
EDA View of Formal Verification

Robert Kurshan
FMCAD07
November 11, 2007



Formal Functional H/W Verification IN USE in 
Industry Today
Equivalence checking
Theorem Proving on data paths -- ALUs (AMD, INTEL, ...)
Model Checking of protocol models -- cache coherence (INTEL, HP, ..)

      - MurPhi

Model Checking of block-level and interface properties ("static ABV")
        - arbitration
        - resource allocation (request/grant)
        - flow control
        - message delivery (block-level)
        - serialization (block-level)

Many companies are doing MC today, supported by EDA vendor tools:
        Cadence IFV; Synopsys Magellan; Mentor 0-In; Jasper; OneSpin; 

RealIntent Verix; Averant Solidify; Axiom (was @HDL)



Assertion-Based Verification

• Assume-Guarantee reasoning
– Use some assertions as assumptions to help prove others
– Must avoid circular reasoning
– Working on automation

• Assertions as constraints
– Assertions on inputs can be cast as constraints (assumptions)
– Guided-Random simulation (with constraint solver)

• Automatic test bench generation
– Use constraint solver to automatically generate simulation test vectors that 

satisfy given constraints
– Can generate vectors that satisfy a given density distribution
– Can handle both combinational and sequential constraints



Engines

• BDD
– Forward search, backward search or both
– Counterexample-guided refinement

• SAT
– Bounded model checking (Clarke et al)
– Abstraction-refinement (McMillan, Amla)
– Interpolation (McMillan)

• ATPG
• Model checking/Simulation hybrid
• Simulation (guided-random using constraint-solving)



Benchmark results



The BIG Verification Problem  

Verification (intrinsically) DOESN’T SCALE

– Component interactions grow exponentially with the 
number of system components, while conventional 
system test at best can increase coverage as a linear 
function of allotted test time.

– Likewise, capacity limitations are commonly cited as the 
essential gating factor that restricts the application of 
automatic formal verification (model checking) to at most 
a few design blocks.



The BIG Solution: ABSTRACTION 

Abstraction has long been used successfully in 
pilot projects to apply model checking to entire 
systems. Abstraction in conjunction with guided-
random simulation can be used in the same way 
to increase coverage for conventional test.



Abstraction as Hierarchical Design

Utilize design hierarchy for verification
But: NO REPEATED VERIFICATION AT SUCCESSIVE LEVELS

as is the case with current hierarchical methods

• Implement CONTROL BEFORE DATAPATH
– More logical: CONTROL = high-level behavior

– Use formal STUBS for datapath

• Design properties before design coding
– Properties part of test plan

– Design and verification done together

• Supports earlier debug
– Thus accelerates time to market

– Leads to higher quality/more robust design



The Technology Transfer Problem  

• Catch22
– For support, need demand

– For demand, need support

• Acceptability is inversely proportional to change in user interface

• A methodology change is a killer for tech transfer
– Takes much time to generate confidence in a new technology

– Takes a compelling need

• Anything new is suspect (and for good reason)
– Competition breeds confidence



Framework for Technology Transfer  

• Small Steps

– Each step involves very small change for user

– Each step produces some positive benefit

• Road map

– From where we are to where we want to get to

– Small steps

– Major challenge: getting from here to there

– Be prepared for many false starts


