
Synthesizing Multiple Boolean Functions using
Interpolation on a Single Proof

Georg Hofferek1 Ashutosh Gupta2 Bettina Könighofer1 Jie-Hong Roland Jiang3 Roderick Bloem1

1Graz University of Technology, Austria 2IST Austria 3National Taiwan University

Abstract—It is often difficult to correctly implement a Boolean
controller for a complex system, especially when concurrency is
involved. Yet, it may be easy to formally specify a controller. For
instance, for a pipelined processor it suffices to state that the visi-
ble behavior of the pipelined system should be identical to a non-
pipelined reference system (Burch-Dill paradigm). We present a
novel procedure to efficiently synthesize multiple Boolean control
signals from a specification given as a quantified first-order
formula (with a specific quantifier structure). Our approach
uses uninterpreted functions to abstract details of the design.
We construct an unsatisfiable SMT formula from the given
specification. Then, from just one proof of unsatisfiability, we use
a variant of Craig interpolation to compute multiple coordinated
interpolants that implement the Boolean control signals. Our
method avoids iterative learning and back-substitution of the
control functions. We applied our approach to synthesize a
controller for a simple two-stage pipelined processor, and present
first experimental results.

I. INTRODUCTION

Some program parts are easier to write than others. Freedom
of deadlocks, for instance, is trivial to specify but not to
implement. These parts lend themselves to synthesis, in which
a difficult part of the program is written automatically. This
approach has been followed in program sketching [20], [22],
[21], in lock synthesis [25], and in synthesis using templates
[9], [23], [24].

In this paper, we consider systems that have multiple
unimplemented Boolean control signals. The systems that we
will consider may not be entirely Boolean. We will consider
systems with uninterpreted functions, but our method extends
to systems with linear arithmetic. For example, consider a
microprocessor. Following Burch and Dill [5], we assume
that a reference implementation of the datapath is available.
Constructing a pipelined processor is not trivial, as it involves
implementing control logic signals that control the hazards
arising from concurrency in the pipeline. Correctness of the
pipelined processor is stated as equivalence with the reference
implementation. In this setting, we can avoid the complexity of
the datapath (which is the same in the two implementations)
by abstracting it away using uninterpreted functions. Where
Burch and Dill verify that the implementation of the control
signals is correct, we construct a correct implementation auto-
matically. This problem was previously addressed in [12]. We
improve over that paper by directly encoding the problem into

This research was supported by the European Commission through project
DIAMOND (FP7-2009-IST-4-248613), the Austrian Science Fund (FWF)
through projects RiSE (S11406-N23) and QUAINT (I774-N23), and ERC
Advanced Grant QUAREM (Quantitative Reactive Modeling).

SMT, thus avoiding BDDs, and by avoiding backsubstitution
in case multiple functions are synthesized.

Our approach is also applicable to synthesis of conditions in
(loop-free) programs. As noted in [9], synthesizing loop-free
programs can be a building block of full program synthesis.
Prior work [20] presented various techniques to deal with finite
loops. Those techniques are also applicable in our framework.

To synthesize a single missing signal, we can introduce
a fresh uninitialized Boolean variable c. We can express the
specification as a logical formula 8I9c8O.�(I, c, O), which
states that, for each input I , there exists a value of c such
that each output O of the function is correct. Here, I and O
can come from non-Boolean domains. If an implementation is
possible, the formula is valid and a witness function for c is
an implementation of the missing signal.

Following [14], we can generate a witness using in-
terpolation. In this paper, we generalize this approach by
allowing n � 1 missing components to be synthesized
simultaneously. This leads us to a formula of the form
8I9c1 . . . cn8O.�(I, c1 . . . cn, O). We use an SMT solver to
prove a related formula unsatisfiable and use interpolation [18]
to obtain the desired witness functions. The first contribution
of this paper is to extend prior work [14] beyond the propo-
sitional level, and consider formulas expressed in the theory
of uninterpreted functions and equality. As a second contri-
bution, we propose a new technique, called n-interpolation,
which corresponds to simultaneously computing n coordinated
interpolants from just one proof of unsatisfiability. Like the
interpolation procedures of [11], [15], we need a “colorable”
proof, which we produce by transforming a standard proof
from an SMT solver.

Our algorithm avoids the iterative interpolant computation
described in [14], where interpolants are iteratively substituted
into the formula. As the iterative approach needs one SMT
solver call per witness function, and interpolants may grow
dramatically over the iterations, this computation may be
costly and may yield large interpolants. A similar back-
substitution method is also used in [2] for GR(1) synthesis and
in [16] for functional synthesis. Our new method requires the
expansion of the the (Boolean) existential quantifier, increasing
the size of the formula exponentially (w.r.t. the number of
control signals). Note, however, that previous approaches [14]
have the same limitation.

II. ILLUSTRATION

In this Section we illustrate our approach using a simple
controller synthesis problem. Figure 1 shows an incomplete

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 6077ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

hardware design. There are two input bit-vectors i1 and i2,
carrying non-zero signed integers, and also two output bit-
vectors o1 and o2 carrying signed integers. The block neg
flips the sign of its input. The outputs are controlled by two
bits, c1 and c2. The controller of c1 and c2 is not implemented.
Suppose the specification of the incomplete design states that
the signs of the two outputs must be different. Formally, the
specification is

8i1, i2.9c1, c2.8o1, o2.((c1 ^ o1 = i1 _ ¬c1 ^ o1 = neg(i1))^
(c2^o2 = i2_¬c2^o2 = neg(i2))) ! (pos(o1) $ ¬pos(o2)),

where the predicate pos returns T iff its parameter is pos-
itive. We can compute witness functions for c1 and c2 us-
ing n-interpolation.1 Our method returns witness functions
c1 = pos(i1) and c2 = ¬pos(i2). (Other functions are also
possible.)

1
0neg
o1

i1
c1

1
0neg

o2
i2

c2
??

Fig. 1. Example of controller
synthesis.

Note that computing two in-
terpolants independently may not
work. For instance, we may choose
c1 = T or we can take c2 = T, but
we cannot choose c1 = c2 = T.
This problem is normally solved
by substituting one solution be-
fore the next is computed, but our
method computes both interpolants
simultaneously and in a coordi-
nated way.

III. PRELIMINARIES

A. Uninterpreted Functions and Arrays

We consider the Theory of Uninterpreted Functions and
Equality T

U

. We have variables x 2 X from an uninterpreted
domain, Boolean variables b 2 B, uninterpreted function
symbols f 2 F , and uninterpreted predicate symbols P 2 P .
The following grammar defines the syntax of the formulas in
T
u

.

terms 3 t ::= x | f(t, . . . , t),
atoms 3 a ::= b | P (t, . . . , t) | t = t,

formulas 3 � ::= a | ¬� | � _ �.

Let �1^�2 be short for ¬(¬�1_¬�2). Let a 6= b be short for
¬(a = b). Let T = � _ ¬�, let F = ¬T, and let B = {T, F}.

A literal is an atom or its negation. Let l be a literal. If l =
¬a then let ¬l = a. A clause is a set of literals, interpreted as
the disjunction. The empty clause ; denotes F. A conjunctive
formula is the negation of a clause. A CNF formula is a set
of clauses. A CNF formula is interpreted as the conjunction
of its clauses. Since any formula can be converted into a CNF
formula, we will assume that all the formulas in this paper are
CNF formulas. Let � and be CNF formulas/clauses/literals.
Let Symb(�) be the set of variables, functions, and predicates
occurring in �. Let � � iff Symb(�) ✓ Symb(). Let
Lits(�) = {a,¬a | a is an atom in �}. For a clause C, let
C|

�

= {s 2 C | s � �}.

1We must add the axiom (pos(i1) � pos(neg(i1))) ^ (pos(i2) �
pos(neg(i2))).

HYP
C

C 2 �, � 2 CNF AXI
C

`TU
C

RES
a _ C ¬a _D

C _D

Fig. 2. Sound and complete proof rules for the theory TU .

Arrays are useful for modeling memory whose size is not
known a priori. We will use a decidable fragment, known
as the Array Property Fragment with uninterpreted indices
to create specifications from which we synthesize controllers.
Bradley et al. [4] present an algorithm to reduce formulas with
array properties to equisatisfiable formulas over the theory of
uninterpreted functions. Hofferek and Bloem [12] show that
this algorithm generalizes to the quantified formulas that occur
in controller synthesis problems. For the rest of this paper,
we assume that specifications and formulas containing array
properties have been reduced to formulas over the theory of
uninterpreted functions.

B. Proofs of Unsatisfiability
We consider the usual semantics of formulas in T

u

. The
problem of proving unsatisfiability of formulas is decidable.
Many Satisfiability Modulo Theories (SMT) Solvers exist that
can decide the satisfiability of CNF-T

U

formulas, and, in case
the formula is not satisfiable, produce a proof of unsatisfiabil-
ity.

A (named) proof rule is a template for a logic entailment
between a (possibly empty) list of premises and a conclusion.
Templates for premises are written above a horizontal line,
templates for conclusions below. Possible conditions for the
application of the proof rule are written on the right-hand side
of the line.

The proofs we consider will be based on the rules given
in Fig. 2. They form a sound and complete proof system for
proving unsatisfiability of a CNF-T

U

formula �. The HYP
rule is used to introduce clauses from � into the proof. The
AXI rule is used to introduce theory-tautology clauses. In their
simplest form, these clauses represent concrete instances of
theory axioms (reflexivity, symmetry, transitivity and congru-
ence). However, as our proof transformation algorithms will
produce theory tautologies that are based on several axioms,
we use the following, less restrictive, definition.

Definition 1 (Theory-Tautology Clause). A theory-tautology
clause is a clause of the form (¬a1 _ ¬a2 _ . . . _ ¬a

k

_ b)
that is tautologically true within the theory T

U

. The literals
¬a

i

, for 0 < i k, are called the implying literals and the
(positive) literal b is called the implied literal.

The RES rule is the standard resolution rule to combine
clauses that contain one literal in opposite polarity respec-
tively. We will call this literal the resolving literal or the pivot.

Definition 2 (Unsatisfiability Proof). An unsatisfiability proof
for a CNF-T

U

formula � is a directed, acyclic graph (DAG)
(N,E), where N = {r} [N

I

[N
L

is the set of nodes
(partitioned into the root node r, the set of internal nodes
N

I

, and the set of leaf nodes N
L

), and E ✓ N ⇥N is the set
of (directed) edges. Every n 2 N is labeled with the name of
a proof rule rule(n) and a clause clause(n). The graph has
to fulfill the following properties:

6178

(1) clause(r) = ;.
(2) For all n 2 N

L

, clause(n) is either a clause from �
(if rule(n) = HYP) or a theory-tautology clause (if
rule(n) = AXI).

(3) The nodes in N
L

whose clauses are theory-tautology
clauses can be ordered in such a way that for each such
node each implying literal either occurs in �, or is an
implied literals of the tautology clause of a a preceding
node (according to the order).2

(4) The root has no incoming edges, the leaves have no
outgoing edges, and all nodes in n 2 N \ N

L

have
exactly 2 outgoing edges, pointing to nodes n1, n2, with
n1 6= n2. Using clause(n1) and clause(n2) as premises
and clause(n) as conclusion must yield a valid instance
of proof rule rule(n).

We used the VERIT SMT solver [3], which provides proofs
that conform to these requirements.

C. Transitivity-Congruence Chains

Given a set A of atoms, we can use the well-known
congruence-closure algorithm to construct a congruence graph
[8] according to the following definition.

Definition 3 (Congruence Graph). A congruence graph over a
set A of atoms is a graph which has terms as its nodes. Each
edge is labeled either with an equality justification, which is
an equality atom from A that equates the terms connected
by the edge, or with a congruence justification. A congruence
justification can only be used when the terms connected by the
edge are both instances f (a1, . . . , ak) and f (b1, . . . , bk) of the
same uninterpreted function f . In this case, the congruence
justification is a set of k paths in the graph connecting the a

i

and b
i

respectively, not using the edge which they label.

Definition 4 (Transitivity-Congruence Chain). A transitivity-
congruence chain ⇡ = (a b) is a path in a congruence
graph that connects terms a and b. Let Lits(⇡) be the set of
literals of the path, which is defined as the union of the literals
of all edges on the path. The literal of an edge labeled with
an equality justification p is the set {p}. The set of literals of
an edge labeled with a congruence justification with paths ⇡

i

is recursively defined as
S

i

Lits(⇡
i

).

Theorem 1. The conjunction of the literals in a transitivity-
congruence chain (a b) implies a = b within T

U

. I.e.,
(
W

l2Lits(a b) ¬l) _ (a = b) is a theory-tautology clause.

D. Craig Interpolation

Let � and be CNF formulas such that � ^ is unsat-
isfiable. The algorithm presented in [18] for computing an
interpolant between � and needs a proof of unsatisfiability of
�^ . By annotating this proof with the partial interpolants, the
algorithm computes the interpolant. In this paper, we present
slightly different annotation rules to compute interpolants,
which are results of mixing ideas from [15], [19].

2This means that every (new) literal is defined only in terms of previously
known literals. The order corresponds to the order in which the solver
introduced the new literals.

IHYP-�
C[F]

C 2 � IHYP-
C[T]

C 2

IAXI-�
C[F]

C � �,`TU
C IAXI-

C[T]
C � ,`TU

C

IRES
a _ C[IC] ¬a _D[ID]

C _D[(a _ IC) ^ (¬a _ ID)]
a � �, a �

IRES-�
a _ C[IC] ¬a _D[ID]

C _D[IC _ ID]
a � �, a �

IRES-
a _ C[IC] ¬a _D[ID]

C _D[IC ^ ID]
a � �, a �

Fig. 3. Interpolating proof rules

Definition 5 (Partial interpolant). Let C be a clause such that
�^ ! C. A formula I is a partial interpolant for C between
� and if � ! C|

�

_ I , and ! C|

_ ¬I , and I �
�, and I � . If I is a partial interpolant for C = ; between
� and , then I is an interpolant between � and .

In Figure 3, we present interpolating proof rules. In an
unsatisfiability proof of �^ , these rules annotate (in square
brackets) each conclusion with a partial interpolant for the
conclusion. Rules IHYP-� and IHYP- are used at leaf nodes
that have clauses from � and respectively. Rules IAXI-�
and IAXI- are used for leaves with theory-tautology clauses,
whose symbols are a subset of the symbols in � and respec-
tively. Note that these rules assume that the unsatisfiability
proof of � ^ is colorable.

Definition 6 (Colorable Proof). A proof of unsatisfiability
of � ^ is colorable if for every leaf n

L

of the proof
Symb(clause(n

L

)) ✓ Symb(�) or Symb(clause(n
L

)) ✓
Symb().

In Section V, we will present an algorithm that transforms
a proof into a colorable proof. Due to this assumption we
can easily find corresponding partial interpolants for theory-
tautology clauses, which are either T or F. For internal proof
nodes, we follow Pudlák’s interpolation system [19]. The
annotation of the root node (with the empty clause) is the
interpolant between � and . See [7] for a proof of correctness
of the annotating proof rules.

IV. CONTROLLER SYNTHESIS

A. Overview

Following [12], we assume that synthesis problems are
given as formulas of the form

8ī 9c̄ 8ō. �(̄i, c̄, ō), (1)

where c̄ is a vector of Boolean variables and � is a formula
over theory T

U

. Let c̄ = (c1, . . . , cn). Each c
i

represents a
missing if-condition in a program or a one-bit control signal
in a hardware design. Witness functions for the existentially
quantified variables in Eq. (1) are implementations of the miss-
ing components. Therefore, the synthesis problem is equivalent
to finding such witness functions. I.e., find (f1(̄i), . . . , fn(̄i))
such that 8ī 8ō. �(̄i, (f1(̄i), . . . , fn(̄i)), ō) holds true.

We compute the witness functions through the following
steps:

(1) Expand the existential quantifier and negate the formula
� to obtain an unsatisfiable formula � (Sec. IV-B).

62 79

(2) Obtain a proof of unsatisfiability from an SMT solver.
(3) Transform the proof into a colorable, local-first proof

(Sec. V).
(4) Perform n-interpolation on the transformed proof. The

elements of the n-interpolant correspond to the witness
functions (Sec. IV-B).

We will first introduce the notion of n-interpolation and
show how it is used to find witness functions in Section IV-B.
Subsequently, we will show how to transform a proof of
unsatisfiability so that it is suitable for n-interpolation in
Section V.

B. Finding Witness Functions through Interpolation

Jiang et al. [14] show how to compute a witness function
in Eq. (1) using interpolation if c̄ contains a single Boolean
c. In this case, Eq. (1) reduces to 8ī 9c 8ō. �(̄i, c, ō).
After expanding the existential quantifier by instantiating the
above formula for both Boolean values of c and renaming
ō in each instantiation, we obtain the equivalent formula
8ī 8ōF, ōT. �(̄i, F, ōF) _ �(̄i, T, ōT). Since all the quantifiers
are universal, the disjunction is valid. Therefore, its negation
¬�(̄i, F, ōF)^¬�(̄i, T, ōT) is unsatisfiable. The interpolant be-
tween the two conjuncts is the witness function for variable c.

Theorem 2. The interpolant between ¬�(̄i, F, ōF) and
¬�(̄i, T, ōT) is the witness function for c. (For a proof, see
[13].)

We now extend this idea to compute witness functions when
c̄ is a vector of Booleans (c1, . . . , cn). Let Bn denote the
set of vectors of length n containing Fs and Ts. For vector
w 2 Bn, let w

j

be the Boolean value in w at index j.
Since c̄ is a Boolean vector, we can expand the existential
quantifier for c̄ in Eq. (1) by enumerating the finitely many
possible values of c̄ to obtain 8ī

W
w2Bn 8ō . �(̄i, w, ō). By

dropping the quantifiers and renaming ō accordingly, we obtainW
w2Bn �(̄i, w, ō

w

). It is valid iff Eq. (1) is valid. Let � denote
its negation

V
w2Bn ¬�(̄i, w, ō

w

), which is unsatisfiable. Let
�
w

denote ¬�(̄i, w, ō
w

). We will call the �
w

s the 2n partitions
of �. We will learn a vector of coordinated interpolants from
an unsatisfiability proof of �. These interpolant formulas will
be witness functions for c̄. Since �

w

s are obtained by only
renaming variables, the shared symbols between any two
partitions are equal.

Definition 7 (Global and Local Symbols). Symbols in the set
G =

T
w2Bn Symb(�

w

) are called global symbols. All other
symbols are called local (w.r.t. the one partition in which they
occur).

Let I be a vector of formulas (I1, . . . , In). Let � be the
exclusive-or (xor) operator. For a word w 2 Bn, let I

0
=

I � w if for each j 2 1..n, I 0
j

= I
j

� w
j

. Let
W
I be short

for I1 _ · · · _ I
n

. Let C|
w

= C|
�w . The following definition

generalizes the notion of interpolant and partial interpolant
from two formulas to 2n formulas.

Definition 8 (n-Partial Interpolant). Let C be a clause such
that (

V
w2Bn �

w

) ! C. An n-partial interpolant I for C w.r.t.
the �

w

s is a vector of formulas with length n such that 8w 2

MHYP
C[w]

C 2 �w MAXI
C[w]

C � �w

MRES
a _ C[w] ¬a _D[w]

C _D[w]
w 2 Bn

, a _ C _D � �w

MRES-G
a _ C[I

C
] ¬a _D[I

D
]

C _D [((a _ I

C
1) ^ (¬a _ I

D
1),

. . . ,

(a _ I

C
n) ^ (¬a _ I

D
n))]

a � G

Fig. 4. n-Interpolating proof rules for an unsatisfiable � =
V

w2Bn �w .
These rules can only annotate proofs that are colorable and local-first.

Bn. �
w

! (C|
w

_
W
(I � w)) and I � G. If C = ; then I is

an n-interpolant w.r.t. the �
w

s.

Theorem 3. An n-interpolant w.r.t. the �
w

s constitutes witness
functions for the variables in c̄. (For a proof see [13].)

C. Computing n-interpolants

In Figure 4, we present the proof rules for n-interpolants.
These rules annotate each conclusion of a proof step with an
n-partial interpolant for the conclusion w.r.t. the �

w

s. These
annotation rules require two properties of the proof. First, it
needs to be colorable.3 Second, it needs to be local-first.

Definition 9 (Local-first Proof). A proof of unsatisfiability is
local-first, if for every resolution node with a local pivot both
its premises are derived from the same partition.

The rule MHYP annotates the derived clause C with w if
C appears in partition �

w

. Similarly, the rule MAXI anno-
tates theory-tautology clause C with w if C � �

w

. Rules
MRES and MRES-G annotate resolution steps. MRES-G is
only applicable if the pivot is global and follows Pudlák’s
interpolation system n times. MRES is only applicable if both
premises are annotated with the same n-partial interpolant and
this n-partial interpolant is an element of Bn. Due to the local-
first assumption on proofs, these rules will always be able to
annotate a proof.

Theorem 4. Annotations in the rules in Figure 4 are n-partial
interpolants for the respective conclusions w.r.t. the �

w

s. (For
a proof see [13].)

Since the n-interpolant is always quantifier free, we can
easily convert it into an implementation. To create a circuit
for one element of the n-interpolant, we create, for every
resolution node with a global pivot, a multiplexer that has
the pivot at its selector input. The other inputs connect to the
outputs of the multiplexers corresponding to the child nodes.
For leaf nodes and resolution nodes with local pivots, we
use the constants T, F, depending on which partition the node
belongs to. The output of the multiplexer corresponding to
the root node is the final witness function. Note that, unless
we apply logical simplifications, the circuits for all witness
functions all have the same multiplexer tree and differ only in
the constants at the leaves of this tree.

Also note that due to the local-first property, all nodes
that are derived from a single partition are annotated with
the same n-partial interpolant. Thus, we can disregard such

3We extend Def. 6 from two formulas to 2n partitions in the obvious way.

6380

local sub-trees, by iteratively converting nodes that have only
descendants from one partition into leaves. This does not affect
the outcome of the interpolation procedure.

The local-first property is actually needed to correctly com-
pute witness functions using Pudlák’s interpolation system. In
[13], we illustrate this observation with an example. Also note
that McMillan’s interpolation [18] system does not produce
correct witness functions even with the local-first property.

V. ALGORITHMS FOR PROOF TRANSFORMATION

Our interpolation procedure requires proofs to be colorable
and local-first. These properties are not guaranteed by efficient
modern SMT solvers. In this section we will show how to
transform a proof conforming to Def. 2 into one that is
colorable and local-first. Our proof transformation works in
three steps. First, we will remove any non-colorable literals
from the proof. Second, we will split any non-colorable theory-
tautology clauses. This gives us a colorable proof. In the
third step, we will reorder resolution steps to obtain the local-
first property [7]. For ease of presentation, we will assume that
the proof is a tree (instead of a DAG). The method extends to
proofs in DAG form.

A. Removing Non-Colorable Literals

Definition 10 (Colorable and Non-Colorable Literals). A lit-
eral a is colorable with respect to a partition �

w

(w-colorable)
iff a � �

w

. A literal that is not w-colorable for any partition
w is called non-colorable.

Note that global literals are w-colorable for every w. By def-
inition, the formula � is free of non-colorable literals (equal-
ities and predicate instances). Thus, the only way through
which non-colorable literals can be introduced into the proof
are theory-tautology clauses.

We search the proof for a theory-tautology clause that
introduces a non-colorable literal a and has only colorable
literals as implying literals. We call this proof node the defining
node n

d

. At least one such leaf must exist. We remove this
non-colorable literal from the proof as follows. Starting from
n
d

, we traverse the proof towards the root, until we find a
node, which we call resolving node n

r

, whose clause does
not contain the literal a any more. Since the root node does
not contain any literals, such a node always exists. Let n

a

and n¬a

be the premises of n
r

, respectively, depending on
which phase of literal a their clause contains. From n¬a

,
we traverse the proof towards the leaves along nodes that
contain the literal ¬a. Note that any leaf that we reach in
this way must be labeled with a theory-tautology clause, as
clauses from � cannot contain the non-colorable literal ¬a.
Note that ¬a is among the implying literals of such a leaf
node’s clause. I.e., such nodes use the literal to imply another
one. We will therefore call such a node a using node n

u

. We
update clause(n

u

), by removing ¬a and adding the implying
literals of clause(n

d

) instead.
It is easy to see that this does not affect clause(n

u

)’s prop-
erty of being a theory-tautology clause. Suppose clause(n

d

)
is (¬x1_ . . ._¬x

k

_a). Then
V

k

i=1 xi

! a. By reversing the

implication we obtain ¬a !
W

k

i=1 ¬xi

. Therefore, replacing
¬a with the disjunction of the implying literals of clause(n

d

)
in clause(n

u

) is sound.
To keep the proof internally consistent, we have to do the

same replacement on all the nodes on the path between n
u

and
n
r

. The node n
r

itself is not changed, as clause(n
r

) does not
contain the non-colorable literal (¬)a any more. I.e., the last
node that is updated is the node n¬a

.
Now we have to distinguish two cases. The first case is

that node n
a

still contains all of the implying literals of n
d

.
In this case, clause(n

r

) = clause(n0
¬a

), where n0
¬a

is the
updated node n¬a

. Thus, we use n0
¬a

instead of n
r

in n
r

’s
parent node. In the second case, some of the implying literals
of clause(n

d

) have already been resolved on the path from
n
d

to n
r

. In that case clause(n0
¬a

) contains literals that do
not occur in clause(n

r

). Let x
l

be one such literal. We search
the path from n

d

to n
r

for the node that uses x
l

as a pivot.
Its premise that is not on the path from n

d

to n
r

contains
¬x

l

. We use this node and the node n0
¬a

as premises for a
new resolution node with x

l

as pivot. Note that this resolution
may introduce more literals that do not appear in clause(n

r

)
any more. However, just as with x

l

, any such literal must
have been resolved somewhere on the path between n

d

and
n
r

. Thus, we repeat this procedure, replicating the resolution
steps that took place between n

d

and n
r

, until we get a node
whose clause is identical to clause(n

r

). This node can then
be used instead of n

r

in n
r

’s parent node. Finally, we remove
all nodes that are now unreachable from the proof.

Example 1. An illustrative example of this procedure is shown
in Figure 5.

We repeat this procedure for all leaves with a non-colorable
implied literal and (all) colorable implying literals. Note that
one application of this procedure may convert a node where
a non-colorable literal was implied by at least one other non-
colorable literal into a node where the implied non-colorable
literal is now implied only by colorable literals. Nevertheless
this procedure terminates, as the number of leaves with non-
colorable implied literals decreases with every iteration. Each
iteration removes (at least) one such leaf from the proof and
no new leaves are introduced.

Theorem 5. Upon termination of this procedure, the proof
does not contain any non-colorable literals.

B. Splitting Non-Colorable Theory-Tautology Clauses

After removing all non-colorable literals, the proof may still
contain non-colorable theory-tautology clauses, i.e., theory-
tautology clauses that contain local literals from more than
one partition. We split such leaves into several new theory-
tautology clauses, each containing only w-colorable literals,
and, via resolution, obtain a (now internal) node with the
same clause as the original non-colorable theory-tautology
clause. Note that internal nodes with non-colorable clauses
are not a problem for our interpolation procedure, but leaves
with non-colorable clauses are. We will show how to split a
non-colorable theory-tautology clause with an implied equality

64 81

RES

RES
n1 : (l1 = zg _ xg = yg) nd : (l1 6= zg _ zg 6= l2 _ l1 = l2)

na : (xg = yg _ zg 6= l2 _ l1 = l2)
RES

nu : (l1 6= l2 _ f(l1) = f(l2)) n3 : (f(l1) 6= f(l2) _ ug 6= vg)

n¬a : (l1 6= l2 _ ug 6= vg)
nr : (xg = yg _ zg 6= l2 _ ug 6= vg)

(a) Proof before removing non-colorable literal l1 = l2.

RES

n1 : (l1 = zg _ xg = yg) RES
n3 : (f(l1) 6= f(l2) _ ug 6= vg) n

0
u : (l1 6= zg _ zg 6= l2 _ f(l1) = f(l2))

n

0
¬a : (l1 6= zg _ zg 6= l2 _ ug 6= vg)

n

00
¬a : (xg = yg _ zg 6= l2 _ ug 6= vg)

(b) Proof after removing non-colorable literal l1 = l2.

Fig. 5. Removing a non-colorable literal. Assume that term indices indicate the number of the partition the term belongs to. Index g is used for global terms.
This example shows how the non-colorable literal l1 = l2, introduced in node nd, is removed from the proof by replacing its negative occurrences with the
(colorable) defining literals (l1 6= zg _ zg 6= l2). Note that in the original proof l1 6= zg is already resolved on the path from nd to nr using node n1. This
resolution step is replicated in the transformed proof by making a resolution step with nodes n

0
¬a and n1. Since the literal xg = yg introduced into n

00
¬a

also occurs in the original nr , and also the second defining literal zg 6= l2 occurs in nr , no further resolution steps are necessary. The conclusions of nd
and n

00
¬a are identical and n

00
¬a can be used instead of nr in nr’s parent.

݂(݈ଵ) ݂(݈ଶ)

݈ଵ ݈ଶ ݃ ݈ଵ = ݃ ݃ = ݈ଶ

(a) Non-Colorable Transitivity-Congruence
Chain for (f(l1) f(l2))

݂(݈ଵ) ݂(݈ଶ)
݈ଵ ݃ ݈ଵ = ݃

݂(݃)
݃ ݈ଶ ݃ = ݈ଶ

(b) Colorable Transitivity-Congruence Chain for
(f(l1) f(l2))

Fig. 6. Splitting a non-colorable transitivity-congruence chain by introducing
global intermediate terms.

literal. This procedure can be trivially extended to implied
literals that are uninterpreted predicate instances.

Using the implying literals of the theory-tautology clause
(converted to their positive phase), we create a congruence
graph (cf. Def. 3). Since the implying literals and the implied
literal form a theory tautology, this congruence graph is
guaranteed to contain a path between the the two terms equated
by the implied literal. We use breadth-first search to find
the shortest such transitivity-congruence chain (Def. 4).4 The
chain will be the basis for splitting the non-colorable theory
tautology. First, we need to make all edges in the chain
colorable. A colorable edge is an edge for which there is a
w such that all the edge’s literals are w-colorable. Edges with
an equality justification already are colorable, as we assumed
that no non-colorable literals occur in the theory-tautology
clause. Edges with congruence justifications, however, may
still be non-colorable. I.e., the two terms they connect might
belong to different partitions, and/or some of the paths that
prove equality for the function parameters might span over
more than one partition. Fuchs et al. [8] have shown how to
recursively make all edges in a chain colorable by introducing
global intermediate terms for non-colorable edges. We will
illustrate this procedure with a simple example, and refer to
[8] for details.

Example 2. Suppose we have the two local terms f(l1)
and f(l2), where l1, l2 are from two different partitions, and
a global term g. (See Fig. 6.) A possible (non-colorable)

4Note that these graphs are usually relatively small.

congruence justification for f(l1) = f(l2) could be given as
(l1 = g, g = l2). The edge between f(l1) and f(l2) is now
split into two (colorable) parts: f(l1) = f(g), with justification
l1 = g, and f(g) = f(l2), with justification g = l2. Note
that f(g) is a new term that (possibly) did not appear in the
congruence graph before. Since we assumed that there are no
non-colorable equality justifications in our graph, such a global
intermediate term must always exist. It should be clear how
to extend this procedure to n-ary functions.

Note that in a colorable chain, every edge either connects
two terms of the same partition, or a global term and a
local term. In other words, terms from different partitions are
separated by at least one global term between them. We now
divide the whole chain into (overlapping) segments, so that
each segment uses only w-colorable symbols. The global terms
that separate symbols with different colors are part of both
segments.5 Let’s assume for the moment that the chain starts
and ends with a global term. We will show how to deal with
local terms at the beginning/end of the chain later. For ease
of presentation, also assume that the chain consists of only
two segments. An extension to chains with more segments
can be done by recursion. We take the first segment of the
chain (from start to the global term that is at the border to
the next segment), plus a new “shortcut” literal that states
equality between the last term of the first segment and the
last term of the entire chain, and use them as implying literals
for a new theory-tautology clause. The implied literal of this
tautology will be an equality between the first and the last
term of the entire chain. Next, we create a theory tautology
with the literals of the second segment of the chain. Note
that the implied literal of this theory-tautology clause (which
occurs in positive phase) is the same as the shortcut literal
used in the theory-tautology clause corresponding to the first
segment. There, however, it occurred in negative phase. Thus,
we can use this literal for resolution between the two clauses.
We obtain a node that has all the literals of the entire chain
as implying literals, and an equality between start term and
end term of the chain as the implied literal. I.e., this new
internal node has the same conclusion as the non-colorable
theory-tautology clause from which we started.

In case the start/end of the chain is not a local term, we

5If there is more than one consecutive global term, we arbitrarily choose
the last one.

6582

RES

RES
n1 : [cg 6= d2 _ d2 6= e2 _ e2 6= fg _ fg 6= kg _ cg = kg] n2 : [fg 6= h3 _ h3 6= kg _ fg = kg]

n3 : [cg 6= d2 _ d2 6= e2 _ e2 6= fg _ fg 6= h3 _ h3 6= kg _ cg = kg]
n4 : [a1 6= b1 _ b1 6= cg _ cg 6= kg _ kg 6= l1 _ a1 = l1]

n5 : [a1 6= b1 _ b1 6= cg _ cg 6= d2 _ d2 6= e2 _ e2 6= fg _ fg 6= h3 _ h3 6= kg _ kg 6= l1 _ a1 = l1]

Fig. 7. Splitting theory tautology clauses. Suppose we have created the transitivity-congruence chain (a1 b1 cg d2 e2 fg h3 kg l1)
from a theory-tautology clause, where all the edges are colorable. The number in the index indicates the partition of the respective term, with g being used
for global terms. First, we consider only the part from the first to the last global term (cg and kg , respectively). We “split” this sub-chain into the chains
(cg d2 e2 fg kg) and (fg h3 kg) and convert them into (colorable) theory tautology clauses (nodes n1 and n2, respectively). By
resolution we obtain n3. Now, we create the tautology in node n4, which corresponds to all links of the original chain which we have not dealt with already,
and a “shortcut” over the part we have already considered: (a1 b1 cg kg l1). Note that this is also a colorable theory-tautology clause. By
resolution over n3 and n4 we obtain n5, whose clause is identical to the theory-tautology clause from which we started.

first deal with the sub-chain from the first to the last global
term, as described above. Note that if both start and end of
the chain are local terms, they have to belong to the same
partition, because otherwise the implied literal would be non-
colorable. We create a theory-tautology clause with the local
literals from the start/end of the chain, and one shortcut literal
that equates the first and last global term. This literal can be
used for resolution with the implied literal of the node obtained
in the previous step.

In summary, this procedure replaces all leaves that have non-
colorable theory-tautology clauses with subtrees whose leaves
are all colorable theory-tautology clauses, and whose root is
labeled with the same clause as the original non-colorable leaf.

Example 3. Fig. 7 shows how to split the non-colorable
theory-tautology clause (a1 6= b1 _ b1 6= c

g

_ c
g

6= d2 _
d2 6= e2 _ e2 6= f

g

_ f
g

6= h3 _ h3 6= k
g

_ k
g

6= l1 _ a1 = l1).

Theorem 6. After applying the above procedure to all leaves
with non-colorable theory-tautology clauses, the proof is col-
orable.

C. Obtaining a local-first proof

To obtain a local-first proof, we traverse the proof in
topological order. Each time we encounter a resolution step
that has a global pivot and we have seen local pivots among
its ancestors then we apply one of the two transformation
rules presented in Figure 8 depending on the matching pat-
tern. These two transformation rules are the standard pivot
reordering rules from [7]. Note that these rules assume that
the proof is redundancy free, which can be achieved by the
algorithms presented in [10]. After repeated application of
these transformation rules, we can move the resolutions with
local pivots towards the leaves of the proof until we don’t have
any global pivot among its descendants.

Theorem 7. After exhaustive application of this transforma-
tion, we obtain a colorable, local-first proof.

VI. EXPERIMENTAL RESULTS

We have implemented a prototype to evaluate our
interpolation-based synthesis approach. We read the formula �
corresponding to our synthesis problem (Eq. 1) from a file in
SMT-LIB format [1]. As a first step, our tool performs several
transformations on the input formula (reduction of arrays
to uninterpreted functions [4], expansion of the existential
quantifier to obtain the partitions, renaming of ō-variables in
each partition, negation to obtain �), before giving it to the
VERIT solver. Second, we apply the proof transformations

MEM

op-b-of

op-a-of

0 1

inst-of

0

0
=

0 1

0

addr-of 0

1

is-BEQZ

incrPC

c2

ALU

0
1

c1

Fig. 9. A simple microprocessor with a 2-stage pipeline.

described in Section V to the proof we obtain from VERIT.
Third, we compute the witness functions as the n-interpolants
w.r.t. the partitions of �.

We have checked all results using Z3 [6], by showing that
¬�(̄i, (f1(̄i), . . . , fn(̄i)), ō) is unsatisfiable.

We used our tool on several small examples and also tried
one non-trivial example which we explain in more detail. In
Fig. 9 we show a simple (fictitious) microprocessor with a 2-
stage pipeline. MEM represents the main memory. We assume
that the value at address 0 is hardwired to 0. I.e., reading
from address 0 always yields value 0. The blocks inst-of, op-

a-of, op-b-of, and addr-of represent combinational functions
that decode a memory word. The block incr increments the
program counter (PC). The block is-BEQZ is a predicate that
checks whether an instruction is a branch instruction. The
design has two pipeline-related control signals for which we
would like to synthesize an implementation. Signal c1 causes
a value in the pipeline to be forwarded and signal c2 squashes
the instruction that is currently decoded and executed in the
first pipeline stage. This might be necessary due to speculative
execution based on a “branch-not-taken assumption”. The
implementation of these control signals is not as simple as it
might seem at first glance. For example, the seemingly trivial
solution of setting c1 = T whenever PC equals the address
register is not correct. For example, if PC = 0, forwarding

66 83

RES
g _ l _ D ¬g _ E

RES
l _ D _ E ¬l _ C

C _ D _ E

RES

g _ l _ D ¬l _ C

RES
g _ C _ D ¬g _ E

C _ D _ E

RES
g _ l _ D ¬g _ l _ E

RES
l _ D _ E ¬l _ C

C _ D _ E

RES

g _ l _ D ¬l _ C

g _ C _ D

RES
¬g _ l _ E ¬l _ C

¬g _ C _ E

RES
C _ D _ E

Fig. 8. If a local pivot l occurs after a global pivot g in a proof then we can rewrite the proof using one of the above transformation rules. After the
transformation, the proof first resolves l then g.

TABLE I
Experimental results. Columns: (1) Name; (2) Number of control signals;

(3) Total synthesis time including checking the results; (4) Number of
leaves with theory-tautology clauses that define a new non-colorable literal
(Number of such leaves at the start of the cleaning procedure + Number of

leaves introduced (and subsequently removed) by the procedure); (5)
Number of leaves to be split because they contain literals from more than

one partition. (Number after “/” is total number of leaves in proof at
beginning of split procedure; (6) Time to reorder the proof to be local-first;
(7) Number of nodes in proof from VERIT / Size of the transformed proof

for interpolation (local sub-trees have been converted to leaves).

Name Ctrl time [s] # leaves
to clean

leaves
to split

Reorder-
Time [ms]

Proof size

const 2 0.6 0 0 / 6 42 19 / 1
illu02 2 1.1 1 1 / 65 83 205 / 12
illu03 3 5.0 8 8 / 138 487 467 / 22
illu04 4 8.0 3 3 / 242 532 951 / 75
illu05 5 12.8 10 10 / 413 589 1588 / 78
illu06 6 237.0 9 9 / 1093 1820 4691 / 370
illu07 7 150.0 14 14 / 1443 2860 6824 / 555
illu08 8 1270.0 20 20 / 3450 4980 17524 / 1023
pipe 1 1.6 6 + 6 3 / 70 129 285 / 22
proc 2 28.1 3 + 3 61 / 1014 1770 5221 / 1042

should not be done.6 By taking out the blue parts in Fig. 9 we
obtain the non-pipelined reference implementation which we
used to formulate a Burch-Dill-style equivalence criterion [5].
The resulting formula was used as a specification for synthesis.

Table I summarizes our experimental results. The bench-
mark “const” is a simple example with 2 control signals that
allows for constants as valid solutions. “illu02” is the example
presented in Section II; “illu03” to “illu08” are scaled-up
versions of “illu02”, with increased numbers of inputs and
control signals. “pipe” is the simple pipeline example that was
used in [12]. “proc” is the pipelined processor shown in Fig. 9
and described above. All experiments were performed on an
Intel Nehalem CPU with 3.4 GHz.

Note that using our new method we have reduced the
synthesis time of “pipe” from 14 hours [12] to 1.6 seconds.
As a second comparison, we tried to reduce the (quantified)
input formula of “proc” to a QBF problem (using the transfor-
mations outlined in [12]) and run DEPQBF [17] on it. After
approximately one hour, DEPQBF exhausted all 192 GB of
main memory and terminated without a result.

VII. CONCLUSION

Hofferek and Bloem [12] have shown that uninterpreted
functions are an efficient way to abstract away unnecessary
details in controller synthesis problems. By using interpola-
tion in T

U

, we avoid the costly reduction to propositional
logic, thus unleashing the full potential of the approach
presented in [12]. Furthermore, by introducing the concept
of n-interpolation, we also avoid the iterative construction

6We actually made this mistake while trying to create and model-check a
manual implementation for the control signals, and it took some time to locate
and understand the problem.

which requires several calls to the SMT solver and back-
substitution. The n-interpolation approach improves synthesis
times by several orders of magnitude, compared to previous
methods [12], rendering it applicable to real-world problems,
such as pipelined microprocessors. We have also shown that
a naive transformation to QBF is not a feasible option.

REFERENCES

[1] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. In Workshop on Satisfiability Modulo Theories, 2010.

[2] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Automatic hardware synthesis from specifications: a
case study. In DATE, 2007.

[3] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT:
An open, trustable and efficient SMT-solver. In CADE, 2009.

[4] A. Bradley and Z. Manna. The Calculus of Computation. Springer,
2007.

[5] J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessor control. In CAV. Springer, 1994. LNCS 818.

[6] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
2008.

[7] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Inter-
polant strength. In VMCAI, 2010.

[8] A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli. Ground
interpolation for the theory of equality. Logical Methods in Computer
Science, 8(1), 2012.

[9] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free
programs. In PLDI. ACM, 2011.

[10] A. Gupta. Improved single pass algorithms for resolution proof reduc-
tion. In ATVA. Springer, 2012.

[11] K. Hoder, L. Kovács, and A. Voronkov. Playing in the grey area of
proofs. In POPL. ACM, 2012.

[12] G. Hofferek and R. Bloem. Controller synthesis for pipelined circuits
using uninterpreted functions. In MemoCODE. IEEE, 2011.

[13] G. Hofferek, A. Gupta, B. Könighofer, J.-H. R. Jiang, and R. Bloem.
Synthesizing multiple boolean functions using interpolation on a
single proof, 2013. Full version with appendix available at
arXiv.org:1308.4767.

[14] J.-H. R. Jiang, H.-P. Lin, and W.-L. Hung. Interpolating functions from
large Boolean relations. In ICCAD, 2009.

[15] L. Kovács and A. Voronkov. Interpolation and symbol elimination. In
CADE. Springer, 2009.

[16] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional
synthesis. In PLDI. ACM, 2010.

[17] F. Lonsing and A. Biere. Integrating dependency schemes in search-
based QBF solvers. In SAT 2010, 2010.

[18] K. L. McMillan. An interpolating theorem prover. TCS, 345(1), 2005.
[19] P. Pudlák. Lower bounds for resolution and cutting plane proofs and

monotone computations. Journal of Symbolic Logic, 1997.
[20] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodı́k, V. A. Saraswat, and

S. A. Seshia. Sketching stencils. In PLDI. ACM, 2007.
[21] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu. Program-

ming by sketching for bit-streaming programs. In PLDI. ACM, 2005.
[22] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat.

Combinatorial sketching for finite programs. In ASPLOS. ACM, 2006.
[23] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster. Path-based

inductive synthesis for program inversion. In PLDI. ACM, 2011.
[24] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification

to program synthesis. In POPL. ACM, 2010.
[25] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of

synchronization. In POPL, 2010.

6784

