FMCAD Panel: Model Checking in the Cloud

Olivier Coudert SiCAD Inc.

October 25th, 2012

Topics

- Cloud computing
- Distributed model checking
- Challenges

Cloud Computing Promises

- On-demand computing resources
- No upfront costs
 - pay as you go
- Scalable
 - 100's of cores assembled in a compute grid
 - TB's of storage
 - 1Gbps LAN, 10Gbps HPC
- Expand geographic reach

Performance Scaling

Cluster setup time: 10-15mn

Application: physical verification

10 cores: 13h42mn

768 cores: 17mn

Distributed Model Checking

- Parallelism has many flavors
- In practice: MIMD
 - Network of machines
 - Distributed memory with multiple cores
- Model checking
 - LTL, CTL, etc
 - State exploration

Explicit State Exploration

- Explore state one by one
 - DFS or BFS state exploration
 - Need to recognize visited states
 - Mostly memory limited
- Parallelization
 - Partition state space, and assign each partition to a node of the grid
 - Partition: hashing, windowing

Implicit State exploration

- BDD-based
 - BFS state exploration
 - Mostly memory limited
- Parallelization
 - Partition variables, and assign each partition to a node of the grid
 - Partition made of consecutive variables
 - BDD node management is breadth-first
 - Distributed hash-tables for BDD operations caches

Bounded Model Checking

- SAT-based
 - Unroll model k times
 - Mostly time limited
- Parallelization
 - Partition Boolean space (assume some variables have some constants values)
 - Conflict clauses need to be shared

Cloud Models

- Private cloud managed by EDA vendor
 - Aldec (logic simulation)

Cloud Models

- Public cloud configured by EDA vendor
 - Synopsys (logic simulation in AWS)

Cloud Models

- Cloud platform configured and managed by a 3rd party
 - Xuropa (SW evaluation in AWS, used by Synopsys, Cadence, and Xilinx)

Challenges

- Legal
 - SLA
 - Liability in case of data loss or breach
 - Geographical location of data
 - Cloud provider origin
- Multi-party agreement
 - Multiple EDA vendors, design house, foundry, cloud provider
- Business model
 - SW needs a pay-as-you-go model
 - Risk to cannibalize TBL's revenue for EDA vendors

Challenges

Technical

- Scalability of application
- Fast, fault-tolerant, compute grid provisioning and setup
- Volume of data transfer
 - 10GB @ 30Mbps: 44mn
 - 10GB @ 1Gbps: 1mn20sec

Security

- Highly sensitive data (design, SW, and IP)
 - Data confidentiality –transmission, at rest
 - Data integrity –e.g., disaster recovery
 - Data availability –uptime, latency
 - Data disposal –data removal and storage disposal
- Customer may want to keep its SW usage confidential

Rethink for distributed in the cloud

	1Gpbs LAN	Hard drive	SSD	RAM
latency	0.5ms datacenter roundtrip	3-10ms	0.1ms	100 ns
bandwidth	128 MB/s	140 MB/s	100-600 MB/s	6-17 GB/s
capacity	N/A	up to 8TB	256GB - 1TB	4-64GB
cost	free	\$0.05/GB	\$0.65/GB	\$5-10/GB

- Writes are expensive, reads are cheap
 - Once read, data is cached
 - Writes are ~50x slower than read
- It might be faster to move data chunks in the LAN than reading it from a hard drive
- SSD is changing the way data can be managed

Conclusion

- Cloud computing
 - Large, cheap, readily available compute grid
- Model checking
 - Need algorithms that can leverage a large distributed computing network (100-1000+ cores)
 - Licensing needs to follow burst computing models
 - Security is a bottleneck

