
Preprocessing Techniques for First-Order
Clausification

Krystof Hoder
Computer Science Department

University of Manchester, UK
hoderk@cs.man.ac.uk

Zurab Khasidashvili
Intel Israel (74) Ltd.
Haifa 31015, Israel

zurabk@iil.intel.com

Konstantin Korovin, Andrei Voronkov
Computer Science Department

University of Manchester, UK
korovin@cs.man.ac.uk, andrei@voronkov.com

Abstract—It is well known that preprocessing is crucial
for efficient reasoning on large industrial problems. Although
preprocessing is well developed for propositional logic, it is
much less investigated for first-order logic. In this paper we
introduce several preprocessing techniques for simplifying first-
order formulas aimed at improving clausification. These include
definition inlining and merging, simplifications based on a new
data structure, quantified AIG, and its combination with BDDs.
We implemented our preprocessing methods and evaluated them
over encodings of industrial hardware verification problems
into the effectively propositional (EPR) fragment of first-order
logic and over standard first-order (TPTP) and SMT (SMT-
LIB) benchmarks. We also investigated preprocessing methods
that help obtain EPR-resulting clausification in cases where
standard clausification would lead outside the EPR fragment.
We demonstrate that our methods enable one to considerably
reduce the number of clauses obtained after clausification and
by that help speedup first-order reasoning.

I. INTRODUCTION

First-order logic solvers are increasingly used in industrial
verification applications. These uses include model checking
of large real-life hardware systems. It is well known that
hardware designs have many redundancies from the logical
point of view. Many powerful techniques have been developed
for propositional logic problems to eliminate these redun-
dancies. These techniques include use of efficient representa-
tions for propositional formulas, such as AIGs (And-Inverter
Graphs) [17], simplification transformations for AIGs, such as
BDD-sweeping, SAT-sweeping, AIG-rewriting [17], [16], [5],
[7], and various pre- and in-processing techniques, e.g., [12],
[10] which aim to simplify propositional problems for SAT and
QBF solving. In this work, motivated by attempts to improve
the performance and capacity of a model-checking algorithm
we have recently developed [9], we seek to develop general
simplification techniques for first-order logic problems.

First-order definitions are frequently used in many formal-
izations. For example, in hardware verification most generated
formulas are definitions. An abundance of definitions can con-
siderably slowdown the reasoning process. Many definitions
in such problems are redundant, defining equivalent formulas,
or can be eliminated without increasing the formula size.
Moreover, direct clausal transformation of definitions can lead
outside target fragments such as the effectively propositional
(EPR) fragment (see definition in the next section). In this pa-
per we introduce and discuss several methods for eliminating

and simplifying definitions that also result in EPR-preserving
clausification.

We further lift some of the propositional redundancy elim-
ination techniques discussed above to first-order logic. In
particular, we introduce quantified AIGs as an efficient data
structure that enables sharing equivalent sub-formulas and
facilitates implementation of simplification transformations for
first-order logic formulas. On QAIGs, we implement BDD-
sweeping, SAT-sweeping, and several rewriting transforma-
tions that help reduce the size of the problem after clausi-
fication and thus making the problem much simpler to solve.

Our improved clausification algorithm (which, as pre-
processing steps, performs the above mentioned simplifica-
tion transformations) is implemented in Vampire, a theorem
prover for first-order logic [11]. We have evaluated the new
clausification algorithm on three different benchmark sets:
industrial hardware designs, quantified SMT problems and
a TPTP problem set [22]. The experiments demonstrate the
usefulness of our simplification transformations.

The paper is organized as follows. In Section II we recall
basic definitions from first-order logic used throughout the pa-
per. Sections III to XI are devoted to a range of simplification
techniques for first-order logic formulas. Quantified AIGs are
introduced and studied in Section XII. Experimental results are
reported in Section XIII. Conclusions appear in Section XIV.

II. PRELIMINARIES

We say that a formula ϕ is rectified if the following holds:
(i) no variable occurs both free and bound in ϕ, and (ii)
a variable can have at most one binding occurrence in ϕ.
For simplicity of exposition, we assume that our formulas
are rectified unless otherwise specified. In particular, this
requirement is dropped in sections concerned with shared
representation of formulas, such as AIGs and OBBDs, in order
to increase sharing between subformulas.

We consider first-order formulas which are built from atoms
using connectives ∧, ∨, →, ↔ and quantifiers ∃ and ∀. We
assume the standard semantics of first-order formulas. Polarity
of a subformula occurrence at a position π will be denoted
by pol(ϕ, π) ∈ {−1, 0, 1}, where 1 stands for positive, −1
for negative, and 0 for neutral polarity, which is defined
inductively as follows. For any formula ϕ, pol(ϕ, ε) = 1.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

4444978-1-4673-4831-7/12/$31.00 ©2012 IEEE978-0-9835678-2-0/12/$31.00 ©2012 IEEE 44978-0-9835678-2-0/12/$31.00 ©2012 FMCAD Inc.

Consider ϕ |π= ψ and assume pol(ϕ, π) is defined, then if
ψ is of the form
• Qx ψ1, where Q ∈ {∃,∀} then pol(ϕ, π.1) = pol(ϕ, π);
• ψ1 ? ψ2, where ? ∈ {∧,∨} then pol(ϕ, π.1) =

pol(ϕ, π.2) = pol(ϕ, π);
• ψ1 → ψ2 then pol(ϕ, π.1) = −pol(ϕ, π) and

pol(ϕ, π.2) = pol(ϕ, π);
• ψ1 ↔ ψ2 then pol(ϕ, π.1) = pol(ϕ, π.2) = 0.

Algorithms in this paper are parameterized by a Skolem-
ization procedure SK and a clausification procedure CL.
In this paper we are not concerned how SK is realized,
assuming only that SK transforms every first-order formula
into an equi-satisfiable universal formula. We refer to [20],
[2] for Skolemization and clausification techniques. As an
example, we take an SK that applies miniscoping (moving all
quantifiers inside the formula as far as possible) and eliminates
existential quantifiers, as in inner Skolemization from left-
to-right (resulting in flat Skolem terms). Similarly, we only
require the clausification CL to transform universal formulas
into equi-satisfiable sets of clauses.

The EPR fragment, also called the Bernays-Schönfinkel-
Ramsey fragment, consists of first-order formulas with no oc-
currences of function symbols other than constants, and which
when written in prenex normal form have the quantifier prefix
∃∗∀∗. Skolemization applied to EPR formulas can introduce
only constant function symbols; this can be used to show de-
cidability of the EPR fragment. Several important verification
problems have been encoded into EPR [19], [13], [8], [9], [1],
benefiting from the succinct representations possible in this
fragment. The transformations considered in this paper can
help to produce equi-satisfiable EPR formulas when the given
formula is not necessarily EPR. Such transformations turned
out to be crucial for the performance of first-order solvers on
encodings of real-life hardware verification problems.

III. DEFINITION SIMPLIFICATIONS

A (non-recursive) predicate definition def (pol , p, ϕ) is a
first-order formula of the form

def (pol , p, ϕ)
def
=

 ∀x̄ (p(x̄)↔ ϕ(x̄)), if pol = 0,
∀x̄ (ϕ(x̄)→ p(x̄)), if pol = 1,
∀x̄ (p(x̄)→ ϕ(x̄)), if pol = −1,

(1)
where p is a predicate symbol, ϕ is a first-order formula
with free variables FV (ϕ) ⊆ {x̄}, pol ∈ {−1, 0, 1} and
p does not occur in ϕ. Let us note that def (0, p, ϕ) ≡
(def (1, p, ϕ) ∧ def (−1, p, ϕ)); we call def (1, p, ϕ) positive
and def (−1, p, ϕ) negative subdefinition of def (0, p, ϕ). The
variable condition FV (ϕ) ⊆ {x̄} can be omitted without loss
of generality but doing so would add a syntactic burden not
essential to this exposition.

First we consider unused definition elimination, presented
in Table I.

Theorem 1: UDE is a satisfiability preserving and termi-
nating transformation.

ϕ ∧ def (pol , p, ψ) ⇒ ϕ, where p does not occur in ϕ.
ϕ ∧ def (0, p, ψ) ⇒ ϕ ∧ def (pol , p, ψ), where pol 6= 0 and all

occurrences of p in ϕ are of polarity −pol .

TABLE I
UNUSED DEFINITION ELIMINATION (UDE)

Proof: (Sketch) Termination is trivial since each appli-
cation removes one (sub)definition. Let us show that UDE is
satisfiability preserving. Consider the case ϕ∧def (0, p, ψ)⇒
ϕ ∧ def (−1, p, ψ), where all occurrences of p in ϕ are
of polarity 1. The rest of the cases are similar. The only
non-trivial direction is to show that if ϕ ∧ def (−1, p, ψ)
is satisfiable then ϕ ∧ def (0, p, ψ) is also satisfiable. First
note that if a predicate occurs only positively in a formula
χ(x̄) then the formula is monotone wrt. this predicate in the
following sense. Consider a first-order interpretation I such
that I |= χ(ā). Then I ′ |= χ(ā) for any I ′ which is obtained
from I by changing the interpretation of p such that pI ⊆ pI′ .
Now assume that ϕ ∧ def (−1, p, ψ) is satisfiable in a model
I and p occurs only positively in ϕ. Let I ′ be obtained from
I by changing the interpretation of p such that I ′ |= p(ā)
iff I |= ψ(ā). It is easy to check that I ′ |= def (0, p, ψ) and
pI ⊆ pI′ since p does not occur in ψ. Finally we have I ′ |= ϕ
since pI ⊆ pI′ and ϕ is monotone wrt. p.

Example 1: Consider a definition

def (0, p, ψ)
def
= ∀x (p(x)↔ (∀y (q(x, y)↔ s(x, y))). (2)

Such definitions frequently occur in encodings of hardware
verification into first-order logic where, e.g., p(x) can repre-
sent equivalence between two bit-vectors q(x, y) and s(x, y) at
time x. After Skolemization and clausification of def (0, p, ψ)
we obtain clauses outside of the EPR fragment due to non-
constant Skolem functions, thanks to the negative occurrence
of the ∀ quantifier in the positive subdefinition of def (0, p, ψ).
Now if all other occurrences of p in our formula are positive
we can apply UDE and simplify our definition to

def (−1, p, ψ)
def
= ∀x (p(x)→ (∀y (q(x, y)↔ s(x, y))). (3)

It is easy to see that after Skolemization of this simplified
definition we obtain an EPR formula.

IV. DEFINITION RESOLUTION

A resolvent of two definitions def (1, p, ψ) and
def (−1, p, ψ′) is a universal closure of the formula ψ → ψ′,
denoted as def (1, p, ψ) ⊗ def (−1, p, ψ′). In Table II we
define definition resolution transformation (DRT) which can
be used to eliminate a definition of a predicate based on
exhaustive application of resolution. DRT is similar to the
variable elimination rule well studied in the propositional case
(we refer to [12] for a comprehensive survey of propositional
preprocessing techniques).

Theorem 2: DRT is a satisfiability preserving and termi-
nating transformation.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

454545

ϕ ∧
∧
i:1≤i≤n def (1, p, ψi)

∧
j:1≤j≤m def (−1, p, γj) ⇒

ϕ ∧
∧
i,j:1≤i≤n;1≤j≤m def (1, p, ψi)⊗ def (−1, p, γj),

where p does not occur in ϕ.

TABLE II
DEFINITION RESOLUTION TRANSFORMATION (DRT)

ϕ[p(t̄)]π ∧ def (pol , p, ψ)⇒ ϕ[ψσ]π ∧ def (pol , p, ψ),
where x̄σ = t̄, and either
(i) pol = 0, or
(ii) pol 6= 0 and all occurrences of p in ϕ[p(t̄)] are of polarity −pol .

TABLE III
DEFINITION INLINING TRANSFORMATION (DIT)

We can slightly generalise DRT to definitions of the form
def (0, p, ψ) by splitting such definitions into positive and
negative subdefinitions, applying DRT to the new definitions,
and removing tautologies of the form ψ ∨ ¬ψ.

Let us note that although DRT transformation is terminating,
it can quickly increase the size of the formula and therefore
is usually applied only in specific cases.

V. DEFINITION INLINING

One way of eliminating a predicate definition is to exhaus-
tively inline it as defined in Table III. For related discussion
we refer to [20] and in the QBF setting to [10].

Theorem 3: DIT is a satisfiability preserving transforma-
tion. Moreover, any sequence of DIT applications wrt. a given
predicate definition is terminating.

After an exhaustive application of DIT wrt. a predicate defi-
nition def (pol , p, ψ) we can eliminate this definition altogether
by applying UDE.

Let us note that DIT can quickly increase the size of the
resulting formula. We define a special case where such an
increase stays linear wrt. size of the formula, called non-
growing definition inlining.

Definition 1: A predicate definition def (pol , p, ψ) is non-
growing wrt. a formula ϕ, if either (i) p occurs only once in ϕ,
or (ii) ψ is an EPR literal. An application of DIT ϕ[p(t̄)]π ∧
def (pol , p, ψ) ⇒ ϕ[ψσ]π ∧ def (pol , p, ψ) is non-growing
(NDIT) if def (pol , p, ψ) is non-growing wrt. ϕ[p(t̄)]π .

Theorem 4: NDIT increases the size of the formula lin-
early wrt. the number of transformation steps.

Let us note that non-growing inlining is not confluent in
general.

VI. EPR RESTORING INLINING

In Section III we saw that UDE can help obtain EPR
resulting clausification. It turns out that for many problems, in
particular those coming from hardware verification, applying
UDE is not sufficient for obtaining EPR resulting clausifi-
cation. Let us show how DIT can be used to restore EPR
resulting clausification.

Example 2: Consider a definition

def (0, p, ψ) = ∀x (p(x)↔ ∀y q(x, y))

and a formula
ϕ = [p(a)→ (∀z (q(z, c)↔ q(d, z)))]∧

[∀u (p(u) ∨ q(c, d))].

After Skolemization and clausification of def (0, p, ψ), we ob-
tain two clauses p(x)∨¬q(x, sk(x)) and ¬p(x)∨q(x, y), cor-
responding to Skolemization of def (1, p, ψ) and def (−1, p, ψ)
respectively. Let us note that the first clause is non-EPR.
Moreover, p occurs both positively and negatively in ϕ and
therefore we cannot apply UDE as we did in Example 1.

Let us discuss how one can restore EPR using inlining.
If we inline all non-positive occurrences of p in ϕ according

to def (0, p, ψ), we obtain

ϕ′ = [(∀y q(a, y))→ (∀z (q(z, c)↔ q(d, z)))]∧
[∀u (p(u) ∨ q(c, d))].

Let us note that after inlining, variable x in the defini-
tion of p became instantiated by a constant a. Therefore,
standard clausification of ϕ′ will result in an EPR formula.
Moreover, now all occurrences of p in ϕ′ are positive, and
therefore we can apply UDE to ϕ′ ∧ def (0, p, ψ), obtain-
ing ϕ′ ∧ def (−1, p, ψ). Finally, standard clausification of
def (−1, p, ψ) is also in EPR. This example demonstrates how
definition inlining in combination with unused definition elim-
ination can be used to obtain an EPR resulting clausification.

Definition 2: A predicate definition def (pol , p, ϕ) is pre-
EPR if SK(def (pol , p, ϕ)) is not EPR and ϕ is of the form
Qȳψ(x̄, ȳ), where FV (ϕ) = {x̄}, Q ∈ {∃,∀} and ψ is
quantifier free.

Let us note that for a pre-EPR predicate definition
def (0, p, ϕ), either its positive subdefinition is EPR and its
negative subdefinition pre-EPR or vice versa.

A substitution σ is constant-grounding for a set of variables
V if σ maps all variables in V to constants.

Lemma 1: Let def (pol , p, ϕ) be a pre-EPR predicate def-
inition. Then SK(ϕσ) is EPR for any substitution that is
constant grounding for FV (ϕ).

The EPR restoring inlining strategy (ERI) consists of ex-
haustive application of inlining to pre-EPR definitions until
pre-EPR (sub)definitions can be eliminated by UDE.

VII. EPR RESULTING CLAUSIFICATION FOR NON-CYCLING
DEFINITIONS

Consider a set of definitions

D = {def (pol1, p1, ψ1), . . . , def (polk, pk, ψk)}.

Define a binary dependency relation between symbols as
follows: (pi, pj) ∈ dep if and only if pj occurs in ψi. D
is called non-cycling if the transitive closure of dep is a strict
ordering. D is called non-branching if each predicate has at
most one definition in D.

Theorem 5: Consider a formula ϕ that can be split into
ϕepr ∧D, where (i) SK(ϕepr) is an EPR formula, (ii) D is a
set of non-cycling pre-EPR definitions, and (iii) all occurrences

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

464646

of predicates in SK(ϕepr) are ground-matching in D. Then
the EPR restoring inlining strategy is EPR resulting on ϕ.

In order to obtain an EPR resulting clausification, we need
to resort to DIT, which generally does not satisfy our non-
growing criterium. In the next sections we consider techniques
that simplify definitions and formulas further and are helpful
in restoring the non-growing condition in practical cases.

VIII. ARGUMENT COLLAPSING

Consider a first-order formula ϕ and assume that all oc-
currences of an m-ary predicate p have distinct constants
c1, . . . , cn at the k-th argument (for some k). Moreover assume
that

ϕ |= ci 6= cj for 1 ≤ i < j ≤ n. (4)

Then we can introduce new m− 1-ary predicates p1, . . . , pn
and replace each occurrence of p where ci occurs as the k-th
argument with the corresponding m− 1-ary predicate pi.

This transformation can lead to some equivalences becom-
ing predicate definitions, and therefore eligible for all predicate
definition-related transformations. This frequently happens for
example in hardware encodings, where some predicate argu-
ments are bit-blasted. Although in general checking condition
(4) is as difficult as checking the satisfiability of the formula, in
many cases this condition is trivially satisfied. For example, if
c1, . . . , cn represent bit-indexes, then when all bit-indexes are
enforced to be different this condition is automatically satisfied
as in the case of (selective) bit-blasting.

IX. CONDITIONAL REWRITING

In previous sections of this paper we were addressing
unconditional predicate definitions, which were formulas of
the form p(x̄) ? ψ(x̄), where ? ∈ {↔,→,←}. Some defi-
nitions, however, may hold only under certain assumptions;
we would call these conditional, and they appear as formulas
ϕ(x̄)→ (p(x̄)?ψ(x̄)). It is not sound to inline such definitions
in the entire problem; however, if we have a formula which
is also conditioned by ϕ, or more generally by some ϕ′ such
that ϕ′ → ϕ, we can safely perform the inlining there.

Moreover, this observation does not hold only for predicate
definitions, but also for equalities. If we have ϕ(x̄)→ s = t,
we can use s = t for rewriting terms in formulas conditioned
by ϕ.

As an example, consider a typical formula which occurs
in hardware encodings: next(x, y) → (p(x, y) ↔ ψ(x)),
which informally states that p holds at the consecutive states
provided that ψ holds in the current state. Now we can inline
this conditional definition of p in other formulas which are
also conditioned by the next state predicate. For example
next(x, y)→ (p(x, y)∧ (p(c, d)∨ q(y))) can be rewritten by
conditional inlining to next(x, y)→ (ψ(x) ∧ (ψ(c) ∨ q(y))).

X. DEFINITION MERGING

In our experience many problems from hardware formal-
isations contain predicates which are implicitly equivalent.
Such predicates can be merged, considerably speeding up
reasoning. More generally, we will consider implied non-
growing predicate definitions NDI, shown in Table IV. Let us

ϕ⇒ ϕ ∧ def (pol , p, ψ), where
(i) ϕ |= def (pol , p, ψ),
(ii) def (pol , p, ψ) is non-growing and
(iii) definition inlining is applicable to def (pol , p, ψ) and ϕ

TABLE IV
NON-GROWING DEFINITION INTRODUCTION (NDI)

note that after application of NDI one can exhaustively apply
DIT and UDE, eliminating the defined predicate from the
problem. NDI covers the special case of implicitly equivalent
predicates, since the equivalence of two predicates p and q can
be represented as a non-growing definition def (0, p, q(x̄)). In
the following we consider the case of non-growing definitions
of the form def (pol , p, ψ), where ψ is an EPR literal.

In general, checking condition (i) of the applicability of
NDI is undecidable, and therefore we need to resort to some
heuristics. First we consider syntactic heuristics. Syntactic
heuristics will be parameterized by a normalising function. A
normalising function is a mapping of formulas into equivalent
formulas. For example, a function that transforms formulas
into negation normal form is a normalising function. There
are many other useful normalising functions, e.g., removing
double negations or eliminating some connectives. Let us fix
a normalising function ∆. Then, two definitions def (0, p1, ψ1)
and def (0, p2, ψ2) are normalising equivalent wrt. ∆ if ∆(ψ1)
and ∆(ψ2) are syntactically the same formulas.

Let us introduce syntactic definition merging as follows. Let
ϕ = χ∧ def (0, p1, ψ1)∧ def (0, p2, ψ2), where ψ1 and ψ2 are
normalising equivalent. Wlog assume arity(p1) ≥ arity(p2).
Then ϕ ⇒ ϕ ∧ def (0, p1, p2(x̄)) using NDI and we can
eliminate p1 from ϕ using DIT and UDE.

We implemented the following normalising function ∆syn

which (i) transforms formulas into negation normal form,
(ii) flattens conjunctions and disjunctions, and (iii) bottom-
up renames bound variables, applies sharing of subformulas,
and orders conjuncts/disjuncts in disjunctions/conjunctions ac-
cording to the ordering induced by sharing.

XI. SAT SWEEPING

In this section we discuss discovery of predicate definitions
using propositional reasoning. The problem consists of two
tasks. The first task is to convert the first-order problem into
a propositional problem so that equivalences found between
propositional variables will correspond to equivalences be-
tween first-order formulas. The second task is to efficiently
find equivalences between variables in a given propositional
problem.

Definition 3: Let τ be an injective map of first-order atoms
to propositional variables. We extend τ so that it maps
unquantified first-order formulas to propositional formulas in
a straightforward way (e.g., τ(ϕ ∧ ρ) 7→ τ(ϕ) ∧ τ(ρ)). We
further extend τ to universally quantified formulas in prenex
form by dropping quantifiers.

Theorem 6: If τ(ϕ) ` τ(ρ), then it holds that ϕ ` ρ.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

474747

The above theorem is a different formulation of a result
given in [15] on under-approximating first-order reasoning
using a SAT solver. To apply it to our case, we Skolemize
and clausify the problem by using the default SK and CL
procedures, and use the τ map to translate it to a first-order
problem. Any equivalences between propositional variables
implied by this problem can then be lifted back to first-order.

Now, given a satisfiable propositional formula ϕ and a set
of interesting propositional variables V , our goal is to discover
(some of) the equivalences implied by ϕ between literals of
variables V . For convenience of notation, we consider the
propositional constant > to be one of the interesting variables,
which extends the approach also to discovery of true literals.
We base our discovery of the propositional equivalences on
the idea of simultaneous implicative SAT solving presented
in [14], which allows discovery of implied implications (and
equivalences) in one call to the SAT solver.

One problem to address is that the clausification process
can extend the signature of the formula by introducing new
symbols, for example Skolem constants. We use a naive way
of dealing with this issue — when an equivalence contains
a symbol that is not in the original signature, we discard the
equivalence. There may be more advanced ways of eliminating
these symbols; however, in our practical applications the
presence of introduced symbols did not become a significant
problem.

The above approach can be further extended to find equiva-
lences between general sub-formulas, not only between atoms.
To this end, we may do an additional transformation on
the problem, before it is Skolemized and clausified. First
we convert the formula to a QAIG graph (described in
Section XII) and then use the Tseitin transformation on the
graph, introducing a new name predicate for each node. When
we later discover equivalences involving the introduced name
predicates, we translate them back into the signature of the
input formula by unfolding the introduced names.

XII. QAIG

Following the And-Inverter Graph (AIG) representation [17]
of propositional problems widely used in propositional deci-
sion procedures, we introduce its counter-part data structure
QAIG (Quantified And-Inverter Graphs). It is based on the
AIG structure but contains an additional kind of node to
represent quantifiers.

The set of QAIG terms on a set of atoms A can be defined
as the smallest set of terms Q such that:

> ∈ Q
∀a ∈ A : atom(a) ∈ Q
∀q ∈ Q : neg(q) ∈ Q
∀q1, q2 ∈ Q : conj(q1, q2) ∈ Q
∀q ∈ Q, x ∈ free(q) : quant(x, q) ∈ Q

where free(q) is the set of free variables in the QAIG q.
Below we will use q to denote QAIG nodes.

The QAIG data structure is a canonical in-memory represen-
tation of the QAIG terms. Canonicity of the structure means
that if two terms are syntactically equal, they are represented

by the same memory object. On top of this, we also normalize
the order of the arguments in the conj term and eagerly
perform the local AIG simplifications proposed in [7].

Lemma 2: An arbitrary first-order formula can be con-
verted to QAIG structure in a single linear-time traversal,
assuming a constant-time access to a hash table.

Proof: The conversion is performed by bottom-up appli-
cation of following transformation rules:

ftq(a)⇒ atom(a) for atoms a ∈ A
ftq(φ ∧ ψ)⇒ conj(ftq(φ), ftq(ψ))
ftq(φ ∨ ψ)⇒ neg(conj(neg(ftq(φ)), neg(ftq(ψ)))
ftq(∃x : φ)⇒ neg(quant(x, neg(ftq(φ))))
ftq(φ↔ ψ)⇒ conj(neg(conj(neg(ftq(φ)), ftq(ψ)),

neg(conj(ftq(φ), neg(ftq(ψ))))
. . .

Rules for other logical connectives can be written analo-
gously. Each of the rules transforms a formula into QAIG
in constant time, assuming that its subformulas are already
transformed and that construction of an QAIG term having its
arguments is a constant time operation.

One thing to note is that in the rule for equivalence we
see two occurrences of the ftq(φ) (as well as of ftq(ψ)) on
the right-hand side. If we were using a flat representation
to keep the QAIG terms, applying the rewriting rule would
double the size of the term. However, as we use a canonical
representation, we are interested in the number of distinct
QAIG terms. This number grows only by a constant amount,
so the size of the canonical QAIG structure will remain at
most linear with the size of the formula.

A. QAIG Inlining

An important goal with the QAIG structure was to obtain a
good infrastructure for performing definition inlining without
exponential growth in the size of the problem. It can be used
for implementing the inlining rules (N)DIT and ERI. QAIGs
also provide better sharing of subformulas and definition
merging.

At a high level, the QAIG inlining algorithm can be
described as follows:

1) Collect the set of candidate rewrite rules atom(a)⇒ q:
This is done by a scan through the problem, looking for
formulas in the shape of ∀x̄(a(x̄) ↔ φ(x̄)). Here a(x̄)
denotes an arbitrary non-equality atom with variables
x̄, and φ(x̄) stands for a formula with free variables
being a subset of x̄. In order to enable more definitions
eligible for inlining, we also apply argument collapsing
whenever possible, see Section VIII.

2) Instantiate candidate rules:
Whenever there is a rule in the form atom(a(x̄)) ⇒
q(x̄) and there is an atom a(t̄) where t̄ is different from
x̄, we add an instance of the rule atom(t̄) ⇒ q(t̄) as
another candidate rule. Let us note that such instantiated
rules are used only for inlining; we do not add them
to the resulting QAIG since they are subsumed by the
original rules.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

484848

3) Remove cyclic dependencies:
If we have a chain of candidate rules atom(a0) ⇒
q0, . . . , atom(an) ⇒ qn such that atom(an) occurs in
q0 and, for each 0 ≤ i < n, atom(ai) occurs in qi+1, we
remove one of the candidate rules to remove the cycle.

4) Apply rules to the QAIG representation of the problem:
We exhaustively apply generated inlining rules to the
QAIG. In this step we must be careful when rewriting
using instantiated rules due to variable sharing. In partic-
ular, to improve sharing we do not assume that QAIGs
are rectified and variable instantiation becomes a non-
trivial problem which we consider in the next subsection.

The second step, which involves instantiation, is the only
step where the size of the QAIG structure may grow1 and
is potentially the most time consuming. Instantiation is also
specific to QAIGs, as the original AIG structure works with
propositional atoms where instantiation does not make sense.
In the next subsection we focus on the algorithm for QAIG
instantiation and discuss some of its properties.

B. QAIG Instantiation

During the instantiation of candidate rules we need to apply
a substitution for free variables in a QAIG formula. This
cannot be done by a straightforward bottom-up traversal of the
QAIG graph, as an atom a may appear at various positions
of the QAIG, having different variables bound by its ancestor
quantifier nodes. For example take a QAIG

conj(atom(p(x)), quant(x, atom(p(x))))

In the first occurrence of the atom p(x) the variable is free;
however, in the second it is bound by a quantifier. Applying
a substitution {a/x} will therefore result in

conj(atom(p(a)), quant(x, atom(p(x))))

We can express the instantiation as a set of rewrite rules
parameterized by a substitution:

Tσ(atom(a)) = atom(aσ)
Tσ(neg(a)) = neg(Tσ(a))
Tσ(and(a, b)) = and(Tσ(a), Tσ(b))
Tσ(quant(x, a)) = quant(x, Tσ′(a)),

where σ′ is σ with x unbound.

Lemma 3: If we denote the size of the QAIG structure
by n, the size of the QAIG term (which can be exponential
with the size of the DAG data structure) by N and the
number of variables in the substitution by m, the application
of the instantiation rules can be implemented with complexity
O(min(N, 2m.n)).

Proof: The bound 2m.n follows from the fact that with the
last rule we may generate at most 2m possible substitutions,
and then we may cache the pairs of a QAIG term and the
substitutions applied to it. The bound N is valid because apart
from the possible speed up by the earlier mentioned caching,

1In the rewriting step we still create new nodes, but for every added node
there is a node that was rewritten and therefore removed.

we traverse the QAIG as a term of length N , rather than as a
data structure of size n.

It can be noted that if in no QAIG subgraph would any
variable occur as both free and bound, the instantiation could
be performed in O(n), as we would know in advance which
variables would be instantiated and which would be quantified.
Such a representation can be achieved by variable renaming;
however, this would decrease the amount of sharing in the
QAIG structure. For example, if we consider QAIG

conj(atom(p(x)), quant(x, atom(p(x))))

its size is 3: the conj node, quant node and the atom(p(x))
node which is referred to twice, once by the conj node and
once by quant. In order to ensure that no variable occurs
both as bound and free, we would need to rename one of the
occurrences, obtaining

conj(atom(p(x)), quant(y, atom(p(y))))

Now the size is 4, as we have two atom nodes, atom(p(x))
and atom(p(y)).

C. QAIG BDD Sweeping

Following the idea of BDD sweeping for propositional
problems [17], we attempt to simplify QAIGs using BDDs.

We perform the simplification from simpler AIGs to more
complex. When we process an AIG node q, we first check
whether it hasn’t been simplified into q′ by simplifications
on its parent nodes. Then, if the number of distinct atoms
in the AIG is lower than a given threshold (16 in our
implementation), we convert it into a BDD and then back,
obtaining q′′. If the DAG size of q′′ is smaller than the size
of q′ we use q′′ as the simplified node, otherwise we use q′.
We also keep a map where for each BDD we store the most
compact QAIG representation of it we have encountered. If
we encounter several QAIGs with the same BDD, we replace
them in the end by the most compact one.

The conversion of QAIGs into BDDs uses a straightforward
bottom-up algorithm atb:

atb(atom(a)) = bddvar(atom(a))
atb(quant(x, q)) = bddvar(quant(x, q))
atb(neg(q)) = bddneg(q)
atb(conj(q1, q2)) = bddand(atb(q1), atb(q2))

When converting from BDD to an QAIG, we first extract
from the BDD all literals L such that the BDD formula ϕ can
be written as ϕ ↔ L ∧ ϕ[L := >] or ϕ ↔ L → ϕ[L := >].
Then we continue with the conversion on the simplified for-
mula ϕ[L := >]. When there are no more possible extractions,
we perform a naive conversion

bta(ite(x, t, e)) = and(neg(and(atom(x), neg(bta(t)))),
neg(and(neg(atom(x)), neg(bta(e)))))

D. AIG Definition Introduction

We traverse an AIG in a top-down manner, and for each
node we remember how many times it would appear in a tree-
like representation of the AIG (which can be exponentially
large, compared to the DAG representation). If the counter

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

494949

rule full name
UDE Unused Definition Elimination
DRT Definition Resolution Transformation
(N)DIT (Non-growing) Definition Inlining Transf.
ERI EPR Restoring Inlining
NDI Non-growing Definition Introduction
ED Equivalence Discovery (or SAT sweeping)
AC Argument Collapsing
ABS AIG BDD Sweeping
ADI AIG Definition Introduction
ACR AIG Conditional Rewriting
VEP Variable Equality Propagation

Fig. 1. Simplification transformations

of a node q reaches a certain threshold value (4 in our
implementation), we introduce for it a definition p(x̄) where
x̄ are all the free variables of the node q. We will use this
definition in place of ϕ later when we convert the AIG
representation back into the non-shared first-order formulas,
which will be converted to p(x̄)↔ ϕq(x̄), where ϕq(x̄) is the
formula corresponding to the node q.

E. QAIG Variable Equality Propagation

If a variable occurs in an equality, under some conditions we
may propagate it into neighbouring subformulas. We perform
this transformation on first-order formulas, but using the above
AIG instantiation terminology it can be expressed as

and(x = s, b)⇒ and(x = s, Tx→s(b))
quant(x, neg(and(x = s, b)))⇒ Tx→s(b),

where x does not occur in s.
In the first case we cannot remove the equality x = s, as

x may occur also elsewhere in the problem. However, in the
second case (due to the quantifier) we know x does not appear
elsewhere, so the equality can be removed. The second rule is
also discussed in [23] in the context of simplifying quantified
bit-vector formulas.

XIII. EXPERIMENTAL RESULTS

Figure 1 summarizes the main simplification transforma-
tions discussed in the paper. They are implemented in Vam-
pire’s clausifier. The implementation is flexible in that these
options can be run in a different order, often repeatedly (or
until fix-point) when useful.

We have evaluated the simplification techniques reported in
the paper on three sets of benchmarks:
(A) EPR-based bounded model checking problems [9].
(B) The QA UF problems from the SMT library [3].
(C) The FOF problems from the TPTP library [22].

In all the experiments, the time spent on pre-processing was
negligible compared to the timeout used and is not reported.

A. Evaluation on EPR-based BMC problems

In [9] we studied an encoding of the BMC [4] problem into
first-order logic. The BMC encoding there is called BMC1,
as the transition relation is never enrolled explicitly (thus one
deals with only one copy of the transition relation). In order

Design FOF Bound CNF size Time
block size Bln Dft Bln Dft Bln Dft

BPB2 913 7 9 1977 2921 6994 8023
DCC1 1093 4 4 3209 1615 5999 8981
DCC2 431 7 10 861 370 6542 9465
DCI1 4678 0 1 15899 9852 149 3085
PMS1 574 5 7 1295 1016 8157 6771
ROB2 713 5 7 1717 1157 8239 6157
SCD1 736 8 9 1908 1328 7704 5366
SCD2 267 8 15 755 524 5691 6370
TOTAL 9404 44 62 27621 18783 49475 54218

TABLE V
BMC1 RESULTS ON INDUSTRIAL BENCHMARKS.

to better explain the benchmark results below, let us briefly
recall the encoding used for BMC1.

Let n be a non-negative integer. The n-step unrolling of
the transition system is defined as follows. Take new con-
stants s0, . . . , sn and a new binary predicate next . Denote by
In(S), Fin(S), and Trans(S,S’) the initial and final state
constraints, and the transition relation, respectively. The n-
step unrolling of the transition system is defined as the set of
formulas

In(s0);Fin(sn);
∀S,S’(next(S,S’)→ Trans(S,S’));

next(s0, s1);next(s1, s2); . . .next(sn−1, sn).

In BMC1, it is possible to solve the BMC problems incre-
mentally per bound, and increasing the bound to n + 1 is
expressed by adding an extra constant sn+1 and an axiom
next(sn, sn+1). (There are a few more subtleties involved in
unrolling, but they are irrelevant to the discussion here.)

Table V displays bounds reached by the iProver solver [15]
on eight BMC1 benchmarks produced from actual Intel hard-
ware designs. We also report the sizes of the original FOF
problems and the sizes of the resulting CNFs, and the solver
run-times. The timeout used was 1000 seconds. This data
is given for the base-line (or Bln, for short) clausification
algorithm of Vampire, and a reasonable default (or Dft for
short) version to which we arrived as a result of experiments
on BMC1 benchmarks. Unused definition elimination (UDE)
is already part of the Vampire baseline clausifier. In the default
version above, all the options listed in Figure 1 except for
ACR are switched on. (Surprisingly to us, ACR didn’t prove
useful on BMC1, even if it helps simplifying within formulas
φ in next-state axioms of the form ∀S,S’(next(S,S’) →
φ(S,S’)).) As can be observed from the table, with the
advanced clausification options the total CNF size was reduced
from 27621 to 18783, and the number of solved bounds
increased from 44 to 62, with only a slight increase in solving
time. Note also that higher BMC bounds are much more
difficult to solve than lower bounds. Thanks to DIT and ERI,
all the resulting CNFs were EPR.

B. Evaluation on SMT benchmarks

We used our clausification algorithms and then passed the
clauses in a TPTP format to the Z3 [18] solver which was run

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

505050

Bln+ACR Dft Dft+ACR Dft+ACR(ERI)
≥ 2x faster 100 10 74 122
> 1x faster 4890 1527 4847 4941
≥ 2x slower 36 33 36 36

TABLE VI
PERFORMANCE RESULTS FOR QA UF SMT PROBLEMS.

with a timeout of 30 seconds. Out of 93 problems that timed
out with either the baseline or the advanced clausification
algorithms, 3 problems were uniquely solved after baseline
clausification, and 12 problems could only be solved using the
advanced clausification options. Since these represent only a
small fraction of the entire problem set, in Table VI we report
runtime results, where ACR refers to full conditional rewriting
and ACR(ERI) to conditional rewriting restricted to the EPR-
restoring strategy. We can conclude that these preprocessing
techniques can considerably speed up SMT solvers on a
number of problems. We can also note that ACR is very useful
both with the baseline and advanced clausification options.

C. Evaluation on TPTP benchmarks

We also evaluated the clausification configurations described
in Table VI on all 14540 FOF problems of the TPTP library.
We collectively refer to these configurations as advanced
clausification configurations. We ran both Vampire and iProver
solvers (using Vampire’s clausifier) with 30 and 60 seconds
timeouts, respectively. A decrease in the number of clauses
after applying advanced clausification occurred in 2922 prob-
lems. All together, with the advanced clausification configura-
tions Vampire solved 276 problems that it cannot solve (with
the same strategies) with the baseline clausification, while it
solved 76 problems with baseline clausification that cannot be
solved with advanced clausification. In total, Vampire solved
11906 problems with advanced clausification configurations
while with baseline clausification it solved 11706. Similarly,
iProver solved 482 problems only when it used the advanced
clausification configurations, and cannot solve 83 problems
that it can solve with baseline clausification. In total, iProver
solved 7178 problems with baseline clausification and 7577
problems with advanced clausification configurations. We note
that 15 (resp. 7) problems uniquely solved with the advanced
clausification configurations by Vampire (resp. iProver) have
the rating 1 in TPTP 5.3.0; they cannot be solved within a
300 second timeout by any of the solvers that participated in
CASC theorem proving competition in 2011.

XIV. CONCLUSIONS

Preprocessing is crucial when dealing with large industrial
problems. In this paper we presented a number of preprocess-
ing techniques for simplification of first-order formulas. One of
the main goals was to investigate methods for simplifying first-
order formulas so that Skolemization and clausification would
result in clause sets that are simpler for first-order reasoners.
We have investigated methods for definition simplification,
EPR-preserving clausification based on definition inlining,

discovery and merging of first-order definitions. We also
introduced new data structures: quantified AIG, called QAIGs,
and a combination of QAIGs and BDDs. We implemented
all our techniques in Vampire2. Vampire can also be used
as an intermediate preprocessing/clausification step for other
solvers, in the same way as we used it with iProver and Z3.

We evaluated our techniques over a broad range of bench-
marks, including industrial hardware verification benchmarks
coming from real-life designs at Intel and largest problem col-
lections for first-order logic (TPTP) and SMT (SMT-LIB). The
results are very encouraging, showing that many problems can
be solved only with the help of our preprocessing techniques.

There are many directions for future work. Let us only men-
tion that we are planning to develop inprocessing techniques
for FOL solvers, that is, we want to combine simplification
and reasoning steps more tightly.

REFERENCES

[1] Alberti F., Armando A., Ranise S. ASASP: Automated Symbolic Anal-
ysis of Security Policies, CADE 2011.

[2] Baaz M. Egly U., Leitsch A. Normal Form Transformations, in [21],
pages 273-333.

[3] Barrett C., Stump A., Tinelli C., The SMT-LIB Standard: Version 2.0
[4] Biere A., Cimatti A., Clarke E., Zhu Y. Symbolic model checking

without BDDs, TACAS 1999.
[5] Bjesse P., Boralv A. DAG-aware circuit compression for formal verifi-

cation, ICCAD 2004.
[6] Brand D. Verification of large synthesized designs, ICCAD 1993.
[7] Brummayer R., Biere A. Local two-level And-Inverter Graph minimiza-

tion without blowup, MEMICS 2006.
[8] Emmer M., Khasidashvili Z., Korovin K., Voronkov A. Encoding

Industrial Hardware Verification Problems into Effectively Propositional
Logic FMCAD 2010.

[9] Emmer M., Khasidashvili Z., Korovin K., Sticksel C., Voronkov A. EPR-
Based Bounded Model Checking at Word Level, IJCAR 2012.

[10] Giunchiglia E., Marin P., Narizzano M. sQueezeBF: An Effective
Preprocessor for QBFs Based on Equivalence Reasoning, SAT 2010.

[11] Hoder K., Kovács L., Voronkov A. Invariant Generation in Vampire,
TACAS 2011.

[12] Järvisalo M., Heule M.,3, and Biere A. Inprocessing Rules, IJCAR 2012
[13] Khasidashvili Z., Kinanah M., Voronkov A. Verifying Equivalence of

Memories Using a First Order Logic Theorem Prover FMCAD 2009.
[14] Khasidashvili Z., Nadel A. Implicative Simultaneous Satisfiability and

Applications, HVC 2011.
[15] Korovin K. iProver–an instantiation-based theorem prover for first-order

logic (system description), IJCAR 2008.
[16] Kuehlmann, A. Dynamic Transition Relation Simplification for Bounded

Property Checking, ICCAD 2004.
[17] Kuehlmann A., F. Krohm. Equivalence checking using cuts and heaps,

DAC 1997.
[18] de Moura L., Bjorner N.: Z3: An Efficient SMT Solver. TACAS 2008.
[19] Navarro-Perez, J.A., Voronkov A. Encodings of Bounded LTL Model

Checking in Effectively Propositional Logic, CADE 2007.
[20] Nonnengart A., Weidenbach C. Computing Small Clause Normal Forms,

in [21], pages 335-367.
[21] Robinson J. A., Voronkov A. Handbook of Automated Reasoning,

Elsevier and MIT Press, 2001.
[22] Sutcliffe G. The 5th IJCAR automated theorem proving system compe-

tition @CASC-J5, AI Communications, Volume 24(1), pp. 75-89, 2011.
[23] Wintersteiger C.M., Hamadi Y., de Moura L.M. Efficiently solving

quantified bit-vector formulas, FMCAD 2010.

2publicly available at http://www.vprover.org/

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

515151

	03t
	04t
	05t
	06t
	07kn
	08p
	09p
	10p
	11p
	12p
	13p
	14p
	15p
	16p
	17p
	18p
	Introduction
	Previous Approaches and Related Work
	Preliminaries
	Basic Notation
	General strategies
	Binary Decision Diagrams

	Learning Small Circuits
	Decomposition
	Learning circuits with a single output bit
	Learning CNFs
	Learning CDNFs

	Experimental Results
	Implementation and Experimental Setup
	Experiments with Ratsy
	Experiments with Unbeast
	Discussion

	Conclusions and Future Work
	References
	Appendix

	19p
	20p
	21p
	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

	22p
	23p
	24p
	25p
	26p
	27p
	28p
	Introduction
	Related Work

	Preliminaries
	SAT-based Reachability via IC3
	Abstraction
	Lazy Abstraction

	Lazy Abstraction and IC3
	Abstract Model Checking via A-IC3
	Refinement
	Correctness Arguments
	Detailed Description of Strengthening

	Experimental Results
	Acknowledgments
	References

	29p
	30it
	31p
	32p
	33p
	34ai

