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Abstract—Fractional order systems, which involve integration
and differentiation of non integer order, are increasingly being
used in the fields of control systems, robotics, signal processing
and circuit theory. Traditionally, the analysis of fractional or-
der systems has been performed using paper-and-pencil based
proofs or computer algebra systems. These analysis techniques
compromise the accuracy of their results and thus are not recom-
mended to be used for safety-critical fractional order systems. To
overcome this limitation, we propose to leverage upon the high
expressiveness of higher-order logic to formalize the theory of
fractional calculus, which is the foremost mathematical concept
in analyzing fractional order systems. This paper provides a
higher-order-logic formalization of fractional calculus based on
the Riemann-Liouville approach using the HOL theorem prover.
To demonstrate the usefulness of the reported formalization,
we utilize it to formally analyze some fractional order systems,
namely, a fractional electrical component Resistoductance, a
fractional integrator and a fractional differentiator circuit.

I. INTRODUCTION

In reality, many situations arise when integer order calculus
is not sufficient to model all kind of dynamics. For example,
an electrical component Resistoductance [10] exhibits an in-
termediate behavior between that of a resistor and inductor
and thus its accurate modeling involves the differentiation of
order between 0 and 1. Such systems that involve integration
and differentiation of non integer order, or fractional calculus
[26], for their modeling are usually referred to as fractional
order systems. The idea of fractional calculus is as old as
integer order calculus itself. The question which gave birth to
fractional calculus was about the interpretation of dny

dxn , if n is
not an integer or more broadly if n is any real, irrational or
even a complex number.

Accurate modeling of engineering and scientific systems
have become imperative these days due to their extensive
usage in safety-critical domains, such as, medicine and trans-
portation. This fact has led to the widespread usage of
fractional calculus in modeling physical systems. For ex-
ample, in control engineering the concept of fractional op-
erations is mostly used in fractional system identification
[17], biomimetic control [6], fractional PIα [22] and PDµ

controllers [8]. In signal processing, fractional operators are
used in the design of fractional order differentiators and
integrators [21] and for modeling the speech signals [20].
Other interesting applications of fractional calculus are in

image processing [29], electromagnetic theory [13], chaotic
communication [1], and circuit theory [10].

Traditionally, the analysis of fractional calculus based mod-
els has been done using paper-and-pencil proof methods. How-
ever, considering the complexity of present age engineering
and scientific systems, such analysis is notoriously difficult
if not impossible, and is quite error prone. Many examples
of erroneous paper-and-pencil based proofs are available in
the open literature, a recent one can be found in [7] and its
identification and correction is reported in [27]. One of the
most commonly used computer based analysis technique for
fractional order systems is numerical computation of fractional
integration and differentiation. Some examples include, chaos
in fractional order volta systems [30], fractional PIα con-
trollers [22] and motion planning of redundant and hyper-
redundant manipulators [23]. Fractional order systems are
continuous in nature and thus the first step in their simulation
based analysis is to construct a discretized system model with
minimal error. Most of the numerical algorithms are based
either on the Grünwald-Letnikov definition [12] or on the
Power Series Expansion (PSE) method [30]. Both of them can-
not provide reliable results due to the involvement of infinite
summations in case of Grünwald-Letnikov definition and huge
memory requirements in case of the PSE method. Similarly,
the computation of the Gamma function Γ(x) for large values
of x is not possible in such numerical computation software
packages. For example, MATLAB [24] returns 7.26e306 as
the approximated value computed for x = 171 and returns
Inf for all values beyond x = 171. Another alternative to
analyze fractional order systems is computer algebra systems
[3], which are very efficient for computing mathematical so-
lutions symbolically, but they are not reliable [15] due to their
limitations of dealing with side conditions. Another limitation
of computer algebra systems related to fractional calculus is
the uncertain simplification of singular expressions particularly
in case of the Gamma function, which are frequently used
in fractional calculus [18] . Another source of inaccuracy in
computer algebra systems is the presence of unverified huge
symbolic manipulation algorithms in their core, which are
quite likely to contain bugs. Thus, these traditional techniques
should not be relied upon for the analysis of fractional order
systems, especially when they are used in safety-critical areas



(e.g., cardiac tissue electrode interface [9] which is modeled
and analyzed using fractional calculus), where inaccuracies in
the analysis may even result in the loss of human lives.

In the past couple of decades, formal methods have been
successfully used for the precise analysis of a variety of
hardware and software systems. The rigorous exercise of
developing a mathematical model for the given system and
analyzing this model using mathematical reasoning usually
increases the chances for catching subtle but critical design
errors that are often ignored by traditional techniques like
numerical methods. Given the sophistication of the present age
fractional order systems and their extensive usage in safety
critical applications, there is a dire need of using formal
methods in this domain. However, due to the continuous nature
of the analysis and the involvement of transcendental func-
tions, automatic state-based approaches, like model checking
[19], cannot be used in this domain. On the other hand, we
believe that higher-order-logic theorem proving [14] offers a
promising solution for conducting formal analysis of fractional
order systems. The main reason is being the highly expressive
nature of higher-order logic, which can be leveraged upon to
essentially model any system that can be expressed in a closed
mathematical form. In fact, most of the classical mathematical
theories behind elementary calculus, such as limits, differ-
entiation, integration and transcendental functions, have been
formalized in higher-order logic [15]. In this paper, we build
upon the available theories of elementary calculus to formalize
Riemann-liouville’s [26] definitions of fractional integration
and differentiation in higher-order logic. These definitions
are then used to formally verify some classical properties of
fractional calculus using the HOL theorem prover [34], which
has been chosen due to the availability of Harrison’s seminal
work on the formalization of elementary calculus [15]. The
formal verification of these classical properties of fractional
calculus , such as, linearity, identity and the relationship with
elementary calculus, not only ensures the correctness of our
formal definitions of fractional integration and differentiation
but also plays a vital role in the formal analysis of fractional
order systems. To the best of our knowledge, the reported
formalization is the first one of its kind and facilitates the
formal analysis of fractional order systems, which is a novelty
that has not been presented in the open literature so far using
any formal technique.

The rest of the paper is organized as follows: Section
II describes some fundamentals of fractional calculus , its
commonly used definitions and the justification behind the
choice of Riemann-Liouville approach for our formalization.
Section III presents the proposed framework for the formal
analysis of fractional order systems. Section IV presents our
HOL formalization. In order to demonstrate the practical effec-
tiveness and the utilization of proposed framework, we present
the analysis of some real-world fractional order systems, i.e.,
a Resistoductance, a fractional differentiator and a fractional
integrator circuit in Section V. Finally, Section VII concludes
the paper.

II. FRACTIONAL CALCULUS

In 1695, L’Hôpital asked Leibnitz regarding his notation
dny
dxn , “What if n is 1

2”. Leibnitz prophesied in his letter [10]
to L’Hôpital,“. . . Thus it follows that d

1
2x will be equal to

x
√
dx : x. This is an apparent paradox from which, one day,

useful consequences can be drawn . . . ”. Leibnitz’s initial work
on the problem of defining the derivative of arbitrary order
gave birth to a new field of research in mathematics and
attracted attention of many biologists, physicists, engineers
and geometers. Initially more efforts were made for defining
fractional derivatives and fractional integrals but Neils Henrik
Abel [26] was the first one to use this idea in solving the
famous Tautochrone problem. The other great mathematicians
and physicists who touched the field of fractional calculus
are Riemann, Liouville, Laurent, Heaviside, Al-Bassam, Davis
Erdelyi, Riesz and Thomas J. Osler [26].

Fractional integrals and fractional derivatives are also re-
ferred to as Differintegrals [28] and there are more than ten
well known definitions for Differintegrals [9]. We consider two
of them, which are most widely used in analyzing real-world
problems. These are the Riemann-Liouville and Grünwald-
Letnikov definitions, which are also equivalent for a wide class
of functions [31].
• Riemann-Liouville (RL) Definition:

Jvaf(x) =
1

Γ(v)

∫ x

a

(x− t)v−1f(t)dt (1)

Where Jvaf(x) represents fractional integration with order
v and lower integration limit a. a = 0 gives the Riemann
definition and a = −∞ gives the Liouville definition of
fractional integration [32]. Γ in the above definition denotes
the Gamma function which is defined using the well-known
improper integral as follows:

Γ(z) =

∫ ∞
0

tz−1e−tdt (2)

for z > 0.
The fractional differentiation is given as follows:

Dvf(x) = (
d

dx
)mJm−va f(x) (3)

where m represents the ceiling of v, i.e., dve.
• Grünwald-Letnikov (GL) Definition:

cD
v
xf(x) = lim

h→0
h−v

[ x−c
h ]∑
k=0

(−1)k
(
v

k

)
f(x− kh) (4)

Grünwald-Letnikov definition caters for both fractional dif-
ferentiation and integration, as positive values of v give frac-
tional differentiation and negative values of v give fractional
integration. Here,

(
v
k

)
represents the binomial coefficient,

which is described in terms of the Gamma function.
The Riemann-Liouville definition provides a way to find

analytical solutions while Grünwald-Letnikov definition facil-
itates the numerical computation of solutions. There are two



motivations of using the Riemann-Liouville definition for our
formalization: Firstly, it is widely used in the modeling and
analysis of engineering fractional order systems [10], Sec-
ondly, the analysis carried out in this way is purely analytical
and hence free from any kind of approximations. On the other
hand, Grünwald-Letnikov definition is more suitable for nu-
merical analysis based methods and thus provides approximate
solutions.

III. PROPOSED FRAMEWORK

The proposed framework, given in Figure 1, outlines the
main idea behind the theorem-proving-based fractional order
system analysis. The grey shaded boxes in this figure represent
the key contributions of the paper that serves as the funda-
mental requirements of conducting fractional order system
analysis in a theorem prover. Like all the system analysis
tools, the input to this framework, depicted by two rectangles
with curved bottoms, is the description of the fractional order
system that needs to be analyzed and a set of properties that
are required to be checked for the given system.

Fractional 
order System

Properties of 
System

Higher -order 
Logic Description

(Theorem)

HOL Theorem Prover

Formal Proof of System Properties

Higher-order Logic

Real 
Analysis

&
Integer 
order  

calculus

Gamma 
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Differintegrals

Formally Verified 
Properties

Formal Model

Theorems
Theorems

Theorems

Fig. 1. Proposed Framework

The first step in conducting fractional order system analysis
using a theorem prover is to construct a formal model of
the given system in higher-order logic. For this purpose, the
foremost requirement is the ability to formalize fractional
derivatives and integrals (Differintegrals) as higher-order logic
functions. The formalization of Differintegrals, given in Equa-
tions 1 and 3, requires the mathematical theories of real
numbers, integer order calculus and the Gamma function.
Harrison’s work on the formalization of real numbers [15]
provides the first two requirements and we built upon Har-
rison’s work to formalize the Gamma function in this paper
to fulfil the third requirement. Using these fundamentals, this
paper also presents the formalization of Differintegrals, given
in Equation 1 and 3, which in turn can be used to represent
the dynamics of fractional order systems in higher-order logic.
The second step in the theorem proving based fractional order

system analysis is to utilize the formal model of fractional
order system, developed in the first step, to express system
properties as higher-order logic theorems.

The third step for conducting fractional order system anal-
ysis in a theorem prover is to formally verify the higher-
order-logic theorems developed in the previous step using a
theorem prover. For this verification, it would be quite handy
to have access to a library of some pre-verified theorems
corresponding to some commonly used properties of Gamma
function and Differintegrals. To fulfil this requirement, this
paper presents formal verification of the classical properties
of Gamma function, such as, Pseudo-Recurrence Relation,
Factorial Generalization and Functional Equation, and Dif-
ferintegrals, such as, Identity and Linearity, using the HOL
theorem prover. Building on such a library of theorems would
minimize the interactive verification efforts and thus speed up
the verification process. Finally, the output of the theorem
proving based fractional order system analysis framework,
depicted by the rectangle with dashed edges, is the formal
proofs of system properties that certify that the given system
properties are valid for the given fractional order system.

IV. HOL FORMALIZATION

This section presents the higher-order logic formalization of
the main requirements of the proposed framework, depicted
by the gray shaded boxes in Figure 1. We have arranged the
information in two subsections. The first subsection presents
the formalization of the Gamma function and the formal
verification of its associated properties using the HOL theorem
prover. While the second subsection presents formalization of
Riemann-Liouville definition of Differintegrals and the formal
verification of its associated properties in HOL.

A. Formalization of Gamma function

The applicability of Gamma function in fractional calculus
is due to its unique characteristic of generalizing factorials
over non-integer numbers. The theory of improper integrals
[2] suggests that it is convenient to write Gamma function
(Equation 2) as follows:

Γ(z) = lim
a→0+,b→∞

∫ b

a

tz−1e−tdt (5)

We formalize Equation (5) as follows:

Definition 1: Gamma Function
` ∀ z.gamma z =

lim(λ n.(lim
(λ b.

∫ b
1
2n

t rpow (z-1)exp(-t) dt))

The function rpow [33] is a power function with real exponent.
It takes two real numbers x and y, and returns xy . We used
limn→∞( 1

2n
) to model 0+ as ( 1

2n
) becomes very close to 0 as

n becomes very large. The integral (
∫ b
a
f) is used to represent

HOL function integral(a,b) f, which represents the
formalization of the Gauge integral in HOL [15]. Mhamdi [25]
presented the higher-order logic formalization of Lebesgue
integration theory, which is fundamental concept in many



TABLE I
PROPERTIES OF THE GAMMA FUNCTION

Property HOL Formalization

Pseudo-Recurrence Relation ` ∀ z.(0 < z) =⇒
(gamma (z + 1)= z gamma (z))

Functional Equation ` gamma 1 = 1

Factorial Generalization ` ∀ n ∈ N. gamma(n + 1) = n!

Reconstruction of Gamma
` ∀ x z.(0 < z)∧(0 < x) =⇒
gamma z =
gamma_upper x z + gamma_lower x z)

Recurrence Lower Gamma
` ∀ z x.(0 < z)∧(0 < x) =⇒
gamma_lower x (z + 1)=
(z)gamma_lower x z -

x rpow (z)exp(-x)

Recurrence Upper Gamma
` ∀ z x.(0 < z)∧(0 < s) =⇒
gamma_upper s z =
(z - 1)gamma_upper s (z-1)+

s rpow (z-1)exp(-s)

mathematical theories and allows a wider class of functions
than the Riemann integration theory. In our formalization, we
built upon Harrison’s formalization of Gauge integral because
the proposed framework is intended to be used by engineers
and practitioners, who are normally not familiar with Lebesgue
integration theory.

The lower and upper incomplete Gamma functions play a
vital role in obtaining Differintegrals of periodic functions,
such as, sinusoidal response study of fractional operators [10],
and can be formalized as follows:

Definition 2: Upper Incomplete Gamma Function
` ∀ x s.gamma_upper s z =

(lim (λ b.∫ b

s
t rpow (z-1)exp(-t) dt))

Definition 3: Lower Incomplete Gamma Function
` ∀ x z.gamma_lower x z =

(lim (λ n.∫ x
1
2n

t rpow (z-1)exp(-t) dt))

Next, we defined and verified some of the key properties
of Gamma function in HOL using Definitions 1, 2, and 3.
The formal verification of these properties not only ensures
the correctness of our formal definition but also facilitates
the formal reasoning about fractional order systems in higher-
order logic as mentioned in Section III. The formally verified
properties of Gamma function are given in Table I.

The first property in Table I represents the Pseudo-
Recurrence Relation of the Gamma function and can be clas-
sified as the most important property of the Gamma function
as it plays a vital role in verifying the other properties of
Gamma function and Differintegrals. The verification of this
property was also one of the most challenging part of our
formalization as it involves the core concepts of improper
integrals, limits and sequences. Its reasoning process involve
ten main lemmas, such as, convergence of integral with
respect to upper and lower limits, limits on infinity and zero,
simplification of integrand by integration by parts and the
continuity, differentiability and integrability of the integrand.
The complete formalization details are provided in [33].

The second and third properties of Table I, i.e, Functional
Equation and Factorial Generalization, are very important in
establishing the link between fractional calculus and integer
order calculus. The verification of these properties requires
the Pseudo-Recurrence Relation of Gamma function along
with some limit theory proofs and arithmetic reasoning in
HOL. The fourth property, Reconstruction of Gamma function,
shows that the Gamma function can be divided into two inte-
grals, which are incomplete at one limit, i.e., upper and lower
incomplete Gamma functions. The verification of this property
requires lemmas used in the verification of Pseudo-Recurrence
Relation along with the properties of the Gauge integral. The
last two properties in Table I show the recurrence relation
of the upper and lower incomplete Gamma functions. These
relations are very important in fractional calculus because
factional integration and differentiation of many important
functions, e.g., Exponential function, is represented in terms of
the incomplete Gamma functions and then these properties are
utilized to evaluate such mathematical expressions. The veri-
fication of these properties is similar to that of the verification
of Pseudo-Recurrence Relation.

This completes our formalization of the Gamma function,
which to the best of our knowledge is the first one in higher-
order logic. The main challenge in the reasoning process is
to deal with improper integrals in higher-order logic. The
Gamma function is useful in many domains, such as, prob-
ability theory (Gamma Distribution), and our formalization
can be directly utilized in such applications. Our formalization
of Gamma function can be generalized to formalize other
improper integrals, such as, the Beta function. Next, we build
upon the formalization of the Gamma function to formalize
Differintegrals.

B. Formalization of Differintegrals

The second major requirement of formal reasoning about
fractional order systems, is the formalization of Differintegrals,
as depicted in Figure 1. We utilize Equations (1) and (3)
to formally define fractional integration and differentiation,
respectively.

Definition 4: Fractional Integration
` ∀ f v a x.frac_int f v a x =
if (v = 0) then f else

lim(λn. 1
gamma v

(
∫ x− 1

2n

a
((x - t) rpow (v-1)) f(t) dt)

Definition 5: Fractional Differentiation
` ∀ f v a x. frac_diff f v a x =
n_order_deriv

(clg v) (frac_int f (clg v - v) a x)

Where f is a function of type (real→ real), v is a real

number that indicates the order of integration/differentitiation,
and a and x represent the lower and upper limits of integration,
respectively. The function n order deriv returns the nth

integer order derivative of its argument f as dnf
dxn

. The function
clg is the ceiling function, which returns the least greater



TABLE II
PROPERTIES OF DIFFERINTEGRALS

Property HOL Formalization

Identity
` ∀ f a x.
(a < x) =⇒ (frac_int f 0 a x = f)∧

(frac_diff f 0 a x = f)

Generalized Integral

` ∀ f a x v ∈ N.
(a < x)∧ (1 < v) =⇒
frac_int f v a x = lim(λn.

1
(v-1)!

∫ x− 1
2n

a (x - t) rpow (v-1)f(t) dt)

frac int Linearity

` ∀ f v x a b.
(frac_exists f x v)∧
(frac_exists g x v) =⇒
frac_int (a f + b g) v 0 x =

a(frac_int f v 0 x)+
b(frac_int g v 0 x)

frac diff Linearity

` ∀ f v x a b.
(frac_exists f x v)∧
(frac_exists g x v)∧
(∀ m. (m <= clg v) ⇒
(n_order_deriv m (frac_int f v 0 x))

differentiable x)∧
(∀ m. (m <= clg v) ⇒
(n_order_deriv m (frac_int g v 0 x))

differentiable x)=⇒
( frac_diff (a f + b g) v 0 x =

a(frac_diff f v 0 x)+
b(frac_diff g v 0 x))

integer of its real number argument. It is important to note
that we have explicitly defined the case for v = 0, which is
justified based on integer order calculus and proves to be very
convenient for further manipulations [11].

As mentioned in Section III, now we will use our formal
definitions of Differintegrals to formally verify some of the
classical properties of fractional calculus, given in Table II,
using the HOL theorem prover. The first property of Dif-
ferintegrals is the Identity property, which shows that the
0th order fractional operators return original functions. The
proof of the first part of this property is obvious from the
definition of fractional integration (Definition 4) and proof of
the second part is done based on the fact that dnf

dxn
with order 0

returns the original function. The second property in Table
II shows that fractional integration generalizes the integer
order integration. The verification of this property utilizes the
third property (Factorial Generalization) of Gamma function,
given in Table I. The next property is about the linearity
of fractional integration and helps in formal reasoning about
fractional order systems with multiple inputs. In the HOL
formalization of frac int linearity property, the assump-
tions frac exists f x v and frac exists g x v ensure the
existence of Differintegrals for function f and g, respectively.
The verification of this property requires the properties of
Gamma function, integer order integration and limits along
with some arithmetic reasoning. The HOL formalization of
last property of Differintegrals in Table II shows the linearity
of fractional differentiation. From Definition 5 it is clear
that fractional differentiation involves fractional integration
followed by the nth order ordinary differentiation. So, the
third and fourth assumptions of this property ensures the
differentiability of (clg(v)−v)th order fractional integral of the
functions f(t) and g(t), respectively. The formal verification

of this property requires the linearity of the nth integer order
derivative along with some arithmetic reasoning.

Due to inherent soundness of higher-order logic theorem
proving, our verification results are exactly the same as pro-
duced by paper-and-pencil proof methods. It is interesting to
note that we have been able to identify a couple of critical
assumptions that are missed by almost all the paper-and-pencil
based proof analysis, that we came across. For example, the
assumption 0 < x in the last two properties of the Gamma
function (Table I) have not been specified in anyone of the
paper-and-pencil proof based analysis (e.g., [10]). Obviously
the results do not hold without this assumption and this
discrepancy in the paper-and-pencil based proofs may lead to
disastrous consequences if these properties are used without
considering 0 < x for designing safety-critical fractional order
systems.

The formalization, presented in this section, had to be done
in an interactive way due to the undecidable nature of higher-
order logic and took around 7000 lines of HOL code and
approximately 550 man hours. However, the main advantage
of this rigorous exercise is that our results can be built upon
to facilitate formal reasoning about fractional order systems.
Our proof script is available for download [33] and thus can
be utilized by other researchers to conduct the formal analysis
of their fractional order systems.

V. APPLICATIONS

In order to illustrate the utilization and effectiveness of the
proposed framework, we apply it to analyze three real-world
fractional order systems, i.e., a fractional electrical component
Resistoductance, a fractional integrator and a differentiator
circuit. Resistoductance is used to extend the current-voltage
relationship to non-integer order and this kind of fractional
order model is usually used for modeling bio-electrodes for
cardiac tissue interfacing [9]. Fractional integrators and dif-
ferentiators are the most basic components in fractional order
PID (proportional integrator differentiator) controllers and can
achieve more robustness than integer order control [5]. These
systems have been chosen as case studies in our work because
of their wide usability in the field of circuit theory and control
systems. To the best of our knowledge, currently, there is no
formal technique available for the formal verification of such
systems.

A. Resistoductance

Electrical components, such as, resistors, inductors and
capacitors are largely used to perform integer order calculus
operations for different engineering and scientific applications.
However, actual electrical components do not posses ideal
behavior and exhibit some fractional order characteristics.
Ignoring these characteristics always results in modeling inac-
curacies. Therefore, fractional calculus is being widely used
to capture real world dynamics of electrical components these
days [4]. Resistoductance is a linear electrical circuit element
that posses the characteristics between an ohmic resistor and
an inductor. Being a fractional order electrical component,



it exhibits fractional order dynamics, which can be modeled
by Differintegrals. The model of a single Resistoductance is
shown in Figure 2, and its governing voltage and current
relationship is given as follows:

i(t) =
1

K
Jαv(t) (6)

where v(t) is the voltage and i(t) is the current through the
circuit element at time t. The range of the α is between 0 and
1. If α = 0 the circuit will be purely resistive with K = R
ohms and if α = 1 the circuit will be purely inductive with K
= L henrys.

The two important characteristics of Resistoductance are the
output current through the circuit element when constant input
voltage V0 is applied and the behavior of the output current
for the cases when α = 0 and α = 1. These two properties
are widely used in designing Resistoductance based fractional
order systems for signal processing and control engineering
applications [4].

v(t)= K D  i(t) α i(t)=     J    v(t) α1
Κ

+

−

Fig. 2. Resistoductance

Now, we will present the formal verification of the above
mentioned two properties of Resistoductance using our pro-
posed framework given in Figure 1. The first step in conduct-
ing the formal analysis of Resistoductance is to construct its
formal model in higher-order logic. Due to the availability of
Definition 4, the formalization can be simply done as follows:

Definition 6: Current through Resistoductance
` ∀ K v_i alpha x. i_t K v_i alpha x =

(1/K)frac_int v_i(t) alpha 0 x

where v i is input voltage, i t is current through the circuit
element, alpha is the order of integration, and the variable x

represents the upper limit of integration. In the above definition
the lower limit of integration is taken as 0 [10]. The next
step, in the proposed framework, is to utilize the formal model
of Resistoductance (Definition 6) to express the properties of
interest as higher-order logic theorems as follows:

Theorem 1: i t for constant voltage V 0
` ∀ K v_0 alpha x.

(0 < x) ∧ (0 < alpha) =⇒
(i_t K V_0 alpha x =

(1/K (Gamma (alpha + 1))
(V_0(x rpow alpha))))

Theorem 2: Special Cases for i t
` ∀ x. (0 < x) =⇒

(((alpha = 0) ⇒
(i_t K V_0 alpha x = V_0 / K)) ∧

((alpha = 1)⇒
(i_t K V_0 alpha x = (V_0 / K ) x)))

Theorem 1 shows the relationship of output current of
Resistoductance when constant input voltage V 0 is applied
at t = 0. The formal verification of this theorem is based on
the properties of Gamma function (Table I, Pseudo-Recurrence
relation) and the definition of fractional integration. Since,
these required properties have already been verified in HOL
library, the interactive formal reasoning process only consists
of verifying the continuity of fractional integral. Theorem
2 shows an interesting feature of Resistoductance, i.e., for
(alpha = 0) it behaves as a pure resistor and for (alpha = 1)
it exhibits the behavior of a pure inductor. The verification
of Theorem 2 requires Theorem 1, the properties of the real
power (rpow) function and some arithmetic reasoning.

This verification of Theorems 1 and 2 consumed approxi-
mately 350 lines of HOL code and about two man hours and
thus was very short compared to the challenging verification
of the theorems presented in the last section. The verification
process, besides being compact, was also very straightforward
and involved reasoning based on real analysis theories only
and thus can be done with some basic know how of higher-
order-logic theorem proving. The main reason for the above
mentioned benefits is clearly the availability of formalized
Gamma function and the Differintegrals.

B. Fractional Differentiator and Integrator Circuits

Proportional integrator (PI) and proportional integrator dif-
ferentiator (PID) controllers are widely used in the industry.
Numerous reliable and high performance controllers have
been designed and deployed. In recent years, it has been
observed that Fractional order (FO) controllers offer more
flexibility in the adjustment of gain and phase characteristics
than integer order controllers. Due to these flexibilities, there
is a growing interest in using fractional order controllers in
industry and academia [5]. The most fundamental components
of PI and PID controllers are integrator and differentiator
circuits, respectively. In this section, we will present the formal
analysis of a fractional integrator and a differentiator circuit,
[10] shown in Figure 3. The output voltage-current equations
for a fractional integrator and a differentiator circuits are given
as follows:

vo(t) = − 1

RC
Jµvi(t) Integrator (7)

v0(t) = −RCDµvi(t) Differentiator (8)

where R and C denotes resistance and capacitance, respec-
tively, and their values are used to define the reset rate
of PID controllers. The variables, vo(t) and vi(t), in the



-

+

+

-

ii R
C

if

Vo(t)

Vo(t)

if

ii C

V_(t)

V+(t)

V_(t)

V+(t)

(a)

(b)

R

Fig. 3. (a) Integrator (b) Differentiator

above Equations represent output and input voltages at time t,
respectively.

The output response of integrator and differentiator circuit
is usually analyzed for benchmark input signals, such as, the
unit step, which is defined as follows:

u(t) =

{
0 if t ≤ 0;
1 if t > 1;

The first step in the formal analysis of integrator and
differentiator circuits, when unit step signal is applied at the
input, is to construct the formal model of these circuits and unit
step signal in higher-order logic. Since the governing equations
(Equations 7, 8) of integrator and differentiator circuits involve
fractional integration and differentiation, thus we utilize our
formalized definitions (Definition 4, 5 ) of Differintegrals as
follows:

Definition 7: Fractional Order Integrator
` ∀ R C v_i mu x. v_I_0 R C v_i mu x =

-(1/RC)frac_int v_i(t) mu 0 x

Definition 8: Fractional Order Differentiator
` ∀ R C v_i mu x. v_D_0 R C v_i mu x=

-(RC)frac_diff v_i(t) mu 0 x

Definition 9: Unit Step
` ∀ t. unit t = if (0 <= t) then 1 else 0

where v I 0 and v D 0 are output voltages of integrator and
differentiator circuits, respectively. v i is the input voltage, R,
C, mu and x represent resistance, capacitance, order of integra-
tion/differention and upper limit of integration, respectively.

Now, the next step in the formal analysis of fractional inte-
grator and differentiator, as mentioned in Fig 1, is to describe
their properties of interest as higher-order logic theorems:

Theorem 3: Output of Fractional Integrator Circuit
` ∀ R C mu x .

(0 < x) ∧ (0 < mu) ∧ ( mu < 1)=⇒
(v_I_0 R C (unit t) mu x =

(-1/(RC Gamma (mu + 1))
((x rpow ( mu))))

Theorem 4: Output of Fractional Differentiator Circuit
` ∀ R C mu x .

(0 < x) ∧ (0 < mu) ∧ ( mu < 1)=⇒
(v_D_0 R C (unit t) mu x =

((-1/(RC (Gamma ((1 - mu))))
((x rpow (- mu))))

The next step in the theorem proving based fractional
order system analysis is the verification of above mentioned
theorems using the already verified properties and lemmas of
Section IV. Theorem 3 gives the output response of a fractional
integrator circuit for unit step signal, and its formal verification
certifies the output response under the given conditions. The
availability of already verified properties of Gamma function
and Differintegrals (Table I and Table II) led us to the simple
subgoal, i.e., the proof of continuity of the integrand, which
involves multiplication of power function and the unit step
signal. We verified the continuity by differentiability using the
classical definition of derivative formalized in HOL [15].

Theorem 4 describes the output response of the fractional
differentiator circuit with unit step signal as an input. The
second and third assumptions in Theorem 4 ensure that the
order of the fractional differentiation mu is between 0 and
1 which means that clg of mu will always be 1. So the
verification of this theorem requires fractional integration of
the order 1− mu followed by the fractional differentiation of
order 1. This requires Theorem 3 along with some arithmetic
reasoning. Just like the case of the Resistoductance, the verifi-
cation of Theorem 3 and Theorem 4 was very straightforward
and took about 400 lines of HOL code and about 2.5 man
hours.

The above case studies clearly demonstrate the effectiveness
of the proposed theorem proving based fractional order system
analysis technique. Due to the formal nature of the model and
inherent soundness of higher-order logic theorem proving, we
have been able to verify the properties of given fractional order
systems with 100% accuracy; a feature that, to the best of
our knowledge, is not available in any other computer based
analysis technique. This additional benefit comes at the cost
of the time and effort spent, while formalizing the Differinte-
grals and formally reasoning about their properties. But, the
availability of such a formalized infrastructure significantly
reduces the time required to analyze fractional order systems,
as the verification task of the properties of Resistoductance
and a fractional integrator and differentiator circuits took just
a couple of man hours each.

VI. CONCLUSIONS

In this paper, we presented a novel application of formal
methods in the area of analyzing fractional order systems. In



particular, we developed a framework for accurate and reliable
analysis of fractional order systems within the sound core of
the HOL theorem prover. This approach can thus be of great
benefit for the analysis of fractional order systems used in
safety-critical domains, such as, medicine and transportation.
The paper provides the complete formalization details of Dif-
ferintegrals along with the formal verification of their classical
properties. For illustration purposes, we provided the formal
analysis of Resistoductance, a fractional differentiator and a
fractional integrator circuit. To the best of our knowledge, this
is the first time that a formal method technique has been used
to conduct the analysis of fractional order systems.

The reported formalization opens the doors to many interest-
ing and novel directions of research. Some worth mentioning
ones include enriching the library of the formally verified
properties of Differentagrals with law of exponents and re-
lationship with Beta function to broaden the scope of formal
fractional order system analysis. Similarly, the reported for-
malization can be utilized to formalize the fractional Laplace
transform theory, which in turn can be utilized for the the
formal analysis of industrial fractional order control systems.
Our formalization was done using real numbers and the same
formalization can also be extended to cover the complex
numbers using the higher-order-logic formalization of complex
number theory [16], which would allow us to formalize frac-
tional electromagnetic systems, such as, fractional rectangular
waveguides [13].
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