
Modeling Time-Triggered Protocols and
Verifying Their Real-Time Schedules

Lee Pike
leepike@galois.com

Galois Inc.

November 14, 2007

Time-triggered systems

Time-triggered systems are distributed systems in which the nodes’
local clocks stay synchronized within some bound.
Characteristics include:

:) Behavior is driven according to the passage of time and a
globally-known schedule.

I Protocols execute in rounds; each round has a communication and
computation phase.

I Opposed to event-triggered behavior, which is driven by the
occurrence of events.

:) Allows real-time behavior & and fault-tolerance to be treated at
the platform level rather than being application-specific.

I Predictable and analyzable since they’re “almost synchronous.”
I Relieves application programmers from dealing with these issues.
I Makes reasoning about fault-tolerance easier.

:(Worse performance under unusual/peak workloads.

How the paper came about

I I was formally verifying NASA Langley’s SPIDER time-triggered
protocols.

I . . .And I thought I’d apply John Rushby’s paper, Systematic
formal verification for fault-tolerant time-triggered algorithms
(IEEE TSE, 1999).

I . . .But I realized I needed to extend the theory.

I . . .So starting with Rushby’s original specs and proofs, I added my
own axioms and generalized some of the existing theory.

The story (continued)

I . . .Worried that I’d introduced an inconsistency, I did a formal
theory interpretation (i.e., show the axioms have a model) in PVS
to prove the consistency of my added axioms.

I . . .But I could find no satisfying model!

I . . .But my axioms looked right.

I . . .After longer than I’d like to admit, I realized Rushby’s axioms
were inconsistent: 3 of the 4 system assumptions were
inconsistent.

I . . .So I wrote a note to IEEE TSE (2006) mending the axioms.

An example inconsistent axiom

I Inverse Clock: a total function from realtime to clocktime:
Cp : R → N.

I The drift of nonfaulty clocks is bounded by a realtime constant
0 < ρ < 1.

I Clock Drift Rate axiom: For all realtimes t1 and t2,
(1− ρ)(t1 − t2) ≤ Cp(t1)− Cp(t2) ≤ (1 + ρ)(t1 − t2).

The axiom is inconsistent, in three separate ways!.

Proof.
One proof is. . .

By contradiction. Let t2 > t1. Then
(1− ρ)(t1 − t2) > (1 + ρ)(t1 − t2), so there is no i ∈ N between the
bounds.

An example inconsistent axiom

I Inverse Clock: a total function from realtime to clocktime:
Cp : R → N.

I The drift of nonfaulty clocks is bounded by a realtime constant
0 < ρ < 1.

I Clock Drift Rate axiom: For all realtimes t1 and t2,
(1− ρ)(t1 − t2) ≤ Cp(t1)− Cp(t2) ≤ (1 + ρ)(t1 − t2).

The axiom is inconsistent, in three separate ways!.

Proof.
One proof is. . . By contradiction. Let t2 > t1.

Then
(1− ρ)(t1 − t2) > (1 + ρ)(t1 − t2), so there is no i ∈ N between the
bounds.

An example inconsistent axiom

I Inverse Clock: a total function from realtime to clocktime:
Cp : R → N.

I The drift of nonfaulty clocks is bounded by a realtime constant
0 < ρ < 1.

I Clock Drift Rate axiom: For all realtimes t1 and t2,
(1− ρ)(t1 − t2) ≤ Cp(t1)− Cp(t2) ≤ (1 + ρ)(t1 − t2).

The axiom is inconsistent, in three separate ways!.

Proof.
One proof is. . . By contradiction. Let t2 > t1. Then
(1− ρ)(t1 − t2) > (1 + ρ)(t1 − t2), so there is no i ∈ N between the
bounds.

John Rushby

Please keep in mind

I The concepts behind Rushby’s theory were correct.

I I uncovered the errors because Rushby publicized his specs
(thanks!).

I Referees (twice) overlooked the errors, as well as researchers citing
the work (including me).

I Rushby’s work in time-triggered system verification is seminal (like
his work in security, mechanical theorem-proving, etc.).

Okay, onto the actual methodology. . .

Verification approach

some
protocol

specification

schedule for
the protocol's

HW realization

synchronous
protocol
model

implements
proved using

BMC+SMT

 trivial instantiation of
uninterpreted constants

implements
(proved via

theorem-proving)

PVS
schedule

constraints

time-triggered
model

PVS

SAL

SAL PVS

realization's
schedule

Verification approach

some
protocol

specification

schedule for
the protocol's

HW realization

synchronous
protocol
model

implements
proved using

BMC+SMT

 trivial instantiation of
uninterpreted constants

implements
(proved via

theorem-proving)

PVS
schedule

constraints

time-triggered
model

PVS

SAL

SAL PVS

realization's
schedule

Synchronous specification

run(r , s)
df
=

if r = 0 then s
else λp. transp(runp(r − 1, s),

λq. msgq(runq(r − 1, s), p)),
where q ∈ in nbrsp

transp: state-transition function for node p.
msgq: message-generation function for node q.
in nbrsp: inbound-neighbor-nodes for node p.

Part I: the theory

some
protocol

specification

schedule for
the protocol's

HW realization

synchronous
protocol
model

implements
proved using

BMC+SMT

 trivial instantiation of
uninterpreted constants

implements
(proved via

theorem-proving)

PVS
schedule

constraints

time-triggered
model

PVS

SAL

SAL PVS

realization's
schedule

Part I: the theory

The theory Rushby built and I expanded upon is an axiomatic theory of
time-triggered protocols. The axioms fall into the following categories:

1. System assumptions (4 axioms)
Assumptions made about the underlying clocks—e.g., clock
monotonicity, drift rate, skew bound, & communication delay.

2. Schedule constraints (6 axioms)
Constraints on the local schedules—e.g., computation phase,
communication phase, reception windows, & pipelining.

3. Semantics (9 axioms)
The semantics of time-triggered behavior is a transition system,
the states of which are (s, t) where s is the global state of the
system and t is a realtime. The transitions between states are
constrained by the axioms.

The simulation theorem

Via taking “cuts” at regular points in time:

s0 −→ s1 −→ s2 → · · ·
⇑ ⇑ ⇑

(s0, t) → · · · → (s1, t
′) → · · · → (s2, t

′′) → · · ·

Part II: the implementation

some
protocol

specification

schedule for
the protocol's

HW realization

synchronous
protocol
model

implements
proved using

BMC+SMT

 trivial instantiation of
uninterpreted constants

implements
(proved via

theorem-proving)

PVS
schedule

constraints

time-triggered
model

PVS

SAL

SAL PVS

realization's
schedule

SAL in a slide

SRI’s Symbolic Analysis Laboratory (SAL) is a GPL open-source
high-level language interface & model-checking tools:

I The language includes predicate subtypes, higher-order functions,
algebraic datatypes, etc.

I To a family of model checkers (symbolic, explicit, and bounded).

I And other tools like a deadlock checker, path-finder, test-case
generator, etc.

I And a SMT solver (mainly SRI’s Yices).

Verifying the schedules

1. The six schedule constraints are reformulated from PVS into SAL
(nearly verbatim).

2. Schedules for the hardware are specified as simple infinite-state
machines (variables & constraints from the reals and integers).

I State variables include the round counter and schedule-variables
(e.g., computation offset, communication offset, reception window
opening time, etc).

I State variables may be nondeterministically updated.

3. We prove the constraints using infinite-state bounded model
checking via k-induction.
k = number of rounds of the protocol.

Schedule constraints

1. Offset constraint 0 < P(r) < sched(r + 1)− sched(r).

2. Communication Constraint #1
D(r) ≥ Σ(r) + Λ(r)− b(1− ρ) · (δnom − el)c.

3. Computation offset constraint
P(r) > D(r) + Σ(r) + Λ(r) + d(1 + ρ) · (δnom + eu)e.

4. Pipeline constraint ¬independent(r) implies D(r) ≥ 0.

5. Communication constraint #2 r > 0 implies
D(r) ≥ P(r − 1)− sched(r) + sched(r − 1).

6. Reception window constraint
0 ≤ R(r) ≤ D(r) + b(1− ρ) · (δnom − el)c − Σ(r)− Λ(r) + 1.

sched(r): clocktime round r begins.
P(r): clocktime offset computation begins in round r .
D(r): clocktime offset when communication begins in round r .
Λ(r): maximum schedule discrepancy in round r .
Σ(r): maximum clock skew in round r .

Verifying the schedules

1. The six schedule constraints are reformulated from PVS into SAL
(nearly verbatim).

2. Schedules for the hardware are specified as simple infinite-state
machines (variables & constraints from the reals and integers).

I State variables include the round counter and schedule-variables
(e.g., computation offset, communication offset, reception window
opening time, etc).

I State variables may be nondeterministically updated.

3. We prove the constraints using infinite-state bounded model
checking via k-induction.
k = number of rounds of the protocol.

Verifying the schedules

1. The six schedule constraints are reformulated from PVS into SAL
(nearly verbatim).

2. Schedules for the hardware are specified as simple infinite-state
machines (variables & constraints from the reals and integers).

I State variables include the round counter and schedule-variables
(e.g., computation offset, communication offset, reception window
opening time, etc).

I State variables may be nondeterministically updated.

3. We prove the constraints using infinite-state bounded model
checking via k-induction.
k = number of rounds of the protocol.

Lessons (re)-learned

I Don’t be a verification purist! Or as J. Moore put it. . .

I Prove the consistency of your axioms (or hypotheses)!
I Figure out what correctness means formally first (for

time-triggered systems, it’s “implementing a synchronous
specification”)!

I And then figure out what properties you need.
I And then figure out how to implement it.

I Try out infinite-state bounded model checking (in SAL) for
real-time verification!

Quoting J. Moore

February 27, 2007, acl2@lists.cc.utexas.edu

I think of theorem provers sort of like vehicles. What is the
best kind of vehicle to buy? Isn’t that silly question? If
you’re hauling kids to soccer practice, it might be a minivan.
If you’re hauling hay to the cattle, it might be a pickup.

acl2@lists.cc.utexas.edu

Lessons (re)-learned

I Don’t be a verification purist! Or as J. Moore put it. . .

I Prove the consistency of your axioms (or your hypotheses)!

I Figure out what correctness means formally first (for
time-triggered systems, it’s “implementing a synchronous
specification”)!

I A benefit of FV is to give engineers confidence that aggressive
optimizations are provably correct.

I Try out infinite-state bounded model checking for real-time
verification!

Lessons (re)-learned

I Don’t be a verification purist! Or as J. Moore put it. . .

I Prove the consistency of your axioms (or your hypotheses)!

I Figure out what correctness means formally first (for
time-triggered systems, it’s “implementing a synchronous
specification”)!

I A benefit of FV is to give engineers confidence that aggressive
optimizations are provably correct.

I Try out infinite-state bounded model checking for real-time
verification!

Lessons (re)-learned

I Don’t be a verification purist! Or as J. Moore put it. . .

I Prove the consistency of your axioms (or your hypotheses)!

I Figure out what correctness means formally first (for
time-triggered systems, it’s “implementing a synchronous
specification”)!

I A benefit of FV is to give engineers confidence that aggressive
optimizations are provably correct.

I Try out infinite-state bounded model checking for real-time
verification!

Lessons (re)-learned

I Don’t be a verification purist! Or as J. Moore put it. . .

I Prove the consistency of your axioms (or your hypotheses)!

I Figure out what correctness means formally first (for
time-triggered systems, it’s “implementing a synchronous
specification”)!

I A benefit of FV is to give engineers confidence that aggressive
optimizations are provably correct.

I Try out infinite-state bounded model checking for real-time
verification!

Towards a complete verification story

Abstraction levels:

I Application properties.

I Synchronous protocol abstraction.

I Time-triggered protocol abstraction.

I Real-time constraints.

I Distributed communicating state-machines.

I HW realization & physical-layer protocols.

}
Miner et. al., FTRTFT’04}
This paper}
Schmaltz, FMCAD’07

Knapp&Paul, LNCS4444

SPIDER is open-spec and is a great testbench for new approaches!

Thanks

Steve Johnson, Paul Miner, Geoffrey Brown, Larry Moss, and Wilfredo
Torres-Pomales.

I was extraordinarily impressed with the thoroughness of my
anonymous reviewers. Thanks!

Web resources

Slides, specifications, and proofs

http://www.cs.indiana.edu/∼lepike/pub pages/fmcad.html
Google: lee pike fmcad

NASA SPIDER

http://shemesh.larc.nasa.gov/fm/spider/
Google: spider nasa

PVS & SAL

http://fm.csl.sri.com/
Google: formalware (please ignore tuxedo-related Google ads)

http://www.cs.indiana.edu/~lepike/pub_pages/fmcad.html
http://shemesh.larc.nasa.gov/fm/spider/
http://fm.csl.sri.com/

