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Abstract—The validation and application of formal processor
models benefits fundamentally from both efficient execution and
automated reasoning about the models. We present a memory
model written in the ACL2 logic, with both reasoning support and
a runtime environment, that accomplishes these objectives. Our
memory model provides a space-efficient implementation for an
address space of248 bytes, and is used in our development of an
ISA model for x86 instructions. We define and prove invariants,
and we use them to prove useful lemmas and to formally verify
absence of run-time simulator errors. Our memory model also
supports efficient execution through constant-time read and write
access in an applicative setting.

I. I NTRODUCTION

We describe a model of memory suitable for specifying and
simulating a 64-bit microprocessor instruction-set architecture
(ISA). The model is formalized in the logic of the ACL2
theorem prover [1], [2]. Our contribution is the formal spec-
ification and mechanical verification that our implementation
provides a single, large, uniformly-addressed memory with
space-efficient, high-speed (constant-time) performance. We
desire high performance because of our interest in validating
a (uni)processor model by simulating and comparing with
expected results. As far as we know, our verified memory
model is more time and space efficient than other models of
a large memory formalized using the language of a theorem
prover.

Microprocessor specifications require a model of its mem-
ory and its memory operations. Our model provides a memory
of 248 bytes; this is the address space defined by contemporary
x86 implementations. Actually, some x86 implementations
define a 52-bit address space, but such implementations require
the use of the x86 memory management unit to access physical
memory locations larger than248 bytes. If the need arises, we
expect to be able to parameterize our model to offer larger (or
smaller) memory address spaces.

Likely, every microprocessor design in the last 40 years has
been modeled, and necessarily every such model includes a
memory model, often written in C or Verilog. Our effort is
focused on memory models that are (1) defined formally, (2)
scale up to very large memories, (3) provide high-speed sim-
ulation, and (4) support mechanized reasoning. The memory
model we present here defines four read (rmXY) operations
and four write (wmXY) operations with the following interface
signatures:

rm08: addr * mem→ byte wm08: addr * byte * mem→ mem
rm16: addr * mem→ word wm16: addr * word * mem→ mem
rm32: addr * mem→ dword wm32: addr * dword * mem→ mem
rm64: addr * mem→ qword wm64: addr * qword * mem→ mem

In this paper, we specify and verify a memory model satis-
fying the four (numbered) properties above and then we use
this memory model to implement the eight memory functions
just identified. In particular, Section V discusses classic read-
over-write properties. Various microprocessor memory models
can be layered on top of our memory model. Microprocessors
providing virtual memory or other memory access mechanisms
require a model of the physical memory; our focus here is the
formalization of the physical memory interface. The complete
source code and theorems for our memory model and its use
in a partial x86 ISA specification may be found elsewhere [3].

Our efforts in this area started with the FM8501 and
FM8502 microprocessors [4], [5], which included complete
memory models whose performance was linear in the address
size; thus, these models were not practical for simulating large
memories. Our FM9001 microprocessor model [6] included a
tree-based memory model that provided constant-time, tree-
based accesses. Anthony Fox has developed a tree-based
memory using HOL for his ARM microprocessor model, with
a focus on program verification performance measured in tens
of accesses per second [7]; by comparison, our performance
is measured in hundreds of thousands of accesses per second
(see Section VI).

Jared Davis used ACL2 to implement a tree-based 64-
bit memory [8], which could make several hundred thou-
sand accesses per second running on an Intel Pentium 4 in
2006. David Hardin (personal communication) reports 350,000
bytes/second on a 2.4 GHz Intel Core 2 Duo, using a version
of Davis’s model incorporated into an AAMP7 model [9]. The
memory models of Davis and Hardin provide less than 1% of
the memory performance we present here.

We begin by providing background on ACL2, the system
that we are using for memory modeling. In Section III we
present our two-level memory model. Section IV discusses
invariants on our model and their role in efficient execu-
tion and fundamental properties. In Section V we present
our higher-level read and write operations for bytes, words,
doublewords, and quadwords, together with formally verified
read-over-write properties of our memory model. Because we
are using this memory model to support the modeling of
microprocessor specifications, Section VI provides some mem-
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ory access/update benchmark data. We conclude by observing
that our memory implementation has been verified to operate
correctly while providing sufficient performance to be used as
the foundation of an ISA simulator.

II. ACL2 PRELIMINARIES

ACL2 [1] is a freely available system that provides a the-
orem prover and a programming language, both of which are
based on a first-order logic of recursive functions [10], [11].
The logic is compatible with Common Lisp — indeed, “ACL2”
is an acronym that might be written as “ACL2” and stands for
“A Computational Logic for Applicative Common Lisp” —
and thus an executable image can be built on any of seven
Common Lisp implementations. As a result, ACL2 provides
efficient execution by way of Common Lisp compilers.

The initial theory for ACL2 contains axioms for primitive
functions such ascar (the head of a list or first component
of a pair) andcdr (the tail of a list or second component of
a pair). It also contains axioms for Common Lisp functions,
such asash (arithmetic shift), and it introduces axioms for
user-supplied definitions.

ACL2 provides a top-level read-eval-print loop. Arbitrary
ACL2 expressions may be submitted for evaluation. Of spe-
cial interest areevents, including definitions and theorems;
these modify the logical database for subsequent proof and
evaluation. For example, our memory model definesn45p to
return true on 45-bit natural number inputs.

Links to numerous papers that apply ACL2, as well as
detailed hypertext documentation and installation instructions,
may be found on the ACL2 home page [2]. In the remainder
of this section we briefly introduce aspects of ACL2 that are
referenced in the remainder of this paper.

A. ACL2 basics

As is the case for Lisp, the syntax of ACL2 is generally
case-insensitive and is based on prefix notation:(function
argument 1 . . . argument k) . For example, the term de-
noting the sum ofx and y is (+ x y) . A semicolon (‘; ’)
begins a comment to the end of the line, generally shown in
italics in this paper. Other ACL2 syntax used in this paper will
probably make sense from the context, but we say a bit here
about local variables, which may be introduced usinglet for
parallel binding orlet * for sequential binding. The term

(let ((x 1 t1)
(x 2 t2)
...)

(f ... x 1 ... x2 ...))

binds variablex1 to the value of termt1, variablex2 to the
value of termt2, and so on, before evaluating the indicated
call of f . Let * is similar but has a sequential semantics:
each binding applies to subsequent bindings. The following
log illustrates the difference between the parallel bindings of
let and the sequential bindings oflet * .

ACL2 !>(let ((x 3))
(let ((x (1+ x)) ; x is bound to 4

(y x)) ; y is bound to old x: 3
(list x y))) ; return list of x and y

(4 3)
ACL2 !>(let ((x 3))

(let * ((x (1+ x)) ; x is bound to 4
(y x)) ; y is bound to new x: 4

(list x y))) ; return list of x and y
(4 4)
ACL2 !>

Functions in ACL2 may return multiple values. Logically,
a multiple-value return is just a return value that is a list;
but the implementation can avoid building list objects. Syn-
tactic restrictions enforce proper use of multiple values. The
primitives mv and mv-let create and bind multiple values,
respectively, as we now illustrate (see [12] for details). The
following function takes two numbers and uses the if-then-else
primitive to return two values: the smaller and larger of those
numbers, respectively. Note that here and throughout the paper,
we avoid using the Lispdefun command, showing instead
just the logical axiom added by the definition. For complete
definitions, includingdeclare forms that can improve effi-
ciency and specifyguards(cf. Section II-B), see the associated
technical report [3].

Definition.
(min-max x y)
= (if (< x y) (mv x y) (mv y x))

The next function exponentiates the smaller of two numbers
to the power of the larger.

Definition.
(expt-min-max x y)
= (mv-let (smaller bigger)

(min-max x y)
(expt smaller bigger))

Then for example:

ACL2 !>(expt-min-max 2 5)
32
ACL2 !>(expt-min-max 5 2)
32
ACL2 !>

B. Definitions and guards

The logic of ACL2 is untyped. However, ACL2 definitions
may specify preconditions, known asguards. Consider for
example the following definition of a function that returns the
reciprocal of the difference of its inputs.

Definition.
(f x y)
= (/ (- x y))
Guard:
(and (rationalp x)

(rationalp y)
(not (equal x y)))

When this form is submitted, ACL2 performsguard verifica-
tion, a static check (using the theorem prover) that for every
function call that takes place during evaluation, the arguments
satisfy the guard of that function. The example above generates
the following two proof obligations, each under the hypothesis
of the above guard:x andy are distinct rational numbers.
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• The indicated subtraction requires that its arguments,x
andy , are rationals.

• The indicated reciprocal operation requires that its argu-
ment,(- x y) , is a non-zero rational.

ACL2 easily discharges these proof obligations. Subsequently,
any call of f will be evaluated in Common Lisp using the
above code. Indeed, guards provide a link between the ACL2
logic and the host Lisp implementation, by allowing the use of
Common Lisp evaluation in a way that avoids runtime errors.

Note that while guards are important for supporting evalua-
tion by the host Lisp, they are irrelevant logically. For example,
the ACL2 logic includes the following axiom, which implies
that the reciprocal of a non-number or zero is zero.

Axiom. completion-of-unary-/
(equal (/ x)

(if (and (acl2-numberp x)
(not (equal x 0)))

(/ x)
0))

Thus, for example, one can prove(equal (/ 0) 0) with
the ACL2 theorem prover. An attempt to evaluate(/ 0) (the
reciprocal of zero) in the ACL2 read-eval-print loop will, by
default, result in an error that reports a guard violation.

C. Single-threaded objects (stobjs)

Our memory model uses ACL2 single-threaded objects, or
stobjs[13]. The first-order logic of ACL2 represents stobjs us-
ing linear lists, without side-effects. But for execution, ACL2
enforces syntacticsingle-threadednessrestrictions on function
definitions involving stobjs. so that they provide constant-time
access and update using arrays, which can be made resizable.
ACL2 provides detailed stobj documentation [12]; here we use
an example to convey key ideas.

The following ACL2 event specifies a single-threaded ob-
ject, st , which has a single field,store , which in turn is an
array of 31-bit non-negative integers, initially all 0. Although
store initially has length 8, it can be resized to arbitrary
lengths.

(defstobj st
(store :type (array (unsigned-byte 31) (8))

:initially 0
:resizable t))

Logically, st is just a one-element list whose unique element,
store , is itself just a list. The following theorem makes
this claim formally, wherestore-length is a function
introduced by the abovedefstobj event, returning the
number of entries instore . Throughout this paper and also in
our ACL2 development, we give theorems descriptive names.

Theorem. store-length-computes-len
(implies

(stp st) ; st satisfies its recognizer
(and (consp st) ; st is a list

(null (cdr st)) ; st has only one member
(equal (len (car st)) ; list-length of store

(store-length st))))

However, the implementation guarantees that no list construc-
tion is performed when updatingstore , and unlike linear list

operations, every access tostore is done in constant time
with an array indexing operation.

D. About proofs

Our presentation below focuses on formalization and proof
highlights, avoiding proof details. Full ACL2 input scripts may
be found elsewhere [3].

Our proofs of the read-over-write lemmas in Section V-B
take advantage of the GL symbolic simulation package [14].
That package requires the experimental “hons” extension,
ACL2(h), of the ACL2 theorem prover [15], [12], which we
therefore used for this effort.

III. M EMORY STRUCTURE, ACCESS, AND UPDATE

Our memory model is based on an array of 64-bit quad-
words, providing the illusion of a memory containing248

bytes. The model includes read and write operations,memi
and !memi , for quadwords (64 bits). Later, in Section V,
we build on these primitives to define byte-addressed reads
and writes for various sizes: byte (8 bits), word (16 bits),
doubleword (32 bits), and quadword (64 bits).

The correctness of our model is captured by the following
standard property of arrays. We briefly discuss its proof in
Subsection IV-C.

Theorem. memi-!memi
(implies

(and (x86-64p x86-64) ; Memory OK
(n45p i) ; Read address OK
(n45p j)) ; Write address OK

(equal (memi i ; Read address
(!memi j ; Write address

v ; Value to write
x86-64)) ; Initial memory

(if (equal i j) ; For equal addresses
v ; the read value is v

(memi i x86-64))))) ; else, unchanged

Our memory model is implemented using a data structure
with three fields; see Fig. 1. Although the memory is concep-
tually an array of248 bytes, we choose our data structure for
space efficiency. Our choice of 27 bits is somewhat arbitrary,
but intended to balance the size ofmem-table — 227

(134M) entries — with the size of themem-array , which
initially consists of (somewhat arbitrarily) 100 pages, each
containing221 bytes (2MB).

• The memory address table,mem-table , is indexed by
the top (most significant) 27 bits of a 45-bit quadword
address. Its valid entries are 45-bit addresses.

• The memory array,mem-array , is indexed by 45-bit
quadword addresses frommem-table . Its entries are
the memory quadword values.

• A 45-bit quadword address,mem-array-next-addr ,
points to the next free two-megabyte section (“page”) of
mem-array .

We use the ACL2stobj mechanism (see Section II) to imple-
ment these fields.
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mem-array-next-addr

Initially 1, then 

27-bits+18-zeros

45-bit address

0

7

227 - 2

227 - 1

8-byte (64-bit) quadwords

Entry mem-table

0

1

2

3

245

Next available page pointer

mem-array Quadword addr

45-bit address

45-bit address

4

.....................

Fig. 1. Memory System

(defstobj x86-64
; some fields elided

(mem-table
:type
(array (unsigned-byte 45)

( * mem-table-size * )) ; 2
27

;; either 1 or a memory page address
:initially 1
:resizable nil)

(mem-array ; resizable array of quadwords
:type (array (unsigned-byte 64)

( * initial-mem-array-length * ))
:initially 0
:resizable t)

(mem-array-next-addr
:type ; natural number < 2

45

(integer 0 35184372088832)
:initially 0)

)

The first field definesmem-table as an array of227 en-
tries where each entry is constrained to be a 45-bit natural
number, initially 1. The second field defines a memory array
of 245, unsigned 64-bit integers (quadwords), with its initial
entries all being0. This array has (an initial length of)
* initial-mem-array-length * entries (arbitrarily set
to 100 ∗ 218); but since it is declared resizable, it will be
extended automatically as necessary. The third field, a 45-bit
integer namedmem-array-next-addr , tracks the space
allocated inmem-array .

We initializemem-table values to1 so we can distinguish
which memory table entries are valid. The valid entries in
mem-table are unique 45-bit addresses that are aligned to
two-megabyte boundaries; that is, the bottom (least significant)
18 bits of these addresses are all zero. This choice results
in each mem-table entry pointing to the start of a two
megabyte “page” inmem-array . In our implementation,
mem-array is initially allocated an amount of memory
corresponding to a positive integral number of two-megabyte
pages. When the demand for memory exceeds the available
memory pages,mem-array is dynamically extended (until

the underlying operating system fails to be able to allocate
memory).

Our memory implementation writes tomem-table when-
ever a write is presented for which the corresponding two-
megabyte page has no entry inmem-table , following a
process that can be thought of as a one-level paging scheme.
Suppose for example that we start with an empty memory and
perform three writes, as shown below.

• First write to memory: at quadword address 7 ∗
218 + 345. (See Fig. 1.) The corresponding page index
into mem-table is 7, selected by right shifting the
quadword address by 18 bits. Since this is the first write,
our memory write function will see thatmem-table
has value 1 at index 7, indicating that the corresponding
two-megabyte page has no index inmem-table . Index 7
will then obtain the value ofmem-array-next-addr ,
0 ∗ 218, which corresponds to the first available “page”
in mem-table . Also, mem-array-next-addr is
bumped up to the next page address,1 ∗ 218. An address
into mem-array is then constructed by combining the
page address of0 ∗ 218 with the original low 18 address
bits, in this case 345, to obtain0 ∗ 218 + 345. We write
the given quadword data to that address ofmem-array .

• Second write to memory: at quadword address
23 ∗ 218 + 12. Following the steps above, we find an
invalid entry at index 23, which we replace by the
current value ofmem-array-next-addr , 1 ∗ 218.
(And, mem-array-next-addr is then bumped up by
218, to 2 ∗ 218.) We then write the quadword data into
mem-array at index1 ∗ 218 + 12.

• Third write to memory: at quadword address 7∗218+

5. This time we find a valid entry inmem-table , namely
at index 7 as placed by the first write. So we write the
quadword data intomem-array at index0 ∗ 218 + 5.

In summary, amem-table entry for the top 27 bits of
an address serves as the base index for the address where
we will write a quadword tomem-array . The full index
for writing into mem-array is the sum (performed by the
logical inclusive ‘or’ functionlogior ) of the base index and
the bottom 18 bits of the original address. We expect that it
would be easy to remove 17 of those 18 bits, leaving just one
“valid” bit, and we may do that in the future; but we liked the
simplicity of usinglogior .

The same addressing scheme is used when reading, but
mem-array is never extended on reads. If there is an
appropriatemem-table entry, then the value returned will
be found inmem-array using the scheme described above.
Otherwise, the default value0 is returned.

Our primitive memory read and write functions,memi and
!memi , are defined as described above. In particular, note that
!memi calls a functionadd-page when necessary to extend
the available memory and obtain amem-array address from
mem-array-next-addr .
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Definition.
(memi i x86-64)
= (let * ((i-top27 ; right shift 18 bits

(ash i -18))
(addr (mem-tablei i-top27 x86-64)))

(if (eql addr 1) ; page is not present
* default-mem-value *

(let ((index (logior addr
(logand #x3ffff i))))

(mem-arrayi index x86-64))))

Definition.
(!memi i v x86-64)
= (let * ((i-top27 (ash i -18))

(addr (mem-tablei i-top27 x86-64)))
(mv-let

(addr x86-64)
(if (eql addr 1) ; if page is not present

(add-page i-top27 x86-64) ; add a page
(mv addr x86-64))

(!mem-arrayi (logior addr (logand #x3ffff i))
v
x86-64)))

Definition.
(add-page i x86-64)
= (let * ((addr (mem-array-next-addr x86-64))

(len (mem-array-length x86-64))
(x86-64

(if (eql addr len) ; must resize!
(resize-mem-array

(min ( * * mem-array-resize-factor * len)
* 2ˆ45 * )

x86-64)
x86-64))

(x86-64 ; Add next new page.
(!mem-array-next-addr

(+ addr * 2ˆ18 * )
x86-64))

(x86-64 (!mem-tablei i addr x86-64)))
(mv addr x86-64))

The question remains of whether this scheme always works.
The next section addresses this question.

IV. M EMORY INVARIANT AND ITS CONSEQUENCES

In this section we introduce our invariant on the memory.
We then sketch how it supports proofs of properties that
support efficient execution. Finally, we show how our invariant
supports the proof of the key property of our memory model.

A. The memory invariant

Recall our two-level memory, wheremem-table is
an array that contains218-aligned addresses indexing into
mem-array , a resizable array containing 64-bit data, where
those addresses are below the (218-aligned) address limit,
mem-array-next-addr . Our invariant, stated informally
below, incorporates these and other properties. We write
table-max-index to denote the maximum index into
mem-table , i.e., one less than the length ofmem-table ,
and we writemem-array-length to denote the current
length ofmem-array .

1) mem-array-next-addr ≤ mem-array-length .
2) * initial-mem-array-length * ≤

mem-array-length .

3) #x3ffff & mem-array-length = 0, i.e.,
mem-array-length is 218-aligned.

4) mem-array-next-addr = 218 ∗ k, wherek is the
number of valid entries inmem-table (entries not
equal to 1).

5) Every valid entry inmem-table is 218-aligned and is
less thanmem-array-next-addr .

6) There are no duplicate valid entries inmem-table .
7) The value is0 in mem-array at every index at or

exceedingmem-array-next-addr .
The functiongood-memp formalizes our memory invari-

ant, as described informally by these seven clauses. The invari-
ant on our stobj is the conjunction of basic structural proper-
ties, represented by the stobj recognizerx86-64p-pre , and
our memory invariant.

Definition.
(x86-64p x86-64)
= (and (x86-64p-pre x86-64)

(good-memp x86-64))

The following theorem formalizes invariance for our basic
memory write operation. We have also proved such theorems
for the higher-level memory write operations presented in
Section V.

Theorem. x86-64p-!memi
(implies (and (x86-64p x86-64) (n45p i) (n64p v))

(x86-64p (!memi i v x86-64))))

B. Guard verification using the invariant

Section II discussed the role ofguards in supporting effi-
cient execution. In this section we illustrate the important role
played by our invariant for verifying guards, using as a key
example our basic memory read function,memi.

Recall thatmemi reads the quadword at addressi from the
memory of ourx86-64 stobj. Its guard is given as follows.

(and (n45p i) ; 45-bit quadword address
(x86-64p x86-64))

The interesting case for reading a 45-bit quadword address is
that its top 27 bits index into a valid entry ofmem-table ,
which is an index intomem-array . A corresponding proof
obligation arises from guard verification for functionmemi;
it states that the corresponding index intomem-array is in
bounds.

(implies
(and (x86-64p x86-64)

(< i 2
45)

(<= 0 i)
(integerp i)

; The next conjunct says that we have a valid
; mem-table entry.

(not (equal (nth (ash i -18)
(nth * mem-tablei * x86-64))

1)))
; We conclude that the index into mem-array ,
; as represented by the logior call below, is
; less than the length of mem-array .
(< (logior (logand #x3ffff i) ; low 18 bits of i

(nth (ash i -18) ; top 27 bits of i
(nth * mem-tablei * x86-64)))

(len (nth * mem-arrayi * x86-64))))
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In order for this formula to be a theorem, the hypothesis
(x86-64p x86-64) must be sufficiently strong. We have
checked mechanically with ACL2 that this is indeed the case.

C. A fundamental read-over-write lemma

Recall the key propertymemi-!memi from the start of
Section III, which characterizes the effect of a quadword write
on the memory. It is crucial for proving analogous properties
of higher-level read and write functions, as discussed in
Section V. That property naturally breaks into two lemmas.
One of those is the following, for the case that the address for
reading is the same as the address that is written.

Theorem. memi-!memi-same
(implies (x86-64p x86-64)

(equal (memi i (!memi i v x86-64))
v))

With suitable hints and lemmas, ACL2 proves this theorem.
But among the lemmas applied in its proof, as reported by
the prover, the following is one that is critical, as the proof
fails without it. Note that it corresponds to Clause 4 of our
invariant.

Theorem. logand-mem-array-next-addr
(implies (good-memp x86-64)

(equal (logand #x3ffff
(nth * mem-array-next-addr *

x86-64))
0))

We now consider the other case, that is, where the addresses
are distinct.

Theorem. memi-!memi-different
(implies (and (not (equal i j))

(n45p i)
(n45p j)
(x86-64p x86-64))

(equal (memi i (!memi j v x86-64))
(memi i x86-64)))

Consider what happens if two mem-table indices contain the
same value. For example, suppose that quadword addresses
i and j are 0 and218, respectively, yet the corresponding
mem-table entries at indices 0 and 1 both have value 0. Also
suppose that all values stored inmem-array are 0, and that
the valuev is 1. Then, even thoughi and j are distinct, the
equality displayed above is false, as(memi i (!memi j
v x86-64)) is 1 yet (memi i x86-64) is 0.

It is here that the memory invariant saves us. Specifically,
Clause 6 prohibits duplicate entries inmem-table . We prove
that every operation on the memory preserves the memory
invariant.

V. USING THE MEMORY MODEL: READS AND WRITES

We have seen functionsmemi and !memi for reading
and writing quadwords (8-byte natural numbers) at quadword-
aligned memory addresses. But for our intended application
of modeling the x86 ISA [3], we also require functions that
read and write bytes, words, doublewords, and quadwords at

Quadword Address Byte Address

248 - 8

n + 8

n

0

8

0

1

245

Memory Model -- 245, 8-byte words

01234567

01234567

b0

b1b2b3

Fig. 2. Misaligned memory access

arbitrary addresses. We tour those below and then discuss
theorems relating reads and writes.

For byte reads the memory is read once. But for non-aligned
accesses of more than one byte, it may be necessary to read
the memory twice because the access may be split across two
(64-bit) quadwords. This possibility is illustrated in Fig. 2 for a
doubleword (four bytes: b0, b1, b2, b3) stored at addressn+7 .
Here,n is the address of a byte on a quadword boundary (nis
a multiple of 8). We use little-endian format, which requires
that the least significant byte appear at addressn+7 , the next
byte atn+8 , the next byte atn+9 , and the most significant
byte atn+10 .

A. Read and write functions

We implement byte, word, doubleword, and quadword read
and write operations using the primitive quadword memory-
read and memory-write functions,memi and !memi . The
following function reads a single byte from memory.

Definition.
(rm08 addr x86-64)
= (let * ((byte-num (n03 addr))

(qword-addr (ash addr -3))
(qword (memi qword-addr x86-64))
(shift-amount (ash byte-num 3))
(shifted-qword (ash qword

(- shift-amount))))
(n08 shifted-qword))

Guard:1

(and (n48p addr)
(x86-64p x86-64))

The following lemma is critical in order to verify guards
for the above function. Specifically, it is used in the proof of
the guard obligation from the definition ofrm08 for the call
(ash qword (- shift-amount)) , which states that
qword is an integer, whereqword is (memi qword-addr
x86-64) .

1We show a formula that is logically equivalent to the guard.
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Theorem. memi-is-unsigned-byte-64
(implies (and (x86-64p x86-64)

(n45p addr))
(n64p (memi addr x86-64)))

But why does this lemma hold? Clause 5 of our invariant
(Section IV-A) is crucial, and is a consequence of hypothesis
(x86-64p x86-64) :

Every valid entry inmem-table is 218-aligned and
is less thanmem-array-next-addr (Fig.??).

Indeed, if we tell ACL2 to ignore (“disable”) two rewrite rules
corresponding to this property, the proof fails.

We turn now from reading to writing a byte.

Definition.
(wm08 addr byte x86-64)
= (let * ((byte-num (n03 addr))

(qword-addr (ash addr -3))
(qword (memi qword-addr x86-64))
(shift-amount (ash byte-num 3))
(byte-mask (ash #xff shift-amount))
(qword-masked (logand (lognot byte-mask)

qword))
(byte-to-write (ash byte shift-amount))
(qword-to-write (logior qword-masked

byte-to-write)))
(!memi qword-addr qword-to-write x86-64))

It will be important to maintain our invariant after doing
a write, so that the guards (which include our invariant) are
met for subsequent memory operations. We therefore prove
the following lemma.

Theorem. x86-64p-wm08
(implies (and (x86-64p x86-64)

(n48p addr)
(n08p byte))

(x86-64p (wm08 addr byte x86-64)))

Reads and writes of more than one byte are built up in
layers. For example, here is the function for reading four bytes,
which invokes the two-byte read function when the addresses
cross a quadword boundary. Notice that the call ofn48p in
the guard leaves room to read four bytes.

Definition.
(rm32 addr x86-64)
= (let ((byte-num (n03 addr)))

(cond
((<= byte-num 4)

(let * ((qword-addr (ash addr -3))
(qword (memi qword-addr x86-64))
(shift-amount (ash byte-num 3))
(shifted-qword (ash qword

(- shift-amount))))
(n32 shifted-qword)))

(t ; byte-num is 5, 6, or 7
(let * ((word0 (rm16 addr x86-64))

(word1 (rm16 (n48+! 2 addr) x86-64)))
(logior (ash word1 16) word0)))))

B. Read-over-write theorems

The following theorem characterizes the effect of reading a
byte from addressi after writing a byte,v , at addressj . The
result, of course, isv if i equalsj ; otherwise the write does
not affect the value returned by the read. The proof relies
on the lemmamemi-!memi , which takes advantage of the
invariant,(x86-64p x86-64) ; see Section IV-C.

Theorem. rm08-wm08
(implies (and (x86-64p x86-64)

(n48p i) (n48p j) (n08p v))
(equal (rm08 i (wm08 j v x86-64))

(if (equal i j)
v

(rm08 i x86-64))))

The corresponding lemma for two bytes is a bit more
complex, as the cases for the resulting read depend on how
the two address regions overlap.

Theorem. rm16-wm16
(implies

(and (x86-64p x86-64)
(natp i) (n48p (1+ i))
(natp j) (n48p (1+ j))
(n16p v))

(equal (rm16 i (wm16 j v x86-64))
(cond ((equal i j)

v)
((equal j (1+ i))

(logior ( * * 2ˆ8 * (logand #xff v))
(rm08 i x86-64)))

((equal i (1+ j))
(logior (ash (logand #xff00 v) -8)

( * * 2ˆ8 *
(rm08 (+ 1 i) x86-64))))

(t
(rm16 i x86-64)))))

Our approach to proving this theorem is to reduce it to the
preceding theorem for single-byte reads and writes. Thus, we
characterize two-byte reads in terms of single-byte reads, and
similarly for writes. Here is the relevant lemma for writes.

Theorem. wm16-as-wm08
(implies

(and (x86-64p x86-64)
(natp addr)
(n48p (1+ addr))
(n16p word))

(equal (wm16 addr word x86-64)
(let * ((x86-64

(wm08 addr
(logand word #xff)
x86-64))

(x86-64
(wm08 (+ 1 addr)

(ash (logand word #xff00) -8)
x86-64)))

x86-64)))

Recall that wm08 is defined in terms of the primitive
quadword write operation,!memi . Since the proof of the
lemma above involves reasoning about successive writes, it
is not surprising that the following is critical for its proof.

Theorem. !memi-!memi-same
(implies (x86-64p x86-64)

(equal (!memi addr v1
(!memi addr v2 x86-64))

(!memi addr v1 x86-64)))
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VI. EFFICIENT EXECUTION

We have fabricated some memory-copy tests to get an idea
of the performance of our memory implementation. The Lisp
runs reported below used a 3.5 GHz Intel Xeon processor.

(defun copy (from to count x86-64)
(declare (type (unsigned-byte 29) count)

(type (unsigned-byte 45) from to)
(xargs :guard

(and (< (+ from count) * 2ˆ45 * )
(< (+ to count) * 2ˆ45 * )
(x86-64p x86-64))

:stobjs (x86-64)))
(if (zpf count)

x86-64
(let * ((value (memi from x86-64))

(x86-64 (!memi to value x86-64)))
(copy (1+ from) (1+ to) (1- count) x86-64))))

Function copy-test , called below, writes a 1 at each
address below its first argument,addr , and then calls(copy
0 addr addr x86-64) . Note that the first two runs copy
1 GB (either 128 quadwords copied 1M times or 128K quad-
words copied 1K times), while the third copies 1 GB (128M
quadwords) ten times, to amortize the memory initialization
with ones.

(time$ ; 2.9 seconds
(copy-test 128 ( * 1024 1024) x86-64))

(time$ ; 2.8 seconds
(copy-test ( * 128 1024) 1024 x86-64))

(time$ ; 29.9 seconds (for 10x memory ops)
(copy-test ( * 128 1024 1024) 10 x86-64))

The copying of approximately 350M bytes/second corresponds
to 700M memory byte accesses per second, which we find
encouraging. However, this is slower by about a factor of 9
than the analogous three runs of a corresponding C program
compiled withgcc -O3 , with times of 0.330 seconds, 0.320
seconds, and 3.260 seconds, respectively.

VII. CONCLUSION

Our formal memory model has been proven to provide
the illusion of a complete248-byte memory. Our imple-
mentation provides time- and space-efficient, constant-time
memory read/write operations, thus supporting validation of
ISA simulators. We represent our large memory by using
an expandable collection of pages indexed by a table of
page pointers, so that we can provide the illusion of having
a memory containing248 bytes. We have assured that our
memory model is correct throughout the entire address range
by proving requisite properties of our model. This kind of
modeling is important for large-scale memory systems as
they cannot be practically built nor tested for all manner of
configurations.

Our memory model permits 350M bytes per second to be
copied from one part of memory to another part, which we
believe exceeds the performance of all other theorem-prover-
based memory models for such large address spaces. When
used within our evolving x86 microprocessor ISA specifi-
cation, our model provides sufficient performance to allow

binary code to be executed at more than 500,000 instructions
per second [3]. We expect to use this or a similar memory
model as we move forward with our microprocessor modeling
efforts [16].
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