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Abstract—We present a simple but novel algorithm for check-
ing liveness properties of finite-state systems, calledk-L IVENESS,
which is based on counting and bounding the number of times a
fairness constraint can become true. Our implementation of the
algorithm is completely SAT-based, works fairly well in practice,
and is competitive in performance with alternative methods.
In addition, we present a pre-processing technique which can
automatically derive extra fairness constraints for any given
liveness problem. These constraints can be used to potentially
boost the performace of any liveness algorithm. The experimental
results show that the extra constraints are particularly beneficial
in combination with our k-L IVENESS algorithm.

I. I NTRODUCTION

LTL properties for model checking are traditionally parti-
tioned into two sets:safetyand livenessproperties. Roughly,
safety properties are properties for which all possible counter
examples are finite traces. Liveness properties can have infinite
counter examples that are impossible to make finite.

Safety properties are more commonly used in practice,
easier to understand, and theoretically easier to check than
liveness properties. However, liveness properties still play
an important role on many verification projects. The SAT
Revolution in model checking at the end of the 1990s [8] gave
us new ways of battling the “blow-up” problems associated
with typical BDD model checking algorithms, and sparked
off a long sequence of new SAT-based safety checkers [11],
[4], [10], [5]. On the liveness side, no such explosion of new
algorithms took place. (Interesting to mention in this context is
that the original paper on Bounded Model Checking [2] treats
safety properties and liveness properties equally.)

Related Work The first practical complete SAT-based
liveness checking approach was made possible by theliveness
to safety(LTS) translation by Biere et al. [1]. LTS translates
any liveness checking problem into a safety checking problem,
after which any safety checker can be used, including SAT-
based checkers. The second complete method for liveness, by
Bradley et al., called FAIR [6], was only published last year. It
consists of a dedicated liveness algorithm, based on a symbolic
exploration of the state space using a SAT-solver, looking
for strongly connected components. FAIR performed rather
well in the Hardware Model Checking Competition 2011 [3],
proving more liveness properties than any other participant in
the competition.

This paper presents a new model checking algorithm for full
LTL, called k-L IVENESS, that is amenable for a SAT-based

†The bulk of this work was carried out at Chalmers University.

implementation. Like LTS,k-L IVENESS translates liveness
checking into safety checking, but it generates an (infinite)
sequence of safety problems rather than just one safety prob-
lem. If one of the safety problems in the sequence can be
shown to hold, then the original liveness property holds as
well. In principle, any safety checker can be used to solve the
problems in the sequence of problems, but we implemented
and use a SAT-based incremental safety checker especially for
this purpose.

As we shall see,k-L IVENESS is a surprisingly simple algo-
rithm, much simpler than FAIR, and arguably also simpler than
LTS, but it performs nonetheless quite well when compared to
these other algorithms. A drawback of our chosen approach is
that, although it is complete for proving as well as disproving
LTL properties, it is not suitable in practice yet for finding
counter examples. Therefore, there is a need to combine it with
a dedicated counter example finder, for example one based on
Bounded Model Checking [2].

The second contribution of the paper is a preprocessing
step that automatically adds extra fairness constraints to a
given liveness problem. The addition of these constraints is
sound; the validity of properties of the original circuit is not
changed by these extra constraints. The potential benefit is
that, depending on the liveness checking algorithm used, these
extra fairness constraints make many liveness problems much
easier. Our experimental results show thatk-L IVENESS in
particular, but also LTS benefits very much from these extra
constraints.

II. PRELIMINARIES

A trace t is a function from time point and signal name to
Boolean value:

t : N× Signal→ B

We will use LTL formulas containing operators
�,♦, next ,∨,∧,→,¬,= having their standard meaning. We
write S ⊢ φ when the systemS satisfies the propertyφ, and
we write S, ψ ⊢ φ when the systemS makesφ true under
the assumptionψ.

When performing model checking, we assume that the LTL
propertyφ at hand has already been translated into aliveness
signal q, such that

S ⊢ φ ⇔ S ⊢ ♦�q (1)

In other words, in order to deal with full LTL, we only need
to consider proving LTL properties of the form♦�q. (This is
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Fig. 1. Counter-example showing that the simple algorithm does not work.

standard [12]; here,q is the negation of the acceptance signal
of the Buchi automaton for¬φ. The above right-hand side is
sometimes expressed using thefairness signal¬q as follows:

S,�♦¬q ⊢ false

but we prefer the expression used in (1) above.)
In some contexts, a propertyφ may be translated into

several liveness signals, in which case we need to prove their
disjunction:

S ⊢ φ ⇔ S ⊢
∨

i

♦�qi (2)

In this case, we first combine all liveness signalsqi into
one liveness signalq, and then proceed with the liveness
signal q. This combination can be done in many (standard)
ways; the simplest one is to introduce one auxiliary register
for each liveness signalqi that keeps track of whether that
signal has been 0 yet. If allqi have been 0 at least once,
q also becomes 0 and we reset all auxiliary registers. This
construction introducesn extra registers andO(n) extra gates
for combiningn liveness signals.

III. K-L IVENESS

In this section, we present our basic algorithm for checking
liveness, calledk-L IVENESS.

A. A simple algorithm for♦�q (that does not work)

Consider proving the eventuality property

S ⊢ ♦q

for a boolean signalq. For finite state systems, we may prove
this by searching for a natural numberk such that

S ⊢
∨

i∈0...k

next
i q

Indeed, if ♦q holds, we can always find such ak. The
gain is that, for a givenk, the above proof obligation is a
safety property, which can be checked by a safety checker.
A simple checking algorithm thus triesk = 0, 1, 2 . . . until∨

i∈0...k
next

i q holds.
One might be tempted to try a similar idea for checking the

more general safety property

S ⊢ ♦�q

Alas, there are finite state systems for which the above holds,
but for which there is nok such that

S ⊢ next
k �q

An example of such a system and property is shown in Fig.
1. Clearly,♦�q holds for all traces accepted by the system,
but for everyk there is a trace such thatq becomes false after
k steps. So, this method is sound but not complete.

B. A simple, correct algorithm for checking♦�q

Instead of counting (and bounding) the number of clock
cycles until the signalq must become true forever, we can
instead count (and bound) the number of timesk the signal
q can be false. If we can find such a boundk, then q has
to eventually become true forever. Moreover, ifq is a valid
liveness signal for a finite state system, we can always find
such ak. In the system in Fig. 1, the bound is 1;q can only
become false once in every trace.

What we want is expressed more formally by the following
lemma.

Lemma 1:Given a finite-state systemS for which we have
S ⊢ ♦�q. Then, there exists ak such that for any tracet
of S, there are at mostk different points in timei for which
t(i, q) = 0.
Proof. Assume the opposite: for anyk there is a tracet where
q becomes false at leastk times. Now, pick anyk larger than
the number of states inS; there must be a tracet in which
q becomes false at leastk times. Consequently, there must be
two different time pointsi and j for which t(i) = t(j) and
t(i, q) = t(j, q) = 0, since not all states whereq is false can be
unique. We can now construct a looping tracet′ (obtained from
t by repeating the states betweeni andj) for which q is false
infinitely often, which contradicts our original assumption that
S ⊢ ♦�q. �

The experimental observation we make is that, in practice,k

is often very small (see Fig. 9 in Sect. V), which suggests that
finding k might be a practical method for checking liveness
properties.

Our algorithm works as follows. We start by settingk := 0.
Now, we try to show thatq can only become false at mostk
times (this is a safety property). If we succeed, we are done;
the property holds. If we fail, we increasek by 1 and try again.

Because of the above lemma, this algorithm is complete for
valid properties. However, it does not terminate for properties
that are not valid. Theoretically, if we keep finding counter
examples for growingk, at some point there must be a trace
which contains a repeated state at the appropriate place, thus
forming a valid counter example for the original liveness
signal. However, this is unlikely to work well in practice. In
order to get a complete algorithm also for false properties in
practice, a dedicated counter example finding method is used
in parallel or in lock-step withk-L IVENESS.

C. Implementation

In our implementation, instead of repeatedly calling a safety
checker every time we changek, we use an incremental safety
checker. The incremental safety checker proves or disproves a
given safety property, after which we can add some more logic
and registers to the circuit, and continue with a new safety
property. The incremental checker keeps its internal state
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pin

D pout

Fig. 2. Absorbing one 0 from a liveness signal (initial state for D is 0)

between calls, so it can reuse information about reachabilty
it discovered in earlier runs in later runs too.

Making an existing safety checker incremental is more or
less difficult, depending on the underlying algorithm that the
checker is based on. The safety checker we used was our
own implementation of Bradley’s SAT-based safety checking
algorithm as implemented in IC3 [5]. Bradley’s safety al-
gorithm maintains a finite sequence of sets of clauses, each
set belonging to a concrete point in time. It turns out that
the algorithmic invariants between these sets are completely
independent of the property one is currently proving. So, if the
current property has been proven or disproven, we can keep all
sets of clauses for the next run of the checker, even though we
might add some new logic and change to a new property. The
algorithm also maintains a “current depth” counter which does
not need to be reset when a new property is checked. Thus,
Bradley’s safety algorithm is a very nice fit for the liveness
checker we are building.

The liveness algorithm starts withk = 0, and so the safety
propertyp we have to consider is actually the liveness signalq.
So, we start by trying to prove thatq can never become false.
If this is disproved, we want to increasek and run again.
We implement increasingk by 1 by attaching theabsorbing
circuitry shown in Fig. 2 to the safety propertyp we have
just disproved. Ifp is fed as its inputpin, a new safety signal
pout is created that behaves just like the previous signalpin,
except that it absorbs the first 0 that is produced by its input
and turns it into a 1. So, adding the absorbing circuit in the
figure and checking its output as the new safety property has
the same effect as increasingk by 1. If we disprove the new
safety propertypout, we attach yet another copy of the circuit
to it, and so on, until we have attached enough copies of the
absorbing circuit to smother all possible 0’s (or we go on
forever).

Making Bradley’s algorithm incremental amounted to
adding only about 30 lines of C++ code to our original
implementation1. The effect of using an incremental checker
is evaluated in Sect. V.

What is presented in this section leaves us with a basic
liveness checking algorithm that performs reasonably well (see
Sect. V for more details), but there are some bottlenecks,
especially whenk needs to be large. The next section presents
a pre-processing step that greatly boosts the performance of
the basic algorithm, and has the potential of improving other

1In this way, we ended up with a model checker that can check multiple
safety and liveness properties simultaneously, something we have not seen
before. We have however not experimentally evaluated the advantages and
disadvantages of actually using the model checker as such.

liveness checking algorithms as well.

IV. A UTOMATIC CONSTRAINT EXTRACTION

Suppose we are checking the following proof obligation:

S ⊢ φ (3)

Here,φ can be a safety property as well as a liveness property.
Automatic constraint extraction may construct a new formula
ψ which may be used as a constraint (an assumption), thus:

S, ψ ⊢ φ (4)

The constraint extraction is correct if and only if the proof
obligations 3 and 4 are equivalent. The hope is that a model
checker may benefit from making use of the constraintsψ.

For safety checking, this idea has been proposed before, e.g.
in [7]. As far as we know, we are the first to explore this in
the context of liveness checking.

The ideas described here are very much inspired by the
algorithm that finds so-calledarenasin [6]. The idea behind
arenas is to divide the state space of the system up into
partitions, such that any trace of the system will eventually end
up and stay in one such partition only. Arenas are an intricate
part of the liveness checking algorithm in [6]; we decoupled
the idea from the algorithm, generalized and improved the idea
somewhat, and repackaged it as a pre-processing technique for
liveness algorithms in general.

A. Stabilizing constraints

The kind of constraints we are going to extract are of the
form

♦�s

such that
S ⊢ ♦�q iff. S,♦�s ⊢ ♦�q

We call constraints of the form♦�s a stabilizing constraint.
As observed in [6], it turns out that many liveness problems,

for example liveness problems involving counters, admit such
stabilizing constraints. The first observation we make is di-
rectly inspired by [6]: If we find a signalx that ismonotonic,
in other words such that:

S ⊢ �(x→ next x)

then it is safe to add♦�(x = next x) as a stabilizing
constraint. The reason is that for any tracet of S, x must
either be 0 all the time, or become 1 at some point and then
stay 1 forever. In both cases, we have that eventually,x will
keep its value.

Next, we generalize this observation for signalsx that are
eventually monotonic.

Lemma 2:Given a systemS and a signalx. If we have

S ⊢ ♦�(x→ next x)

then we may use♦�(x = next x) as a (stabilizing) constraint.
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B. Making use of the property

We can also make use of the original liveness signalq

we want to prove. Assume that we are solving the liveness
problem:

S ⊢ ♦�q

and that we have found a stabilizing constraint♦�(x →

next x). However, suppose we also find out that:

S ⊢ ♦�(x→ q) (5)

then it is safe to assume, not only that x will eventually
stabilize to some value (0 or 1), but also the much stronger,
that x will stabilize to 0! In other words, we can add♦�¬x

as a stabilizing constraint and check:

S,♦�¬x ⊢ ♦�q

instead. Why? Because there are two cases: either x stabilizes
to 0 or to 1. If x stabilizes to 1, we already know (because of
(5)) that q stabilizes to 1 also, and we have shown the original
property. The only interesting case left is when x stabilizes to
0, which is the one we add.

Similarly, if we find out instead of (5) that

S ⊢ ♦�(¬x→ q)

we can add♦�x as a stabilizing constraint.

C. Multiple stabilizing constraints

Stabilizing constraints may be used to help find other
stabilizing constraints. So, if we have found the stabilizing
constraint♦�(x = next x) by showing:

S ⊢ ♦�(x→ next x)

then we may use it when considering another candidatey:

S,♦�(x = next x) ⊢ ♦�(y → next y)

In general, we may have found asetof stabilizing constraints
that we can use to derive new stabilizing constraints, which
in turn can give rise to even more stabilizing constraints.

D. Approximating stability checking

In general, when looking for stabilizing constraints as
described above, we are asking questions of the following
shape:

S,
∧

i

♦�ai ⊢ ♦�b

Here, theai are the stabilizing constraints we have already
found, andb is a proof obligation that may give rise to a
new stabilizing constraint. In order todecidequestions like
the above, we would need a liveness checker, which would
defeat the purpose of using this as a pre-processing step to a
liveness checker!

Instead, weapproximatethe answer to this question by
using a SAT-solver which only talks about two consecutive
states ofS. We assume we are at a state in the trace where
all stability constraintsai have already become true, and then
ask if the desired stability constraintb is now also true. Two

states is enough since everyai and alsob contains at most one
next operator. We add the assumptionsai to the first state, and
then ask the SAT-solver ifb also holds. If the answer from the
SAT solver is yes, we know the constraint holds. It is a crude
approximation, but very fast and quite effective in practice.

E. Algorithm

In the overall constraint extraction algorithm, we work
with a set of circuit points P and a set of found stabilizing
constraints M. Initially, the set of found stabilizing constraints
M is empty, and the set P consists of all internal points in the
circuit (and their negations).

The derivation algorithm works as follows.
For all points x from the set P, we try to prove (using our

overapproximation):

S,M ⊢ ♦�(x→ next x)

If this succeeds, we add the stabilizing constraint♦�(x =
next x) to M, and removex from P. We then also try to prove
(also using the overapproximation):

S,M ⊢ ♦�(x→ q)

If this succeeds, we add♦�¬x to M. If not, we try:

S,M ⊢ ♦�(¬x→ q)

If this succeeds, we add♦�x to M.
If we discover any new stability constraints, we go through

all points x in P again in a new round. If no new stability
constraints have been found, we terminate with M.

Note that we actually have a choice of what set of points
P we start with. In our experimental results (see Sect. V),
we have compared starting with all internal points (and their
negations) of the circuit, as well as just having the registers
(and their negations), which may be cheaper2.

F. Making use of stabilizing constraints

Once we find the set M, we can add each of these as
constraints, if the model checker can handle such constraints.
However, our model checker only handles a single liveness
signalq, so here we describe how we can deal with this.

The first step is to turn constraints in M of the form♦�(x =
next x) into a stabilizing constraint with just a Boolean signal
c: ♦�c. This is cheap and easy ifx is the output of a register
(or its negation), because then points representingx andnext x
already exist, and we just create one extra XOR-gate. But ifx

is an internal point, we may have to introduce extra logic or
perhaps even a register to representc. We might not be willing
to pay this price, in which case we can just throw away the
constraint♦�(x = next x).

So, here we have another choice of parameter to the algo-
rithm: Do we keep constraints of the form♦�(x = next x)
even if x is not a register? We have also compared this
choice in our experimental results. Note that it may actually

2Bradley et al. restrict themselves to registers in their arena discovery
method [6].

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

555555



be beneficial to start with P being all internal points, even
if in the end we keep only the constraints on registers. This
is because finding constraints on internal points may help in
finding more constraints on registers.

Once all constraints in M are of the form♦�ci for Boolean
signalsci, we can turn these into one big constraint♦�(

∧
i
ci).

This is because♦� distributes over∧. So, we are now
checking:

S,♦�(
∧

i

ci) ⊢ ♦�q

which is equivalent to

S,♦�(
∧

i

ci) ⊢ ♦�((
∧

i

ci) → q)

for which it is enough to check

S ⊢ ♦�((
∧

i

ci) → q)

since♦�(
∧

i
ci) is a correct extracted constraint.

As we can see,
∧

i
ci → q is a much weaker liveness signal

than q, and therefore it can become false a lot less often,
reducing (in many cases significantly) the value ofk needed
for k-L IVENESS.

V. EXPERIMENTAL RESULTS

In this section, we present an experimental evalation of
implementations of the three algorithms discussed in this
paper:k-L IVENESS, LTS, and FAIR. The implementations of
k-L IVENESS and LTS were made by ourselves, and are based
on the same safety checker. The implementation of FAIR we
used was made by the original authors. Our implementation
of LTS seems to be slightly better than the one used in [6],
which explains the differences in evaluations in this paper and
[6].

We have run a number of variants of these algorithms on a
public set of liveness benchmarks, obtained from the Hardware
Model Checking Competition [3]. From that set, we discarded
a few problems that were not solvable by any algorithm; a total
of 52 problems were solvable by at least one of the tested
checkers.

All experiments were run on a cluster of quad-core Intel
Xeon E5620 CPUs clocked at 2.4 GHz. The detailed results
of most experiments reported here are presented later in the
table in Fig. 9. In the table, a dash (—) represents a time-out.
The table also contains the values of thek’s that were needed
for the various versions ofk-L IVENESS, including thek’s that
were reached in case of a time-out.

To get a baseline, we start our evaluation by comparing
the basic versions of each of the three algorithms, where no
fairness constraint extraction is performed. To this end, we
made a change to the source code of FAIR, and switched
off the arena finding part of their algorithm, which roughly
corresponds to our fairness constraint extraction. This arguably
crippled (!) version of FAIR is calledfair-snd0 in the tables.
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Fig. 4. Effect of stabilizing constraints onk-L IVENESS

Fig. 3 presents this comparison in the form of a cactus plot3,
where we display time outs vs. number of solved problems.
We can see here that all three algorithms perform comparably
(k-L IVENESS and LTS solve the same amount of problems
for the maximum time out).k-L IVENESS performs slightly
better than the others at time-outs around a minute or so.

The second comparison we make is about the effect of the
various versions of the fairness constraint extraction on the
algorithmsk-L IVENESS and LTS. We chose not to include
FAIR in this comparison, because the original uncrippled
version of FAIR already has a similar technique built-in. The
results are displayed as cactus plots in Fig. 4 and Fig. 5. Here,
fce0 means no constraint extraction,fce1 means constraint
extraction only for registers,fce2 means constraint extraction
for all points in the circuit, but only added for registers,
and fce3 means full constraint extraction and addition for all

3Our cactus plots might be considered slightly non-standard; the time
axis is at the bottom (where time axes should be) and is logarithmic (since
when comparing running times it is the factor, not the difference, which is
important).
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circuit points. The conclusion we draw from these graphs is
that fce2 and fce3 work best, but it is hard to decide which
of those is best based on the set of benchmarks we have.

From Table 9 we can see that when the analysis has a big
improvement on the total running time, it is mainly due to a
significant reduction ink.

The times reported here is the total time of first running the
analysis and then the model checking algorithm. We have not
reported detailed results on the running times of the analysis
alone. However, in the vast majority of the benchmarks the
running time of the analysis is negligible (less than 1 second).
Only in a couple of benchmarks did the analysis take a
significant amount of time relative to the total time. This
indicates that it is possible to find classes of circuits where
the analysis as implemented today will not scale up.

The third comparison we want to make is between the best
versions of the three algorithms. Fork-L IVENESS and LTS,
we (rather arbitrarily) chosefce3 and fce2, respectively. For
FAIR, we run the original unmodified algorithm. The cactus
plots for this comparison are displayed in Fig. 6. We can see
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Fig. 8. Non-incremental klive with perfect guessing

that with the fairness constraint extraction on,k-L IVENESS

outperforms the other two, who in turn perform remarkably
similar.

Finally, we would like to experimentally answer two ques-
tions that naturally arise in connection with thek-L IVENESS

algorithm. The first question is: For largek, it seems problem-
atic to use an approach that adds circuitry linear ink. What
happens when we use a binary counter instead? It turned out it
was quite simple to change our algorithm to doublek at every
incremental step by using a binary counter. The comparison
with the original, linearly growing algorithm is displayed in
Fig. 7. We can see that some problems indeed are solved a bit
faster, but many more problems are solved quite a bit slower.
That difference is clearest forfce0, which is why we chose
to show that version in the figure. The conclusion is that it
might be beneficial to use a binary counter for problems that
need a largek, but it is a bad idea to pick this as the default
method.

The second question is: Suppose we had a way to (almost)
perfectly guess the rightk on beforehand. Could we base
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name klive-fce0 klive-fce2 klive-fce3 lts-fce0 lts-fce2 lts-fce3 fair-snd0 fair-snd2
time k time k time k time time time time time

arbi0s08p03 442 9 1676 7 567 7 — 359 324 — —
cuabq2f 0 3 0 2 0 2 62 355 75 5 3
cuabq2mf 0 3 0 2 0 2 2 5 5 1 0
cuabq4f 2 5 2 5 4 5 6474 5739 — 485 121
cuabq4mf 0 5 1 5 1 5 189 44 223 2 2
cuabq8f 74 9 98 9 158 9 — — — 1285 —
cuabq8mf 13 9 19 9 16 9 — — — 219 66
cucnt10 — 625 0 0 0 0 40 0 0 710 0
cucnt128 — 622 6 0 6 0 — 6 6 — 1
cucnt12 — 614 0 0 0 0 713 0 0 3393 0
cucnt32 — 533 0 0 0 0 — 0 0 — 0
cucnt3 0 0 0 0 0 0 0 0 0 0 0
cufq1 3069 9 2464 8 34 4 — — 2506 — —
cugbak 83 32 87 32 131 32 1207 738 2504 127 50
cugcd 3 16 1 5 2 5 1 1 12 2 2
cujc128 — 1960 21 0 20 0 — 21 21 — 2
cujc12 — 1928 0 0 0 0 61 0 0 52 0
cujc32 — 2061 1 0 1 0 — 1 1 — 0
culock 21 83 4 31 7 31 11 12 40 9 6
cunim1 593 60 0 0 0 0 43 0 0 18 0
cunim2 1088 60 3 0 6 0 418 18 265 — 1011
cuom1 — 386 1 0 1 0 — 1 1 — —
cuom2 — 517 8 0 20 0 1785 50 32 — 64
cuom3 — 866 1 0 1 0 1090 1 1 — 2
cusarb16 0 15 0 0 0 0 0 0 0 2 0
cusarb32 3 31 0 0 0 0 8 0 0 19 0
cutarb16 503 159 131 79 139 76 146 368 209 221 25
cutarb32 — 261 5207 191 4599 188 — — — — 362
cutarb4 1 23 1 11 1 8 1 1 3 1 0
cutarb8 20 63 9 31 9 28 12 14 15 16 2
cutf1 166 8 197 8 14 4 1583 315 777 898 327
cutf3 0 3 1 0 1 0 26 1 2 3 1
cutq1 4176 9 866 7 18 3 2360 — 63 4061 4433
lmcs06abp4p1 2 3 2 3 4 3 3199 20 — 326 34
lmcs06abp4p2 2 4 3 4 3 4 771 1691 626 304 511
lmcs06abp4p4 0 1 1 1 1 1 2 8 30 251 6
lmcs06bc57sp1 14 4 22 3 3 2 80 41 414 — 53
lmcs06bc57sp2 34 2 2 0 5 0 110 232 539 98 50
lmcs06bc57sp3 4 1 5 0 5 0 16 656 137 55 19
lmcs06brp0 0 1 0 0 0 0 0 0 0 — 2
lmcs06brp2 1 2 0 0 0 0 106 1 1 798 —
lmcs06counter0 0 7 0 6 0 5 0 0 0 0 0
lmcs06dme3p2 6193 2 1283 2 3467 2 — — — — —
lmcs06mutex0 0 2 0 0 0 0 0 0 0 0 0
lmcs06prodcell2 90 19 79 18 61 17 49 62 338 358 469
lmcs06prodcell3 82 80 65 25 230 25 69 288 102 4260 1849
lmcs06prodcell4 62 60 264 24 255 24 102 84 62 1300 426
lmcs06prodcell5 328 109 760 106 769 105 129 121 152 4442 —
lmcs06prodcell6 262 109 543 106 571 105 129 141 143 2999 1643
lmcs06ring0 0 4 0 4 0 4 0 0 0 0 0
lmcs06short0 0 1 0 0 0 0 0 0 0 0 0
lmcs06srg5p0 0 6 0 5 0 5 0 0 1 1 1

Fig. 9. Detailed experimental results.

an algorithm on that? We ran an experiment where we first
computed the rightk for each benchmark, and then ran the
algorithm again, jumping to thatk immediately. The results
are displayed as a scatterplot in Fig. 8. We can see here
that solving the problem for the correct, fixedk directly is
much slower than the incremental approach. This is surprising
because the incremental approach actually proves more; it
also proves that none of the otherk are large enough. One
explanation is that the state space exploration we force the
algorithm to go through when considering lesserk actually
helps in finding the proof for the rightk. This might also
partially explain why the binary counter approach is worse
than the linear approach, because it jumps over manyk at once
as well. However, these explanations are merely speculations
and more investigation is needed to fully understand these
results.

VI. D ISCUSSION ANDCONCLUSIONS

We have presented a new, simple liveness algorithm, called
k-L IVENESS, based on finding a limitk on the number
of times a fairness signal can become true, that compares
favorably against existing liveness algorithms. Finding the
right limit k is done by using an incremental safety checker.
Our experiments show that the incrementality of the approach
is crucial for its efficiency.

Moreover, we developed a preprocessing technique that
is heavily inspired by the FAIR algorithm, that can boost
the performance of liveness algorithms in general. The main
differences between the pre-processing presented here and
the arena analysis as part of the FAIR algorithm are: (1)
our approach works on all points in the circuit rather than
just the registers, (2) our approach makes use of the liveness
signal in a different (stronger) way, (3) our approach generates
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extra constraints separately from the main model checking
algorithm.

We evaluated the preprocessing technique positively in
particular fork-L IVENESS and LTS. Our experiments show
that it is important for the preprocessor to take all internal
points of the circuit into account, not only the registers.k-
L IVENESS plus fairness constraint extraction performs best
in our experiments. It seems that the Achilles heel ofk-
L IVENESS, namely when the neededk is growing too large,
is nicely covered by the fairness constraint extraction, which
works very well for counter-like sub-circuits.

The resulting algorithm is arguably much simpler than
FAIR, even when taking the preprocessing analysis step into
account. Moreover, FAIR is non-deterministic by design (and
by necessity), which our algorithm is not.

A drawback of our approach is that it does not seem practi-
cal to extract counter examples. To make a model checker that
is complete in practice even for false properties, the method
needs to be combined with a dedicated counter example finder,
for example based on Bounded Model Checking [2]. Our tool
Tip, which implementedk-L IVENESS(without preprocessing)
in lock-step with a simple BMC method actually won the
overall liveness track of the Hardware Model Checking Com-
petition in 2011 [3], showing that this is not a problem in
practice. It is future work to investigate how to practically
extract possible counter examples from failed safety checks.

For more future work, we intend to investigate the effect that
alternative choices have on the efficiency of the algorithm. For
example, the circuit in Fig. 2 that is added at each incremental
step can be implemented in many different ways, for example
by using a shift register. We do not know how changing this
circuit affects the performance.

Moreover, we want to find out what effect our preprocessor
has on other liveness algorithms, for example BDD-based
algorithms.

A more open question is wether it is possible to make an
efficient SAT-based model checker for CTL. Ideas from [9]
seem promising in this regard.
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