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Regulatory Environment

Certification required by FAAS EASA/ Transport Canada
Safety/certification guidelines: ARP 4761, 4754

RTCA DO-178C/ EUROCAE ED-12C: Software Considerations
in Airborne Systems and Equipment Certification

Approved in 12/2011; FAA approval pending

Replaces DO-1788, last revised 12/1992

Software design process assurance

Planning, development, verification

Design Assurance Level A (catastrophic) 71 objectives
Systems get certified, not components
Certification is expensive




Observations

Current standards are mostly process-oriented

‘Because we cannof demonstrate how well we've done, we il show how
hard we've tned.” John Rushby

Incidents, but no crashes due to software.

*  May 1997, AA Fiight 903: monitoring error led to blank displays
while pilots were recovering from a succession of stalls

Testing: “Today's centification regimes ... raly on testing, which cannot
provide sufficlent evidence”*

Culture: "Much of the benefit of ... DO-1788 ... may be due to the safety
culture that thelr stnctures induce™*

"Software for Doponcatie Systeme Natonal Rosearch Councll of the Nasonal Academios.
Ediod by Jackson et & {2007)

Formal Methods Supplement

¥ Supplement to DO-178C (not DO-178B)

* Motivation
* Recognition of limits of testing
* Recognition of progress in formal methods

* Formal: "AN notations...should be verified to have precise,
unambiguous, mathematically defined syntax and semantics”

* Formal analyses: (1) deductive methods, such as theorem
proving, {2) model checking, and (3) abstract interpretation”

¥ Sound analyses: “A sound method never asserts that a
property is true when it may not be frue”

* Conservative: “..demonstrate that the formal statement is a
conservative representation of the informal requirernent”
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Development Costs for 777
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Past: federated sysiems
IMA: shared resources
COTS componrents
Mutiplexed communication
Smaller, lighter, cost-effective

COMponrans

Powerful computer processing
modules handle multiple apps
Cabinets pravide the vanous
rescurces and interfaces
Cabinets are connecied to global

data bus, 10 modules, LRUs,
SANS0rs, aclualors, el

Managing Complexity

Fly-by-wire: >10 MLOC
Raise the level of discourse
Utilize abstraction
Architectural level
Interacting components
Errors here are costly
Enable design exploration

11
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System Assembly

From a pool of components:
Select
Connect
Integrate
Assemble
Subject to global requirements

Boeing core competency (out of 3):

“Large-scale systems infegration: We will continuously develop,
advance, and protect the technical excellence that alows us to
integrate effectively the sysfems we design and produce.”

Outhne
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Case Study

-

787 production design

- —

Provided by Boeing
Thanks to John Chilenski

787 DI?EAP»DL NER"

CoBaSA

“ General purpose tool for a broad class of problems
“ 00 design language w/ domain specific extensions
“ Declarative specification language

“ Goal: automatically synthesize architectural models
“ What, not how!

“ Enables design exploration [MSV07]
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“ Hardware

Components

“ Cabinets provide resources (CPU, memory, ...)

@ Sensors, actuators, network switches, ...

¥ Software

“ Applications, e.g., navigation guidance & control,
collision detection, ...

“ Global memory spaces for sharing data

Components in CoBaSA

oentity oab
id: string;
cpu_avail: int;
ram_avails int)

)’...

entity app (
id: string;

cpu_req: iat)
ram_req: iat)

h...

oentity gaom
id: string;
ram_reoq: iat)

¥

var
Yarc

var

vyar
var

var

var
var

var

cab_1 = cab{“cab_1") 1000000; 536870%12;)...})
cab I = cab{"cab 2"; 1200000; 536870%12;...);

cabs = [cab_l) oab_2} ...]}

app_1 = app{“app_1"; LE800; 909586L1;...};
app I = app{Tapp_27; 12800; 82651&83;...)};

appas = lapp 1; app 2; ...|:

EES b
veeld

guem_1= goex{ “gmes_1"; 351893,
gmem_2= goex{ gmem_27; 3462821,

guens = [gmes= 1; gaem 2; ...);
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Resource and Structural Constraints
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Map apps and memory
spaces to[Cabnels subject to

“  resource reguirements
¥ fixed apps/ memory spaces
“ co-location constraints

“ separation constraints
forall i in caba:

a(app_61, L) implies
not m{app_i83, 1),

"aw :
- L] T e, "-.-.
< .. Lo L O O 3
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Resource and Structural Constraints

| |38
wan | | = Map apps and memory
spaces to[cabineld subject to
.'.:':-::-; %. — * resource requirements
=== E‘,' ' n' R * fixed apps/ memory spaces
:E: L - *  co-location constraints
'.-'.:: _':;'- o * separation constraints
- “  fault-tolerance constraints
wa.] Poomno] Lo — * replication of memory spaces
-y ] - e
wmar] [Feam] omcd fiteuny 9P " 1 9% gmems csbe
- nm ' e [ram_roq, ...]
[rem_avail, ...];

Publish-Subscribe Network

* 1200 virtual links: aggregate
messages and multicast

“ Interaction between apps and
the external network

“* Virtual links consume
bandwidth

21
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Publish-Subscribe Network

OO0 MO
TR B Pl
i
y g
)
' O 2 C
o P Ran Xan P oo
\ QOO oo
|| - —
i —
S\ WO C
- l::_l lj -
2% D) o
1
AED o=
—l
| B =
' ! = AN &
‘ lI | -, J g —
N/ - )
)c
) oo

* Virtual links consist of
messages

* 6000 messages and
associated constraints

“ Separate buffers for message
transmission & reception

“ Sampling and queueing
buffering modes
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Messages

Solved in seconds with

CoBaSA compiles to [l
CPLEX, PBSAT

ILP, PB, or SAT

Hard Real Time!

Display units cannot lag

Collect messages from sensors;
send to actuators in real time

Collision avoidance system
should really get its CPU cydles

Hard real time constraints for all B
applications (see [HMP11])

. 25
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Static Cychic Scheduling Constraints

Static Cychic Scheduling

“ Time is divided into same-sized slots
“ Ajob is represented as a pair {rate,cosl)
“ rate: # of executions (per second)
* cost: # of slots per execution
“ Jobs are non-preemplive
“ Aschedule of job is the first slot it occupies
¥ determines infinitely many slots occupied by job
* A multiset of jobs is schedulable iff:
“ there exists a schedule for each job
“ with no collisions

27
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Uniprocessor Case

“ All jobs have rate 1 and arbitrary costs,
except one job that has rate 2 and cost 1

“ NP-complete (set-partition problem)
¢ Strongly NP-complete (3-partition problem)
¥ Hard, but enables downstream analyses

I&J---B--I

0 17 234

® & & & »

ILP Modulo Theories (IMT)

ILP where symbols have meaning in background theories
Native support for optimization

Better than SAT/SMT for certain problems

BC(T): Branch and Cut abstract transition system
Complete for stably-infinite theories

scheduling
constraints

29
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Resource Lamats

Idea: synthesize, but avoid hard scheduling instances
Call the theory solver with resource limits (time)
Special kind of lemmas when resources exceeded

Reversion mechanism if we get unsat
Now we need limits for the core solver too!

Automatic work balancing of core and theory solver
Without resource limits, we cannot solve problem

31
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Static Cyclic Scheduling Round 2

G —m—
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e 2

Round 20

f.-u

SOLVED!!
t 5 minutes

-‘E —

-Eﬂ
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Conclusions

“ Software accounts for 1/3 of airplane design costs
*  Algorithmically synthesized optimal architectural models for 787
“ Using CoBaSA, IMT
“ The system consists of milkons of LOC
* Previously, "required muitiple groups working closely together
over long periods of time”
* Formal methods are increasingly important
“ Science of software
“ Model-based design
“ DO-178C supplement on formal methods
“ Safely critical applications: Avionics, medical devices, ...

37



FMCAD’2012, Cambridge
Formal methods in Avionics tutorial
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Marc Pantel — ACADIE team
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@ Main purpose : Safety critical systems
@ Main approach : formal specification and verification
@ Problems : expressiveness, decidability, completeness, consistency

I | _AAR
ACADIE team
B | (2/38)



ACADIE team
]

@ Proposals : Raise abstraction

o Higher level programming languages and frameworks
@ Domain specific (modeling) languages

easy to access for end users

with a simple formal embedding

with automatic verification tools

with usefull validation and verification results
that are accepted by certification authorities

(2/38)



Main purpose : Safety critical systems

Main approach : formal specification and verification
Problems : expressiveness, decidability, completeness, consistency

Proposals : Raise abstraction

Higher level programming languages and frameworks
Domain specific (modeling) languages

easy to access for end users

with a simple formal embedding

with automatic verification tools

with usefull validation and verification results

@ Needs:

methods and tools to ease their development
algebraic and logic theoretical fondations
proof of transformation and verification correctness

o
o
(*]
o links with certification/qualification

[ Y /e
ACADIE team
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o
Q

RNTL COTRE : Transformation to verification languages

ACI FIACRE : Intermediate verification language

ITEA GeneAuto : Qualified Simulink/Stateflow to C code generator
ITEA ES_PASS : Static analysis for Product insurance

ITEA SPICES : AADL behavioral annex

ANR OpenEmbedd : AADL to FIACRE verification chain (Kermeta
based)

CNES (French Space Agency) AutoJava : profiled UML to RTSJ
code generator

FUI TOPCASED : Metamodels semantics, Model animators,
Verification chains based on model transformations

ANR SPaCIFY : GeneAuto + AADL = Synoptic <+ Polychrony
(Kermeta based)

ANR iTemis : SOA/SCA verification
JTI ARTEMIS CESAR : V & V view for safety critical components.

EEe VAR
(3/38)



FRAE quarteFt : model transformation based on Java/TOM for
AADL to FIACRE

o ITEA2 OPEES : Formal methods and Certification authorities

ACADIE team
]

@ FUI Projet P : Qualified code Generation for Functional and

Architecture models

@ EuroStars HiMoCo : High Integrity Model Compilers
@ ITEA2 openETCS : Formal specification and verification for Train

Control Systems

@ ANR INS GeMoC : Execution of heterogeneous models
@ ANR ASTRID VORACE :

(4/38)
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DO178/ED12 @ Onboard software in aeronautics : Design Assurance Level
safety Failure impact : DAL A — Catastrophic failure . ..DAL E — No impact

standards

@ Early releases in the 80s, major revision in 1992 (B — 3 years of
work), and 2012 (C — 7 years of work) : adaptation to technological
changes

@ Most constraining standard up to now
accepted by other standards (automotive, space, ...)

ACADIE team
B | (5/38)
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DO178/ED12
safety
standards

ACADIE team
]

@ Main concern : Safety of passengers
System requirement : 10~° per flight hour for DAL A — ARP 4754

@ Main purpose :
Provide confidence in the system and its development

EEe VAR
(5/38)
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DO178/ED12

safety ‘ : .

standards ° Key ISSue : . .
Choose the strategy and technologies that will minimize risks

@ Assessment : Stochastic for system, Zero-default for Software

@ Process and test-centered approach

o Definition of a precise process (development/verification)

o MC-DC test coverage for DAL A
truth-table lines of sub-expressions in conditions (some can be merged)

o Asymmetry with independence argument : several activities (and
products) by different teams, with different tools, ...

. ACADIE team
B | (6/38)
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@ Requirement : What is expected from a system
o High level (HLR) : focus on end users needs (user provided)

DO178/ED12 o Low level (LLR) : focus on technical solutions (developer provided)

safety . 4 ] ; .

standards Traceability : Explicit relations between various elements in a
system development (requirements, design and implementation
choices)

Verification : System fulfills its requirements
(make the product)

Validation : System fulfills its requirements
(make the product )

Certification : System (and its development) follows standards
(safety in our case : DO-178/ED-12, IEC-61508, 1SO-26262, .. .)

Qualification : Tools for system development follows standards

Certification and qualification : Historically, system context related
(no component, COTS, reuse, ...up to DO-178C/ED-12C)

I | _AAR
ACADIE team
B | (7/38)
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Requirement : What is expected from a system
High level (HLR) : focus on end users needs (user provided)

DO178/ED12 Low level (LLR) : focus on technical solutions (developer provided)

safety o 4 ] ) {

standards @ Traceability : Explicit relations between various elements in a
system development (requirements, design and implementation
choices)

Verification : System fulfills its requirements
(make the product)

Validation : System fulfills its requirements
(make the product )

Certification : System (and its development) follows standards
(safety in our case : DO-178/ED-12, IEC-61508, 1SO-26262, .. .)

Qualification : Tools for system development follows standards

Certification and qualification : Historically, system context related
(no component, COTS, reuse, ...up to DO-178C/ED-12C)
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Requirement : What is expected from a system
High level (HLR) : focus on end users needs (user provided)

DO178/ED12 Low level (LLR) : focus on technical solutions (developer provided)

safety . e ] _ .

standards Traceability : Explicit relations between various elements in a
system development (requirements, design and implementation
choices)

@ Verification : System fulfills its requirements explicit specification
(make the right product)

@ Validation : System fulfills its requirements implicit human needs
(make the product right)

Certification : System (and its development) follows standards
(safety in our case : DO-178/ED-12, IEC-61508, 1SO-26262, .. .)

Qualification : Tools for system development follows standards

Certification and qualification : Historically, system context related
(no component, COTS, reuse, ...up to DO-178C/ED-12C)

I | _AAR
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DO178/ED12
safety
standards
. ACADIE team

Requirement : What is expected from a system

High level (HLR) : focus on end users needs (user provided)
Low level (LLR) : focus on technical solutions (developer provided)

Traceability : Explicit relations between various elements in a
system development (requirements, design and implementation
choices)

Verification : System fulfills its requirements
(make the product)

Validation : System fulfills its requirements
(make the product )

@ Certification : System (and its development) follows standards
(safety in our case : DO-178/ED-12, IEC-61508, 1SO-26262, .. .)

@ Qualification : Tools for system development follows standards

Certification and qualification : Historically, system context related
(no component, COTS, reuse, ...up to DO-178C/ED-12C)
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Requirement : What is expected from a system

High level (HLR) : focus on end users needs (user provided)

DO178/ED12 Low level (LLR) : focus on technical solutions (developer provided)
safety

standards Traceability : Explicit relations between various elements in a
system development (requirements, design and implementation
choices)

Verification : System fulfills its requirements
(make the product)

Validation : System fulfills its requirements
(make the product )

Certification : System (and its development) follows standards
(safety in our case : DO-178/ED-12, IEC-61508, 1SO-26262, .. .)

Qualification : Tools for system development follows standards

@ Certification and qualification : Historically, system context related
(no component, COTS, reuse, ...up to DO-178C/ED-12C)
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F DO-178/ED-12 Global process

DO178/ED12
safety
standards

ACADIE team

Compliance
Traceability

Accuracy & Consistency
HW Compatibility
Verifiability
Conformance
Algorithm Accuracy

System
Requirement:
' -Level

Requirements

A7 Verification of verification
(Functional & Structural coverage)

Architecture Compatibility Compliance

Traceability

Consistency
HW Compatibility
Wy ﬁ Verifiability
Conformance

Conformance
Partition Integrity Software

Architecture R auirements Algorithm Accuracy

Accuracy & Consistency
HW Compatibility

Compliance I
Compliance Compliance
Traceability Robustness
Verifiability P
Conformance
Accuracy & Consistency
Compliance
v Robustness
Dbject Code
Complete & Correct Compatible With Target 16
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DO178/ED12
safety
standards

@ Plan for Software Aspects of Certification (PSAC)

@ Software Development Plan (SDP)
@ Software Verification Plan (SVP)
@ Software Configuration Management Plan (SCMP)

@ Software Quality Assurance Plan (SQAP)
applied only to the other plans

@ Tool Qualification Plan (TQP)
it tools are used to automatize activities

EE—a LAV
ACADIE team
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21 11 DO-178/ED-12 Software verification process

DO178/ED12
safety
standards

ACADIE team

Compliance
Traceability

Accuracy & Consistency
HW Compatibility
Verifiability
Conformance
Algorithm Accuracy

System
Requirement:
' H

Requirements

A7 Verification of verification
(Functional & Structural coverage)

Architecture Compatibility Compliance

Traceability

Consistency
HW Compatibility HW Compatibility
Verifiability ﬁ Verifiability
Conformance

Conformance
Partition Integrity "

Architecture R auirements Algorithm Accuracy

Accuracy & Consistency

Compliance I
Compliance Compliance
Traceability Robustness
Verifiability P
Conformance
Accuracy & Consistency
Compliance
v Robustness
Dbject Code
Complete & Correct Compatible With Target 16
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DO178/ED12
safety | @ User requirements (HLR)

standards \
@ Software architecture (elementary parts and their assembly)

@ Software requirements (Detailled design of elementary parts) :
Can be refined user requirements or derived requirements (linked to
technology choices, should be avoided or strongly justified)

@ Executable Object Code (EOC) integration on Hardware
@ Verification results
@ Traceability links between requirements and software

| Y /e
ACADIE team
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DO178/ED12
safety

e @ Convergence with DO-278 (ground software)

@ Merge elements from DO-248 and many CASTs
@ Supplements :

o DO-331 : Model based development and verification
o DO-332 : Object oriented technologies and related technics
o DO-333 : Formal methods

@ New document : DO-330 Tool Qualification

| Y /e
ACADIE team
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SFaEE | @ Use of models as requirements : HLR from System phases and LLR
safety | from Design

standards \
@ Applies to any models related to Software elements (including
System phases)

@ Can be used for communication or automatization (analysis, code
generation)

@ Models can be more abstract the Software and partial
@ Requires Higher Lever Requirements (HILR) to assess the models
@ Modeling language must be precise and appropriate

o Specification models : HLR (can be Design models HiLR)
o Design models : LLR (requires test based on HiLR)

EEEa _4AAR
ACADIE team
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DO178/ED12
safety
standards

. ACADIE team
]

@ A formal method must be correctly defined, justified and appropriate

o Correctly defined :
precise, unambiguous, mathematically defined syntax and semantics

o Justified :
Sound (never assert a false property)

@ Appropriate :
All assumptions required for the formal analysis should be described

and justified

(14/38)



A formal method must be correctly defined, justified and appropriate

DO178/ED12
safety
standards

@ Requirement formalization correctness
Formal analysis can replace :
Review and analysis objectives
Conformance tests versus HLR and LLR
Robustness tests
Compatibility with the hardware (WCET, .. .)
Adapted coverage analysis :

Complete coverage of each requirement
Completeness of the requirements

Detection of unintented data flow

Detection of extraneous code (dead or deactivated)

But : Formal analysis cannot replace hardware/software integration
tests. Tests is still a required activity at higher level

[ Y /e
ACADIE team




DO178/ED12
safety
standards

ACADIE team
[ ]

Requirement formalization correctness

@ Formal analysis can replace :
o Review and analysis objectives
o Conformance tests versus HLR and LLR
o Robustness tests
o Compatibility with the hardware (WCET, .. .)

Adapted coverage analysis :
Complete coverage of each requirement
Completeness of the requirements
Detection of unintented data flow
Detection of extraneous code (dead or deactivated)
But : Formal analysis cannot replace hardware/software integration

tests. Tests is still a required activity at higher level
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DO178/ED12
safety
standards
@ Adapted coverage analysis :

o Complete coverage of each requirement

o Completeness of the requirements

o Detection of unintented data flow

o Detection of extraneous code (dead or deactivated)

EE AV

ACADIE team
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A formal method must be correctly defined, justified and appropriate

DO178/ED12
safety
standards

Requirement formalization correctness
Formal analysis can replace :
Review and analysis objectives
Conformance tests versus HLR and LLR
Robustness tests
Compatibility with the hardware (WCET, .. .)
Adapted coverage analysis :

Complete coverage of each requirement
Completeness of the requirements

Detection of unintented data flow

Detection of extraneous code (dead or deactivated)

@ But : Formal analysis cannot replace hardware/software integration
tests. Tests is still a required activity at higher level
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DO178/ED12
safety
standards

ACADIE team
]

@ Apply to the tools the same rules as the developped system at the
same level

@ Not really adequate : Additional documents (CAST) were provided

@ Tool Operational Requirements (TOR) :
Tool user point of view (similar to System requirements — HLR)

@ Tool Requirements (TR) :
Tool implementor point of view (LLR)

EEe VAR
(15/38)
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@ Apply to the tools the same rules as the developped system at the
same level

DO178/ED12
safety @ Not really adequate : Additional documents (CAST) were provided

standards

@ Tool Operational Requirements (TOR) :
Tool user point of view (similar to System requirements — HLR)

@ Tool Requirements (TR) :
Tool implementor point of view (LLR)

@ Tool kind :

o Development tools :
Tools whose output is part of airborne software and thus can introduce
errors (same constraints as the developed system).

o Verification tools :
Tools that cannot introduce errors, but may fail to detect them (much
softer constraints : black box V & V).

@ No proof of error absence category

| Y /e
ACADIE team



DO178/ED12
safety Y
standards

. ACADIE team

DO-330 additional document :
Adaptation of core DO-178C/ED-12C to tools

Tool Qualification Level (1 downto 5) related to DAL

(16/38)
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DO178/ED12

DO-330 additional document :
Adaptation of core DO-178C/ED-12C to tools

Tool Qualification Level (1 downto 5) related to DAL

@ Tool kind :

ACADIE team

o Criteria 1 : A tool whose output is part of the resulting software and
thus could insert an error (TQL-1 for DAL A).
Criteria 2 : A tool that automates verification process(es) and thus
could fail to detect an error, and whose output is used to justify the
elimination or reduction of :

verification process(es) other than that automated by the tool (TQL-4 for
DAL A),

or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3 : A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

EE AV
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DO178/ED12
safety
standards

@ Tool kind :

o Criteria 2 : A tool that automates verification process(es) and thus
could fail to detect an error, and whose output is used to justify the
elimination or reduction of :

@ verification process(es) other than that automated by the tool (TQL-4 for
DAL A),

@ or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

| Y /e
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DO-330 additional document :
Adaptation of core DO-178C/ED-12C to tools

DO178/ED12
safety Tool Qualification Level (1 downto 5) related to DAL

standards

@ Tool kind :

Criteria 1 : A tool whose output is part of the resulting software and
thus could insert an error (TQL-1 for DAL A).

Criteria 2 : A tool that automates verification process(es) and thus

could fail to detect an error, and whose output is used to justify the
elimination or reduction of :

verification process(es) other than that automated by the tool (TQL-4 for
DAL A),

or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

o Criteria 3 : A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
Still no proof of error absence category (might be TQL-2 for DAL A).

[ Y /e
ACADIE team
I (16/38)



|
L]

DO178/ED12
safety
standards

uuuuuuuuuuuuu

ACADIE team
[ ]

DO-330 additional document :
Adaptation of core DO-178C/ED-12C to tools

Tool Qualification Level (1 downto 5) related to DAL
@ Tool kind :

Criteria 1 : A tool whose output is part of the resulting software and
thus could insert an error (TQL-1 for DAL A).

Criteria 2 : A tool that automates verification process(es) and thus

could fail to detect an error, and whose output is used to justify the
elimination or reduction of :

verification process(es) other than that automated by the tool (TQL-4 for
DAL A),

or development process(es) which could have an impact on the resulting
software (TQL-4 for DAL A)

Criteria 3 : A tool that, within the scope of its intended use, could fail to
detect an error (TQL-5 for DAL A).
o Still no proof of error absence category (might be TQL-2 for DAL A).
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Standards were designed for systems not tools :

9
DO178/ED12 Adaptation required
safety
standards @ MCDC not mandatory for tools,
but similar arguments might be required
@ Traceability of all artefacts in the development, relate requirement
(HLR)s, design (LLR) and implementation choices
HEEa AR
. ACADIE team
(17/38)



DO178/ED12
safety
standards

@ Purpose is to provide confidence
@ Both cooperative and coercive approach

@ Any verification technology can be used,
from proofreading to automatic proof
if confidence is given

@ Choose the strategy and technologies that will best reduce risks

| Y /e
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DO178/ED12
safety
standards
@ Must be applied as soon as possible (cost reduction)
@ Small is beautiful (simplicity is the key)
HEEa AR

ACADIE team
| (18/38)



DO178/ED12
safety
standards
@ Certification authorities need to understand the technologies
@ Cross-experiments are mandatory (classical w.r.t. alternative
methods)
EE—e —  _4AARR——

ACADIE team
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Application to
Code
generation
tools

ACADIE team
]

@ Verification subject :

o Transformation :
done once, no verification at use, white box, very high cost
e Transformation application :
done at each use, black box, easier, complex error management

@ Classical technologies :

o Document independant proofreading (requirements, specification,
implementation)

o Test
°

Unit, Integration, Functional, Deployment level
Requirement based test coverage

Source code test coverage

Structural coverage, Decision coverage,
Multiple Condition Decision Coverage (MCDC)

(19/38)
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@ Formal technologies (require formal specification) :

o Automated test generation

Model checking (abstraction of the system)
Static analysis (abstraction of the language)
Automated proof

Assisted (human in the loop) proof

Application to
Code
generation
tools

© 66 06 ¢

@ Transformation case

o Transformation specification : Structural/Behavioral
o Proof of transformation correctness
o Links with certification/qualification

EEe VAR
(20/38)
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@ Tool development, verification and qualification plans

Application to

Code @ Tool Operational Requirements
generation ! !
tools @ Tool Requirements (human proofreading)

@ Test plan (requirements based coverage, code coverage
verification)

@ Implementation and test application

EEe VAR
(21/38)
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Application to
Code
generation
tools

ACADIE team
]

® 6 6 6 o

Derived from the classical process, early review by french
certification bodies

Formal specification using Coq of tool requirements,
implementation and correctness

Proofreading verification of requirements specification
Automated verification of specification correctness
Extraction of OCaML source implementation
Proofreading verification of extracted OCaML source

Integration of OCaML implementation with Java/XML
implementation (communication through simple text files with
regular grammars)

Proofreading verification of OCaML/Java wrappers (simple regular
grammar parsing)

Test-based verification of user requirements conformance

EE AV
(22/38)
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What are :

Application to |

Code

generation

tools

ACADIE team
]

User requirement (TOR) for a transformation/verification ?
Developer requirement (TR) for a transformation/verification ?
Formal specification for a transformation/verification ?

Test coverage for a transformation/verification ?

Test oracle for a transformation/verification ?

Qualification constraint for transformation/verification languages ?
Best strategy for tool verification (once vs at each use) ?

(23/38)



Application to |

Code

generation

tools

ACADIE team
]

@ From the certification perspective : Very good but...

o Still some work on qualification of the proof assistant tools
@ Proof verifier
@ Program extractor

o Complex management of input/output

@ From the developer perspective :

o High dependence to the technologies

Very high cost to use the technology

Not easy to subcontract

Scalability not ensured

Bad separation between semantics-based verification and
requirements-based specification

o Hard to assess development time

© ©6 0 ¢

@ On the use of Java : How to provide confidence in the libraries ?

(24/38)



|
L]

uuuuuuuuuuuuuuu

Application to
Code
generation
tools

ACADIE team
[ ]

@ CompCert : C to PowerPC optimising code generator developed at
INRIA by Xavier Leroy

PhD thesis at Airbus : Improve certified code efficiency

Metrics : WCET, Code and memory size, Cache and memory accesses
Improvements of the various phases from models to embedded binary
code

New verification process using formal methods

First CompCert experiments : -12% WCET, -25% code size, -72%
cache read, -65% cadre write

Design of a CompCert dedicated verification process

Feed static analysis results (Astrée, frama-C) from C to binary through
CompCert (improve WCET precision)

Improve SCADE block scheduling to reduce memory accesses (signal
liveness)

Design of a whole development cycle verification process

with tools qualification

EE 4T
(25/38)
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@ PhD thesis at Airbus : Improve certified code efficiency

Application to | o Metrics : WCET, Code and memory size, Cache and memory accesses

C°d:ration o Improvements of the various phases from models to embedded binary
en

?ools code

@ New verification process using formal methods

o First CompCert experiments : -12% WCET, -25% code size, -72%
cache read, -65% cadre write

o Design of a CompCert dedicated verification process

o Feed static analysis results (Astrée, frama-C) from C to binary through
CompCert (improve WCET precision)

o Improve SCADE block scheduling to reduce memory accesses (signal
liveness)

o Design of a whole development cycle verification process
with tools qualification

EE AV
(25/38)
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Application to
Code
generation
tools

ACADIE team
]

Separate specification verification from implementation verification
Define explicitly semantics traceability link metamodel

Specify transformation as properties of links

Implementation verification (mostly syntactic)

o Implementation must generate both target and links
o Implementation verification checks properties on generated links links
o By the way, these links are already mandatory but hand made

Specification verification : Prove the semantics equivalence
between source and target in a trace link

Ongoing PhDs in project OPEES, P and HiMoCo (industrial
cooperation)

EEe VAR
(26/38)



Application to
Code
generation
tools

ACADIE team
]

Separation of concerns :
o Industrial partners : Specification, Implementation, Implementation
verification (mainly syntactic)
@ Academic partners : Specification verification (semantics)

@ Very good subcontracting capabilities
@ Almost no technology constraints on the industrial partner (classical

technologies)

@ Good scalability
@ Rely on already mandatory traceability links (formalized and

verified)

@ Easy to analyse syntactic error reports
@ Enables to modify generated code and links
@ Parallel work between syntactic and semantics concerns

EEe VAR
(27/38)



@ Positive first experiments on simple use cases from GeneAuto

@ But requires some grayboxing (expose parts of the internals)

Application to o Flattening of statecharts
Code o Either very complex specification (doing the flattening)
generation o Or express the fixpoint nature of implementation (in the specification)

tools
Require full scale experiments
Require exchange with certification authorities
Require qualified syntactic verification tool (OCL-like, but simpler)
Require explicit relations between syntactic and semantics work

®© 6 6 6 o

Require explicit description of semantics in metamodels

EEEa _4AAR
ACADIE team
. (28/38)



Application to
Static
analysis tools

ACADIE team
]

@ Several kind of tools

(]
()
()

Qualitative and quantitative properties
Fixed or user defined properties
Semantic abstraction or Proof technologies

@ Common aspects : Common pre-qualification

(]
o
Qo

Product (source of binary code) reader : fully common ?
Configuration (properties, ...) reader : partly common
Result writer and browser : partly common ?

@ Split the verification tool in a sequence of elementary activities

o

© 0 ¢

Common ones (pre-qualification could be shared)

Technology specific ones

Easier to specify, to validate and to verify

Can be physical or virtual (produce intermediate results even in a
single tool)

EEe VAR
(29/38)



Application to
Static
analysis tools

ACADIE team
]

Specify user requirements

Specify tool architecture (elementary tools and their assembly)

Specify tool level requirements (elementary tools and their
assembly)

Specify functional test cases and results
Choose verification strategy :

()
()
()
()

Tool verification or Result verification

Integration and unit tests (eventually with test generators and oracles)
Proof reading of tool source or test results

Formal verification of the verification tool itself (i.e. Coq in Coq,
Compcertin Coq, ...)

EEe VAR
(30/38)



@ Translate to non standard semantics
@ Compute recursive equations

@ Compute fixpoint of equations

o Fixpoint algorithm
Application to o Abstract domains and operators

Static o Widening, narrowing
analysis tools . Lo
@ Check that properties are satisfied on the abstract values

@ Produce user friendly feedback (related to product and its standard
semantics)

| Y /e
ACADIE team
— (31/38)



@ Produce proof obligations (weakest precondition, verification
condition, . . .)

@ Check the satisfaction of proof obligations

Proof term rewriting to simpler language

Split to different sub-languages (pure logic, arithmetic, .. .)

Apply heuristics to produce a proof term

Check the correctness of the proof term

Produce failure feedback or proof certificate (related to product and its
standard semantics)

Application to
Static
analysis tools

© © 06 06 O

@ Produce user friendly feedback

(32/38)
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Application to
Static
analysis tools

ACADIE team
[ ]

@ Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters

Reader and writer :

Cross-reading

Introduce dual reader/writer : check composition is identity
Asymmetric implementation : Several independent implementations
and results comparison

Code generation and transformation can be formally specified and
verified :
Formal tool requirements : foreach source construct, what are the
generated targets and the links with the source
Syntactic verification : properties of the trace links given as tool

requirements
Semantic verification : validation of the technology

User-friendly feedback : Code generation based on trace links

B  4AVAR—— 0
(33/38)
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Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters

@ Reader and writer :

o Cross-reading

o Introduce dual reader/writer : check composition is identity

o Asymmetric implementation : Several independent implementations
and results comparison

Application t - . e
Sl R Code generation and transformation can be formally specified and

analysis tools verified :

Formal tool requirements : foreach source construct, what are the
generated targets and the links with the source

Syntactic verification : properties of the trace links given as tool
requirements

Semantic verification : validation of the technology

User-friendly feedback : Code generation based on trace links

[ Y /e
ACADIE team
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Application t i [ ifi
oo e @ Code generation and transformation can be formally specified and
analysis tools verified :

e Formal tool requirements : foreach source construct, what are the
generated targets and the links with the source

@ Syntactic verification : properties of the trace links given as tool
requirements

o Semantic verification : validation of the technology

ACADIE team
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Build “semantics”-related trace links during transformations
Helps in verification of results w.r.t. parameters

Reader and writer :

Cross-reading

Introduce dual reader/writer : check composition is identity
Asymmetric implementation : Several independent implementations
and results comparison

Application t - . e
Sl R Code generation and transformation can be formally specified and

analysis tools verified :

Formal tool requirements : foreach source construct, what are the
generated targets and the links with the source

Syntactic verification : properties of the trace links given as tool
requirements

Semantic verification : validation of the technology

@ User-friendly feedback : Code generation based on trace links

[ Y /e
ACADIE team
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Application to
Static
analysis tools

ACADIE team
[ ]

@ Non-standard semantics and recursive equation production are

similar to code generation

e Semantic verification : monotony at the equations-level
o Semantic verification : soundness of the abstraction
No verification on the fixpoint computation

Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required

Verification of the properties of the abstract domains (join, meet,
operators, a o v, widening, narrowing, monotony, .. .)

Proof reading
Automated test generation with oracles
Formal specification and proof

Property checks (based on abstract property generation)

Related to code generation
Semantic verification : soundness of the abstraction

EEe VAR
(34/38)
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Non-standard semantics and recursive equation production are
similar to code generation
Semantic verification : monotony at the equations-level
Semantic verification : soundness of the abstraction
@ No verification on the fixpoint computation

o Verification of the result (if least solution is not required)
o o A qualified (much simpler) verification tool is then required
Application to

Static Verification of the properties of the abstract domains (join, meet,
analysis tools operators, « o ~, widening, narrowing, monotony, .. .)

Proof reading
Automated test generation with oracles
Formal specification and proof
Property checks (based on abstract property generation)

Related to code generation
Semantic verification : soundness of the abstraction

EEa 4LV
(34/38)
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Application to
Static
analysis tools

ACADIE team
[ ]

Non-standard semantics and recursive equation production are
similar to code generation

Semantic verification : monotony at the equations-level

Semantic verification : soundness of the abstraction
No verification on the fixpoint computation

Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required

@ Verification of the properties of the abstract domains (join, meet,
operators, « o «, widening, narrowing, monotony, . ..)

o Proof reading
o Automated test generation with oracles
o Formal specification and proof
Property checks (based on abstract property generation)

Related to code generation
Semantic verification : soundness of the abstraction
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Non-standard semantics and recursive equation production are
similar to code generation

Semantic verification : monotony at the equations-level

Semantic verification : soundness of the abstraction
No verification on the fixpoint computation

Verification of the result (if least solution is not required)
A qualified (much simpler) verification tool is then required
Application to

Static Verification of the properties of the abstract domains (join, meet,
analysis tools operators, « o ~, widening, narrowing, monotony, .. .)

Proof reading
Automated test generation with oracles
Formal specification and proof
@ Property checks (based on abstract property generation)

o Related to code generation
@ Semantic verification : soundness of the abstraction

EEa 4LV
(34/38)
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@ Proof obligation computation is a kind of code generation
@ Semantic verification : correctness of the axiomatic semantics

@ Satisfaction of the proof obligations :

o o No verification on proof certificate generation
ég:i"cca‘m" L e Verification of the certificate itself (much simpler than some
analysis tools heuristic-based automatic prover)
o Term rewriting can be considered as code generation (endogenous)
o Curry-Howard type checking can be verified in a similar way
@ Rely on Coq In Coq, Isabelle in Isabelle, ...

ACADIE team
. (35/38)
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Mainly scientific work and a lot of publications

o
@ Brings confidence but paperwork is not enough
@ Mechanized is better but still not enough
o
o

Application to Functional user level tests still mandatory currently

Static
analysis tools

Mixed system verification experiments (both tests and static
analysis)

@ Reverse analysis of existing systems

| Y /e
ACADIE team
B (36/38)



Application to
Static
analysis tools

ACADIE team
]

@ Technical exchange with certification authorities mandatory
@ Cross experiments and reverse engineering experiments mandatory

@ Verification strategy must be designed early to choose the right
architecture and trace information

@ Semi-formal (even formal) requirements must be written as soon as
possible

EEe VAR
(37/38)
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For model management, verification, transformation, what are :

@ User requirement format (TOR) ?

@ Developer requirement format (TR) ?

@ Formal specification of these requirements ?

@ Test coverage based on requirements and structure ?
@ Test oracles ?

g!{)';:‘esi“ @ Qualification constraint for implementation languages and tools ?
RSl @ Best strategy for tool verification (once vs at each use) ?
EE—a LAV
ACADIE team

. (38/38)



National Aeronautics and Space
Administration

Aviation Safety Program

System-Wide Safety and Assurance Technologies (SSAT) Project
Assurance of Flight Critical Systems

A window into AFCS

/»\

D Guiuaum\g Brat, NASA Ames Research Center

October 22, 2012

www.nasa.gov



Impact: Cost, and Co

Size Comparisons of
Embedded Software

System Lines of Code
Mars Reconnaissance Orbiter 545K 200.00
175.00
1
Orion Primary Flight Sys. 1.2M o
&= 150.00
[}
X
F-22 Rapt 1.7M =]
aptor Y= 125,00 1
[
i
Seawolf Submarine Combat System AN/ 3.6M = 100.00 4
w A
BSY-2 []
o
@ 75004
Boeing 777 4M 2z
i
S 50.00
Boeing 787 6.5M §
25.00
F-35 Joint Strike Fighter 5.7M .
0.00 — === [ . ; .
Requirements Design Code Develoy Acceptance Operation
Typical GM car in 2010 100M Test Test
Phase in which error was detected and corrected
NASA Study

Flight Software Complexity, 4/23/2009

10/22/12

Boehm, B. 1981 Software Engineering Economics, as cited in DAA, 2008



Certification Aspect

DO-178C

Software Considerations
in Airborne Systems and
Equipment Certification

DO-278A
Software Integrity Assurance
Considerations for Communication,
Navigation, Surveillance and Air
Traffic Management Systems

DO-333 Formal Methods

DO-331 HO-E
Object-
Model-based :
Oriented
Development
code
Requirements  Design Code Development Acceptance Operation
Test Test

10/22/12



IK

_--II Inference Kernel of C

Accomplishment: we have designed and implemented IKOS, a
static analysis framework, which allows the custom design
of mathematically sound analyzers, e.g., no false negatives,
producing less than 10% false positives.

v" We implemented a generalization of the array-out-of-bound
accesses analysis

v'"New Gauge abstraction domain (CAV 2012)
v" The framework is being processed to be released under a NOSA
license
v" Initial experiments show that we have achieved less than 10%
false positive on embedded system code.

code Size Analysis time Precision
Paparazzi 35 KLOC 22s 99%
Gen2 22 KLOC 1mn03s 98%
FLTz 144 KLOC 10mn30s 91%
Arduplane 278 KLOC 6mn30s 94%

10/22/12




Recent Advances

 The analysis of the OpenSSH code required a sophisticated
abstraction based on higher-dimensional convex polyhedra:
— Combinatorial explosion
— Brittle abstraction
— A nightmare to analyze 700 lines of code

* Developed a new abstraction in IKOS: the Gauge Domain
— Published in CAV 2012
— Accuracy comparable to convex polyhedra
— Analyzes 150 KLOC in minutes
— Scales linearly with the size of the code
— Commercial analyzer (PolySpace) takes hours on the same code



Gauges

In our experience with analyzing large NASA codes, we have observed that most of the
time, the value of a scalar variable inside a loop nest was entirely determined by the
control structure in terms of symbolic bounds of the form a, +a,A, +--+a\,, where A,;...,
A denote loop counters and a;,...,a, are integer coefficients.

p = &msg; Convex polyhedra: Gauges:
for (i = 0; 1 < n; i++) {
if(xp == ...) { 0<i<n-1 A<i<A
161 <p <321 16X < p < 32\
} 21;: ‘1[6; Additional properties:
T A<n-1
p += 32 A € [0, +o0]
}
}
Fig. 1. Loop invariant expressed with convex polyhedra and gauges

10/22/12




Analysis of Floating-Point Cc

* Challenging problem

* Solutions exist for a very small class of codes
— ASTREE analyzer developed in France for Airbus
— In practice only works for Airbus code
* Ongoing development of abstractions for floating-point
computations in IKOS
— Broader class of codes (UAVSs, ground control)
— Performance is the key issue



Analysis of Autocoded Syste

* Model-based development:

— Specify a controller in a mathematical modeling environment
(MATLAB/Simulink)

— Do all the verification at the model level
— Automatically generate code from the model

» Question:

— Does the generated code verify the same properties established
at the model level?

— Use static analysis to answer this question automatically



Example: Stability of Control

Lyapunov theory

Well understood at the model
level: find an ellipsoidal invariant

Does this hold for the generated

{Azg + Bu [ [Jul|o <1}

Lk

code? Axy
— Discretization
— Floating-point arithmetic {Az | 2TPx <1}

Development of a suitable domain
of ellipsoids for static analysis

{x | T Px < 1}



IKOS: Applications

» Applied to UAV autopilots (40 to 250 KLOC)

— Few inconclusive reports (< 2%)

* Running on LADEE (Lunar Atmosphere and Dust
Environment Explorer) flight software

* Ongoing:
— Scientific computation code (Corey Ippolito)

— Image processing code for GOES-R (Geostationary Operational
Environmental Satellite R-Series)

10/22/12



compositional verification

safety-critical property P

S

.

&

)

IocaIPy

10/22/12

performed at design time

local properties guarantee P

decomposition can be
performed manually (e.g., for
system architectures)

we provide automated
techniques based on learning
component interfaces

individual components can be
checked against local properties
using model checking or testing



what local properties

lasJettison[altitude > 120000]

IsamRendezvous

Q lasJettison[altitude > 120000] &

e constraints on inputs for correct operation
* constraints on sequences of method / service invocations

10/22/12



verification of separation assurance s

* AutoResolver is a NextGen air traffic management system developed by Prof. Heinz
Erzberger and his team in Code A

* it is high in complexity (non-linear math and heuristics) with over 50k lines of Java;
it has a complex interaction mechanism via callbacks into the Airspace Concept
Evaluation System or ACES, a simulator that captures the key feedback response
mechanism of the National Airspace System (NAS)




AutoResolver

Conflicts <
l iterate
- es resolution
Conflicts to y L Resolve R Cqmpute
resolve? trajectory
S A
no
yes Conflicts
remain?
no |
AutoResolver ACES

10/22/12



our efforts

abstract ACES —trajectory computation
generate conflicts

work with Code A to identify properties:

— “If the resolution produced for a conflict results in a secondary
conflict, then the time to loss of separation for the secondary
conflict should be greater than the time to loss of separation for
the original conflict”

developing advanced automated testing techniques that
ensure coverage of all the paths of the AutoResolver

working on developing and connecting all the parts of the

compositional verification picture
10/22/12



Conclusions

» Stable research program under ARMD for developing
safety assurance techniques for flight-critical systems

 The main focus is on formal methods
— Abstract interpretation
— Compositional verification
— Advanced test generation techniques

* Collaboration with
— NASA Langley

— Industry
— International partners (ONERA, IRIT, may be VERIMAG)

10/22/12




Formal Methods for Aerospace
Applications: A control engineer’s
perspective

Eric Feron
Dutton/Ducoffe Professor of Aerospace Engineering
Georgia Institute of Technology
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Take-Home Message

Safety-critical embedded software design best
tackled through proper specification, followed
by automatic coding of specs AND their
semantics



Analyze and Design Early

Most errors arise during specification of
software, not coding.

» Allow the engineer to specify, analyze,
then auto-code.

« SCADE/Esterel Technologies,
Picture2code/Pratt & Whitney, Realtime
Workshop/Mathworks, Gene-
auto/ENSEEIHT, Gryphon/Rockwell-
Collins.

School of Aerospace Engineering



A simple control example
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(dB)

Magnitude

A simple co

Bode Diagram

ntrol example

y(t) = SAT(y(t)),
s+1 s/5+1 _

s+0.1s/50 + 1y(3),

Step response

Daniel Guggenheim
School of Aerospace Engineering




Controller implementation

0.499 —0.050 | 1 Discrete time
Le,k+1 { 0.010 1.000 | Teo { 0 } SAT(ye) Implementation
wp = —[564.48 0]z, + 1280 SAT () 100Kz

>
>

1280 (- — L]

i»§—> SAT
y

o Z %0.0100 z
Ge?r'é%_ﬁ B baring School of Aerng;iLGEur?ggiigs re:nng1



Control system design as seen by control

engineers
System Syst
System S ystem
d;/ta Identification/ model dCon_troIIer Controller , Conltro_l system
Validation —>[ 9esign analysis
Invalidated
Controller
| || | | || | ﬁ |
Not good to
go
AGood ;/r(]eélflcatlon ]
"to go o ) | et
J Validation /| Simulink/
Real-time
1| Workshop
MatrixX
Picture 2 code
Geo-.%’éﬁ E School of Aergzpn;?:IeGEur?ggiﬁzzfilnn; {%j}




Code-level analyses of control software

* Most significant contribution is from Patrick Cousot’s research group at
Ecole Normale Superieure, Paris.

» Abstract interpretation aims at capturing semantics of programs

* Most important application is ASTREE analyzer for Airbus A380 control
code.

* From Feret, “Static Analysis of Digital Filters”, 2004 (also with ASTREE).

Static Analysis of Digital Filters 43

A simplified second order filter relates an input

stream F,, to an output stream defined by:
Sﬂ+2 == 'f'-’-Sﬂ+l + E:'Sn + Eﬂ +2.

Thus we experimentally observe, in Fig. 4, that starting
with Sy = 51 = 0 and provided that the input stream
is bounded, the pair (S,49,5,41) lies in an ellipsoid.
Moreover, this ellipsoid is attractive, which means that
an orbit starting out of this ellipsoid, will get closer of
it. This behavior is explained by Thm. 5. Fig.4. Orbit.

Daniel Guggenheim
School of Aerospace Engineering




A Paradigm Shift Enabled by Good
Specification Analyses

(auto) Code ana Pzer

**************************************************

Controller § - ' (auto)-code | i| Code ' Proof -
Specifications . Autocoder § - 1| analyzer Go/no Go
(+proof) ‘ - T
”””””””””””””” (third party) ( (certlflcatlon
Authority)
(user)

Credible autocoder (a la Rinard)

**************************************************

Controller | |Credible | Documented | !|proof | | Go/no-go
Specifications | | autocoder | | (auto)-code | || checker | ! .
+proof ‘ - i
”””””””””””””” (third party) { (certlflcatlon
Authority)
(user)
Gegrola EngTeming School of Aerng;iLGEur?ggiigs St‘nn;



Desirable attributes of “system
proofs”

* Must be expressive enough to tell nontrivial
statements about system

» Must speak the language of system
representation, eg: “IEEE Transactions on
Automatic Control proofs” written in natural
language (one wonders...), “Simulink proofs”
expressed in Simulink, “Program proofs”
expressed in formal languages.

* Must be “elementary enough” to be easily
checked wherever necessary.

Daniel Guggenheim

Tech || Engheering School of Aerospace Engineering



Lyapunov functions and invariant

ellipses
+ gdot




Back to the Example

The control-systemic way:

0.499 —0.050 1
Tektl = [ 0.010  1.000 ]x’“ i [ 0 ] SAT(y)
up = —[564.48 0]z, ) + 1280 SAT (yy)

Assume the controller state is initialized at .o = 0
What range of values could be reached by the state z.j; and the control
variable u?

There is a variety of options, including computation of -1 norms.
A Lyapunov-like proof (from Boyd et al., Poola):

The ellipsoid £€p = {z € R? | 2T Pz < 1}. s | 0.6742 0.0428
" P | <1 P =10 0.0428 2.4651

is invariant. None of the entries of x exceeds 7 in size.

Daniel Guggenheim

Georgia 4 :
Tech School of Aerospace Engineering




A proof for control people

Vt, T Px < 1 is equivalent to x%Pwk <1= $£+1Pa?k+1 <1

Or (Az + Bw)? P(Az + Bw) < 1 whenever 7 Pz <1 and w? <1

True if there exists p such that (Az+Bw))T P(Az+ Bw) — px? Pz — (1 —p)w? <
0, (*) a tautology.

Indeed a linear combination of (*) and 27 Pz < 1 and w? < 1 yields the
desired property.
0.6742 0.0428
0.0428 2.4651
—0.5044362 —0.0135878 0.3374606

T
(*) is 1073 [ Z“; ] —0.0135878 —0.0003759  0.00909 [ Z”) ] < 0.
0.3374606  0.00909  —0.2258

P that works is P =103 { ] , with = 0.9991 and tautology

Daniel Guggenheim

Georgia 4 :
Tech School of Aerospace Engineering




Simulink, Discrete Time Formal Semantics

—0.5044362 —0.0135878 0.3374606
1073 | —0.0135878 —0.0003759  0.00909
0.3374606 0.00909 —0.2258

-3
<1 le Quadratic 10 [

form

0.0428 2.4651

0.6742 0.0428 ]

SAT

;

Daniel Guggenheim
School of Aerospace Engineering




{true}
1: A = [0.4990, -0.0500; 0.0100, 1.0000];

{true}

2: C = [-564.48, 0];
{true} Commented code
3: B = [1;0];D=1280
{true}

4: x = zeros(2,1);

{z € &p}

5: while 1

{.CB - gp}

6: y = fscanf(stdin,"’f")
{z € &p}

7: y = max(min(y,1),-1);

{x €€p, y* < 1}

8: u = Cxx+Dxy;

{z € Ep, u? <2(CP7'CT 4+ D?), 4* <1}
9: fprintf(stdout,"%f\n",u)

{z € Ep, y* <1, (Az + By)T P(Azx + By) — 0.0127 Pz — 0.99y* < 0}
skip

{A:c—l—By €ép, y* < 1}

10: x = A*xx + Bxy;

{z € &p}

11: end

Daniel Guggenheim

Georgia 4
Tech School of Aerospace Engineering




~ront End: Formal comment writing

__Controller | | Credible | Documented |/ || proof | | Go/no-go
. Specifications | | autocoder | | (auto)-code | || checker | ! .
. +proof ‘ o | E
”””””””””””””” (third party) (certification
Authority)
(user)

 ANSI/ISO C Specification Language (ACSL) can
be used to formally comment C programs and
can be handled by Frama-C.

e Start from Simulink
 End with commented C code

G g Daniel Guggenheim
wgc'a =g, School of Aerospace Engineering



A prototype front-end built on Gene-Auto

Thank you Marc Pantel, Arnaud Dieumegard, Andres Toom

\

Library of
V. Annotation
V. Annot.
GA System Block Backends ) o

Model

1. System model is the first

immediate language: GA Code
simulink-like discrete-time Model
model. Annotations
can be expressed in the ‘
system model without any
additions to it. P—
2. A library of annotation

\ 4

block backends for the

transformation of the oD (T
annotation blocks into the m out b T _&
annotations in the code T ek o

model language.

Daniel Guggenheim
School of Aerospace Engineering




Back End: Verification of Code Semantics

Controller

Specifications

+proof

(user)

Credible
autocoder

(third party)

************************

Documented

____________________

| Proof i 3o/no-go

| (auto)-code

i | checker

(certification
Authority)

School of Aerospace Engineering

Daniel Guggenheim | ==



A physical example: 3 DOF
helicopter

4 10| e, s, e, dcrete, gt [=To]
File Edit Yieu Simulation Fornat lools Help
A
L)
e ——it) T
it} TF
Special Rz Block o B P
El
it T |
TFr
|
Ell 3
It Duta B Block w4 T
Taetrad frals :
From Progrand Frale Saturatign
[IF3} o o )
Ll iy Leck 42 TrvsarLert. B
i
In3 s k3 Specipl Hux Block #6
|
15 b a4 w2 o ey utz
A r—*in N5 |
Casnl [
Int — Cable Gai
I3 ke UPH:val e Linie:(v) 25l gl Lt v Tero-trder futl
[ hold
A0 40 = Frent notar 17
Al 4L = back w
Trawal Fars Pl
i
.
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And it still works!!!

G gia Daniel Guggenheim
eoT‘ech School of Aerospace Engineering



F-18 replica from Rockwell-Collins

amall Scale F/A-18 UAV e —~ Fully Autonomous take/off
and landing ~ Turbojet engines ~ About 6 ft long

I auremizar |
I |
| I [ ———— |
| r | | NRERLEDR I
|
|
H | L wmac | Po== ) A
ls
| | Crucrieop "
! I——uJ COMTROLMEE |
| GivTEEH k | E Mictive
| [ I ....... = I
| | el Ctericas —  ineroop I L e ]
| rornabE | aordroler | | comn ank
| ' | I
| » I b e e — I

SN S —

Lt

http://www.youtube.com/watch?v=0QJkIONTzbNM

[ . . Io%
. P NP Daniel Guggenheim | =2 &
Georgia Collegeof School of Aerospace Engineering .4 7

Tech || Engiinaering




o Induste CaITH A-18 LIA

Increase vs Quanser: Sets of Gains

Complexi

ty

@ Quanser: operates in only one flight condition hence only has one set
of gains.

F/A-18 UAV

@ F/A-18: operates in a range of flight conditions hence has an infinite
set of gains.

@ Offline: gains are picked a priori at some finite set of points in the
range of flight conditions (altitude, speed).

@ Online: gains during runtime are computed by interpolation on the
pre-defined offline gains.

@ We call this gain-scheduling. The F/A-18 controllers are
gain-scheduled at 110 different points.

A T A s D S S E g A urocoding with Control Semantics: A dem 08,21 ;/2012 15 § 2T

Daniel Guggenheim
School of Aerospace Engineering




4 OF Stabilias

Ll |

alysis

Stability Analysis

@ Need to generate a stability proof for each controller mode (33) for
each set of gains (110).

@ Total number of configurations is 3630.

BN A S T S S S A g QA uocoding with Control Semantics: A& dem 08,21 /2012 16 7 27

. : Py
Daniel Guggenheim  © A
School of Aerospace Engineering {:j -’f

T




Example: Autocoding with Proois op the lnper Loop Conrollers |

Pitch Controller (Longitudinal)

bl T T T T T

as- [T T

S ¥

1
g E] E] bl

LT SR T S AT T S A g YA uocoding with Contrel Semantics: A& dem 08,/21 /2012 20 /27

EI.
=
L

G | =, Daniel Guggenheim
egrgia | o School of Aerospace Engineering

Tech ! =ng LRI




Application to Collision avoidance
TCAS / last resort safety net

TCAS: Lesson 2 " . : FllghtISaIpty =

Indicatio d Symb

Traffic Advisories
A symbol change to a filled yellow circle indicates that the intruding aircraft is considered to be potentially hazardous. Depending on your altitude,
TCAS will display a TA when the time to CPA is between 20 and 48 seconds.

2 enu S g | N B/ BEee

EERC )

Daniel Guggenheim
School of Aerospace Engineering




Conclusion

* Itis possible to generate safety-critical
control code from specifications, all-
equipped with semantics and proofs.

« With that, code-level analyses are
possible, and much easier than analyses
from code alone.

Tech || Engheering School of Aerospace Engineerin
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Analyzing control command software: the need for non
linear invariants
Formal methods for Aerospace Applications - FMCAD’12 Tutorial
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NON LINEAR INVARIANTS IN CONTROL COMMAND SOFTWARE

Properties of controllers:
e open-loop stability
e close-loop stability
e tracking
e ...

(Most | All) of them can be expressed as invariants over the system’s
variables.

—> Lyapunov functions



OPEN-LOOP STABILITY

A controller is open-stable

£ its output stay bounded for any bounded input.
Example: iny € [-1,1],in; € [-1,1]

0.6227 03871  0.0102  0.3064 X0
—0.3407 09103 —0.3388 0.0649 X1
Xo 0.0918 —0.0265 —0.7319 0.2669 X2
i |\ 02643 —0.1298 —0.9903 0.3331 X3
v |~ 0.3064 0.1826
X3 —0.0054 0.6731 ino
+0.0494 1.6138 (inl)

—0.0531 0.4012

Proof?
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OPEN-LOOP STABILITY

A controller is open-stable
£ its output stay bounded for any bounded input.
Example: iny € [-1,1],in; € [-1,1]

Proof?

0.6227 0.3871
—0.3407  0.9103
0.0918 —0.0265
0.2643 —0.1298

0.3064

0.0102  0.3064 X0
—0.3388 0.0649 X1
—0.7319  0.2669 X2
—0.9903 0.3331 X3

0.1826

—0.0054 0.6731
+0.0494 1.6138
—0.0531 0.4012

ino
im

e a Lyapunov function exists ! (Which one ? Existential proof)

® 0.14 x x5 —0.22 x x3 x 2 4+ 0.07 x x3 x x1 — 0.03 x x3 X x9 + 0.13 x x5 — 0.08 X
X X x1 4+ 0.02 X X2 X xp + 0.06 x x7 — 0.04 x x1 X x9 + 0.05 x x5 is a Lyapunov
function (Constructive proof)



OPEN-LOOP STABILITY

A controller is open-stable
£ its output stay bounded for any bounded input.
Example: iny € [-1,1],in; € [-1,1]

0.6227 03871  0.0102  0.3064 X0
—0.3407 09103 —0.3388 0.0649 X1
Xo 0.0918 —0.0265 —0.7319 0.2669 X2
i |\ 02643 —0.1298 —0.9903 0.3331 X3
v |~ 0.3064 0.1826
X3 —0.0054 0.6731 ino
+0.0494 1.6138 (inl)

—0.0531 0.4012

Proof?

e a Lyapunov function exists ! (Which one ? Existential proof)

® 0.14 x x5 —0.22 x x3 x 2 4+ 0.07 x x3 x x1 — 0.03 x x3 X x9 + 0.13 x x5 — 0.08 X
X X x1 4+ 0.02 X X2 X xp + 0.06 x x7 — 0.04 x x1 X x9 + 0.05 x x5 is a Lyapunov
function (Constructive proof)

Theorem

Any stable linear controller admits a quadratic Lyapunov function
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OBJECTIVE: REASONING ABOUT NON LINEAR PROPERTIES

Analyzing controllers

1. Abstract interpretation
2. SMT-based model checking (k-induction)
3. Deductive methods (Weakest precondition)

SMT based model-checking: encodes the system states in SMT and the
operational semantics as SMT predicates: I(x) and T(x,y)

Deductive methods manipulate logical expressions (eg. SMT) and
transform them according to the program semantics.

Both techniques reason on formulas based on the program/model
axiomatisation in SMT.
Nowadays very few non linear reasoning at SMT level
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PROVING STABILITY AT CODE LEVEL

e input: C code annotated with ACSL describing quadratic invariants
e goal: prove the validity of each Hoare triple

File Edit Options Bufl
o ol 8 X Q=X

void discrete timeg no_plant_compute(t discrete timeg no plant io * io , t discrete timeg no plant state * state | {

REAL VaMux 1[1];
REAL VaMux 2[2];
REAL All;

REAL AlZ;

REAL A21;

REAL A22;

REAL C11;

REAL C12;

REAL D11;

REAL Integrator 1;
REAL Integrator 2;
REAL Sum;

REAL Suml;

REAL Sum3;

REAL Sumd;

/=@
assert in ellipsoidQ(0QMat @,vect of 2 scalar( state -=Integrator 1 memory, state -=Integrator 2 memory)):
=
discrete timeg_no_plant_input = _io_-=input;
/g
assert in ellipsoid(i{QMat 1,vect of 2 scalar{ state -=Integrator 1 memory, state -=Integrator 2 memory));
=
i Integrator_1 = _state_-=Integrator_l memory;
i /=@
[ ‘ assert in_ellipsoidQiQMat 2,vect of 3 scalar( state -=Integrator 1 memory, state -=Integrator 2 memory,Integrator 1));
=
C11 = 564.48 * Integrator 1;[
/=@
assert in ellipsoidQ(0Mat 3,vect of 4 scalar( state -»Integrator 1 memory, state ->Integrator 2 memory,Integrator 1,C11));
=
A21 = B8.681 * Integrator_1;
/g
assert in ellipsoid(i{QMat 4,vect of 5 scalar{ state -=Integrator 1 memory, state -=Integrator 2 memory,Integrator 1,C11,A21));
=

Integrator 2 = state -=Integrator 2 memory;
/=@
= assert in ellipsoidQ(QMat 5.vect of 6 scalar( state -=Integrator 1 memory, state -=Integrator 2 memory,Integrator 1,C11,A21,Integrator 2)):
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AN ELLIPSOID-AWARE HOARE LOGIC

e To use ellipsoids to formally specify bounded input, bounded state
stability in.
e Typically, an instruction S would be annotated in the following way:

{xeépty=Ax+b{y—beé&s} (1)

where the pre- and post- conditions are predicates expressing that the
variables belong to some ellipsoid, with £, = {x : R"|xTP~1x < 1} and
Q= APA".



AN ELLIPSOID-AWARE HOARE LOGIC

The mathematical theorem that guarantees the relations is :

Theorem

If M, Q are invertible matrices, and
(x —c)’Q71(x —c) < 1land
y=Mx-+1b

then

(y —b—Mc)'(MOQM") "1 (y —b— Mc) < 1

We will refer to it as the ellipsoid affine combination theorem.
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o Weakest precondition computation: Pre = WP(Code, Post)

e expressiveness of predicate vs. power of decision procedures
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e Post, Pre: quadratic expressions
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DEDUCTIVE METHODS

e Predicate transformer + external automatic decision procedure (e.g.
SMT solver)

o Weakest precondition computation: Pre = WP(Code, Post)

e expressiveness of predicate vs. power of decision procedures

In our case:
e code: linear controller
e Post, Pre: quadratic expressions
To ease the process, we can split proofs
WP(c,Post) N Pre —- WP(c1,Cut)

cl

C ANN Cut = WP(CZ,Post)

Post N P Post?2




DEDUCTIVE METHODS

e Predicate transformer + external automatic decision procedure (e.g.
SMT solver)

o Weakest precondition computation: Pre = WP(Code, Post)

e expressiveness of predicate vs. power of decision procedures

In our case:
e code: linear controller
e Post, Pre: quadratic expressions
To ease the process, we can split proofs

WP(c,Post) N Pre —- WP(c1,Cut)
; cl :
C ANN Cut = WP(CZ,Post)
Post . y Post2

In-the-middle annotations act as proof cuts.
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AN ELLIPSOID-AWARE LOGIC

Extension of ACSL to manipulate
e matrices, vectors
® properties over matrices
e ellipsoids

e link between C variables and matrices/vectors

. ACSL
(//@ type matrix; type vector

ACSL

@ logic real mat_select (matrix A, integer i, integer 7j);
@ logic integer mat_row (matrix A);
@ logic integer mat_col (matrix A);




AN ELLIPSOID-AWARE LOGIC

Extension of ACSL to manipulate
s matrices, vectors
e properties over matrices
e ellipsoids

e link between C variables and matrices/vectors

inverse of a matrix A, mat_inverse(A) is defined using the predicate
is_invertible(A) as follows:

(/x@ axiom mat_inv_select i eq_j: D
VmatrixA, integer i, 7;

is_invertible(A) s& i==j ==>
mat_select(mat_mult(A, mat_inverse(A)),i,j) =1

axiom mat_inv_select i dff j:

VmatrixA, integer i, 7;

is_invertible(A) s& il =j ==>
mat_select(mat_mult(A, mat_inverse(A)),i,j) =0
* /

® @ @ @ @ @ @ @ @

7
\




AN ELLIPSOID-AWARE LOGIC

Extension of ACSL to manipulate
s matrices, vectors
e properties over matrices
e ellipsoids

e link between C variables and matrices/vectors

Complex constructions or relations can be defined as uninterpreted
predicates.

e The following predicate is meant to express that vector x belongs to

Ep: : : : : ACSL
(//@ predicate in_ellipsoid(matrix P, vector x);




AN ELLIPSOID-AWARE LOGIC

Extension of ACSL to manipulate
s matrices, vectors
e properties over matrices
e ellipsoids

e link between C variables and matrices/vectors

Complex constructions or relations can be defined as uninterpreted
predicates.

e The following predicate is meant to express that vector x belongs to

Ep: : : : : ACSL
(//@ predicate in_ellipsoid(matrix P, vector x);

e mat_of_array or vect_of_array, is used to associate an ACSL matrix type

to a C array. —
[//@ logic matrix mat_of_array{L} (float %A, integer ro\v,:,)j

integer col);




A PVS LIBRARY FOR ELLIPSOIDS
A NASA PVS Library to manipulate

e matrices, vectors
e ellipsoids
e affine combination of ellipsoids (thm1)

e S-procedure (thm?2)

( Mapping:TYPE= [# dom: posnat, codom: posnat, mp:
| [Vector[dom]->Vector[codom]] #]

PVS

\

(1.(n,m) (f) (# rows:=m, cols:=n, matrix:=A(Jj,1):
f'mp(e(n) (1)) (J) #)

T(n,m) (A) =

| A'matrix(j,1)*x (i) #))

(# dom:=n, codom:=m, mp:=\(x, J): Zﬁ;ﬁl&4(A(i

PVS

~—
oo

\

rMatrix_inv(n):TYPE = {A: Square | squareMat? (n) (A)
| bijective? (n) (T (n,n) (A)) }

and

PVS

\

(inv(n)(A) = L(n,n) (inverse(n) (T(n,n) (A)))

PVS




A PVS LIBRARY FOR ELLIPSOIDS

A NASA PVS Library to manipulate
e matrices, vectors
e ellipsoids
e affine combination of ellipsoids (thm1)
e S-procedure (thm?2)

vectors[length] .Vector #]

\

rVector_no_param: TYPE = [# length: posnat, vect:

PVS

\

7

in_ellipsoid? (P: Matrix, x:Vector_no_param ) :
MACRO bool =

IF x’"length = P’cols AND P’cols=P’rows

THEN ((x'vect) *« (Px (x"vect)) <=1)

ELSE FALSE

| ENDIF

PVS




A PVS LIBRARY FOR ELLIPSOIDS

A NASA PVS Library to manipulate
e matrices, vectors
e ellipsoids
e affine combination of ellipsoids (thm1)

e S-procedure (thm?2)

PVS

ellipsoid_affine_comb: LEMMA V (n:posnat, Q, M:
SquareMat (n), x, vy, b, c: Vector[n]):
bijective? (n) (T(n,n) (Q)) AND bijective? (n) (T (n,n) (M))
AND (x-c)* (inv(n) (Q) * (x-c))< 1

AND y=Mx*x + Db

IMPLIES
L(y—b—M*c)*(inv(n)(M*(Q*transpose(M)))*(y—b—M*c))< 1




USING FRAMA-C/JESSIE/WHY DO GENERATE PVS PROOF

OBJECTIVE

File Edit

matrix Ac =
matrix P
matrix Q

logic
@ logic
@ logic

requires (\walidi{xc + (8..1)));
@ reguires (‘\walid(yc + (B..1)));
@ requires in ellipsodid(P,vect of arrayixc,2));
@ ensures in ellipsoid(Q,vect of array(yc,2));*/
void inst2(float* xc, float*® yc)

{
I yc[B]= B.449*xc[8] + -B.85*xc[1];
yc[1]= .B1*xc[B] + 1.*xc[1l]:

Bot L15 S5VN-85 (C/1 Abbrew)

Q=X

mat of 2x2 scalar(0.449,-6.685,6.81,1.);
mat of 2x2 scalar(l.5325,16.8383,16.68383,567.2458);
mat_mult{mat inv({transpose(Ac)).mat mult(P,mat_inv(Ac))): *@

Generating PVS PO with
Frama-C/Jessie/Why:

e www.frama-c.com (open
source C code analysis
framework)

e axiomatize C semantics
into Why (Jessie)

o WP computation (Why)

e PVS backend to express PO -

Edit

ol o X

A EBEQEXO

% Why obligation from file “pattern_canonical.c®, line 12, characters 12-47:
inst2 ensures_default po 1: LEMMA

FORALL (xc: pointer[floatP]) :

FORALL (yc: pointer[floatP]) :

FORALL (floatP alloc table: alloc_table[fleatP]) :

FORALL (floatP_floatM: memory[floatP,

real]) :

(offset_min[floatP](floatP alloc_table,

(offset_max[floatP](floatP_alloc_table, xc) == 1 AND

(offset_min[floatP]({floatP alloc table, yc) <= 0 AND

(offset_max[floatP](floatP alloc table, yc) == 1 AND

in_ellipsoid(P_8, vect of_array(xc, 2, floatP_floatM)))})) IMPLIES

FORALL (result: real)

re-EuLt = select[real, floatP](floatP floatM. shift[floatP](xc, 6)) IMPLIES

FORALL ({resultB: real) :

resultd = select[real, floatP](floatP floatM, shift[floatP](xc, 1)) IMPLIES

FORALL (resultl: real) :

resultl = select[real, floatP]{floatP_floatM, shift[floatP](xc, 8)) IMPLIES

FORALL (result2: real) :

result2 = select[real, floatP](floatP floatM, shift[floatP](xc, 1)) IMPLIES

FORALL (floatP_floatMd: memory[floatP, real]) :

not_assigns[floatP,

real] (floatP_alloc_table, floatP floatM, floatP floatMe,

pset_range[floatP](pset_singleton[floatP](yc). 8, 1)) AND

(select[real, floatP](floatP floatMd, shift[floatP](yc, 8)) =

6.449 * result + -8.85 * result® AND

select[real, floatP](floatP floatMd, shift[floatP](yc, 1)) =

B.81 * resultl + 1.8 * result2) IMPLIES

in ellipsoid({Q, vect of array(yc, 2, TloatP floatM))

pattern canonical why.pws  93% 1584  (Text Fill)-----eoooooooooooo o ... ]

(==

xc) <= B AND




THEORY INTERPRETATION: MAPPING PVS CONCEPTS

Theory interpretation is a logical technique for relating one axiomatic

theory to another.
PVS

([ IMPORTING acsl_theory{{ matrix := Matrix,
vector := Vector_no_param,
vect_length := LAMBDA (v:Vector_no_param) : v’ length,
mat_row := LAMBDA (M:Matrix): M’rows,
mat_col := LAMBDA (M:Matrix): M’cols,
mat_mult := %,
in_ellipsoid := in_ellipsoid?
mat_inv := LAMBDA (M:Matrix): IF square? (M) THEN IF
bijective? (M’ rows) (T (M’ rows, M’ rows) (M) )
THEN inv (M’ rows) (M)
ELSE M
ENDIF
| ELSE M ENDIF }} )




REFORMULATED PO

PVS

(in_ellipsoid? (P_0, vect_of_array(xc, 2, floatP_floatM)))
IMPLIES
| in_ellipsoi1d?(Q, vect_of_array(yc, 2, floatP_floatMO0))

PVS

(vect_of_array(yc, 2, floatP_floatM0)’vect =
| Ac + vect_of_array(xc, 2, floatP_floatM)'vect

For both POs,

e we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically.



REFORMULATED PO

PVS

(in_ellipsoid? (P_0, vect_of_array(xc, 2, floatP_floatM)))
IMPLIES
| in_ellipsoi1d?(Q, vect_of_array(yc, 2, floatP_floatMO0)) )

PVS

(vect_of_array(yc, 2, floatP_floatM0)’vect =
| Ac + vect_of_array(xc, 2, floatP_floatM)'vect )

For both POs,

e we must first interpret the uninterpreted types and to prove the
properties that are defined axiomatically.

o We must then discharge the verification conditions. This is done by using
PVS and our linear algebra extension of it.
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PROVIDING TOOLS TO MANIPULATE/SYNTHESIZE NON LINEAR
INVARIANTS

Mathematical tools exist to deal with non linear arithmetic:

e Linear systems admit quadratic invariants: use semi definite
programming with LMIs

e Polynomial systems admitting polynomial invariants: use Bernstein
polynomials

e More complex systems: other tools



PROVIDING TOOLS TO MANIPULATE/SYNTHESIZE NON LINEAR
INVARIANTS

Mathematical tools exist to deal with non linear arithmetic:

e Linear systems admit quadratic invariants: use semi definite
programming with LMIs

e Polynomial systems admitting polynomial invariants: use Bernstein
polynomials

e More complex systems: other tools

Be careful: most of them rely on floating point computations
—> find ways to validate the result
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QUADRATIC INVARIANTS

Goal: characterize an ellipsoid such that it is a Lyapunov function for the
system

Control theorists rely on LMI and semi definite programming to generate
Lyapunov functions.

Let’s do the same.

Overall Method

1. First determine the shape of the ellipsoid by choosing a matrix P such
that A'"PA—-P < 0.

2. then find the smallest possible ratio A such that xIPx < Misan
invariant.

/
_

. R
< N

is better than



METHODOLOGY - MULTIPLE APPROACHES

Definition (Semidefinite Programming)

Minimize a linear objective function of variables y;
under constraint

k
Ao + Z yiA;i = 0
i=1

where the A; are known matrices
and “P > 0“ means x' Px > 0 for all vector x.

Heuristics

1. Minimizing Condition Number: finding the roundest possible
solution
I<XP<rl

2. Preserving the shape: minimizing r s.t.
A'PA—rP <0.

3. Handle the inputs (avoid the scale phase)



ROUNDING ERRORS

Actual computations are carried out with floating point numbers
leading to rounding errors.

o

float x
while (i < 1000000) {
x += 0.1;
++i;
}
printf ("$.0f\n", x);
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ROUNDING ERRORS

Actual computations are carried out with floating point numbers
leading to rounding errors.

i =
float x
while (i < 1000000) {
x += 0.1;
++1i;
}
printf ("%.0f\n", x);

Gives 100958‘

We have to distinguish two problem:s:
e rounding errors in the analyzed program;
e and rounding errors in the analyzer itself.



ROUNDING ERRORS IN THE PROGRAM

Knowing the precision of the floating point system used
and the dimensions of matrices A and B of the analyzed system,
we can compute two reals a and b such that if

(Ax + Bu)'P (Ax + Bu) < A

then
fl(Ax + Bu) TP fl(Ax + Bu) < @\ + 2abV/ A + 1?

with fl(e) the computation of e in any order
and with any IEEE754 rounding mode
(in practice a is near from 1 and b from 0).



SOUNDNESS OF THE RESULT

e Checking the soundness of the result basically amounts to
checking positive definiteness of a matrix.

e This is done by carefully bounding the rounding errors
in a Cholesky decomposition.

s Hence an efficient soundness check (in O(rn?) for an n x n matrix).



EXPERIMENTAL RESULTS

Shape Bounds Valid.

o 0.07 [140.4;189.9) 0.40 | 0.01
n=2, 1 input 0.16 22.2;26.5] 0.28 | 0.01

’ 0.23 16.2;17.6] 0.20 | 0.01
Fx. 2 0.09 | [18.1;25.2;24.3;33.7] 0.40 | 0.01
ned 1 input 0.27 6.3,7.7,22;34] 027 | 0.02

’ 0.40 1.7;2.0;2.2;2.5] 0.21 | 0.01
Ex. 3 lead-lag 0.07 1 1 1
controller 0.17 36.2;36.1] 033 | 0.01
n=2, 1 input 0.20 38.8;20.3] 0.20 | 0.01
Ex. 4 LQG 0.09 [1.2;0.9;0.5] 0.32 | 0.02
regulator 0.19 0.9;0.9;0.9] 0.26 | 0.01
n=3, 1 input 0.24 0.7;0.4;0.3] 0.22 | 0.02

Analysis times (in s) and bounds compared for the three heuristics.



EXPERIMENTAL RESULTS, CONTINUED

Shape Bounds Valid.

Ex. 5 coupled 0.09 9.8;8.9;11.0;16.8] 0.43 | 0.03
mass system 0.24 [5.7:5.6;6.4;10.1] 033 | 0.03
n=4, 2 inputs 0.48 5.0;4.9;4.8;4.7] 0.22 | 0.03
Ex. 6 Butterworth | 0.10 | [7.5;8.7;6.1;7.0;6.5] 0.38 | 0.03
low-pass filter 0.32 | [3.6;5.0;4.7;8.1;89] 0.29 | 0.02
n=5, 1 input 078 | [2.3;1.1;1.9;2.0;29] 0.24 | 0.03
Ex. 7 Dampened 0.07 1.7;2.1] 0.23 | 0.01
oscillator 0.15 2.0;2.0] 0.20 L

n=2, no input 0.27 1.5;1.5] 0.16 | 0.01
Ex. 8 Harmonic 0.08 [1.5;1.5] 0.23 | 0.01
oscillator 0.24 1.5;1.5] 0.20 1

n=2, no input 0.15 1.5;1.5 0.16 | 0.01

Analysis times (in s) and bounds compared for the three heuristics.



EXPERIMENTAL RESULTS, CONTINUED

(a) Ex. 1 (b) Ex. 2 (c) Ex. 3 (d) Ex. 4

Figure: Comparison of obtained ellipsoids by the three methods from lighter to
darker, plus a random simulation trace ((b) and (d), being of dimension greater than
2, are cuts along planes containing the origin and two vectors of the canonical base,
to show how the three different templates compare together).



EXPERIMENTAL RESULTS, END

. , D |

(a) Ex. 5 (b) Ex. 6 (c) Ex. 7 (d) Ex. 8

Figure: Comparison of obtained ellipsoids by the three methods from lighter to
darker, plus a random simulation trace (a) and (b), being of dimension greater than
2, are cuts along planes containing the origin and two vectors of the canonical base,
to show how the three different templates compare together).
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LINEAR SYSTEMS WITH GUARDS: EXTENSION TO POLICY
ITERATION

Real systems are not purely linear, they use saturations.

Extension to policy iterations

e Build the control flow graph of the program
e Rely on previous approach to compute a set of appropriate templates

e Iterate on program policies with synthesized templates.

1 x:=10in — 9

0.9smsl. . 10in—9

/N

0<x«<l1

0sy<1
@

x:=02x - 0.7y + 0.5in
y:=0.7x+ 0.2y + 0.5in

0<in<0,9
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BEYOND LINEAR SYSTEMS

Controllers are rarely linear:
e use of trigonometric functions, exponential ...

e use of polynomials

In static analysis, most complex domains only deal with quadratic
properties, using semi definite programming.

Proposal: use Bernstein polynomials to bound polynomial templates.



POLYNOMIAL TEMPLATE DOMAINS

Definition
Given a set P = {p1,...,px } of k € N polynomials over n € N variables,
an abstract value is defined as a tuple (b1, ..., b;) € R~
Concretization
’y(bl,...,bk) =

pl (xl,...,xn) <b1
(X1, ,x) ER" | A LLLA :

Pre (X1, .., %) < by

Example
x < 1.001 4
—x s 0 0.5 -
y < 0.833
y—6x"+9x°—-32x < 0.5 0 1.001

(1.001,0,0.833,0,0.5) with P = {x, —x,y, —y,y — 6x° + 9x* — 3.2x }.



BERNSTEIN POLYNOMIALS AS A POLYNOMIAL TEMPLATE
DOMAIN ENGINE

Approach: express program semantics as an optimization problem

max<{p (x1,..., %) | g1 (X1,...,%,) < b1 A ..o A g (X1, ..., %) < by}

Bernstein polynomials

s Bernstein basis:
n

Bin(x) = ( -)xi(l —x)"!

1

e Polynomials: every polynomial can be expressed in Bernstein basis

n
p = Z bp,iBn,i-
i=0

e Bound properties: For any polynomial p, for all x € [0, 1],

min {b,; | 0 <i<n} <p(x) <max{b,;|0<i<n}.



A TEMPLATE ABSTRACT DOMAIN

Express each program construct as an optimization problem.

e Guards
[[I’(X1,...,xn) <O]]'j (b1,...,bk) :( /177bl/<)

"

pl(xl,...,xn)<b1 )

. . o | Aol A
with, for i € [1,k]: b} = max < p; (x1,...,%,) D (X1, %) < DA >
\ r(x1,...,%,) <0 )

e Assignments

[xi, == r(xt,. .., x)]F (by,... b)) = (b}, ....,b)
with, for i € [1,k]:

b; = max < pilxi, < r(x1, ..., x0)] (X1, ..,%) | A O A

Pre (X1, ..., x,) < by

pl (xl,...,xn) <b1 }



EXAMPLE

x:=0; y:=?2(0,0.5);

while x < 1 do
y:=y + 0.001 x (18x* — 18x + 3);
x :=x + 0.001;
ify<Otheny:=0elsey:=yfi

od

Loop invariant at loop head

x < 1.001 /
x < 0 0.5 -
y < 0.833
_ < 0
y—6x3+9x2—3.zz < 05 X
B 0 1.001

(1.001,0,0.833,0,0.5) with P = { x, —x,y, —y,y — 6x°> + 9x*> — 3.2x }.



SOUNDNESS OF THE RESULT

All computation were done in floats

PVS NASA library for Bernstein polynomials:
Checking that the floating point result is a sound maximum value in real
computations.

See NASA Langley Grizzly
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SUMMARY

Identified need for avionics software: non linear reasoning
Proposals:

e Proof-assistant that is able to discharge proofs about ellipsoids
+ Backend of the Geneauto translation from Simulink + Proof to C code
+ Targeting a fully automatic proof replay at C code level

e Abstract domains building non linear abstract values

* quadratic invariants for linear controllers (automatic)

+ quadratic invariants for linear controllers with guards (automatic)

+ polynomial invariants for polynomial controllers (need to be provided with
templates)

Thanks a lot to all people that participated to these works: Adrien
Champion, Rémi Delmas, Eric Féron, Heber Herencia-Zapana, Romain
Jobredeaux, Temesghen Kahsai, Steve Miller, Sam Owre, Pierre Roux,
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