
A Formal Model of a Large Memory
that Supports Efficient Execution

Warren A. Hunt, Jr. and Matt Kaufmann

Presented at FMCAD, October, 2012

Computer Science Department
University of Texas

1 University Way, M/S C0500
Austin, TX 78712-0233

{hunt, kaufmann}@cs.utexas.edu

Page 1 (University of Texas at Austin) Large Memory Modeling October, 2012 1 / 21

Outline

1 Memory Model Rationale

2 Core Technology: ACL2

3 Underlying Memory Model

4 Memory Operations for Various Widths

5 Memory Model Performance

6 Ongoing Work

7 Conclusion

Page 2 (University of Texas at Austin) Large Memory Modeling October, 2012 2 / 21

Introduction

To enable the modeling and analysis of industrial-sized systems:

We are developing ISA models suitable for code analysis.

We have defined a 248-byte (281 TB) memory model.

We have proved key properties of the model.

We discuss our approach for modeling large physical memories suitable for
ISA modeling and analysis.

Motivation: Create a formally-correct memory model that is efficient to
execute for a large number of memory writes. Why? Efficient
co-simulation! (More later...)

Page 3 (University of Texas at Austin) Large Memory Modeling October, 2012 3 / 21

Memory Model Rationale

Memory Model Rationale

Our memory model supports our ISA-specification efforts.
Example: X86. BUT NOTE: This talk is about a memory model!

ZV

Regs

PC

Mem

Programmer
State

S ZV
Next−State

Function

Regs

PC

Mem

Programmer
State

S

Page 4 (University of Texas at Austin) Large Memory Modeling October, 2012 4 / 21

Core Technology: ACL2

Core Technology: ACL2

First-order logic with induction and recursion

Atomic data objects: numbers, characters, strings, symbols
Constructor, CONS, for pairs and lists
Sophisticated quotation and abbreviation mechanisms
Functions (31 primitive functions, 200+ defined functions)

Efficient execution – models are often validated by co-simulation

Guards (preconditions) enable use of Common Lisp for execution.
We use STOBJs (single-threaded objects) for constant-time array
read/write operations with applicative semantics.

Critical feature is the overall capacity of the ACL2 system (proofs,
execution, output, database management, documentation, ...)

In use at AMD, Centaur (Nano), IBM, and Rockwell-Collins

See http://www.cs.utexas.edu/users/moore/acl2/ for more
info (download, documentation, tutorials, applications, ...).

Page 5 (University of Texas at Austin) Large Memory Modeling October, 2012 5 / 21

http://www.cs.utexas.edu/users/moore/acl2/

Core Technology: ACL2

The ACL2 Theorem Prover

Associated with the ACL2 Logic, is the ACL2 theorem prover.

Rewriter-based theorem-prover

Simplifier includes:

Clausification
Rewriting
Linear arithmetic solver
Term “type” analysis

Other processes include destructor elimination, generalization,
induction

“Proof checker” for goal-directed reasoning (as for tactic-based proof
assistants)

Clause processors

Extensions to the ACL2 proving process
Can be verified or “trusted” (for external tools)
ACL2(h) example: Symbolic simulation using BDDs and AIGs

Page 6 (University of Texas at Austin) Large Memory Modeling October, 2012 6 / 21

Underlying Memory Model

Underlying Memory Model

We have developed a 248-byte (245-quadword) memory model.

Our effort is focused on memory models that are:

defined formally,

scale up to very large memories

provide high-speed simulation, and

support mechanized reasoning.

The memory model we present here defines four read (rmXY) operations
and four write (wmXY) operations with the following interface signatures:

rm08: addr * mem → byte wm08: addr * byte * mem → mem

rm16: addr * mem → word wm16: addr * word * mem → mem

rm32: addr * mem → dword wm32: addr * dword * mem → mem

rm64: addr * mem → qword wm64: addr * qword * mem → mem

Page 7 (University of Texas at Austin) Large Memory Modeling October, 2012 7 / 21

Underlying Memory Model

Memory Model Organization

We use three fields of an ACL2 STOBJ to define our memory model.

mem-array-next-addr

Initially 1, then

27-bits+18-zeros

45-bit address

0

7

227 - 2

227 - 1

8-byte (64-bit) quadwords

Entry mem-table

0

1

2

3

245

Next available page pointer

mem-array Quadword addr

45-bit address

45-bit address

4

.....................

Page 8 (University of Texas at Austin) Large Memory Modeling October, 2012 8 / 21

Underlying Memory Model

Memory Model Invariant

Our two-level memory contains aligned addresses indexing into
mem-array, a resizable array containing 64-bit data, where those
addresses are below the (aligned) address limit, mem-array-next-addr.

1 mem-array-next-addr ≤ mem-array-length.

2 *initial-mem-array-length* ≤ mem-array-length.

3 #x3ffff & mem-array-length = 0, i.e., mem-array-length is
aligned.

4 mem-array-next-addr = 218 ∗ k , where k is the number of valid
entries in mem-table (entries not equal to 1).

5 Every valid entry in mem-table is aligned and is less than
mem-array-next-addr.

6 The value is 0 in mem-array at every index at or exceeding
mem-array-next-addr.

7 There are no duplicate valid entries in mem-table.

Page 9 (University of Texas at Austin) Large Memory Modeling October, 2012 9 / 21

Underlying Memory Model

Memory Model Invariant, continued

The function good-memp formalizes our memory invariant, as described
informally by the previous seven clauses.
(Note: We replaced x86-64 by st for readability.)

Definition.

(stp st)

= (and (stp-pre st) ; E.g., rip is a 64-bit natural

(good-memp st))

The following theorem formalizes the preservation of our invariant by our
basic memory write operation, !memi, which updates the three STOBJ
fields.

Theorem. stp-!memi

(implies (and (stp st)

(n45p i) ; quadword address (45-bit natural)

(n64p v)) ; 64-bit natural

(stp (!memi i v st))))

Page 10 (University of Texas at Austin) Large Memory Modeling October, 2012 10 / 21

Underlying Memory Model

Memory Read-Over-Write Theorem Diagram

...........

j

...........

...........

i

........... v

i

........... v

...................... v

i

...........

Case 1: i == j

Case 2: i != j

0Max Address

v

Write (at address j)

Read (at address i)

Page 11 (University of Texas at Austin) Large Memory Modeling October, 2012 11 / 21

Underlying Memory Model

Memory Model Based on 64-bit Words

Our memory model is based on an array of 64-bit quadwords, providing
(the illusion of a) memory containing 248 bytes.1

Theorem. memi-!memi

(implies

(and (stp st) ; Memory OK

(n45p i) ; Read address OK

(n45p j)) ; Write address OK

(equal (memi i ; Read address

(!memi j ; Write address

v ; Value to write

st)) ; Initial memory

(if (equal i j) ; For equal addresses

v ; the read value is v

(memi i st))))) ; else, unchanged

1Recent work eliminates the hypotheses of this theorem.
Page 12 (University of Texas at Austin) Large Memory Modeling October, 2012 12 / 21

Memory Operations for Various Widths

Memory Operations for Various Widths

We provide byte, two-byte, four-byte, and eight-byte memory operations.

Quadword Address Byte Address

248 - 8

n + 8

n

0

8

0

1

245

Memory Model -- 245, 8-byte words

01234567

01234567

b0

b1b2b3

Page 13 (University of Texas at Austin) Large Memory Modeling October, 2012 13 / 21

Memory Operations for Various Widths

Byte Memory Operations

Definition.

(rm08 addr st) ; grab a quadword, and then a byte from it

= (let* ((byte-num (n03 addr))

(qword-addr (ash addr -3))

(qword (memi qword-addr st))

(shift-amount (ash byte-num 3))

(shifted-qword (ash qword (- shift-amount))))

(n08 shifted-qword))

Definition.

(wm08 addr byte st) ; write appropriate byte into a quadword

= (let* ((byte-num (n03 addr))

(qword-addr (ash addr -3))

(qword (memi qword-addr st))

(shift-amount (ash byte-num 3))

(byte-mask (ash #xff shift-amount))

(qword-masked (logand (lognot byte-mask) qword))

(byte-to-write (ash byte shift-amount))

(qword-to-write (logior qword-masked byte-to-write)))

(!memi qword-addr qword-to-write st))

Page 14 (University of Texas at Austin) Large Memory Modeling October, 2012 14 / 21

Memory Operations for Various Widths

Four-Byte Memory Read Operation

Definition.

(rm32 addr st)

= (let ((byte-num (n03 addr)))

(cond

((<= byte-num 4) ; E.g., if 4 then read bytes 4,5,6,7

(let* ((qword-addr (ash addr -3))

(qword (memi qword-addr st))

(shift-amount (ash byte-num 3))

(shifted-qword (ash qword

(- shift-amount))))

(n32 shifted-qword)))

(t ; byte-num is 5, 6, or 7

(let* ((word0 (rm16 addr st))

(word1 (rm16 (n48+! 2 addr) st)))

(logior (ash word1 16) word0)))))

Note that for two-or-more-byte memory operations, we may need to access
two words of the underlying, 64-bit memory.

Page 15 (University of Texas at Austin) Large Memory Modeling October, 2012 15 / 21

Memory Operations for Various Widths

Memory Read-Over-Write Theorem Diagram: 8 bits

...........

j

...........

...........

i

........... v

i

........... v

...................... v

i

...........

Case 1: i == j

Case 2: i != j

0Max Address

v

Write (at address j)

Read (at address i)

Page 16 (University of Texas at Austin) Large Memory Modeling October, 2012 16 / 21

Memory Operations for Various Widths

Memory Read-Over-Write Theorem Diagram: 16 bits

................

................

i

j

Case 1: i == j

................................

i

v1

v1 v0

v0

Case 3: i = j+1

v0

0Max Address

................

Case 2: i = j-1
i

v1

................

Case 4: |i-j| > 1
i

v1 v0

v0

v1

Write (at address j)

Read (at address i)

Page 17 (University of Texas at Austin) Large Memory Modeling October, 2012 17 / 21

Memory Operations for Various Widths

Memory Read-Over-Write Theorems

Theorem. rm16-wm16 Theorem. rm08-wm08

(implies (implies

(and (stp st) (and (stp st)

(natp i) (n48p (1+ i)) (n48p i) (n48p j) (n08p v))

(natp j) (n48p (1+ j)) (equal (rm08 i (wm08 j v st))

(n16p v)) (if (equal i j)

(equal v

(rm16 i (wm16 j v st)) (rm08 i st)))))

(cond ((equal i j)

v)

((equal j (1+ i)) ; write is +1 from read

(logior (* *2^8* (logand #x00ff v))

(rm08 i st)))

((equal i (1+ j)) ; write is -1 from read

(logior (ash (logand #xff00 v) -8)

(* *2^8*

(rm08 (+ 1 i) st))))

(t ; Otherwise, no overlap,

(rm16 i st))))) ; read unaffected by write

Page 18 (University of Texas at Austin) Large Memory Modeling October, 2012 18 / 21

Memory Model Performance

Memory Model Performance

Our verified 248-byte memory implementation allows rapid simulation.

(defun copy (from to count st)

(declare (xargs :guard (and (< (+ from count) *2^45*)

(< (+ to count) *2^45*)

(stp st))

:stobjs (st)))

(if (zpf count)

st

(let* ((value (memi from st))

(st (!memi to value st)))

(copy (1+ from) (1+ to) (1- count) st))))

When copying one GByte of data, we can move about 400 MBytes/sec –
this is about 15% of what we observe with structurally-similar C code.

Page 19 (University of Texas at Austin) Large Memory Modeling October, 2012 19 / 21

Ongoing Work

Ongoing Work

Extend the ACL2 system (“abstract stobjs”):

Allow STOBJ (array) semantics to include associative lookup.

Enable our symbolic simulation to include STOBJs.

Avoid expensive invariant checks (done as guard checks).

Eliminate hypotheses in read-over-write theorems.

Extend our memory model:

Defined and verified properties of a 252-byte memory model

Developing co-simulation environment for model validation

Modeling processor segment and paging mechanisms

Page 20 (University of Texas at Austin) Large Memory Modeling October, 2012 20 / 21

Conclusion

Conclusion

We continue to expand our hardware and software modeling and analysis
capabilities.

We have developed a 64-bit data and 48-bit address memory model.

We have verified memory operation properties (read-over-write
theorems).

Our memory model provides a foundation for our processor modeling,
and supports:

processor model validation by co-simulation; and
code proofs.

We perform all of our work in an environment where we can prove or
disprove theorems about our models.

Page 21 (University of Texas at Austin) Large Memory Modeling October, 2012 21 / 21

	Memory Model Rationale
	Core Technology: ACL2
	Underlying Memory Model
	Memory Operations for Various Widths
	Memory Model Performance
	Ongoing Work
	Conclusion

