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Abstract—This paper presents improvements to a technique
which aids verification of machine-code programs. This tech-
nique, called decompilation into logic, allows the verifier to
only deal with tractable extracted models of the machine code
rather than the concrete code itself. Our improvements make
decompilation simpler, faster and more generally applicable. In
particular, the new technique allows the verifier to avoid tedious
reasoning directly in the underlying machine-code Hoare logic
or the model of the instruction set architecture. The method
described in this paper has been implemented in the HOL4
theorem prover.

I. INTRODUCTION

Verification of machine-code programs is hopelessly tedious
without good tool support, particularly if verification is to
be done against realistic models of commercial machine
languages, e.g. x86, ARM, PowerPC, MIPS, whose formal
models are several thousand lines long. Done naively, verifi-
cation efforts fail to scale, get tied to a specific architecture
model and may require reading or even annotating machine-
code programs.

In previous work [13], we have proposed a technique that
can significantly ease verification of machine-code programs,
namely: decompilation into logic. Given some concrete ma-
chine code and a model of an instruction set architecture
(ISA), this decompilation extracts functions (defined in logic)
which capture the functional behaviour of the machine code.
We have demonstrated that this decompilation technique can
be used for post hoc verification, as described below, and
also for implementation of proof-producing synthesis tools, as
described in [14]. We have shown that these techniques scale
to significant examples, including verification of functional
correctness of garbage collectors and Lisp implementations
in ARM, x86 and PowerPC [10], [11], and decompilation of
the seL4 microkernel [12] (12,000 lines of ARM).

This paper’s contribution is a presentation of significant
technical improvements to our decompilation method [13].
The improvements make the new approach faster, simpler
and more widely applicable. In particular, the new technique
allows the verifier to avoid reasoning directly in the underlying
machine-code Hoare logic, even in the presence of code
pointers. The new approach retains all of the features of the
previous approach and adds a few new ones (Section II-A).
The technique described in this paper has been implemented
(www.cl.cam.ac.uk/∼mom22/decompilation) in the HOL4 the-
orem prover [16] and applied to ARM machine code.
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A. Example: Sum of An Array
We start with an example which illustrates what we mean

by decompilation and verification via decompilation. Consider
the following C code which calculates the sum of an array. (It
ignores indexed 0 to make the ARM assembly neater.)

do { k += a[i] } while (--i != 0);

The C code above can be compiled to ARM assembly:

L0: ldr r1,[r2,r3] ; load mem[r2+r3] into r1
L1: add r0,r1 ; add r1 to r0
L2: subs r3,#4 ; decrement r3 by 4
L3: bne L0 ; goto L0 if r3 6= 0
L4:

which can be assembled into ARM machine code:

E7921003 E0800001 E2533004 1AFFFFFB

Decompilation takes concrete machine code as input. From
this machine code it extracts a function which describes the
behaviour of the code. In this case, sum below which records
how registers r0–r3 and memory are affected and also what
side condition must hold for correct execution. The side
conditions are collected by the cond component.

sum(cond, r0, r1, r2, r3,m) =
let cond = cond ∧ valid address (r2 + r3) m in
let r1 = m(r2 + r3) in
let r0 = r0 + r1 in
let r3 = r3 − 4 in

if r3 = 0 then (cond, r0, r1, r2, r3,m)
else sum(cond, r0, r1, r2, r3,m)

Decompilation also automatically proves a theorem, which
we call a certificate theorem, relating the new function to the
machine code from which it was extracted. The certificate
theorem is derived w.r.t. a model of the ISA of the machine
code; in this case, a model of ARM developed by Fox [4].
We state these certificate theorems using a machine-code
Hoare triple which is parametrised by the ISA model. The
Hoare triples will be explained in later sections, for now
read the following certificate theorem for sum informally:
for any input (c, r0, r1, r2, r3,m) which sum relates to output
(c′, r′0, r

′
1, r

′
2, r

′
3,m

′), the execution of the ARM machine code
can perform the state update corresponding to sum:

(sum(c, r0, r1, r2, r3,m) = (true, r′0, r
′
1, r

′
2, r

′
3,m

′)) =⇒
{ ARM state holds (r0, r1, r2, r3,m) }
E7921003 E0800001 E2533004 1AFFFFFB
{ ARM state holds (r′0, r

′
1, r

′
2, r

′
3,m

′) }
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The benefit of using decompilation in verification is that
once the machine code has been decompiled, subsequent
verification can concentrate on only proving properties of the
extracted function, since any property proved of the extracted
function applies directly to the machine code via the certificate
theorem. For example, with an appropriate definition of how
arrays are stored in memory, it is easy to prove that sum
correctly sums the content of an array and using the certificate
theorem relate this property to the machine code.

II. IMPROVEMENTS

As mentioned above, this paper’s contribution is to present
improvements to the decompilation approach. In particular, we
show how decompilation into logic can be made simpler, faster
and more generally applicable.

Simpler: The original approach to decompilation was geared
towards automating proofs in a Hoare logic that was intended
for manual proofs — a complicated Hoare logic that was
never optimised for mechanisation performance. In this paper,
we show that a much simpler Hoare logic can be used for
decompilation. The new Hoare logic (Section III-A) is only a
thin layer over the model of the ISA.

Faster: In the new approach, we carefully state the inter-
mediate theorems so that composition of intermediate results
can be done in a handful of fast operations. In the previous
approach, composition was the main performance bottleneck:
often involving simplification through rewriting and calcu-
lation of a separation logic ‘frame’. The new approach to
composition is described in Section III-B. The speed-up we
gained can seen in benchmarks listed in Figure 1.

More widely applicable: The main practical drawback of the
previous approach was its inability to deal with code involving
exotic control flow (e.g. code using more than just goto-
like jumps). This lead to an unsatisfactory compromise where
certain complicated code had to be verified manually using the
machine-code Hoare triples. The new approach is engineered
so that it successfully extracts a function even in the presence
of code pointers. With the new approach, one can practically
always avoid reasoning directly in the underlying Hoare logic.
The new approach extracts a single function from the given
machine code as before if possible; otherwise, it extracts a
function which describes each chunk of well-behaved code.
The example below will illustrate what we mean.

A. Example: Calling Every Code Pointer of An Array

To illustrate how the new decompilation approach deals
with complicated control-flow, consider the following example
program which calls each code pointer stored in an array.

do { (a[i])() } while (--i != 0);

The C code above can be compiled to ARM assembly:

L0: ldr r4,[r5,r6] ; load mem[r5+r6] into r4
L1: blx r4 ; call code-pointer r4
L2: subs r6,#4 ; decrement r6 by 4
L3: bne L0 ; goto L0 if r6 6= 0
L4:

Our previous approach to decompilation is not able to
process the resulting ARM code, because it is unclear what
function describes the effect of the call to the code pointer. In
the new approach, we avoid this issue by essentially leaving
‘holes’ in the extracted function.

The ARM code above decompiles into a function which
explicitly mentions the value of the program counter pc. The
extracted function has three parts; the first part describes the
effect of starting execution from the top of the code (pc = L0):
in this case, a load is performed and a call is made to a code
pointer, i.e. the pc is updated (with a word-aligned address)
and a return address is stored in r14. Note that this function
does not make any assumption that the call to the code pointer
returns (it might not). The second part of the function describes
what happens if execution returns (pc = L2): in this case r6
is decremented and control moves either to the top or bottom
of the code. The third case just states that all other cases are
ignored, i.e. no progress is made.

calls(cond, pc, r4, r5, r6, r14,m) =
if pc = L0 then

let cond = cond ∧ valid address (r5 + r6) m in
let r4 = m(r5 + r6) in
let cond = cond ∧ word aligned address r4 in
let (pc, r14) = (r4,L2) in

(cond, pc, r4, r5, r6, r14,m)
else if pc = L2 then

let r6 = r6 − 4 in
if r6 = 0 then (cond,L4, r4, r5, r6, r14,m)

else (cond,L0, r4, r5, r6, r14,m)
else (cond, pc, r4, r5, r6, r14,m)

The automatically derived certificate theorem makes use of
a feature of our machine-code Hoare triple that allows the
pre- and postconditions to mention the value of the program
counter (PC) as state component, i.e. control does not need to
enter/exit at specific points of the code in the Hoare triple.

(calls(c, pc, r4, r5, r6, r14,m) = (true, pc′, r′4, . . .)) =⇒
{ ARM state holds (r4, r5, r6, r14,m) and PC is pc }
E7954006 E12FFF34 E2566004 1AFFFFFB
{ ARM state holds (r′4, r

′
5, r

′
6, r

′
14,m

′) and PC is pc′ }

With this result from decompilation one can verify proper-
ties of this code without tedious proofs in the Hoare logic.

III. IMPROVED DECOMPILATION ALGORITHM

The new decompilation algorithm has three phases. The
key technical differences over our previous approach [13] are
highlighted with bold text.

Phase 1: Evaluate the underlying ISA model for each
machine instruction; derive a theorem, stated in terms of
a simple machine-code Hoare triple, describing each in-
struction; and in order to make phase 3 faster, also make the
code segment of each Hoare triple identical (explained in
Section III-A).

Phase 2: Compute the control-flow graph (CFG) of the
given code using information gathered from the Hoare triples.
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ARM machine code instr. time/cost of old time/cost of new reduction model eval.
sum of array (Sec. I-A) 4 2.5 s (73,039 i) 0.3 s (4,019 i) 86 % (94 %) 7.8 s (1.5 Mi)
copying garbage collector [10] 89 50 s (1,526,281 i) 6.0 s (53,301 i) 88 % (97 %) 173 s (40 Mi)
1024-bit multiword addition 224 70 s (1,029,685 i) 1.2 s (10,802 i) 98 % (99 %) 37 s (8.9 Mi)
256-bit Skein hash function 1,352 5,366 s (21,432,926 i) 56 s (1,842,642 i) 99 % (91 %) 500 s (105 Mi)

Fig. 1. Benchmarks comparing the new approach (new) with our previous approach (old). The cost is given in seconds (s) and number of primitive higher-order
logic inferences (i) in HOL4 [16]. The cost of evaluating the ISA model is separated as this cost is independent of decompilation approach.

Split the CFG into separate decompilation rounds, i.e. separate
inner loops from enclosing outer loops where possible. For
complicated CFGs, insert an extra final decompilation
round which ties up the disjoint pieces if necessary (as
illustrated by the example in Section II-A).

Phase 3: For each decompilation round: compose the Hoare
triples following the CFG in a way which directly constructs
the extracted function in the postcondition of the theorem
(Section III-B). This function in the postcondition also
collects accumulated side conditions as if they were updates
to a state component (cond in Section III-A). If the code has
a loop, a loop rule is applied which wraps the result up using a
tailrec-combinator and combines the resulting side condition
on termination with the other side conditions.

A. Simple Machine-Code Hoare Logic
The machine-code Hoare triples, { pre } code { post }, that

were used above will be explained next. More formally, these
are parametrised by two functions: next, a the next-state
function for the ISA model of interest; and assert , a state
assertion which inspects the state (explained below).

(assert ,next) ` { pre } code { post } (1)

This machine-code Hoare triple is defined to be true: if for
all states that satisfy pre and including code, then another
state can be reached (by some n applications of next) such
that post is true for this state and code is included in it. The
total-correctness Hoare triple (1) is formally defined to mean,

∀state c. assert (code ∪ c, pre) state =⇒
∃n. assert (code ∪ c, post) (nextn(state))

where the set union ∪ with arbitrary code extension c is present
to facilitate extension of the code (explain in the next section).

We instantiate next and assert for each supported archi-
tecture, e.g. ARM, x86 or PowerPC. We instantiate assert
to check that each state component is consistent with code
and pre/post. Here code is represented as a set of (ad-
dress,instruction) pairs, and pre and post are, for efficiency
reasons, simply a large tuple listing the value of state com-
ponents, e.g. (pc, r0, r1, . . .) asserts that the value of PC is
pc and register 0 is r0 etc. By representing pre/post as
tuples, composition and matching becomes fast and simple.
We always include a special cond element in assert . This
cond is a condition for the entire assertion to make sense, e.g.
for ARM we instantiate assert with:

arm assert (code, pc, r0, r1, . . . , cond) state =
(cond =⇒ code is in memory of state and

the PC of state is pc and . . . )

{ARM registers r1-r3 are (r1, r2, r3) and
m is a model of part of memory and PC is L0}

E7921003 E0800001 E2533004 1AFFFFFB
{ARM registers r1-r3 are (m(r2 + r3), r2, r3) and
m is a model of part of memory and PC is L1 and
valid address(r2 + r3) m is added to cond}

{ ARM assert (c, r0, r1, r2, r3,m) and PC is L1 }
E7921003 E0800001 E2533004 1AFFFFFB
{ let (pc′, c′, r′0, r

′
1, r

′
2, r

′
3,m

′) =
(let r0 = r0 + r1 in
let r3 = r3 − 4 in

if r3 = 0 then (L4, c, r0, r1, r2, r3,m)
else (L0, c, r0, r1, r2, r3,m)) in

ARM assert (c′, r′0, r
′
1, r

′
2, r

′
3,m

′) and PC is pc′ }

Fig. 2. Two machine-code Hoare triples for: (a) the load instruction from
Section I-A, and (b) the last three ARM instructions from Section I-A. Both
contain other code too, explained in Section III-B.

B. Composing Hoare triples

Our machine-code Hoare triple supports composition:

{pre} code {m} ∧ {m} code {post} =⇒ {pre} code {post}

For this rule to be applicable, the Hoare triples must have
identical code sets code. Note that each code set is a set of
(address,instruction) pairs which is a sufficient assumption for
getting execution from pre to post. To make the code sets
identical, we apply the following theorem which can be used
to extend the code sets. This theorem is applied as a pre-
processing step in Phase 1 to speed up composition in Phase 3.
Here ⊆ is the ordinary subset relation.

{pre} code1 {post} ∧ code1 ⊆ code2 =⇒ {pre} code2 {post}

In Phase 3, composition of Hoare triples is performed
bottom-up following the CFG (or the part of it which is rele-
vant for this decompilation round). Each compositions returns
a theorem where the relevant part of the extracted function,
including the side conditions, appears in the postcondition.
Each composition returns a theorem of the form:

{pre[v0 . . . vn]}
code
{let (v′0 . . . v

′
n) = f(v0 . . . vn) in post[v′0 . . . v

′
n]}

(2)

Figure 2 show the concrete inputs to the final composition for
the sum-of-an-array example (Section I-A). The second input
carries the extracted function in the form of (2).
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C. Extracting Recursive Functions

As illustrated by our first example in Section I-A, loops
in the machine code turn into loops in the extracted function
(if the control-flow is simple enough). We define these tail-
recursive functions by instantiating f , g and d in the following
function template:

tailrec g f d x = if g x then tailrec g f d (f x) else d x

Our definition of tailrec is based on while g f x which
repeatedly applies f to x until g becomes false. Crucially, while
can be defined in (higher-order) logic without a termination
proof [7], which is important because most of the functions the
decompiler extracts do not terminate for all inputs. However,
note that our Hoare triples are total-correctness Hoare triples,
i.e. we need to know that our use of while terminates for
certain inputs: it terminated for input x if ¬g (fn x). For
this reason, we insert the termination requirement into the
definition of tailrec. We make this requirement part of the cond
side condition that our extracted functions produce:

tailrec g f d x =
let (cond, v1 . . . vn) = d (while g f x) in

(cond ∧ (∃n. ¬g (fn x)), v1 . . . vn)

Any verification that uses such extracted function must prove
that the returned cond is equal to true (for relevant input
values); otherwise, the postcondition of the certificate theorem
has no meaning (due to =⇒ at the bottom of Section III-A).

To introduce a tail-recursive function, we apply the follow-
ing theorem with appropriate instantiations of pre, post etc.

(∀x. {pre x} code {if g x then pre (f x) else post (d x)}
=⇒
(∀x. {pre x} code {post (tailrec g f d x))}

Often pre and post are instantiated with functions that simply
just set the program counter value. For the example mentioned
above, pre is instantiated as follows to set the PC to L0.

λ(c, r0, r1, r2, r3,m).
ARM state holds (r0, r1, r2, r3,m, c) and PC is L0

In our implementation, we avoid defining separate compo-
nent functions f , g and d by defining a single function which
returns three different outcomes. We omit the details of this
space optimisation as it is not crucial for understanding the
main novelties of the new technique: the new Hoare triple;
collection of side conditions as if they were state updates; and
our new approach to handling complicated control flow.

IV. SUMMARY AND RELATED WORK

This paper has presented significant improvements to de-
compilation into logic — a technique which aids verification
of machine-code programs. We have simplified the technique,
optimised it for mechanisation speed and made it applicable
even to code with arbitrary use of code pointers.

Formal verification of machine code using theorem provers
was pioneered in impressive work by Boyer and Yu [2]. Boyer
and Yu verified functional correctness of string functions

compiled for the Motorola MC68020. Their proofs were
carried out in the Boyer-Moore theorem prover Nqthm [6]
and required significant manual effort. Since then most work
in this area has focused on making proofs easier: Matthews
et al. [8] have showed how verification condition generation
for machine code can be accomplished, Hardin et al. [5] show
how ACL2 can be used and our work [13] has shown how
functions can be extracted from machine code and how that
aids verification. Various program logics for assembly and
machine code have also been developed [10], [15], [1], [3].
Chlipala’s approach [3], using Coq, has a distinct emphasis
on proof automation for functional correctness. There has also
been work targeting mostly automatic proofs of basic safety
properties for low-level code [18], [9], [17].
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