Quantifier Elimination by
Dependency Sequents

Eugene Goldberg, Pete Manolios
Northeastern University, USA

FMCAD-2012, October 22-25,
Cambridge, UK

Outline

Introduction
Dependency seguents
Algorithm description
Experimental results
Conclusions

Quantifier Elimination (QE)

Let F be a Boolean CNF formula and X < Vars(F).

QE problem:
Given 3IX [F], find a quantifier free CNF formula G
such that G=dX|[F]

G =3X[F] means that G, = IX [F,]
for every complete assignment s to Vars(F) \ X

QE is important in reachability analysis and
model checking

Existing QE Methods

BDD based methods suffer from memory explosion

Two kinds of SAT based QE algorithms:
* enumeration of satisfying assignments:
McMillan 2002, Ganali,Gupta, Ashar 2004,
Jin, Somenzi 2005, Brauer, King, Kriener 2011
 variable elimination:
Davis, Putnam 1960, Jiang 2009, Goldberg,
Manolios 2010

SAT based QE methods have poor scalability

Two Ideas of Our Approach

1) Add resolvent-clauses to F until variables of X
become redundant in 3X [Hl where H o F

Redundancy means that 3IX [H] = 3X [H \ HX]

where HX = {the clauses of H with a variable of X}.

2) Use branching to prove variable redundancy in
subspaces and merge results of different branches

Beyond Resolution

Termination condition: stop when X is redundant in 3X [F].

Let Y = Vars(F) \ X and s be a complete assignment to Y.

F. Is unsatisfiable: there is a resolvent C , s.t. C(s) =0.
Xis redundant in X [(F A C).] . Resolution works.

F. Is satisfiable, there is no resolvent C s.t. C(s) = 0.
Yet Xis redundant in 3X [F,] . Beyond resolution!

Outline

Introduction
Dependency sequents
Algorithm description
Experimental results
Conclusions

Dependency Sequents
(D-sequents)

Let s be a partial assignment to Vars(F)

A D-sequent for 3X [F] has the form
(IX[F],s) > Z, where Zc X

Semantics: Zis redundant in 3X [F]
We will call s the conditional part of the D-sequent

Properties:
a) If Fimples G, (IAX[FAG],s)— Z also holds
b) fscqg, (IX[F],q)— Zalso holds

Atomic D-sequents

1. Letv € X be monotone in F in subspace s (pure literal).
Then vis redundant in 93X [F,] and so
D-sequent (IX [F], s) — {v} holds.

2. Let a clause C of F be falsified in subspace s
Every v e X\ Vars(s) is redundant in 3X [F,]
So D-sequent (IX [F], s) —» {v} holds

Often, (X [F], s) > {v} can be replaced with
(IX[F],s*) > {v} where s*cs

Joining D-seqgquents

__

(AX[F],s") > Z (3X[F]S”)—>Z ,
‘where s7= (v;=0,v,=1,v;=0) = where s ”=(v,;=1,v,=1,v;0=0)

__

(X [Fls)—> Z Joining D-sequents
where s = (v,=1,v3=0,v,,=0) at v,

Importantly, F.., and/or F,, may be satisfiable.
Here we go beyond resolution that reasons only
over subspaces where F is unsatisfiable.

Outline

Introduction
Dependency seguents
Algorithm description
Experimental results
Conclusions

Derivation of D-sequents (DDS)

Q Is the current set of D-sequents
(IX[F], s,) — {v}, where v € X

DDS(AX [F], s, Q) /[* Returns 3X[F], Q, C */

1. (Q,C) .= atomic_D seqgs(aX [F],s, Q)
2. If (vars of X are assign. or redund.) return (3X [F],2,C)

3. v:=pick var (Vars(F) \ (Assigned(s) v Redundant())
4. AX[F],Q,Cy) = DDS (AX [F],s u (v=0), ©2)

5. @X[F]Q,Cy) = DDS @X[F], suU (v=1), Q\ Q)
6. Return (Merge_Branches(3X [F],s,V,Q2,=0),€2,C(,C}))

__

Merging Branches

Merge_Branches(3X [F],s,v,€2,=0),€2,C(,C,)

1. if ((Cy = nil) and (C; = nil))
2. {C:=resolve(C,C4,v)
3. F=FAC
4. Q ;= update_D_segs(s,C,Q)
5 return(3IX [F], ,C) }
6 Q= join_D_seasv.Ou-Quey)
7. if(v € X)
8. Q:=Q v {atomic_D seq(3IX [F],s,V) }
9. return(3IX [F],2,nil)

A Few Remarks About DDS

* To simplify implementation of DDS
a) It first branches on variables of Vars(F) \ X
b) D-sequents are not re-used

* DDS first branches on vars of unit clauses (BCP)

* If F Is unsatisfiable, DDS behaves as a conflict
driven SAT-solver. (But this is a “degenerate” case.)

* The novelty of DDS comes into play in subspaces
where F is satisfiable.

Outline

Introduction
Dependency seguents
Algorithm description
Experimental results
Conclusions

Model Checking Experiments

Model EnumSA QE-GBL DDS
checking solved solved solved
mode (%) (%) (%)
forward 425 (56%) |561 (74%) | 664 (87%)
backward 97 (12%) | 522 (68%) | 563 (74%)

« EnumSA: enumeration of satisf. assignments (CAV-11)

 QE-GBL : guantifies variables away globally (HVC-10)

« 758 benchmarks from HWMCC’10

* The algorithms performed one step of forward/backward
model checking

* Timeout limit is 1 minute

Time (in seconds)

B0

I
-

s
[

I
[

10

Forward Model Checking

I CAV-11 + 1
QE-GBL =
DDS =
[]
- - -
;
|]
.
S
- -- -
A7
. +
- " " +F
100 200 300 400 500 600

Mumber of solved formulas

700

Time (in seconds)

Backward Model Checking

B0

40

30

20

10

. CAV-11 +
. QE-GBL »
. oDS *
|] -=
T » "
:I: 1 1 I- -I 1 1 1
100 150 200 250 200 250 400

Mumber of solved formulas

Conclusions

« We introduced a QE algorithm based on D-sequents
* D-sequents can be used in many other applications

* We experimented with a very simple implementation
The results of experiments are very encouraging

« Some points not covered in this talk are addressed In
the paper (e.g. the compositionality of DDS)

