
Quantifier Elimination by

Dependency Sequents

Eugene Goldberg, Pete Manolios
Northeastern University, USA

FMCAD-2012, October 22-25,

Cambridge, UK

Outline

• Introduction

• Dependency sequents

• Algorithm description

• Experimental results

• Conclusions

Quantifier Elimination (QE)

Let F be a Boolean CNF formula and X  Vars(F).

QE is important in reachability analysis and

model checking

QE problem:

 Given X [F], find a quantifier free CNF formula G

 such that G  X [F]

 G  X [F] means that Gs = X [Fs]

 for every complete assignment s to Vars(F) \ X

Existing QE Methods

BDD based methods suffer from memory explosion

Two kinds of SAT based QE algorithms:

• enumeration of satisfying assignments:

 McMillan 2002, Ganai,Gupta, Ashar 2004,

 Jin, Somenzi 2005, Brauer, King, Kriener 2011

• variable elimination:

 Davis, Putnam 1960, Jiang 2009, Goldberg,

 Manolios 2010

SAT based QE methods have poor scalability

Two Ideas of Our Approach

1) Add resolvent-clauses to F until variables of X

 become redundant in X [H] where H  F

2) Use branching to prove variable redundancy in

 subspaces and merge results of different branches

Redundancy means that X [H]  X [H \ HX]

where HX = {the clauses of H with a variable of X}.

Beyond Resolution

Termination condition: stop when X is redundant in X [F].

Let Y = Vars(F) \ X and s be a complete assignment to Y.

Fs is unsatisfiable: there is a resolvent C , s.t. C(s) = 0.

 X is redundant in X [(F  C)s] . Resolution works.

Fs is satisfiable, there is no resolvent C s.t. C(s) = 0.

Yet X is redundant in X [Fs] . Beyond resolution!

Outline

• Introduction

• Dependency sequents

• Algorithm description

• Experimental results

• Conclusions

Dependency Sequents

(D-sequents)

A D-sequent for X [F] has the form

 (X [F] , s)  Z, where Z  X

Semantics: Z is redundant in X [Fs]

We will call s the conditional part of the D-sequent

Let s be a partial assignment to Vars(F)

Properties:

a) If F implies G, (X [F  G] , s)  Z also holds

b) If s  q , (X [F] , q)  Z also holds

Atomic D-sequents

1. Let v  X be monotone in F in subspace s (pure literal).

 Then v is redundant in X [Fs] and so

 D-sequent (X [F], s)  {v} holds.

2. Let a clause C of F be falsified in subspace s

 Every v  X \ Vars(s) is redundant in X [Fs]

 So D-sequent (X [F], s)  {v} holds

Often, (X [F], s)  {v} can be replaced with

(X [F], s*)  {v} where s*  s

Joining D-sequents

(X [F], s)  Z

where s = (v1=0,v2=1,v3=0)

(X [F],s)  Z

where s =(v1=1,v2=1,v10=0)

(X [F],s) Z

where s = (v2=1,v3=0,v10=0)

Joining D-sequents

at v1

Importantly, Fs and/or Fs may be satisfiable.

Here we go beyond resolution that reasons only

over subspaces where F is unsatisfiable.

Outline

• Introduction

• Dependency sequents

• Algorithm description

• Experimental results

• Conclusions

Derivation of D-sequents (DDS)

 DDS(X [F], s, ) /* Returns X [F], , C */

1. (,C) := atomic_D_seqs(X [F],s, )

2. if (vars of X are assign. or redund.) return (X [F],,C)

3. v:= pick_var (Vars(F) \ (Assigned(s)  Redundant())

4. (X [F],,C0) := DDS (X [F],s  (v=0), )

5. (X [F],,C1) := DDS (X [F], s  (v=1),  \ (v=0))

6. Return (Merge_Branches(X [F],s,v,(v=0),,C0,C1))

 is the current set of D-sequents

 (X [F], sv)  {v}, where v  X

Merging Branches

1. if ((C0  nil) and (C1  nil))

2. { C := resolve(C0,C1,v)

3. F := F  C

4.  := update_D_seqs(s,C,)

5. return(X [F], ,C) }

6.  := join_D_seqs(v,(v=0),(v=1))

7. if (v  X)

8.  :=   { atomic_D_seq(X [F],s,v) }

9. return(X [F],,nil)

Merge_Branches(X [F],s,v,(v=0),,C0,C1)

A Few Remarks About DDS

• To simplify implementation of DDS

 a) it first branches on variables of Vars(F) \ X

 b) D-sequents are not re-used

• If F is unsatisfiable, DDS behaves as a conflict

 driven SAT-solver. (But this is a “degenerate” case.)

• The novelty of DDS comes into play in subspaces

 where F is satisfiable.

• DDS first branches on vars of unit clauses (BCP)

Outline

• Introduction

• Dependency sequents

• Algorithm description

• Experimental results

• Conclusions

Model Checking Experiments

Model

checking

mode

EnumSA

 solved

 (%)

QE-GBL

solved

 (%)

DDS

solved

 (%)

forward 425 (56%) 561 (74%) 664 (87%)

backward 97 (12%) 522 (68%) 563 (74%)

• EnumSA: enumeration of satisf. assignments (CAV-11)

• QE-GBL : quantifies variables away globally (HVC-10)

• 758 benchmarks from HWMCC’10

• The algorithms performed one step of forward/backward

 model checking

• Timeout limit is 1 minute

Forward Model Checking

Backward Model Checking

Conclusions

• We introduced a QE algorithm based on D-sequents

• D-sequents can be used in many other applications

• We experimented with a very simple implementation

 The results of experiments are very encouraging

• Some points not covered in this talk are addressed in

 the paper (e.g. the compositionality of DDS)

