
1

Formal for Everyone
Challenges in Achievable Multicore

Design and Verification

FMCAD 25 Oct 2012

Daryl Stewart

2

ARM is an IP company

 ARM licenses technology to a network of more than 1000

partner companies within the ARM® Connected Community®,

spanning the semiconductor supply chain

 ARM provides developers with intellectual property (IP)

solutions in the form of

 CPUs/GPUs

 Physical IP

 Cache and SoC designs

 Application-specific standard products (ASSPs)

 Related software and development tools

3

Our Partners Supply the Silicon

 ARM silicon partners supply chips into 90% of smart phones,

80% of digital cameras, and 28% of all electronic devices –

over 20 billion chips to date.

 ARM technology is used in a wide variety of applications

ranging from mobile handsets and digital set top boxes to car

braking systems and network routers.

4

 800MHz to 1 GHz+ in 65G at under 2 mm2

 1 to 4 cores in an SMP cluster

 32-bit SIMD for media processing

 Physically tagged caches

 Tightly coupled memories

 ARM TrustZone™ security

ARM11™ MPCore™ processor

5

 Heterogeneous system with

Cortex-A15/Cortex-A7

processor clusters:

“ARM big.LITTLE™

processing”

 AMBA®4 ACE™

interconnect

 Shared interrupt

controller

ARM Cortex™-A Series processors

 Applications processors for mobile computing

 Single to Quad core clusters

 Fully coherent L1 cache via Snoop Control Unit

 Accelerator Coherence Port shares cache with peripherals

 Multi cluster coherency with AMBA Coherency Extension

6

FORMAL IN ARM

7

Avoidance, Hunting, Absence, Analysis
Technique Advantages Avoiding Drawbacks

Bug Avoidance

• Improve quality before

property checks are run

• Improve quality during

design

• Biggest ROI

Usually at block level
– E.g. visualisation by designer

May not involve tooling
– E.g. formal modeling, proofs

Bug Hunting

• Looking for bugs

• Do not worry if proofs do not

complete

• Aim for “No failures”

• Ease of set-up

• Corner cases

• Low cost, starts early

in design process

False failures
– Run at higher structural level

– Only leads to wasted debug

Non-exhaustive checks
– full proofs are welcome, but not required

Non-uniform run times
– checks are run just for the time available.

Bug Absence

• Aim to get a “complete” set of

properties

• Aim to prove properties

– under certain constraints

• Only way to get 100%

assurance

• Cover corner cases

Non-uniform run times
– Use different proof engines with the tool

– Use “invariants” (helper properties) (this adds non-

uniform/non-predictable engineering time)

– Use safe abstractions

– Prove under certain condition (Add extra

constraints)

Bug Analysis

• For bugs in FPGA prototypes

or in Silicon
– write symptom of bug as a property,

generate waveform

• Ease of setup if

constraints exist

• Can investigate silicon

bugs

• Can confirm fix

Interactive generation of constraints to

generate legitimate failure scenario

8

Formal in the Design Flow

 Formal used at

 Low-level by designers: design bring-up & embedded properties

 Medium-level by validation engineers: end-to-end properties

 High-level by architects: architectural formal specification and validation

Architecture

definition

Micro-architecture

definition
Design

Verification Maturity Support

X-propagation

Low-level assertion flow Formal

errata

analysis

High-level proofs

LAC

Design

Bring-up
Review

Project timeline

Proof

convergence

techniques

Formal

specification

and

validation
U-arch explorations

Interface

specifications

9

RTL Bugs Found by Method

2K Hours

1,439K Hours

ARM1 3 24K T 6 My

Cortex-M0+ 20nm 32K T 11 My

Autochecks

DAPTB

flycatcher_dvs

Formal

Integration Kit

Lint

MBTB

OS / Debug Tools

Other

Partner raised

Review

SBTB

Speculation

Synthesis

Toplevel s/w Config

v6m avs

Seq-X

Power Intent Checks

Constrained Random

AVS

Reviews

DVS

Formal

Integration

10

Bottom Up Formal

 Software Tools

 Each level relies on levels around it

AND the Architectural behaviour

 In return the Architecture expects

certain behaviour

 Architectural behaviour

 E.g. Deadlock freedom, power modes,

coherency

 Combine techniques to give chain

of verification from RTL to Apps

11

RTL verification

 Microarchitectural specification for

designers is in natural language

 RTL level assertions as standard

 Written by designers

 Difficult to write end to end

properties in terms of RTL state

 Architectural state is smeared across

time and space, or implicit

 Use of abstract models written in

SystemVerilog with refinement to

RTL level

 Describing lifecycle of transactions

rather than block functionality

12

Formal for Designers

Early bug discovery

Higher quality sooner

13

Proof Progress and Scaling

 Historically: hard to track progress of formal proof coverage

 ARM developed progress metrics for proofs and methodology and

deployed during a Bug Analysis project

 Technique for partial proof allowing identification of bug free code

 Enables focussed review and simulation for weakest blocks

 Historically: architectural properties involve too much RTL

detail for tools to handle

 Developed micro architectural model of SCU

 SCU Transaction Ordering proven on this specification model

 RTL shown to meet specification, hence RTL preserves transaction

ordering

 These demonstrate proof is now measurable and scalable

14

Partial Proof

Unproven lemma D focuses

Simulation and Review

15

Micro Architectural Models

 Formal Model

 An abstraction expressed as transactors, FSMs, assumptions…

 Provides vocabulary of abstract events

 Desired Model Properties

 Properties which should arise from a correct implementation

 Safety or liveness assertions

 High Level Behaviour

 What implementation is sufficient?

 assume to prove formal model exhibits desired properties

 assert on RTL to deduce that it satisfies specification

 Covers

 sanity check the formal specification

 RTL bring up

16

Micro Architectural Models

Model

RTL

High Level Behaviours imply Desired Properties

17

Architecture

 The architecture defines several

envelopes of reliable behaviour:

 ISA – programmer’s view of instruction

 Weak Memory – implementation

freedom, unintuitive behaviour

 Coherent interconnect – AMBA4 ACE

transactions

 Power modes – domains, required

functionality

 Security – Trustzone

 Debug and trace behaviour

 How to verify individually and

interdependently?

 How to specify non-determinism?

18

Architecture Validation

 SystemVerilog model of AMBA4 ACE

 Deadlock discovered in draft specification using JasperGold

 4 master system, unlikely to find by hand

 Murphi model of AMBA4 ACE master with bridge to

alternative interface for

 Protocol deadlock

 System coherency

 PReach Murphi

 25 threads, 1Tb

 Smallest case completed

 Several bugs found during

development

Master

nodes

IDs Result

2 1 3 hours

2 2 -

3 1 -

3 2 -

4 1 -

4 2 -

19

Systems and Software

 System level testing

 Requires accurate models of expected

behaviour

 Relate testing to coverage of

specification

 What useful IP can we supply to

our partners for software

development?

20

Sequentially Consistent execution

ARM SB

"PodWR Fre PodWR Fre"

 {R2=x; R3=y;}

 P0

 MOV R0, #1

 STR R0, [R2]

 LDR R1, [R3]

 MOV R0, #1

 STR R0, [R3]

 LDR R1, [R2]

 {R3=y; R2=x;}

 P1

Observe P0 end with R1=0 and P1 end with R1=1

Ry0 Rx1

y=0 x=0

Wx1 Wy1

PodWR PodWR

Rfe

Program order candidate relations

PodWR = Program order different address Write then Read

Coherency ordering (Communication) relations

Rfe = Target Reads its value from a source on an external processor

Fre = Source reads From a write that precedes target (on an external processor) in coherence order

Fre

Rf

21

Relaxing candidate relations

ARM SB

"PodWR Fre PodWR Fre"

 {R2=x; R3=y;}

 P0

 MOV R0, #1

 STR R0, [R2]

 LDR R1, [R3]

 MOV R0, #1

 STR R0, [R3]

 LDR R1, [R2]

 {R3=y; R2=x;}

 P1

Observe both threads ending with R1=0

Ry0 Rx0

y=0 x=0

Wx1 Wy1

PodWR PodWR

Fre Fre

Rf Rf

Program order candidate relations

PodWR = Program order different address Write then Read

Coherency ordering (Communication) relations

Rfe = Target Reads its value from a source on an external processor

Fre = Source reads From a write that precedes target (on an external processor) in coherence order

Relaxing PodWR breaks the cycle

22

The ARM ARM

23

ARMv7 specification

24

ARMv7 support functions

Type Inference

Dependent Types

Enumerations

Unbounded Precision Ints

(and Rationals)

Bounded Precision Ints

Indentation-based Syntax

Imperative

Exceptions

25

What ARM uses ISA spec for

CPU

• Design

• Licensing

• Validation

• Test suites

• Test tools

Models
• Design

• Validation

Dev

Tools

• Asm/dasm/ld

• Compiler

• Debugger

• Validation

26

Summary

 “Systems design today is on the same level of development

as mechanics in the middle ages - based on experiences with

no formal theory of design.” J. Sifakis FMCAD 2010

 We have made good progress on pieces of the puzzle,

designers are turning to formal to relieve the pain

 A combination of tools and techniques

 Use those best suited to each problem domain

 Must be able to relate to each other, and simulation

 The system design does not end with us – enable partners

27

THE END

