sit atop a convexity (the brow ridge separating the 
forehead and orbit), as compared to some other parts of the face, they may be less 
susceptible to shadow and illumination changes. Further, although the eyebrows can 
undergo a wide range of movements, the corresponding variations in the appearance of 
the eyebrows themselves do not rival those observed within the eyes and mouth, for 
example, as they run through the gamut of their own movements and deformations. 
 

 
 

Figure 5.  Sample stimuli from Sadr et al’s (2003) experiment assessing the contribution 
of eyebrows to face recognition:  original images of President Richard M. Nixon and 
actor Winona Ryder, along with modified versions lacking either eyebrows or eyes.   
 
Result 6: Both internal and external facial cues are important and they 
exhibit non-linear interactions 
A marked disparity exists in the use of ‘internal’ and ‘external’ facial features by current 
machine-based face analysis systems. It is typically assumed that internal features (eyes, 
nose and mouth), and their mutual spatial configuration, are the critical constituents of a 
face, and the external features (hair and jaw-line) are too variable to be practically useful. 
It is interesting to ask whether the human visual system also employs a similar criterion 
in its use of the two types of features. Some recent experiments from our lab have 
investigated the contribution of internal and external features as a function of effective 
image resolution. The experimental paradigm we used required subjects to recognize 
celebrity facial images blurred by varying amounts (a sample set is shown in figure 1). 
The subjects were shown the blurred sets, beginning with the highest level of blur and 
proceeding on to the zero blur condition. We also created two other stimulus sets. The 
first of these contained the individual facial features (eyes, nose and mouth), placed side 



by side while the second had the internal features in their original spatial configuration. 
Three mutually exclusive groups of subjects were tested on the three conditions. 
 
Performance of subjects with internal features (whether side by side, or in the correct 
spatial configuration) is quite poor even with relatively small amounts of blur (see figure 
6(a)). Performance with external features, by themselves, is also poor, not exceeding 40% 
at any resolution level. However, performance with full heads is impressively robust to 
degradation, and remains high even when the independent contributions from the internal 
and external feature sets are close to zero, suggesting a highly non-linear interaction 
between the two sets of cues. Overall, the results demonstrate the insufficiency of internal 
features and even their mutual configuration, while highlighting the perceptual 
importance of the full head configuration for face recognition. Figure 6(b) shows an 
image that underscores the importance of overall head shape in determining identity. 
 

(a)     (b)   
 

Figure 6. (a) Recognition performance with internal features (with and without 
configural cues). Performance obtained with whole head images is also included for 
comparison. 
 (b) Although this image appears to be a fairly run-of-the-mill picture of Bill Clinton and 
Al Gore, a closer inspection reveals that both men have been digitally given identical 
inner face features and their mutual configuration. Only the external features are 
different. It appears, therefore, that the human visual system makes strong use of the 
overall head shape in order to determine facial identity. (From Sinha and Poggio, 1996)  
 
Result 7: The important configural relationships appear to be independent 
across the width and height dimensions 
Taking up where the previous result left off, we can ask what aspects of the spatial 
structure of a head are important for judgments of identity? At least a few computer 
vision systems involve precise measurements of attributes such as the inter-eye distance, 
width of the mouth and length of nose. However, it appears that the human visual system 
does not depend critically on these measurements. Evidence in favor of this claim comes 
from investigations of recognition with distorted face images. In our work, we have 
found a remarkable tolerance of recognition processes to compressive distortions. A face 



can be compressed down to 25% of its original height or width, with absolutely no loss in 
its recognizability (see figure 7). Clearly, such compressions play havoc with absolute 
inter-feature distance measurements, and also distance ratios across the x and y 
dimensions. Nevertheless, recognition performance stays invariant. One set of spatial 
attributes that stay unchanged with compressions, are ratios of distances within the same 
dimension. It is possible then that human encoding of faces utilizes such ratios (we refer 
to them as iso-dimension ratios), and this might constitute a useful strategy for computer 
vision systems as well. Why might the human visual system have adopted such a 
strategy, given that image compressions were not particularly commonplace until the 
recent advent of photography? To a limited extent, rotations in depth around the x and y 
axes approximate 2-D compressions. Perhaps the human visual system has adopted an 
iso-dimension ratio encoding strategy to obtain a measure of tolerance to such 
transformations. 

 
Figure 7. Even drastic compressions of faces do not render them unrecognizable. Here, 
the celebrity faces have been compressed to 25% of their original width. Yet, recognition 
performance with this set is the same as that obtained with the original faces. 

 
Result 8: Vertical inversion dramatically reduces recognition performance  
Upside down (‘inverted’) faces are harder to recognize than right-side up faces, despite 
the fact that the same information is present in both images. Yin (1970) trained adults on 
a series of faces, which later had to be identified from pairs made up of seen and unseen 
faces. Performance in the test phase was high (90 percent) when these faces were 
presented upright but suffered remarkably (62 percent) when all faces were inverted. The 
difference in performance was much smaller (10 percentage points) when houses were 
used instead of faces in the two conditions, suggesting that this is not a characteristic of 
general object recognition but may be face-specific. The dominant explanation for the 
decrement in face recognition performance, induced by vertical inversion, is that this 
transformation selectively impairs our ability to extract configural information from 
faces, while leaving featural processing largely intact. Partial support for this assertion 
comes from experiments showing that while faces differing in individual features (such 
as eyes and mouth) can be readily distinguished even when vertically inverted, 
configurally different faces are much harder to tell apart upon inversion. The 
predominantly featural style of analysis with inverted faces is illustrated by the ‘Thatcher 



illusion’ (see figure 8) (Thompson, 1980). However, this notion of a clear separation of 
featural and configural analyses has been challenged by some recent experimental 
evidence (Riesenhuber et al, 2004). In the light of these experimental data, while we 
cannot say precisely what accounts for the difficulty in recognizing inverted faces, we 
can be sure that vertical inversion has a dramatic adverse effect on human performance, 
and therein may lie clues regarding the nature of face encoding strategies used by the 
visual system. For machine based systems, inverted faces might be as easy as upright 
ones assuming the existence of a prior step of normalization. It is interesting that such a 
‘normalization’, while cognitively feasible, does not appear to help human performance.   
 

 
 

Figure 8. The Thatcher Illusion. The eyes and mouth of the image on the right have been 
vertically inverted. When the whole face is inverted as well, this manipulation is not 
apparent. If the reader turns this page around, however, the manipulation is grotesquely 
obvious. 
 
The nature of cues used: Pigmentation and shape 
 
Result 9: Face-shape appears to be encoded in a slightly caricatured 
manner 
Intuitively, successful face recognition requires that the human visual system should 
encode previously seen faces veridically. Errors in the stored representation of a face 
obviously weaken the potential to match new inputs to old.  
 However, it has been demonstrated that some departures from veridicality are 
actually beneficial for human face recognition. Specifically, “caricatured” versions of 
faces have been demonstrated to support recognition performance at least equal to or 
better than that achieved with veridical faces (Rhodes, 1996). Caricatured faces can be 
created to exaggerate deviations in shape alone (Brennan, 1985) or a combination of 
deviations in both shape and pigmentation cues (Benson & Perrett, 1991). In both cases, 
subjects display small, but consistent, preferences for caricatured faces as determined by 
several different measures (Lee & Perrett, 1997, 2000). Shape caricaturing is evident for 
objects other than faces as well (Gibson, 1947) suggesting that caricatured 
representations may be a widely applied strategy.  
 These results have been taken to suggest a norm-based representational space for 
faces, often referred to in the literature as “face space” (Valentine, 1999).  This 
hypothesis may usefully constrain the kinds of encoding strategies employed by 



computational face recognition systems. At the very least, an important test for any 
recognition scheme is whether or not it displays “caricature effects” similar to those 
found in human recognition. 
 

 
 

Figure 9.  An example of a face caricature. The average female face for a particular face 
population is displayed (A), as well as a “veridical” image of an exemplar face (B). We 
create a caricatured version of the exemplar by moving away from the norm, thus 
exaggerating differences between the average face and the exemplar. The result is a face 
with “caricatured” shape and pigmentation (C). Such caricatures are recognized as well 
or better than veridical images. 
 
Result 10: Pigmentation cues are at least as important as shape cues 
There are two basic ways in which faces can differ—in terms of their shape, and in terms 
of how they reflect light, or their pigmentation.  By ‘pigmentation’, we refer to all surface 
reflectance properties, including albedo, hue, specularity, translucency, and spatial 
variation in these properties.  When referring to all surface reflectance properties of 
faces, we prefer the term ‘pigmentation’ to the terms ‘texture’ or ‘color’, which invite 
confusion because they are commonly used to refer to specific subsets of surface 
reflectance properties (spatial variation in albedo and greater reflectance of particular 
wavelengths, respectively).   
 Recent studies have investigated whether shape or pigmentation cues are more 
important for face recognition.  The approach taken has been to create sets of faces that 
differ from one another in terms of only their shape or only their pigmentation, using 
either laser-scanned models of faces (pictured in Figure 10) (O'Toole et al  1999), 
artificial faces (Russell et al  2004), or morphing photographs of faces (in which case 
shape is defined in terms of the 2-dimensional outlines of the face and individual 
features) (Russell et al  2004).  With each of these classes of stimuli, subjects have 
performed about equally well using either shape or pigmentation cues.  This provides 
evidence that the two kinds of cues are used about equally by humans to recognize faces.  
A current study in our laboratory investigating the use of these cues for the recognition of 
familiar faces is also finding that both shape and pigmentation are about equally 
important.  An implication of this work is that artificial face recognition systems would 
benefit from representing pigmentation as well as shape cues.   

 



 
 

Figure 10. Stimuli from O’Toole et al. 1999.  The faces in the left column are all images 
of laser-scanned faces.  They differ from one another in terms of both shape and 
pigmentation.  The faces in the center column differ from one another in terms of their 
pigmentation but not their shape, while the faces in the right column differ from one 
another in terms of their shape but not their pigmentation.  From the fact that the faces in 
either the center or right column do not look the same as each other, it is evident that 
both shape and pigmentation cues play a role in facial identity. 
 
Result 11: Color cues play a significant role especially when shape cues 
are degraded 
The luminance structure of face images is undoubtedly of great significance for 
recognition. Past research has suggested that the use of these cues may adequately 
account for face-identification performance with little remaining need to posit a role for 
color information. Furthermore, people tend to accurately identify faces that are 
artificially colored. However, recent evidence (Yip and Sinha, 2002) counters the notion 
that color is unimportant for human face recognition, and suggests instead that when 
shape cues in images are compromised (say, by reductions in resolution), the brain relies 
on color cues to pinpoint identity. In such circumstances, recognition performance with 
color images is significantly better than with gray-scale images. Precisely how does color 
information facilitate face recognition? One possibility is that color provides diagnostic 
information. The expression ‘diagnostic information’ refers to color cues that are specific 
to an individual, for instance the particular hue of their hair or skin that may allow us to 
identify them. On the other hand, color might facilitate low-level image analysis, and thus 
indirectly aid face recognition. An example of such a low-level task is image 
segmentation – determining where one region ends and the other starts. As many years of 



work in computer vision has shown (Haralick, 1985; Felzenszwalb and Huttenlocher, 
1998), this task is notoriously difficult and becomes even more intractable as images are 
degraded. Color may facilitate this task by supplementing the luminance-based cues and 
thereby lead to a better parsing of a degraded face image in terms of its constituent 
regions. Experimental data favor the second possibility. Recognition performance with 
pseudo-colored face images (which do not contain diagnostic hue information) is just as 
high as with natural color images (and both are significantly better than grayscale images, 
when shape cues are degraded). Figure 11 illustrates this idea. The images show the 
luminance and color components of sample face inputs. They suggest that color 
distributions can supplement luminance information to allow for a better estimation of the 
boundaries, shapes and sizes of facial attributes such as eyes and hair-lines. 
 

(a)  

(b)  

(c)  

 
Figure 11. Examples that illustrate how color information may facilitate some important 
low-level image analysis tasks such as segmentation. In (a), the hue distribution (right 
panel) allows for a better estimation of the shape and size of the eyes than the luminance 
information alone (middle panel). Left panel shows the original image. Similarly, in (b), 
hue information (right panel) allows for a better segmentation and estimation of the 
location and shape of the hair-line than just the luminance information (middle panel). 
This facilitation of low-level analysis happens with other choices of colors as well, such 
as in the pseudo-color image shown on the left in (c). The hue distribution here, as in (b) 
aids in estimating the position of facial attributes such as the hair-line. 



 
Result 12: Contrast polarity inversion dramatically impairs recognition 
performance, possibly due to compromised ability to use pigmentation 
cues 
Skilled darkroom technicians working in the photo re-touching industry several decades 
ago noticed that faces were particularly difficult to recognize when viewed in reversed 
contrast, as in photographic negatives.  Subsequently the phenomenon has been studied 
extensively in the vision science community, with the belief that determining how 
recognition can be impaired helps us understand how it works under normal conditions.  
Contrast negation is a reversible manipulation that does not remove any information from 
the image.  Though no information is lost, our ability to use the information in the image 
is severely compromised.  This suggests that some normally useful information is 
rendered unusable by negation.   
 When pigmentation cues are unavailable, as in uniformly pigmented 3-dimensional 
face models (derived from laser scans) or in other stimuli for which pigmentation cues 
are unavailable (see Result 10 for examples), recognition is not significantly worse with 
negative contrast (Bruce and Langton 1994; Russell et al (Under review)).  This suggests 
that pigmentation cues might be disrupted by negation.  Other work with uniformly 
pigmented face models has found evidence that shading cues are disrupted by contrast 
negation, but only for faces lit from above (Liu et al 1999).  These findings suggest that 
human face recognition uses representations that are sensitive to contrast direction, and 
that pigmentation and shading play important roles in recognition.   
 

 
 

Figure 12. A selection from the cover of the Beatles’ “Sgt. Pepper Lonely Hearts Club 
Band” album, presented in negative contrast negative.  This image contains numerous 
well-known celebrities, whose likenesses would be easily recognizable to many readers of 
this publication.  However, when presented in negative contrast, it is difficult, if not 
impossible, to recognize most of the faces.   
 



Result 13: Illumination changes influence generalization 
Some computational models of recognition assume that a face must be viewed under 
many different illumination conditions for robust representations.  However, there is 
evidence that humans are capable of generalizing representations of a face to radically 
novel illumination conditions.  In one recent study (Braje et al  1998), subjects shown a 
laser scanned image of a face with illumination coming from one side, were subsequently 
shown a face illuminated strongly from the other side, and were asked whether both 
images were of the same face.  Subjects were well above chance at deciding whether the 
second face was the same as the first, indicating significant ability to generalize the 
representation of the face to novel illumination conditions.  However, the subjects were 
significantly impaired at this task relative to when the two faces were presented under the 
same illumination, indicating that the generalization to novel illumination conditions is 
not perfect.   
 An implications of this result is that human recognition of faces is sensitive to 
illumination direction, but is capable of significant generalization to novel illumination 
conditions even after viewing only a single image.   
 

 
Figure 13. Stimuli from Braje et al. (1998).  These two images demonstrate the kind of 
lighting used in this experiment.  After being shown an image like the one on the left, 
subjects were well above chance at determining whether a subsequently presented  image 
such as the one on the right represented the same or a different individual (in this case 
the same). 
 
Role of temporal cues 
 
Result 14: View-generalization appears to be mediated by temporal 
association 
Recognizing a face across variations in viewing angle is a very challenging 
computational task that the human visual system can solve with remarkable ease. Despite 
the fact that image-level differences between two views of the same face are much larger 
than those between two different faces viewed at the same angle (Moses, Adini, & 
Ullman, 1994), human observers are somehow able to link the correct images together.  
 It has been suggested that temporal association serves as the “perceptual glue” 
that binds different images of the same object into a useful whole. Indeed, close temporal 



association of novel images viewed in sequence is sufficient to induce some IT neurons 
to respond similarly to arbitrary image pairs (Miyashita, 1993). Behavioral evidence from 
human observers exposed to rotating “paperclip” objects supports rapid learning of image 
sequences as well (Sinha & Poggio, 1996).  

In terms of human face recognition, temporal association of two unique faces (one 
frontally viewed, the other viewed in profile) has been demonstrated to have intriguing 
consequences for recognition. Brief exposure to movies containing a rotating head which 
morphs between one individual and another as it rotates from frontal to profile views can 
impair observers’ ability to distinguish between the two faces contained in the sequence 
(Wallis & Bulthoff, 2001).  

Taken together, these results suggest that the temporal proximity of images is a 
powerful tool for establishing object representations. Studying recognition performance 
using images that lack a temporal context may be a profound handicap to our 
understanding of how view invariance is achieved. Exploring image sequences using 
mechanisms that make explicit temporal associations (Foldiak, 1991) may be a powerful 
means for view generalization. 
 

 
Figure 14.  The time course of the sequences shown to observers in Wallis & Bulthoff 
(2001). Faces α1 and α2 are each used as the frontally viewed face in separate 
sequences, and combined with the other face profile in their respective movies. ¾ morphs 
between α1 and α2 are used to interpolate between the frontally-viewed faces and the 
profiles to create a smooth motion sequence. Same/Different performance for faces 
appearing in the same sequence is impaired relative to pairs of faces appearing in 
different sequences. 
 
Result 15: Motion of faces appears to facilitate subsequent recognition 
Do dynamic cues aid face recognition? The answer is ‘yes’, but only in some cases. Rigid 
motion (such as that obtained from a camera rotating around a motionless head) can 
facilitate recognition of previously viewed faces (Schiff et al, 1986; O’Toole et al, 2002) 
but there seems to be very little, if any, benefit of seeing these views during the learning 
phase. By contrast, non-rigid motion (where the individuals exhibit emotive facial 



expressions or speech movements) plays a greater role. Experiments in (Knappmeyer et 
al, 2003), using subtle morphs of form and facial motion in novel (i.e., unfamiliar) faces, 
showed that non-rigid facial motion from one face applied to the form of another face can 
bias an observer to misidentify the latter as the former (see Figure 15). Experiments with 
famous (i.e., highly familiar) faces (Lander and Chuang, 2005) again showed a 
facilitation in recognition with dynamic cues from expressive or talking movements, but 
not from rigid motion. Facilitation was most pronounced for faces whose movement was 
judged as ‘distinctive’. Note also that facilitation comes from a natural sequence of 
moving images, not merely from having more views available: The facilitation is greatly 
lessened when the same frames are presented in random order or in a static array.  
 These results suggest that face motion is more than just a sequence of viewpoints 
to the face recognition system. The dynamic cues from expressive and talking 
movements provide information about aspects of facial structure that transcend the gains 
of simply having multiple viewpoints. 

 
Figure 15. Facial motion from expressions and talking were morphed onto the forms of 
‘Lester’ and ‘Stefan’. Subjects could be biased to identify an anti-caricatured (morphed 
towards the average) form of Lester as Stefan when Stefan’s movements were imposed 
onto Lester’s form. (From Knappmeyer et al, 2003.) 
 
Developmental progression 
 
Result 16: The visual system starts with a rudimentary preference for face-
like patterns 
What, if any, are the face-specific biases that the human visual system starts out with? 
Newborns selectively gaze at ‘face-like’ patterns only hours after birth. A pattern that is 
face-like can be something as simple as that shown in figure 16(a): three dots within an 
oval that represent the two eyes and a mouth. An impossible face (created by vertically 
inverting the triad of dots) does not attract the newborn’s attention as much as the more 
normal face. However, the specificity of the response to the three-dot arrangement has 
been called into question. More recent work (Simion et al, 2001) suggests that newborns 



simply prefer ‘top-heaviness’ (figure 16(b)). Thus, it remains unclear whether this is a 
general preference (perhaps with no practical significance) or a face-specific orienting 
response to prime the infant in bootstrapping its nascent face recognition system. Even if 
this preference really is an innate face-orienting mechanism, it may be more for the 
benefit of the mother (e.g., to form the mother-child bond) than the infant’s face 
processing capabilities. 
A simple arrangement of three dots within an oval may serve as an appropriate template 
for detecting faces in the bootstrapping stages of a face-learning system. Similar 
templates have been used with reasonable success in some applications (for example, 
Sinha, 2002) of face detection. 
 

 
                      (a)                                                                       (b) 
Figure 16 (a). Newborns preferentially orient their gaze to the face-like pattern on the left, rather 
than the one shown on the right, suggesting some innately specified representation for faces. 
(From Johnson et al, 1991.) (b) As a counterpoint to the idea of innate preferences for faces, 
Simion et al (2001) have shown that newborns consistently prefer top-heavy patterns (left 
column) over bottom-heavy ones (right column). It is unclear whether this is the same preference 
exhibited in earlier work, and if it is, whether it is face-specific or some other general-purpose or 
artifactual preference. 
 
Result 17: The visual system progresses from a piecemeal to a holistic 
strategy over the first several years of life 
As discussed in Result 8, normal adults show a remarkable deficit in recognition of 
inverted faces, but no such deficit for inverted images of non-face objects such as houses. 
A number of studies have shown, however, that this pattern of results takes many years to 
develop (Carey and Diamond, 1977; Hay and Cox, 2000; Maurer et al, 2002; Mondloch 
et al, 2002, 2003; Pellicano and Rhodes, 2003; Schwarzer, 2003). Six year old children 
are not affected by inversion when it comes to recognizing seen faces in a seen-unseen 
pair [16]; 8 year olds show some inversion effect and 10 year olds exhibit near adult-like 
performance (see Fig. 17). Experimenters in (Mondloch et al, 2002) selectively 
manipulated spacing (moving the location of features on a face) versus features (taking 
eyes or mouth from different faces) and found that it is specifically sensitivity to spacing 
manipulations that is impaired when faces are inverted. Interestingly, although six year 



old children are not sensitive to inversion in the tests mentioned above, they are 
susceptible to the Thatcher Illusion (Thompson, 1980; Lewis, 2003), suggesting, perhaps, 
that configural information is important for face processing throughout child 
development, but that this information has not been assimilated into the face recognition 
system. 
 This pattern of behavior suggests that over the course of several years, a shift in 
strategy occurs. Initially, infants and toddlers adopt a largely piecemeal, feature-based 
strategy for recognizing faces. Gradually, a more sophisticated holistic strategy involving 
configural information evolves. This is indirect evidence for the role of configural 
information in achieving the robust face recognition performance that adults exhibit.   
 

 
Figure 17. Generally, six year olds are rather poor at upright and inverted faces. As 
their age approaches ten years, their performance improves dramatically on upright 
faces, but hardly any improvement is exhibited on inverted faces. From Carey and 
Diamond, 1971. 
 
Neural underpinnings 
 
Result 18: The human visual system appears to devote specialized neural 
resources for face perception 
Whether or not faces constitute a “special” class of visual stimuli has been the subject of 
much debate for many years. Since the first demonstrations of the “inversion effect” 
described above (Yin, 1969), it has been suspected that unique cognitive and neural 
mechanisms may exist for face processing in the human visual system. 
 Indeed, there is a great deal of evidence that the primary locus for human face 
processing may be found on the fusiform gyrus of the extra-striate visual cortex 
(Kanwisher, McDermott, & Chun, 1997; McCarthy, Puce, Gore, & Allison, 1997). This 
region shows an intriguing pattern of selectivity (schematic faces do not give rise to much 
activity) and generality (animal faces do elicit a good response) (Tong, Nakayama, 
Moscovitch, Weinrib, & Kanwisher, 2000), suggesting a strong domain-specific response 
for faces. In keeping with behavioral results, the “fusiform face area” (FFA) also appears 
to exhibit an “inversion effect” (Kanwisher, Tong, & Nakayama, 1998). Overall, the 
characterization of the FFA as a dedicated face processing module appears very strong. 
 However, it must be noted that the debate over faces being “special” is far from 
over. It has been suggested that rather than being a true “face module,” the FFA may be 
responsible for performing either subordinate or “expert-level” categorization of generic 
objects. There are results from both behavioral studies (Diamond & Carey, 1986; 



Gauthier & Tarr, 1997) and neuroimaging studies (Gauthier, Anderson, Tarr, Skudlarski, 
& Gore, 1997) that lend some support to this “perceptual expertise” account. Recent 
findings appear to favor the original “face module” account of the FFA’s function, 
however (Grill-Spector, Knouf, & Kanwisher, 2004). 
 The full breadth and depth of the arguments supporting both positions are beyond 
the scope of this review (see (McKone & Kanwisher, 2005) for a more thorough 
treatment), but it is important to recognize that specialized face processing mechanisms 
in the human visual system are a very real possibility. Whatever its ultimate status, the 
response profile of the FFA provides a potentially valuable set of constraints for 
computational systems, indicating the extent of selectivity and generality we should 
expect from face recognition systems.  
 

 
 

Figure 18. At upper left, an example of the FFA in one subject, showing right-
hemisphere lateralization. Also included here are example stimuli from Tong et al. 2000, 
together with the amount of percent signal change observed in the FFA for each type of 
image. Photographs of human and animal faces elicit strong responses, while schematic 
faces and objects do not. This response profile helps place constraints on the selectivity 
and generality we might expect from computational models of human face recognition. 
 
Result 19: Latency of responses to faces in IT cortex is about 120 ms, 
suggesting a largely feed-forward computation 
Human observers can carry out visual recognition tasks very rapidly. Behavioral reaction 
times (RTs) are already quite fast, and represent a potentially large overestimate of the 
time required for recognition due to the motor component of signaling a response. 
Indeed, when a neural marker of recognition is used, accurate performance on such 
seemingly complex tasks as determining the presence/absence of an animal in a natural 
scene appears to require as little as 50ms (Thorpe, Fize, & Marlot, 1996).  
 Recently it has been shown that although this particular task (animal/no animal) 
seems quite complicated, it may be solvable using very low-level visual representations 
(Johnson & Olshausen, 2003). That said, there is neurophysiological evidence that truly 
complex tasks, such as face recognition, may be carried out over a surprisingly short 
period of time.  
 Neurons in primate inferotemporal (IT) cortex can exhibit selectivity to stimuli 
that are more complicated than the simple gratings and bars that elicit responses from 



cells in early visual areas. In particular, it has been noted that there are some cells in IT 
cortex that are selective for faces (Desimone, Albright, Gross, & Bruce, 1984). Moreover, 
the latency of response in these cells is in the neighborhood of 80-160ms (Perrett, Rolls, 
& Caan, 1982). Although slightly longer than the 50ms “super-RT” reported in the 
animal/no-animal task, such rapid emergence of a selective response indicates that face 
recognition may indeed proceed very rapidly. 
 The computational relevance of these results is that recognition as it is performed 
up to the level of IT cortex probably requires only one feed-forward pass through the 
visual system. Feedback and iterative processing are likely not major factors in the 
responses recorded in these studies. This is a very important constraint on recognition 
algorithms, as it indicates that sufficient information must be extracted immediately from 
the image without the luxury of resorting to slowly converging iterative computations.  
 

 
Figure 19. Examples of an IT cell’s responses to variations on a face stimulus (from 
Desimone et al. 1984). The response is robust to many degradations of the primate face 
(save for scrambling) and also responds very well to a human face. The lack of a 
response to the hand indicates that this cell is not just interested in body parts, but is 
specific to faces. Cells in IT cortex can produce responses such as these with a latency of 
about 120ms. 
 
Limitations of human performance 
 
Result 20: Human memory for briefly seen faces (as in eyewitness 
testimony) is rather poor 
A central finding from the study of human memory is that people are generally better at 
recognizing something that they have seen then at recalling it when cued.  For example, if 
given a set of words to study, people are better at recognizing whether presented words 
were a part of the studied set than at recalling specific items from the set.  Most of the 
experiments described in this review deal with the problem of face recognition.  Face 
recall is much more difficult, and the problem is compounded by the typically poor 
ability of individuals to externalize an image.  However, the quality of face recall has 
important consequences in the context of eyewitness testimony in criminal cases (Sporer 
et al, 1996).   
 Recollection of criminal faces is made particularly difficult by several factors related 
to criminal activity.  Most importantly, crime victims are typically in a highly aroused 
emotional state during the crime, and are unable to dispassionately study the details of the 



face of the perpetrator.  Related to this emotional issue is the phenomenon of “weapon 
focus”, wherein victims are much more aware of weapons being used by the perpetrator 
than the actual perpetrator (illustrated in figure 20).  These problems with eyewitness 
recall of faces illustrate one key way in which human recognition of faces differs from 
that of most computational systems:  for humans, face recognition is conducted in the 
context of ecological priorities, goals, and emotions that have large effects on the 
saliency of a given face and its context, and hence on subsequent ability to recognize or 
recall it. Machine based systems, by being immune to such modulatory influences, stand 
a good chance of exceeding human performance under stressful circumstances. 
 

 
Figure 20. Figure reprinted from Hinkle (1989).  This is a representation of what crime 
victims often perceive—the threatening weapon in vivid detail, but only a vague sense of 
the details of the perpetrator.  This phenomenon is called “weapon focus”.   
 
Conclusions 
The twin enterprises of visual neuroscience and computer vision have deeply synergistic 
objectives. An understanding of human visual processes involved in face recognition can 
facilitate and, in turn be facilitated by, better computational models. Our presentation of 
results in this paper is driven by the goal of furthering cross-talk between the two 
disciplines. The observations included here constitute twenty brief vignettes into what is 
surely a most impressive and rather complex biological system. We hope that these 
vignettes will help in the ongoing computer vision initiatives to create face recognition 
systems that can match, and eventually exceed, the capabilities of their human 
counterparts. 
 
Bibliography 
Benson, P. J., & Perrett, D. I. (1991). Perception and Recognition of Photographic 
Quality Facial Caricatures: Implications for the Recognition of Natural Images. European 
Journal of Cognitive Psychology, 3(1), 105-135. 
 



Braje W L, Kersten D, Tarr M J, Troje N F, (1998). “Illumination Effects in Face 
Recognition” Psychobiology, 26 371-380. 
 
Brennan, S. E. (1985). The caricature generator. Leonardo, 18, 170-178. 
 
Bruce, V. and Young, A. W. (1998). 'In the eye of the beholder', Oxford Univ. Press. 
 
Bruce, V., Hanna, E., Dench, N., Healey, P., & Burton, M. (1992). The importance of 
‘mass’ in line drawings of faces. Applied Cogniti6e Psychology, 6, 619–628. 
 
Bruce V, Langton S, (1994). “The use of pigmentation and shading information in 
recognizing the sex and identities of faces” Perception 23 803-22. 
 
Burton, A. M., Wilson, S., Cowan, M. & Bruce, V. (1999). Face recognition in poor-
quality video, Psychological Science, 10, 243-248. 
 
Calder, A. J., Young, A. W., Keane, J. and Dean, M. (2000). Configural information in 
facial expression perception, J Exp Psychol Hum Percept Perform, vol. 26, pp. 527-51. 
 
S. Carey and R. Diamond, (1977). "From Piecemeal to Configurational Representation of 
Faces," Science, vol. 195, pp. 312-314. 
 
Davies, G., Ellis, H., and Shepherd, J. (1977) Cue saliency in faces as assessed by the 
'Photofit' technique. Perception, 6, 263-269. 
 
Davies, G., Ellis, H. D., & Shepherd, J. (1978). Face recognition accuracy as a function 
of mode of representation. Journal of Applied Psychology, 63, 180–187. 
 
Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective 
properties of inferior temporal neurons in the macaque. The Journal of Neuroscience, 
4(8), 2051-2062. 
 
Diamond, R., & Carey, S. (1986). Why Faces Are and Are Not Special: An Effect of 
Expertise. Journal of Experimental Psychology: General, 115(2), 107-117. 
 
Felzenszwalb, P., and Huttenlocher, D. (1998). Image Segmentation Using Local 
Variation. Proceedings IEEE Conference on Computer Vision and Pattern Recognition, 
pages 98-104. 
 
Foldiak, P. (1991). Learning Invariance from Transformation Sequences. Neural 
Computation, 3, 194-200. 
 
Fraser, I. H., Craig, G. L., and Parker, D. M. (1990) Reaction time measures of feature 
saliency in schematic faces. Perception, 19(5), 661-673.   
 
Gauthier, I., & Tarr, M. J. (1997). Becoming a "Greeble" expert: Exploring the face 
recognition mechanism. Vision Research, 37(12), 1673-1682. 



 
Gauthier, I., Anderson, A. W., Tarr, M. J., Skudlarski, P., & Gore, J. C. (1997). Levels of 
categorization in visual objects studied with functional MRI. Current Biology, 7, 645-
651. 
 
Gibson, J. J. (1947). Motion picture testing and research (7). Washington D.C.: AAF 
Aviation Psychology Program. 
 
Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves 
face perception, not generic within-category identification. Nature Neuroscience, 7(5), 
555-562. 
 
Haralick, R. (1985). Survey, image segmentation techniques, Computer Vision, Graphics, 
and Image Processing, 29, 100-135. 
 
Harmon, L. D. & Julesz, B. (1973a). Masking in visual recognition: Effects of two-
dimensional noise. Science, 180, 1194-1197. 
 
Harmon, L. D. (1973b). The recognition of faces. Scientific American, 229(5), 70-83. 
 
Hay, D. C. and Cox, R. (2000). "Developmental changes in the recognition of faces and 
facial features," Infant and Child Development, vol. 9, pp. 199-212. 
 
Hinkle, D P, (1989). "Faces of Crime", (Atlanta, GA: Peachtree Publishers) 
 
Johnson, M. H., Dziurawiec, S., Ellis, H. and Morton, J. (1991). "Newborns Preferential 
Tracking of Face-Like Stimuli and Its Subsequent Decline," Cognition, vol. 40, pp. 1-19. 
 
Johnson, J. S., & Olshausen, B. A. (2003). Timecourse of Neural Signatures of Object 
Recognition. Journal of Vision, 3, 499-512. 
 
Kanwisher, N., McDermott, J., & Chun, M. (1997). The Fusiform Face Area: A Module 
in Human Extrastriate Cortex Specialized for the Perception of Faces. Journal of 
Neuroscience, 17, 4302-4311. 
 
Kanwisher, N., Tong, F., & Nakayama, K. (1998). The Effect of Face Inversion on the 
Human Fusiform Face Area. Cognition, 68, B1-B11. 
 
Knappmeyer, B., Thornton, I. M. and Bulthoff, H. H. (2003). "The use of facial motion 
and facial form during the processing of identity," Vision Res, vol. 43, pp. 1921-36. 
 
Lander, K. and Chuang, L. (2005). "Why are moving faces easier to recognize?," Visual 
Cognition, vol. 12, pp. 429-442. 
 
Lee, K. J., & Perrett, D. (1997). Presentation-time measures of the effects of 
manipulations in colour space on discrimination of famous faces. Perception, 26, 733-
752. 



 
Lee, K. J., & Perrett, D. I. (2000). Manipulation of colour and shape information and its 
consequence upon recognition and best-likeness judgments. Perception, 29, 1291-1312. 
 
Lewis, M. B. (2003). "Thatcher's children: development and the Thatcher illusion," 
Perception, vol. 32, pp. 1415-21. 
 
Liu, C. H., Collin, C. A., Burton, A. M., Chaurdhuri, A., (1999). “Lighting direction 
affects recognition of untextured faces in photographic positive and negative” Vision 
Research 39, 4003-4009. 
 
Liu, C. H., Seetzen, H., Burton, A. M. and Chaudhuri, A. (2003). Face recognition is 
robust with incongruent image resolution: Relationship to security video images. Journal 
of Experimental Psychology: Applied, Vol. 9, 33-41. 
 
Maurer, D., Le Grand, R. and Mondloch, C. J. (2002). "The many faces of configural 
processing," Trends in Cognitive Sciences, vol. 6, pp. 255-260. 
 
McCarthy, G., Puce, A., Gore, J. C., & Allison, T. (1997). Face specific processing in the 
human fusiform gyrus. Journal of Cognitive Neuroscience, 9, 605-610. 
 
McKone, E., & Kanwisher, N. (2005). Does the human brain process objects of expertise 
like faces? A review of the evidence. In S. Dehaene, J. R. Duhamel, M. Hauser, & G. 
Rizzolatti (Eds.), From Monkey Brain to Human Brain. Cambridge, MA: MIT Press. 
 
Miyashita, Y. (1993). Inferior temporal cortex: where visual perception meets memory. 
Annual Reviews of Neuroscience, 16, 245-263. 
 
Mondloch, C. J., Le Grand, R. and Maurer, D. (2002). "Configural face processing 
develops more slowly than featural face processing," Perception, vol. 31, pp. 553-566. 
 
Mondloch, C. J., Geldart, S., Maurer, D. and Le Grand, R. (2003). "Developmental 
changes in face processing skills," Journal of Experimental Child Psychology, vol. 86, 
pp. 67-84. 
 
Moses, Y., Adini, Y., & Ullman, S. (1994). Face recognition: the problem of 
compensating for illumination changes. Proceedings of the European Conference on 
Computer Vision, 286-296. 
 
O'Toole A J, Vetter T, Blanz V, (1999). “Three-dimensional shape and two-dimensional 
surface reflectance contributions to face recognition:  an application of three-dimensional 
morphing” Vision Research 39 3145-3155. 
 
O'Toole, A. J., Roark, D. A. and Abdi, H. (2002). "Recognizing moving faces: a 
psychological and neural synthesis," Trends Cogn Sci, vol. 6, pp. 261-266. 
 



Pearson, D. E. and Robinson, J. A. (1985). Visual communication at very low data 
rates, Proceedings of the IEEE, vol. 74, no. 4, 795-812. 
 
Pearson, D., Hanna, E. and Martinez, K. (1990). Computer generated cartoons, in 
Barlow, H., Blakemore, C. and Weston-Smith, M., Eds. Images and Understanding, 
chapter 3, pages pp. 46-60. Cambridge University Press. 
 
Pellicano, E. and Rhodes, G. (2003). "Holistic processing of faces in preschool children 
and adults," Psychological Science, vol. 14, pp. 618-622. 
 
Perrett, D. I., Rolls, E. T., & Caan, W. (1982). Visual neurones responsive to faces in the 
monkey temporal cortex. Experimental Brain Research, 47(3), 329-342. 
 
Rhodes, G. (1996). Superportraits: Caricatures and Recognition. East Sussex, UK.: 
Psychology Press Publishers. 
 
Riesenhuber, M., Jarudi, I., Gilad, S., and Sinha P. (2004). Face processing in humans is 
compatible with a simple shape-based model of vision. Proc. R. Soc. Lond. B (Suppl.) 
271, S448-450. 
 
Roark, D. A., O’Toole, A. J., and Abdi, H. (2003). Human recognition of familiar and 
unfamiliar people in naturalistic video. IEEE International Workshop on Analysis and 
Modeling of Faces, 36-43, Nice, France. 
 
Robbins, R. and McKone, E. (2003). Can holistic processing be learned for inverted 
faces?, Cognition, vol. 88, pp. 79-107. 
 
Russell R, Sinha P, Biederman I, Nederhouser M, (2004). “The importance of 
pigmentation for face recognition” Journal of Vision 4 418a. 
 
Russell R, Sinha P, Biederman I, Nederhouser M, (Under review) “Is pigmentation 
important for face recognition?  Evidence from contrast negation” 
 
Sadr, J., Jarudi, I. and Sinha, P. (2003). The role of eyebrows in face recognition, 
Perception, vol. 32, pp. 285-93. 
 
Schiff, W., Banka, L. and de Bordes Galdi (1986). Recognizing people seen in events via 
dynamic "mug shots", Am J Psychol, vol. 99, pp. 219-31. 
 
Schwarzer, G. (2000). "Development of face processing: The effect of face inversion," 
Child Development, vol. 71, pp. 391-401. 
 
Simion, F., Cassia, V. M., Turati, C. and Valenza, E. (2001). "The origins of face 
perception: Specific versus non-specific mechanisms," Infant and Child Development, 
vol. 10, pp. 59-65. 
 



Sinha, P. and Poggio, T. (1996). I think I know that face…, Nature, 384, 404. 
 
Sinha, P., & Poggio, T. (1996). The role of learning in 3-D form perception. Nature, 384, 
460-463. 
 
Sinha, P. (2002). "Qualitative representations for recognition," Biologically Motivated 
Computer Vision, Proceedings, vol. 2525, pp. 249-262. 
 
Sporer S L, Malpass R S, Koehnken G, (1996). “Psychological Issues in Eyewitness 
Identification”, (Mahwah, NJ: Lawrence Erlbaum Associates) 
 
Thompson, P. (1980) "Margaret Thatcher: a new illusion." Perception. 9(4):483-4. 
 
Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual 
system. Nature, 381, 520-522. 
 
Tong, F., Nakayama, K., Moscovitch, M., Weinrib, O., & Kanwisher, N. (2000). 
Response Properties of Human Fusiform Face Area. Cognitive Neuropsychology, 17(1), 
257-279. 
 
Valentine, T. (Ed.). (1999). Face-Space Models of Face Recognition. Hillsdale, New 
Jersey: Lawrence Erlbaum Associates, Inc. 
 
Wallis, G., & Bulthoff, H. H. (2001). Effects of temporal association on recognition 
memory. Proceedings of the National Academy of Sciences, 98(8), 4800-4804. 
 
Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 
81, 141-145. 
 
Yin, R. K. (1970). Face recognition by brain-injured patients: a dissociable ability?, 
Neuropsychologia, vol. 8, pp. 395-402. 
 
Yip, A. and Sinha, P. (2002). Role of color in face recognition. Perception. Vol. 31, 995-
1003. 
 
Young, A. W., Hellawell, D. and Hay, D. C. (1987). Configurational information in face 
perception, Perception, vol. 16, pp. 747-59. 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


