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Quantifier Elimination (QE) 

Let F be a Boolean CNF formula and X   Vars(F). 

QE is important in reachability analysis and 

model checking 

QE problem: 

   Given X [F ], find a quantifier free CNF formula G    

   such  that    G  X [F ]  

 

  G  X [F ]  means that Gs = X [Fs] 

  for every complete assignment s to Vars(F) \  X 



Existing QE Methods 

BDD based methods suffer from  memory explosion 

Two kinds of SAT based QE algorithms: 

•  enumeration of satisfying assignments: 

      McMillan 2002, Ganai,Gupta, Ashar 2004, 

      Jin, Somenzi 2005, Brauer, King, Kriener 2011 

•  variable elimination: 

      Davis, Putnam 1960, Jiang 2009, Goldberg,   

       Manolios 2010 

SAT based QE methods have  poor scalability    



Two Ideas of Our Approach 

1)   Add resolvent-clauses to F until variables of X 

      become redundant in X [H] where H  F 

2) Use branching to prove variable redundancy in  

     subspaces  and merge results of different branches  

Redundancy means that  X [H]  X [H \ HX]  

where HX  = {the clauses of H with a variable of  X}. 



Beyond Resolution 

Termination condition: stop when X is redundant in X [F ].  

Let Y = Vars(F) \ X  and  s be a complete assignment to Y. 

Fs  is unsatisfiable:  there is a resolvent C , s.t.  C(s) = 0.  

 X is redundant in X [(F  C)s] .  Resolution works. 

Fs  is satisfiable, there  is no resolvent  C s.t. C(s) = 0.   

Yet  X is redundant in X [Fs] .  Beyond resolution!  
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Dependency Sequents           

(D-sequents) 

A D-sequent for X [F ] has the form 

     (X [F ] , s)   Z,   where Z  X    

Semantics:  Z is redundant in X [Fs] 

We will call s the conditional part of the  D-sequent 

Let s be a partial assignment to Vars(F) 

Properties: 

a) If F implies G,   (X [F  G] , s )   Z  also holds  

b) If s  q ,   (X [F ] , q )   Z also holds 



Atomic D-sequents 

1. Let v  X be monotone in F in subspace s (pure literal). 

     Then  v is redundant in X [Fs ] and so  

      D-sequent (X [F ], s)   {v} holds.  

2.  Let a clause C  of F be falsified in subspace s                 

     Every v  X \ Vars(s) is redundant in X [Fs ]  

     So D-sequent (X [F ], s)   {v} holds 

Often, (X [F ], s)   {v}  can be replaced with  

(X [F ], s* )   {v}   where  s*  s 



Joining  D-sequents 

(X [F ], s )  Z 

where s = (v1=0,v2=1,v3=0) 

(X [F ],s )   Z 

where s =(v1=1,v2=1,v10=0) 

(X [F ],s)  Z   

where s = (v2=1,v3=0,v10=0)  

Joining  D-sequents 

at  v1 

Importantly, Fs  and/or Fs  may be satisfiable. 

Here we go beyond resolution that  reasons only 

over subspaces where F is unsatisfiable. 
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Derivation of D-sequents (DDS) 

            DDS(X [F ], s, )    /*   Returns X [F ], , C  */ 

1. (,C) := atomic_D_seqs(X [F ],s, ) 

2. if  (vars of X are assign. or redund.) return (X [F],,C)  

3. v:= pick_var (Vars(F)  \ (Assigned(s)  Redundant()) 

4. (X [F ],,C0)  :=  DDS (X [F ],s  (v=0), ) 

5. (X [F ],,C1)  :=  DDS (X [F ], s  (v=1),  \ (v=0)) 

6. Return (Merge_Branches(X [F ],s,v,(v=0),,C0,C1))  

 is the current set of D-sequents 

 (X [F ], sv)  {v}, where v  X 



Merging  Branches 

1. if ((C0   nil) and (C1   nil)) 

2.    { C := resolve(C0,C1,v) 

3.       F := F  C 

4.        := update_D_seqs(s,C,) 

5.       return(X [F ], ,C) } 

6.   := join_D_seqs(v,(v=0),(v=1)) 

7.  if (v   X)  

8.           :=    { atomic_D_seq(X [F ],s,v) } 

9. return(X [F ],,nil) 

Merge_Branches(X [F ],s,v,(v=0),,C0,C1) 



A Few Remarks About DDS 

• To simplify  implementation of DDS  

      a)  it first branches  on variables of Vars(F) \ X 

      b)  D-sequents are not re-used 

  

• If F is unsatisfiable, DDS behaves as a conflict 

   driven SAT-solver.  (But this is a “degenerate” case.) 

• The novelty of DDS comes into play in subspaces  

   where F is satisfiable. 

• DDS first branches on vars of unit clauses (BCP) 
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Model Checking Experiments 

Model 

checking 

mode 

EnumSA 

   solved 

    (%) 

QE-GBL 

solved  

   (%) 

DDS  

solved 

   (%) 

forward 425  (56%) 561 (74%) 664 (87%) 

backward   97 (12%) 522 (68%) 563 (74%) 

• EnumSA: enumeration of satisf. assignments (CAV-11) 

• QE-GBL :  quantifies variables away globally (HVC-10) 

• 758  benchmarks from HWMCC’10 

• The algorithms performed one step of forward/backward   

  model checking 

• Timeout limit is 1 minute 



Forward Model Checking 



Backward Model Checking 



Conclusions 

• We introduced a QE algorithm based on D-sequents 

• D-sequents can be used in many other applications 

• We experimented with a very simple implementation 

  The results of experiments are very encouraging 

• Some points not covered in this talk are addressed in           

  the paper (e.g.  the compositionality of DDS) 


