Quantifier Elimination by Dependency Sequents

Eugene Goldberg, Pete Manolios Northeastern University, USA

FMCAD-2012, October 22-25, Cambridge, UK

- Introduction
- Dependency sequents
- Algorithm description
- Experimental results
- Conclusions

# **Quantifier Elimination (QE)**

Let F be a Boolean CNF formula and  $X \subseteq Vars(F)$ .

QE problem:

Given  $\exists X[F]$ , find a quantifier free CNF formula *G* such that  $G \equiv \exists X[F]$ 

 $G \equiv \exists X [F]$  means that  $G_s = \exists X [F_s]$ for every complete assignment **s** to  $Vars(F) \land X$ 

QE is important in reachability analysis and model checking

# **Existing QE Methods**

BDD based methods suffer from memory explosion

Two kinds of SAT based QE algorithms:

- enumeration of satisfying assignments: McMillan 2002, Ganai,Gupta, Ashar 2004, Jin, Somenzi 2005, Brauer, King, Kriener 2011
- variable elimination:

Davis, Putnam 1960, Jiang 2009, Goldberg, Manolios 2010

SAT based QE methods have poor scalability

#### **Two Ideas of Our Approach**

1) Add resolvent-clauses to *F* until variables of *X* become redundant in  $\exists X [H]$  where  $H \supseteq F$ 

Redundancy means that  $\exists X [H] \equiv \exists X [H \setminus H^X]$ where  $H^X = \{$ the clauses of H with a variable of  $X \}$ .

2) Use branching to prove variable redundancy in subspaces and merge results of different branches

#### **Beyond Resolution**

Termination condition: stop when X is redundant in  $\exists X[F]$ .

Let  $Y = Vars(F) \setminus X$  and **s** be a complete assignment to Y.

*F<sub>s</sub>* is unsatisfiable: there is a resolvent *C*, s.t. C(s) = 0. *X* is redundant in  $\exists X [(F \land C)_s]$ . Resolution works.

 $F_s$  is satisfiable, there is no resolvent C s.t. C(s) = 0. Yet X is redundant in  $\exists X [F_s]$ . Beyond resolution!

- Introduction
- Dependency sequents
- Algorithm description
- Experimental results
- Conclusions

## Dependency Sequents (D-sequents)

Let **s** be a partial assignment to Vars(F)A D-sequent for  $\exists X [F]$  has the form  $(\exists X [F], \mathbf{s}) \rightarrow Z$ , where  $Z \subseteq X$ 

Semantics: Z is redundant in  $\exists X [F_s]$ We will call **s** the conditional part of the D-sequent

#### **Properties:**

a) If *F* implies *G*,  $(\exists X[F \land G], \mathbf{s}) \rightarrow Z$  also holds b) If  $\mathbf{s} \subseteq \mathbf{q}$ ,  $(\exists X[F], \mathbf{q}) \rightarrow Z$  also holds

### **Atomic D-sequents**

- 1. Let  $v \in X$  be monotone in F in subspace s (pure literal). Then v is redundant in  $\exists X[F_s]$  and so D-sequent ( $\exists X[F], s$ )  $\rightarrow \{v\}$  holds.
- 2. Let a clause *C* of *F* be falsified in subspace *s* Every  $v \in X \setminus Vars(s)$  is redundant in  $\exists X[F_s]$ So D-sequent  $(\exists X[F], s) \rightarrow \{v\}$  holds

Often,  $(\exists X[F], \mathbf{s}) \rightarrow \{v\}$  can be replaced with  $(\exists X[F], \mathbf{s}^*) \rightarrow \{v\}$  where  $\mathbf{s}^* \subset \mathbf{s}$ 

## **Joining D-sequents**



Importantly,  $F_{s'}$  and/or  $F_{s''}$  may be satisfiable. Here we go beyond resolution that reasons only over subspaces where *F* is unsatisfiable.

- Introduction
- Dependency sequents
- Algorithm description
- Experimental results
- Conclusions

### **Derivation of D-sequents (DDS)**

Ω is the current set of D-sequents  $(\exists X [F], \mathbf{s}_v) → \{v\}$ , where v ∈ X

DDS( $\exists X[F], \mathbf{s}, \Omega$ ) /\* Returns  $\exists X[F], \Omega, C$  \*/

1.  $(\Omega, C) := atomic_D_seqs(\exists X [F], s, \Omega)$ 

2. if (vars of X are assign. or redund.) return  $(\exists X [F], \Omega, C)$ 

3.  $v = pick_var(Vars(F) \setminus (Assigned(s) \cup Redundant(\Omega)))$ 

4.  $(\exists X[F], \Omega, C_0) := DDS (\exists X[F], \mathbf{s} \cup (v=0), \Omega)$ 

5.  $(\exists X[F],\Omega,C_1) := DDS (\exists X[F], \mathbf{s} \cup (v=1), \Omega \setminus \Omega_{(v=0)})$ 

6. Return (*Merge\_Branches*( $\exists X [F], \mathbf{s}, v, \Omega_{(v=0)}, \Omega, C_0, C_1$ ))

# **Merging Branches**

 $Merge\_Branches(\exists X [F], \mathbf{s}, v, \Omega_{(v=0)}, \Omega, C_0, C_1)$ 

- 1. if  $((C_0 \neq nil)$  and  $(C_1 \neq nil))$
- 2. {  $C := resolve(C_0, C_1, v)$
- 3.  $F := F \wedge C$
- 4.  $\Omega := update_D_seqs(s, C, \Omega)$
- 5. return( $\exists X [F], \Omega, C$ ) }
- 6.  $\Omega := join\_D\_seqs(v, \Omega_{(v=0)}, \Omega_{(v=1)})$
- 7. if  $(v \in X)$
- 8.  $\Omega := \Omega \cup \{ atomic_D_seq(\exists X [F], s, v) \}$
- 9. return(∃*X* [*F*],Ω,*nil*)

### **A Few Remarks About DDS**

- To simplify implementation of DDS
  a) it first branches on variables of Vars(F) \ X
  b) D-sequents are not re-used
- DDS first branches on vars of unit clauses (BCP)
- If *F* is unsatisfiable, DDS behaves as a conflict driven SAT-solver. (But this is a "degenerate" case.)
- The novelty of DDS comes into play in subspaces where *F* is satisfiable.

- Introduction
- Dependency sequents
- Algorithm description
- Experimental results
- Conclusions

# **Model Checking Experiments**

| Model    | EnumSA    | QE-GBL    | DDS       |
|----------|-----------|-----------|-----------|
| checking | solved    | solved    | solved    |
| mode     | (%)       | (%)       | (%)       |
| forward  | 425 (56%) | 561 (74%) | 664 (87%) |
| backward | 97 (12%)  | 522 (68%) | 563 (74%) |

- EnumSA: enumeration of satisf. assignments (CAV-11)
- QE-GBL : quantifies variables away globally (HVC-10)
- 758 benchmarks from HWMCC'10
- The algorithms performed one step of forward/backward model checking
- Timeout limit is 1 minute

#### **Forward Model Checking**



#### **Backward Model Checking**



#### Conclusions

- We introduced a QE algorithm based on D-sequents
- D-sequents can be used in many other applications
- We experimented with a very simple implementation The results of experiments are very encouraging
- Some points not covered in this talk are addressed in the paper (e.g. the compositionality of DDS)