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Abstract—System designs are often modeled as sets of threads
whose activations are controlled by a domain-specific scheduler.
Especially in the early design phases, the interactions between
the threads and the scheduler often depend on parameters (such
as the duration of thread suspensions) for which a value is not
available.

In this paper, we tackle the verification of designs with para-
metric scheduler-thread interaction. We propose a new method,
called Semi-Symbolic Scheduler/Symbolic Threads (S3ST), to
prove that a design satisfies the specified assertions for all possible
values of the interaction parameters. We build on Explicit-
Scheduler/Symbolic-Threads (ESST), an effective technique for
verifying designs with cooperative scheduling, that is however
limited to the case of non-parametric interactions. As in ESST,
S3ST analyzes each thread symbolically using lazy predicate
abstraction. The key difference is in the way the scheduler is
dealt with. In ESST, the scheduler is directly executed, using
techniques similar to explicit-state model checking. In S3ST, the
scheduler is analyzed by combining concrete execution of parts
of its state, with the evolution of a symbolically represented set
of configurations of interaction parameters.

We have implemented S3ST in the KRATOS software model
checker, and have performed an experimental evaluation on a
significant set of benchmarks with parametric scheduler-thread
interaction. The results clearly demonstrate the effectiveness of
the new approach.

I. INTRODUCTION

System designs, in many embedded-system settings, are
becoming software. Such designs are amenable for high-speed
simulations before synthesizing the hardware description. The
software typically consists of a set of threads that are activated
by a scheduler that implements a set of domain-specific
rules. Particularly relevant are multi-threaded software with
cooperative (or non-preemptive) scheduling policy: a thread
executes, without any interruption, until it either terminates or
explicitly yields the control to the scheduler.

Especially in the early stages of the development process,
system designs feature parametric interactions between threads
and scheduler. For example, when a thread suspends itself, it
does so by calling a suitable scheduler primitive, specifying
the duration of the suspension as argument. However, such
duration is not necessarily a known numerical constant, but
may be modeled in the design by a parameter for which
the designer has not selected a value. Thus, the verification
process must show that the required properties hold for all
subsequent choices of values to the interaction parameters. We
also remark that the semantics of some important high-level
design languages (e.g. SystemC [1]) allows the parameters of
the scheduler-thread interaction primitives to range over reals,
thus resulting in timed traces. Restricting the parameters to

range over the integers (representing numbers of cycles of
fixed duration) is only an approximation.

The problem of model checking cooperative threads
has been recently tackled with Explicit-Scheduler/Symbolic-
Threads (ESST) [2]). ESST combines explicit state tech-
niques to analyze the scheduler with symbolic techniques,
based on the lazy predicate abstraction [3], to analyze the
threads. ESST orchestrates the analysis of the threads by the
direct execution of the scheduler. The threads communicate
with each other through shared variables, and communi-
cate/interact with the scheduler (e.g., querying and updating
scheduler states) by calling primitive functions provided by
ESST. ESST is not able to verify designs with parametric
scheduler-thread interactions. In fact, the ability to directly
execute the scheduler during the search follows directly from
the assumption that the values for the interaction parameters
are statically determined.

In this paper, we overcome the limitation of ESST by
proposing a new technique, called Semi-Symbolic Sched-
uler/Symbolic Threads (S3ST), that is able to deal with
parametric thread-scheduler interactions.

Similar to ESST, in S3ST the threads are analyzed by
means of the lazy predicate abstraction. The key difference is
that the scheduler, instead of being explicitly executed, is dealt
with in a semi-symbolic manner, by combining concrete exe-
cution of parts of its state, with the evolution of a symbolically
represented set of configurations of interaction parameters.

The approach is based on the following steps. First, we
introduce a symbolic representation of time delays for each
event, and further abstract the time delays of event notifications
with the relations between the symbolic representations. Such
an abstraction is carried out by the symbolic analysis, and is
passed to the scheduler when it is run. Second, we enable the
scheduler to perform reasoning on the relations between the
symbolic representations of the time delays. This reasoning
determines which event notifications should be triggered at
the earliest future time. This can be reduced to checking
the satisfiability modulo theory (SMT) [4] of formulas that
symbolically represent sets of possible time delays. Third, we
enable symbolic analysis, via the lazy predicate abstraction, on
the part of the scheduler that modifies the time delays. The
part concerns the phase of the scheduler that accelerates the
simulation time. This step is non-trivial, because the scheduler
must operate on both concrete and symbolic data.

The introduction of ESST was originally motivated by the
attempt to avoid performing the lazy predicate abstraction on
the scheduler. In order not to lose the ESST advantages, it
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Fig. 1. The SystemC scheduler.

is necessary to control the interactions between the concrete
and symbolic data during the scheduler runs. We introduce
a technique for predicate filtering, that carefully determines
which predicates are relevant to compute the evolution of the
scheduler.

In the following we focus on parametric SystemC designs,
whose parameters can determine the amount of time delays of
event notifications. We have implemented the S3ST algorithm
within the KRATOS software model checker [5]. We per-
formed an experimental evaluation on a significant set of new
benchmarks and benchmarks adapted from [6], [7] that stress
S3ST algorithm. In the experimental evaluation we compare
S3ST against the sequentialization approach [2], where the
verification problem is reduced to the problem of verifying a
sequential program. We also compare S3ST against ESST,
by generating non-parametric threaded designs by random
sampling the space of parameters. The results of experiments
show the effectiveness of S3ST, not only for verification, but
also for bug finding.

The paper is organized as follows. Section II provides a
background on SystemC and overviews the ESST algorithm.
Section III explain the inability of ESST to handle designs
with parametric event-notification time delays. Section IV
describes the proposed extension to the ESST algorithm.
Section V describes some related work. Section VI presents
the results of the experimental evaluation. Finally, Section VII
concludes this paper and outlines some future work.

II. BACKGROUND

SystemC is a C++ library that consists of a core language
for modeling the components of a system design and their
interconnections, and a simulation kernel (or a scheduler) for
fast simulations of the design. The core language models
system components by means of modules (or C++ classes) and
abstracts communication between modules by means of chan-
nels. SystemC provides several primitive channels such as sig-
nal, mutex, semaphore, and queue. A module can have one or
more thread definitions that model the parallel behavior of the
system design. The core language provides general-purpose
events as synchronization mechanisms between threads.

The SystemC scheduler runs the threads during simulations.
Following the SystemC semantics in [1], the scheduler consists
of several phases (see Figure 1). In the initialization phase
all channels are initialized. The scheduler then enters the
evaluation phase where it executes all runnable threads while
postponing the materialization of channel updates performed
by the threads. This phase employs a cooperative scheduling

policy with mutually-exclusive thread execution. When there
are no more runnable threads, the scheduler goes into the up-
date phase where it materializes all channel updates postponed
during the evaluation phase. An evaluation phase followed by
an update phase constitutes a delta cycle. A thread, during
its execution, can perform delayed event notifications. That
is, the involved events will be notified at some time in the
future, including at the delta notification. The materializations
of channel updates also often require the events associated with
the updated channels to be notified at the delta notifications.
In turn, all threads that are waiting for the notified events
or are sensitive to the channels whose associated events
are notified become runnable. If, after the delta notification,
there are runnable threads, the scheduler goes back to the
evaluation phase to run them. Otherwise, it accelerates the
simulation time to the nearest time point where there exist
events to be notified. These events are then notified at the timed
notification. Similar to the delta notification, some waiting
threads can become runnable after the timed notifications, and
thus the scheduler has to go back to the evaluation phase to
run them. If there are no more events to be notified at some
future time, denoted in Figure 1 by failure in time acceleration,
then the simulation ends.

SystemC provides several synchronization functions. For
example, when a thread calls wait(e) for an event e, then
the thread suspends itself and waits for the notification of e.
If another thread calls e.notify(), then all threads waiting
for the notification of e are made runnable immediately during
the current delta cycle. Event notifications can be delayed. If
a thread calls e.notify(t), for a time t, then e will not be
notified immediately. If t is a constant zero, then e will be
notified at the delta-notification, otherwise it will be notified
after the simulation time accelerates t time units. Similarly, if a
thread calls wait(t), then it suspends itself and will become
runnable at the timed notification after the simulation time
accelerates t time units.
Explicit-Scheduler/Symbolic-Threads (ESST) [2], [8] is an
effective technique for the verification of shared-variable
multi-threaded software with cooperative scheduling and
mutually-exclusive thread executions. The threads communi-
cate with each other through shared variables, and communi-
cate with the scheduler (e.g., querying and updating scheduler
states) through a set of primitive functions provided by ESST.

ESST is a counter-example guided abstraction refinement
(CEGAR) [9] technique that combines explicit and symbolic
model checking techniques. It analyzes each thread with the
lazy predicate abstraction [3], and orchestrates the whole
verification by the direct execution of the scheduler using
techniques similar to explicit-state model checking. That is,
ESST keeps track of the state of the scheduler explicitly, and
includes the scheduler as part of the verification algorithm.
For the direct execution of the scheduler, ESST needs precise
scheduler states, and thus it requires the arguments passed to
the primitive function calls to be constants. Both the scheduler
and the set of primitive functions are left abstract, but they are
required to exhibit a cooperative scheduling policy.
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The ESST algorithm is based on the construction and
analysis of an abstract reachability forest (ARF) that describes
the reachable abstract states of the multi-threaded program. An
ARF consists of connected abstract reachability trees (ART’s),
each of which is obtained by unwinding the control-flow graph
(CFG) of the running thread. For a program with N threads,
an ARF node is a tuple (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ,S), where li
and ϕi are, respectively, the location and the region of thread
i, ϕ is the global region, and S is the scheduler state. Regions
are formulas describing the values of program variables, while
the scheduler state maintains information about the states of
the threads as a mapping from scheduler variables to concrete
values.

An ARF is constructed by unwinding the CFGs of threads,
and by executing the scheduler. Each ART in the ARF is
constructed using the lazy predicate abstraction as for the case
of sequential programs. In particular, when the operation of the
unwound CFG edge involves a call to a primitive function,
then ESST has a primitive executor that takes as inputs the
scheduler state and the call to a primitive function, and returns
the updated scheduler state obtained from directly executing
the function call.

Given a node (〈l1, ϕ1〉, . . . , 〈li, ϕi〉, . . . , 〈lN , ϕN 〉, ϕ,S),
such that there are no running threads indicated by S, ESST
runs the scheduler on S. The scheduler itself is a function that
takes a scheduler state S (with no running thread) as an input
and outputs a set {S′1, . . . ,S′m} of scheduler states representing
all possible schedules such that there is only one running
thread in S′i for i = 0, . . . ,m. Each of these states forms
an ARF node (〈l1, ϕ1〉, . . . , 〈li, ϕi〉, . . . , 〈lN , ϕN 〉, ϕ,S′j), that
becomes the root of a new ART of the subsequent running
thread. Coverage checks and refinements in ESST are similar
to that of the lazy predicate abstraction. In particular, the
subsumption checks are done thread-wise and require the
scheduler states to coincide. We refer the reader to [2], [8]
for the details on coverage checks and on the ARF refinement
techniques.

To verify SystemC designs, we specialize ESST to SystemC
by instantiating the ESST scheduler with the SystemC sched-
uler, and by defining a set of primitive functions that imple-
ment the synchronization functions of SystemC. For example,
for an event e and a time t, the SystemC synchronization
functions wait(e), wait(t), and e.notify(t) correspond,
respectively, to the primitive functions wait_event(e),
wait_time(t), and notify_event(e,t).

III. PARAMETRIC THREAD-SCHEDULER INTERACTIONS

We focus on parametric designs where the values for the
parameters can control the interaction between the threads
and the scheduler. In particular we are interested in verifying
parametric SystemC designs where the values of parameters
determine the amount of delays of event notifications. For
example, the design can contain a call notify_event(e,t)
or wait_time(t) where t is non-constant and its values
depend on the value of some parameters. Subsequently, we

refer to such a form of design as SystemC designs with
parametric event-notification time delays.

To verify SystemC designs, ESST maintains information
about threads and events in the scheduler state. For each
thread T , the domain of the scheduler state includes the
scheduler variables stT and evT that keep track of, respec-
tively, the state of T and the event whose notification is
awaited by T . The variable stT ranges over the enumerations
{Waiting ,Runnable,Running}, whose meanings are obvi-
ous. The variable evT ranges over the events in the design
and are relevant only when stT is Waiting . For each thread
T , we implicitly introduce an event eT whose notification is
awaited by the thread when it suspends itself, e.g., by calling
the timed wait function wait_time(t), for a time t.

For each event e, the domain of scheduler states in-
cludes the scheduler variables ste and timee that keep
track of, respectively, the state and the notification time
delay of e. The variable ste ranges over the enumerations
{Notified ,Delta,Timed ,None}, where Notified indicates
that the event is notified, Delta and Timed indicate that the
event will be notified at, respectively, the delta notification
and the timed notification, and None indicates that there is no
notification. The value of timee is a concrete time that ranges
over R≥0 and is relevant only when ste is Timed .

The parameters that determine the event notification delays
may range over R≥0. Such parameters cause state explosion.
That is, to keep track of such delays, ESST requires infinitely
many scheduler states, which in turn needs infinitely many
ARF nodes to represent the reachable abstract states. Thus,
ESST cannot handle SystemC designs of our interest.

IV. SEMI-SYMBOLIC SCHEDULER/SYMBOLIC THREADS

The proposed technique for verifying SystemC designs with
parametric event-notification time delays is called S3ST, for
Semi-Symbolic Scheduler/Symbolic Threads, and is based on
the following ideas. First, the threads are analyzed by means
of the lazy predicate abstraction technique, in order to build
an ARF. Second, the primitive executor is able to handle
calls to primitive functions with non-constant time arguments,
by enabling the lazy predicate abstraction on the definitions
of primitive functions. Third, the scheduler is modeled in
such a way that it can perform reasoning on symbolic data
carried by the thread and the global regions of ARF nodes.
Similar to the primitive executor, the lazy predicate abstraction
is enabled on the part of the scheduler that constrains and
modifies the time delays, that is, the delta-notification, the
timed-notification, and the time acceleration phases. Finally,
we ensure that the ARF construction explores all schedules
allowed by the possible combinations of event notifications.
Time-Delay Variables. To overcome the state explosion prob-
lem described in Section III, we first introduce, for each event
e, a time-delay variable ϑe as a symbolic representation (or a
symbolic value) of all possible time delays for the notification
of e. The variable timee in the scheduler state now ranges over
R≥0∪{ϑe}. For example, in analyzing a call to wait_time(t)
by a thread T , for a non-constant time t, the primitive executor
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produces an updated scheduler state that maps steT to Timed ,
timeeT to ϑeT , stT to Waiting , and evT to eT .
Primitive Function Executor. A key idea of our approach
is to abstract the time delays of event notifications by the
relations between the time-delay variables. These relations are
carried by the regions of the ARF nodes, and are analyzed
by the lazy predicate abstraction. To this end, we first need
to make the time-delay variables visible to the lazy predicate
abstraction. Second, we require the primitive executor to pro-
vide the lazy predicate abstraction with part of the definition
of the called primitive function that updates the time delays.

Let P be a threaded program with N threads, T1, . . . , TN .
We denote by SVar the set of shared variables of P , by LVarT
the set of local variables of the thread T in P , and by VarP the
set of all variables in P . We assume that LVarT ∩ SVar = ∅
for every thread T and LVarTi

∩ LVarTj
= ∅ for each two

different threads Ti and Tj . To make time-delay variables
visible to the lazy predicate abstraction, we consider them as
being shared variables in P . That is, given a set {e0, . . . , em}
of events in P , we have {ϑe0 , . . . , ϑem} ⊆ SVar . Besides an
updated scheduler state, the primitive executor generates on-
the-fly a loop-free program defining the update of the time-
delay variable. This program is then analyzed by the lazy
predicate abstraction.

Let SState be the set of scheduler states, PrimCall be the
set of primitive function calls, and LFProgP be the set of
loop-free programs over the variables in VarP . For simplicity
of presentation, we assume that primitive functions do not
return any value. The primitive executor for P in S3ST is the
function

SEXEC : (SState × PrimCall)→ (SState × LFProgP )

that takes a scheduler state and a primitive function call as in-
put, and outputs an updated scheduler state along with a loop-
free program. For example, in executing wait_time(exp)

called by a thread T , for some expression exp, besides
outputting an updated scheduler state, as explained before, the
primitive executor generates the program

assume(exp >= 0); ϑeT := exp.

Note that, the time-delay variables are viewed as symbolic
values by scheduler states, but as program variables by the
lazy predicate abstraction.

The scheduler to determine which events to notify at the
delta- and timed-notification needs to know the relations
among the time-delay variables of the events with constant and
non-constant delays. Thus, to enable lazy predicate abstraction
to discover predicates that speak about such relations, even if
the time delays are constants, the primitive executor always
generates the loop-free program.
Semi-Symbolic Scheduler. The scheduler consists of the
phases shown in Figure 1. Particularly, in the delta- and timed-
notification the scheduler has to reason about the relations
between time-delay variables to determine which events to
notify. Due to the parameters that affect the time delays, there

can be more than one combination of events that can be noti-
fied in those phases. Different combinations can result in the
simulation time being accelerated to different earliest future
times. The scheduler though must allow for the exploration of
all possible combinations. Moreover, similar to the primitive
executor, because the time acceleration essentially updates the
time delays, the scheduler must generate on-the-fly programs
representing the updates of the time-delay variables.

The S3ST scheduler is the function

SCHED : ARFNode → P(P(SState)× LFProgP )

that takes an ARF node η as an input and returns a set
{(S1, P

lf
1 ), . . . , (Sn, P

lf
n )} where Si is a set of scheduler

states and P lfi is a loop-free program. Particularly for SystemC
verification, each Si is a result of notifying a different set of
events in the delta- or timed-notification. In what follows we
focus on the timed-notification of the scheduler; the delta-
notification can be explained in a similar way.

We denote by S[x0 7→ v0, . . . , xn 7→ vn] the scheduler state
obtained from a scheduler state S by replacing the images of
xi in S with vi for i = 0, . . . , n. For simplicity of presentation,
we assume that the relations over the time-delay variables and
over the parameters are tracked by the global regions of the
ARF nodes.

The procedure TIMEDNOTIFICATION shown in Algorithm 1
implements the time acceleration and the timed-notification of
Figure 1. Let (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ,S) be the input ARF
node, and let TE be the set of events with Timed state.
TIMEDNOTIFICATION checks for every non-empty subset
E = {e0, . . . , em} of TE whether the events in E can be
notified at the same earliest future time, while delaying further
the notifications of others in TE . This is done by analyzing
the time-delay variables and their relations carried by the
global region ϕ. The analysis amounts to checking, by the
procedure SAT, if the conjunction between ϕ, the equalities
ϑe0 = · · · = ϑem , and the inequalities ϑe0 > 0 ∧

∧
{ϑeo <

ϑe′ | e′ ∈ TE \ E} is satisfiable. If it is, then the simulation
time is accelerated by the procedure ACCELERATETIME, the
events in E are notified, and the threads that are waiting for
the notifications of the events in E are woken up by the
procedure WAKEUPTHREADS, by changing the threads’ states
from Waiting to Runnable .

Intuitively, the procedure TIMEDNOTIFICATION tries all
possible combinations of event notifications. If the satisfia-
bility check of the set E is successful, then it means that all
events in E can be notified at the same earliest future time,
while postponing the notifications of the other events in TE .

The procedure ACCELERATETIME is shown in Algorithm 2.
The first for-loop sets the variable timee of the event e in
TE to ϑe if timee0 has the symbolic value ϑe0 . But, note
that, if timee0 and timee are concrete values, then the time
acceleration is the same as in the ESST scheduler, i.e., it
simply subtracts the value of timee0 from the value of timee
and sets the result as the new value for timee. The pseudo-
code following the first for-loop generates a loop-free program
P lf that represents the formula checked by SAT, as well
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Algorithm 1: TIMEDNOTIFICATION
Input : An ARF node (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ, S).
Output: A set R of pairs (S′, P lf ) of a scheduler state S′ and a

loop-free program P lf .
R← ∅
TE ← {e | S(ste) = Timed}
if TE 6= ∅ then

for E ∈ P(TE) andE 6= ∅ do
Let E = {e0, . . . , em}
Eq ← ϑe0 = · · · = ϑem
InEq ← ϑeo > 0 ∧

∧
{ϑeo < ϑe′ | e′ ∈ TE \ E}

if SAT(ϕ ∧ Eq ∧ InEq) then
(S′, P lf )← ACCELERATETIME(S, E)
S′ ← S′[ste0 7→ Notified , . . . , stem 7→ Notified ]
S′ ← WAKEUPTHREADS(S′)
S′ ← S′[ste0 7→ None, . . . , stem 7→ None]
R← R

⋃
{(S′, P lf )}

Algorithm 2: ACCELERATETIME
Input : A pair (S, E) of a scheduler state S and a non-empty set E of

to-be-notified events.
Output: A pair (S′, P lf ) of a scheduler state S′ and a loop-free

program P lf .
Let E = {e0, . . . , em}
S′ ← S
TE ← {e | S(ste) = Timed}
for e ∈ TE do

if S(timee0 ) = ϑe0 then S′ ← S′[timee 7→ ϑe]
else

if S(timee) 6= ϑe then
t← S(timee)− S(timee0 )
S′ ← S′[timee 7→ t]

P lf ← “assume(ϑe0 > 0);”
for e ∈ TE do

if e ∈ E then P lf ← P lf + “assume(ϑe = ϑe0);”
else P lf ← P lf + “assume(ϑe > ϑe0);”
P lf ← P lf + “ϑe := ϑe - ϑe0;”

as the updates of time-delay variables caused by the time
acceleration. For example, if E = {e0} and TE = {e0, e1},
such that timee0 is mapped to the time-delay variable in the
input scheduler state, then the generated loop-free program is:

assume(ϑe0 > 0);
assume(ϑe0 = ϑe0); ϑe0 := ϑe0 - ϑe0;
assume(ϑe1 > ϑe0); ϑe1 := ϑe1 - ϑe0;

The result of TIMEDNOTIFICATION is a set
{(S1, P lf1 ), . . . , (Sn, P lfn )} of pairs of a scheduler state
and a loop-free program. Each scheduler state Si has
some runnable threads that must be run in the evaluation
phase. That is, for each Si such that stTi0

, . . . , stTim

are mapped to Runnable , the scheduler generates a set
Si = {S0i , . . . ,Smi } of scheduler states where each Sji is
Si[stTij

7→ Running ]. Finally, the scheduler returns the set
{(S1, P

lf
1 ), . . . , (Sn, P

lf
n )}.

ARF Construction. Similar to ESST, the S3ST algorithm is
based on the construction of ARF by unwinding the CFGs of
threads and by executing the scheduler. Expanding an ARF
node involves computing the abstract strongest post-condition
SPπ

op(ψ) of a region ψ with respect to the operation op and
the precision π. The operation op can be the operation labeling
the unwound CFG edge or the loop-free program generated by
the primitive executor or by the scheduler. The precision π is
a set of predicates that are associated locally with a thread

(or a location in the CFG of a thread) or associated with the
global region.

We expand an ARF node η = (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ,S)
by means of the following rules:
E1. There is a running thread i in S that performs an

operation op and (li, op, l
′
i) is an edge of the CFG of

thread i:
• If op is not a call to a primitive function, then let
ôp be op and S′ = S.

• If op is a call to a primitive function, then (S′, ôp) =
SEXEC(S, op).

The successor node is (〈l1, ϕ′1〉, . . . , 〈l′i, ϕ′i〉, . . . ,
〈lN , ϕ′N 〉, ϕ′,S′), where

• ϕ′i = SPπl′i
ôp (ϕi ∧ ϕ),

• ϕ′j = SPπlj

HAVOC(ôp)(ϕj ∧ ϕ) for j 6= i, and
• ϕ′ = SPπ

ôp(ϕ).
The function HAVOC collects all global variables possi-
bly updated by ôp, and builds a new operation where
these variables are assigned with fresh variables. The
precisions πl and π are associated with the location
l of the corresponding CFG and the global region,
respectively.

E2. There is no running thread in S. For each (S, P lf ) ∈
SCHED(η) and for each scheduler state S′ ∈ S, we
create a successor node (〈l1, ϕ′1〉, . . . , 〈lN , ϕ′N 〉, ϕ′,S′),
where
• ϕ′j = SPπlj

HAVOC(P lf )(ϕj ∧ ϕ), for j = 1, . . . , n, and
• ϕ′ = SPπ

P lf (ϕ).
such that the successor node becomes the root node of
a new ART added to the ARF.

Note that the strongest post-condition with respect to P lf can
always be computed because P lf is a loop-free program.

Similar to ESST, the construction of an ARF in S3ST
starts with a single ART representing reachable states of the
main thread. In the root node of that ART all regions are
initialized with True, all thread locations are set to the entries
of the corresponding threads, and the only running thread in
the scheduler state is the main thread.

The ARF is expanded using the rules E1 and E2. An
ARF is complete if it is closed under the expansion of
those rules. An ARF is safe if it is complete and, for
every node (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ,S) in the ARF such
that ϕ ∧

∧
i=1,...,n ϕi is satisfiable, none of the locations

l1, . . . , lN are error locations. If one of the locations l1, . . . , lN
is an error location, we build a counter-example consisting
of paths in the trees of the ARF and check if the counter-
example is feasible. Unlike ESST, in the building of counter-
example S3ST has to take into account the generated loop-
free programs. If the counter-example is feasible, then we have
found a real counter-example witnessing that the program is
unsafe. Otherwise, we use it to discover predicates to refine
the ARF. Coverage checks and refinements of S3ST are the
same as those of ESST. We refer to [8] for further details.
Note that, because the updates of the time-delay variables
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are represented by the on-the-fly generated programs that are
analyzed symbolically, the existing refinement methods of
ESST can discover predicates that speak about the relations
between time-delay variables.
Predicate Filtration. One possible bottleneck in S3ST is
there can be too many predicates about the relations between
time-delay variables that have to be tracked during the ARF
construction. The more predicates to track, the more expensive
the computations of abstract strongest post-conditions. To
alleviate this problem, we perform a predicate filtration that
looks up the scheduler state to filter out predicates that contains
“inactive” time-delay variables during the computations of
abstract strongest post-conditions.

Let q be a predicate and S be a scheduler state. Denote
by fvar(q) the set of free variables occurring in q and by
Θ(S) the set of time-delay variables such that, for each ϑe
in Θ(S), we have S(ste) = None . Given an ARF node
η = (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ,S) to be expanded with an
operation ôp such that the successor scheduler state is S′,
then instead of computing the successor global region ϕ′ as
SPπ

ôp(ϕ), we compute ϕ′ as SPπ′

ôp(ϕ), where π′ = π \ {q ∈
π | fvar(q) ∩ Θ(S′) 6= ∅}. The successor thread regions can
be computed similarly.
Partial-Order Reduction (POR). POR [10] alleviates the
problem of exploring a large number of redundant thread
interleavings by exploiting the commutativity of concurrent
transitions that result in the same state when they are executed
in different orders. The POR techniques developed for ESST
in [6] are applicable to S3ST. In [6] we have the procedure
PERSISTENT that implements the persistent-set technique. The
procedure takes as inputs an ARF node η and a set S of
scheduler states resulting from a scheduler run, and outputs
a subset of S. For S3ST, we simply run PERSISTENT(η, Si)
for each Si in {(S1, P

lf
1 ), . . . , (Sn, P

lf
n )} = SCHED(η).

We remark that, the S3ST approach is not a form of
POR, particularly because TIMEDNOTIFICATION explores all
possible combinations of event notifications. Indeed we can
optimize TIMEDNOTIFICATION by techniques inspired by
POR. Suppose that we can partition the set of threads in
the system design such that in each partition the variables
accessed by the threads and the events notified and waited
by the threads are disjoint from those of other partitions.
Such a partitioning is often possible on a system design that
consists of components that do not interact with each other.
Given partitions of threads, if a subset E′ of E of events
to be notified by TIMEDNOTIFICATION wake up threads in
partitions different from those woken up by the events in
E \ E′, and the notifications of events in E′ can be delayed,
then we do not explore the possibility to notify E′ together
with E \ E′, but only explore the case where the notification
of E′ is further delayed.
Correctness. Let S3STSC be the specialization of S3ST to
SystemC, as explained above. In what follows, we assume
to work on a threaded program P (representing a SystemC
design) with N threads T1, . . . , TN . Following the program-
ming framework in [8], a configuration γ of P is a tuple

〈γT1 , . . . , γTN
, gs,S〉 where (1) each γTi = (li, si) is a thread

local configurations, where li is a program location and si is a
mapping (or state) from LVarTi

to values, (2) gs is a mapping
(or state) from SVar to values, and (3) S is a scheduler state.
Given a configuration γ and an expression e consisting of
variables in SVar and LVarTi (for i = 1, . . . , N ), we denote
by γ(e) the value resulting from the evaluation of e over γ. The
evaluation can be extended naturally to the case of multiple
expressions as arguments. For a configuration γ with S as
its scheduler state, we denote by γ[S′/S] the configuration
obtained from γ by replacing S with a scheduler state S′.
Given a state s, we denote by Dom(s) the domain of s. For
two states s1, s2 with disjoint domains, we denote by s1 ∪ s2
the union s1 and s2 such that, for every x ∈ Dom(s1 ∪ s2),
we have (s1 ∪ s2)(x) = s1(x) if x ∈ Dom(s1), otherwise
(s1 ∪ s2)(x) = s2(x). Let ϕ be a formula over variables in
the domain of a state s, we denote by s |= ϕ for a state s
satisfying ϕ.

Let η = (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ,S) be an ARF node.
We denote by eq(S) the conjunctions of equalities induced
by the mappings in S. We say that the configuration γ =
〈(l′1, s1), . . . , (l′N , sN ), gs, S′〉 satisfies the node η, denoted by
γ |= η, if for all i = 1, . . . , N , we have li = l′i, si ∪ gs |= ϕi,⋃
i=1,...,N si∪gs |= ϕ, and

⋃
i=1,...,N si∪gs∪S′ |= ϕ∧eq(S).

Following [8], the semantics of each n-ary primitive func-
tion f is defined by an n + 1-ary function f̂ that takes as
input, in addition to the arguments of f , a scheduler state S
and returns an updated scheduler state S′. For the correctness
of S3STSC, we assume that the primitive executor SEXEC
implements correctly the definitions of primitive functions. Let
η, η′ be ARF nodes such that η′ is obtained from η by applying
rule E1, where the operation op is a call f(~e) to primitive
function f with expressions ~e as the arguments. Then, for
configurations γ, γ′ such that γ |= η, S is the scheduler state
of γ, and γ′ = γ[f̂(γ(~e),S)/S], we have γ′ |= η′.

In what follows, we show that the scheduler SCHED of
S3STSC explores all possible combinations of event notifi-
cations. First, let η be an ARF node such that there is no
running thread indicated by its scheduler state. Let (S, P lf ) ∈
SCHED(η) and S ∈ S, we denote by ηS,S the successor node
obtained from S and S by rule E2. Second, the SystemC
scheduler, as in [8], can be implemented by a function Sched
that takes a scheduler state as an input and outputs a set of
scheduler states.

Lemma 1: Let η be an ARF node such that there are
no running threads in its scheduler state, and let γ be a
configuration such that γ |= η and S is γ’s scheduler state.
Let Ŝ = Sched(γ) be the set of scheduler states obtained
by running the scheduler. Then, there are a pair (S, P lf ) ∈
SCHED(η) and a one-to-one correspondence C between Ŝ
and S such that, for every scheduler state S′ ∈ Ŝ, we have
γ[S′/S] |= ηS,C(S).

Proof: (Sketch) The proof of this lemma relies on the fact
that TIMEDNOTIFICATION of SCHED enumerates all possible
combinations of event notifications yielded by configurations
that satisfy the ARF node η.
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Intuitively, the above lemma says that, for any configuration
that satisfies the ARF node η, the successor configuration
obtained by running the scheduler Sched is in the set of con-
figurations represented by the successor abstract state obtained
by running S3STSC’s scheduler SCHED.

The following theorem states the correctness of S3STSC:
Theorem 1: Let P be a SystemC design with parametric

event-notification time delays. For every terminating execu-
tion, S3STSC(P ) returns a safe ARF if and only if P is safe
for all possible values of its parameters.

Proof: (Sketch) The proof can be derived from that of
ESST in [8]. The correctness of S3STSC relies on the above-
mentioned assumption about the primitive executor SEXEC
and Lemma 1. In particular the computations of abstract
strongest post-condition on the on-the-fly generated loop-free
programs over-approximate the set of possible values for the
time-delay variable ϑe of an event e when ste is Timed .

V. RELATED WORK

There has been a large amount of work on developing tech-
niques for the verification of both sequential and concurrent
(or multi-threaded) programs; see [11] and the related work
section of [8] for recent surveys. Most of these techniques do
not address timed systems, and assume to deal only with a
simple non-deterministic scheduler.
Sequentialization. One popular approach to verifying multi-
threaded programs is by means of sequentialization. In this
approach the multi-threaded program is translated into a
(non-deterministic) sequential program that is behaviorally
equivalent, or equivalent up to some bounds (e.g., number of
context switches), to the multi-threaded program. The resulting
program is then analyzed by off-the-shelf techniques for se-
quential programs. Our previous work in [2] on sequentializing
SystemC designs is already able to handle SystemC designs
with parametric event-notification delays because the sequen-
tialization captures the precise semantics of the SystemC
scheduler. Indeed, the sequentialization approach can be used
to verify general parametric SystemC designs. However, as
demonstrated in that paper, the approach does not scale up to
large designs.

The work in [12] is concerned with the verification of safety
properties of periodic real-time systems with priority-sensitive
scheduling. The verification is based on the translation of the
system into a sequential program that over-approximates all
executions of the system up to some time bound. The resulting
sequential program is then verified using bounded model
checking (BMC). Similar to our work, the work abstracts
time via job-bounded abstraction. However, due to being over-
approximations, the analysis of the sequential programs can
result in false warnings.
Timed and Hybrid Systems. Other branch of work on the
analysis of timed systems is in the context of timed and hybrid
systems/automata [13], [14]. The analysis mostly abstracts
away data variables, and particularly for timed automata,
the analysis cannot handle non-deterministic inputs. Notable
exceptions are the SMT-based verification of timed and hybrid

automata in [15], [16]. The work in [15] reduces schedulability
analysis of parametric timed automata to reachability of error
location in the symbolic representation (SMT formulas) of
the automata. The reachability analysis is done via BMC and
is complete only for periodic systems. The analysis involves
neither abstraction nor refinement processes. The work in [16]
is concerned with the scenario verification of hybrid systems.
Similar to [15], the hybrid systems are represented symboli-
cally as SMT formulas and analyzed by means of BMC.
Path Exploration and Test Case Generation. Techniques
that involve mixed symbolic and concrete executions have also
been developed in the context of automated path exploration
and test cases generations. Popular approaches have been
implemented in DART (Directed Automated Random Test-
ing) [17], EXE [18], SPF (Symbolic PathFinder) [19], [20],
and S2E [21] DART performs bounded concrete executions
on random inputs, while at the same time collects the path
constraints of the executed paths. The constraints are then
systematically negated to obtain new input values that will
direct the next concrete executions to alternative paths. These
steps are repeated until the coverage criteria is achieved. EXE
and SPF essentially perform symbolic executions, but perform
concrete executions to simplify the path constraints. S2E
interleaves concrete and symbolic executions. On switching
from concrete execution to symbolic one, S2E generalizes the
concrete values to symbolic values, and run simultaneously
concrete and symbolic executions. On switching in the reverse
direction, S2E performs lazy concretization by on-demand
instantiations of symbolic data.

VI. EXPERIMENTAL EVALUATION

We have implemented the S3ST algorithm, and its spe-
cialization to SystemC, in the KRATOS software model
checker [5].
Setup. We have carried out an experimental evaluation using
new benchmarks and benchmarks derived from [6] and [7].
The derived benchmarks generalize the original ones by adding
parameters that control the time delays of event notifications.
The number of added parameters corresponds to the number of
primitive function calls that concern event notifications (which
is linear with the number of threads). For each benchmark x
from [6] and [7], we call the derived benchmark p-x. The
benchmarks that exhibit thread-scheduler interaction delays
that may vary from cycle to cycle are marked with a ?.

We compared the S3ST algorithm with the sequentialization
approach described in [2]. For the experiments with S3ST, we
enabled partial-order reduction. For the sequentialization, we
experimented with the lazy predicate abstraction of KRATOS
and CPACHECKER SVN revision 6080 [22], the eager abstrac-
tion of SATABS-3.0 [23], and the BMC of CBMC-4.0 [24].
For CBMC, we set the number of loop unwinding to 3 and
only considered the unsafe benchmarks.

We ran our experiments on an Intel Xeon 3GHz box with
4GB of RAM, and running Linux. We set the time limit to
1000s and the memory limit to 2GB.
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Data to reproduce our experiments is available at http://es.
fbk.eu/people/roveri/tests/fmcad2012.
Results. Table I shows the results of experiments. The column
V shows the status of the benchmarks: S for safe and U for
unsafe. For each tool we report the execution time in seconds.
We use T.O for out of time, M.O for out of memory, U.R for
returning unknown, E.R for having run time errors, and N.A
for not available. For S3ST, we performed experiments with
and without predicate filtration (resp. columns PF and No-PF).

In general, it is clear that S3ST outperforms the sequen-
tialization techniques. For the sequentialization approach, a
close inspection on KRATOS reveals that, even for the small
p-token-ring.2 benchmark, the analysis has to keep track
of 45 predicates. For CBMC, the * mark on the results indicate
that, due to insufficient loop unwindings, CBMC reports that
the benchmarks are safe. Any attempt to increase the number
of loop unwindings results in out of time. We also see that
the impact of the predicate filtration is very significant for
the scalability of S3ST. For example, for p-token-ring.4
benchmark the predicate filtration, on average, can filter out
44% of predicates used in the abstraction computations. Fi-
nally, we notice that the ? benchmarks, featuring cycle-varying
parameters, are even harder for sequentialization.

The following table shows the behavior of S3ST when the
number of parameters in the benchmarks is increased. We
present the results for the p-token-ring.10 and the p-toy

benchmarks that have, respectively, 11 and 3 parameters.
(Other benchmarks show a similar behavior.)

p-token-ring.10 p-toy
#Parameters 0 1 2 3 4 5 6 7 8 0 1 2 3
Run Time 1.6 23.6 27.6 33.4 42.2 61.8 289.5 448.2 743.0 2.5 4.7 99.7 99.8
# ARF Nodes 1378 2513 3422 4673 5941 9324 21110 24558 28018 673 787 4245 4233
#Preds 23 54 56 60 66 74 84 96 110 23 27 55 54

For the p-token-ring.10 table, the column j shows the ex-
periment on a benchmark obtained from p-token-ring.10

by concretizing 11 − j parameters with some constants.
Similarly for the p-toy table. The presence of parameters
potentially increases the number of thread interleavings that
S3ST has to explore, as shown by the number of visited ARF
nodes. For the experiments reported in the p-token-ring.10
table, the predicate filtration is effective in reducing the num-
ber of predicates that concern the relations of the time-delay
variables: on average, 41.46% reduction. However, S3ST still
has to keep track of the predicates that concern the relations
between the constraints over the parameters themselves. The
more parameters, the more predicates it has to track, as
indicated in the row #Pred. Analyzing benchmarks containing
both constant and parametric time delays can be as hard as
analyzing those containing only parametric time delays. Recall
that the scheduler uses the relations between the time-delay
variables to determine the events to notify. Thus, even though
the time delay of the notification of an event is a constant,
S3ST may still have to keep track of predicates containing
the time-delay variable associated with that event.

We have also investigated the possibility of analyzing
with ESST the benchmarks obtained by grounding the time
delay parameters with a number of (random) values. For

TABLE I
RESULTS OF EXPERIMENTAL EVALUATION (IN SEC).

S3ST Sequentialization
Name V PF No-PF KRATOS CPA SATABS CBMC

p-kundu-bug-1 U 1.18 1.19 23.18 U.R 375.04 5.26
p-kundu-bug-2 U 0.87 0.89 44.54 U.R T.O 22.04
p-kundu S 54.62 62.66 T.O U.R T.O N.A
p-mem-slave-tlm.1 S 10.07 38.87 T.O E.R 531.79 N.A
p-mem-slave-tlm.2 S 54.16 T.O T.O M.O 878.71 N.A
p-mem-slave-tlm.3 S 185.95 T.O T.O M.O T.O N.A
p-mem-slave-tlm.4 S 517.00 T.O T.O M.O T.O N.A
p-mem-slave-tlm.5 - T.O T.O T.O E.R T.O N.A
p-mem-slave-tlm-bug.1 U 6.65 25.18 T.O M.O T.O *306.33
p-mem-slave-tlm-bug.2 U 35.64 882.55 T.O M.O T.O *286.46
p-mem-slave-tlm-bug.3 U 106.80 T.O T.O M.O T.O *278.67
p-mem-slave-tlm-bug.4 U 402.51 T.O T.O M.O T.O *293.06
p-mem-slave-tlm-bug.5 U 991.57 T.O T.O M.O T.O *323.01
p-mem-slave-tlm-bug2.1 U 4.23 4.79 T.O M.O T.O *295.68
p-mem-slave-tlm-bug2.2 U 15.48 17.58 T.O M.O T.O *295.17
p-mem-slave-tlm-bug2.3 U 43.17 45.87 T.O M.O T.O *283.85
p-mem-slave-tlm-bug2.4 U 99.73 104.42 T.O M.O T.O *306.81
p-mem-slave-tlm-bug2.5 U 236.81 244.65 T.O M.O T.O *336.84
p-pc-sfifo-1 S 3.45 4.29 T.O U.R 197.29 N.A
p-pc-sfifo-2 S 3.49 4.00 239.01 U.R 193.05 N.A
p-token-ring.1 S 0.56 0.59 20.97 83.22 904.94 N.A
p-token-ring.2 S 1.49 2.09 T.O M.O T.O N.A
p-token-ring.3 S 3.49 13.48 T.O M.O T.O N.A
p-token-ring.4 S 8.08 430.58 T.O M.O T.O N.A
p-token-ring.5 S 14.73 T.O T.O M.O T.O N.A
p-token-ring.6 S 27.84 T.O T.O M.O T.O N.A
p-token-ring.7 S 70.53 T.O T.O M.O T.O N.A
p-token-ring.8 S 192.87 T.O T.O E.R T.O N.A
p-token-ring.9 S 789.14 T.O T.O M.O T.O N.A
p-token-ring.10 - T.O T.O T.O M.O T.O N.A
p-token-ring-bug.1 U 0.47 0.49 14.73 20.59 485.92 6.47
p-token-ring-bug.2 U 1.18 1.29 T.O E.R 773.84 16.62
p-token-ring-bug.3 U 2.49 5.09 T.O M.O T.O *33.83
p-token-ring-bug.4 U 5.68 95.05 T.O M.O T.O *91.53
p-token-ring-bug.5 U 9.98 T.O T.O E.R T.O *154.57
p-token-ring-bug.6 U 17.76 T.O T.O M.O T.O *250.71
p-token-ring-bug.7 U 45.55 T.O T.O M.O T.O *478.11
p-token-ring-bug.8 U 106.39 T.O T.O M.O T.O *752.50
p-token-ring-bug.9 U 537.08 T.O T.O M.O T.O T.O
p-token-ring-bug.10 U T.O T.O T.O M.O T.O T.O
p-token-ring-bug2.1 U 0.48 0.49 14.05 15.51 465.44 6.55
p-token-ring-bug2.2 U 1.39 1.59 T.O M.O 740.50 20.55
p-token-ring-bug2.3 U 3.56 6.49 T.O E.R T.O *46.87
p-token-ring-bug2.4 U 8.76 103.04 T.O M.O T.O *81.79
p-token-ring-bug2.5 U 24.66 T.O T.O M.O T.O *165.14
p-token-ring-bug2.6 U 47.55 T.O T.O M.O T.O *310.16
p-token-ring-bug2.7 U 100.49 T.O T.O M.O T.O *499.32
p-token-ring-bug2.8 U 372.45 T.O T.O M.O T.O *748.97
p-token-ring-bug2.9 U 925.20 T.O T.O M.O T.O T.O
p-token-ring-bug2.10 - T.O T.O T.O M.O T.O T.O
p-toy-bug-1 U 13.66 18.39 T.O M.O T.O *47.09
p-toy-bug-2 U 25.04 24.88 T.O M.O T.O *52.23
p-toy S 99.90 T.O T.O M.O T.O N.A
p-transmitter.1 U 0.07 0.09 8.20 7.73 470.19 2.84
p-transmitter.2 U 0.29 0.29 T.O E.R 618.49 *8.96
p-transmitter.3 U 0.49 0.49 T.O E.R T.O *21.49
p-transmitter.4 U 0.89 0.99 T.O M.O T.O *43.43
p-transmitter.5 U 1.59 1.79 T.O E.R T.O *101.71
p-transmitter.6 U 2.49 2.99 T.O M.O T.O *180.11
p-transmitter.7 U 3.97 4.89 T.O M.O T.O *299.19
p-transmitter.8 U 5.89 7.89 T.O M.O T.O *503.97
p-transmitter.9 U 8.57 12.38 T.O M.O T.O *815.18
p-transmitter.10 U 11.66 20.08 T.O M.O T.O T.O
rod1-bug.c ? U 28.89 34.16 T.O M.O T.O *312.76
rod1.c ? S 285.18 308.38 T.O M.O T.O N.A
rod2.c ? S 76.84 88.13 T.O M.O T.O N.A
modtrans-bug.c U 64.77 379.59 T.O M.O T.O *643.61
modtrans-nudc-bug1.c ? U 238.11 T.O T.O M.O T.O *583.50
modtrans-nudc-bug2.c ? U 232.91 T.O T.O M.O T.O *569.42
modtrans-nudc-bug3.c ? U 131.25 657.79 T.O M.O T.O *584.66
modtrans-nudc-bug4.c ? U 111.53 675.21 T.O M.O T.O *604.64
modtrans-nudc1.c ? S 211.64 T.O T.O M.O T.O N.A
modtrans-nudc2.c ? U 157.75 649.20 T.O M.O T.O *827.36
modtrans-rec1-bug1.c U 4.08 4.89 T.O M.O T.O *588.06
modtrans-rec1-bug2.c U 4.09 4.90 T.O M.O T.O *602.50
modtrans-rec1.c - T.O T.O T.O M.O T.O N.A
modtrans-rec2-bug1.c U 6.27 17.58 T.O M.O T.O *585.99
modtrans-rec2-bug2.c U 4.49 6.89 T.O M.O T.O *607.05
modtrans-rec2.c - T.O T.O T.O M.O T.O N.A
modtrans.c - T.O T.O T.O M.O T.O N.A
modtrans2-nudc-bug1.c ? U 143.80 T.O T.O M.O T.O *810.07
modtrans2-nudc-bug2.c ? U 173.04 T.O T.O M.O T.O *567.25
modtrans2-nudc-bug3.c ? U 236.81 T.O T.O M.O T.O *564.44
modtrans2-nudc-bug4.c ? U 237.52 T.O T.O M.O T.O *561.79
modtrans2-nudc-bug5.c ? U 226.81 T.O T.O M.O T.O *804.03
modtrans2-nudc1.c ? U 150.09 720.50 T.O M.O T.O *557.49
modtrans2-nudc2.c ? U 159.44 705.55 T.O M.O T.O *565.91
ss1.c ? U 4.59 6.98 T.O M.O T.O *235.45
ss2-bug.c ? U 1.19 1.29 38.04 M.O T.O *7.12
train-hytech-bug1.c ? U 0.29 0.29 T.O M.O 883.89 472.02
train-hytech-bug2.c ? U 0.29 0.30 T.O M.O 995.21 451.60
train-hytech-bug3.c ? U 13.79 15.88 T.O M.O 784.59 492.15
train-hytech-bug4.c ? U 13.78 15.68 T.O M.O 784.22 454.18
train-hytech1.c ? S 34.46 57.56 T.O M.O 787.31 N.A
train-hytech2.c ? S 34.25 52.34 T.O M.O 789.87 N.A
train1-bug.c ? U 0.99 1.09 T.O M.O T.O *208.07
train1.c ? S 1.59 1.59 T.O M.O T.O N.A
train2-bug.c ? U 2.59 2.78 T.O M.O T.O *200.73
train2.c ? S 2.09 2.19 T.O M.O T.O N.A
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TABLE II
RESULTS OF GROUNDING APPROACH VS. S3ST.

Number of Ground Values (ESST) S3ST
2 3 4 5 6

#Unsafe/Safe/T.O 1/9/0 3/7/0 4/6/0 4/4/2 2/0/8 -
Max. Unsafe Time 12.9 47.2 193.8 700.8 828.7 25.1
Avg. Unsafe Time 12.9 39.9 159.5 457.2 590.6 25.1
Max. Safe Time 12.1 51.8 167.5 388.8 - -
Avg. Safe Time 5.7 32.4 115.8 305.2 - -

p-toy-bug-2

example, given a primitive function call wait_time(t) for
a non-constant time t and assume that t ranges over the set
{v0, . . . , vk} of concrete values, we replace the call with the
following code:

assume(t == v0 || . . . || t == vk);
if (t == v0) wait_time(v0); . . .;
if (t == vk) wait_time(vk);

This is clearly an under-approximation, that can only be used
for bug finding. The results for p-toy-bug-2 are reported on
Table II. The column k reports the results of 10 experiments
with k concrete values. The table also compares the grounding
approach with S3ST (on the original parametric benchmark).
The table shows that increasing the number of values may in-
crease the chance to find violations; however, the performance
of ESST degrades (and possibly times out), even when it does
find the bug.

VII. CONCLUSION AND FUTURE WORK

We have presented a novel approach, called S3ST, to
the verification of designs where the interactions between
thread and scheduler are parametric. The key feature of the
approach is the semi-symbolic analysis of the scheduler, that
requires a careful control of the interactions between the
concrete and symbolic data. The approach allows us to verify
parametric designs that are out of reach for techniques based
on sequentialization, and is also competitive for bug finding.

For future work, we want to improve further the scalability
of ESST and S3ST by applying symmetry reduction, and to
generalize the methods to the case of multi-threaded software
that is parameterized on the number of threads.
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