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Abstract—An improved clause generalization procedure for
IC3 is presented. Whereas standard generalization extracts a
relatively inductive clause from a single state, called a coun-
terexample to induction (CTI), the new procedure also extracts
such clauses from other states, called counterexamples to gener-
alization (CTG), that interfere with the primary generalization
attempt. The motivation is to enable IC3 to explore states farther
from the error states than are CTIs while remaining property-
focused. CTGs are strong candidates for being farther but still
backward reachable. Significant reductions in the maximum
depth reached by IC3’s priority queue-directed explicit backward
search indicate that this intention is achieved in practice. The ef-
fectiveness of the new procedure is established in two independent
implementations of IC3, which demonstrate an increase of 17 and
27, respectively, in the number of solved HWMCC benchmarks.

I. INTRODUCTION

IC3 [1], [2] is an incremental, inductive model checking
algorithm for invariance properties. It operates in a demand-
driven manner, generating relatively inductive lemmas in re-
sponse to states that interfere with the inductiveness of the
property. Lemma generation proceeds incrementally until an
inductive strengthening is discovered or the lemmas guide the
backward search to a counterexample trace. IC3 is SAT-based
but, in contrast to other SAT-based approaches, poses relatively
easy but numerous SAT queries that arise from considering
single steps of a transition relation. This style of using a SAT
solver keeps its memory footprint small.

One of the key components of IC3 is inductive general-
ization. While IC3 has an element of explicit state model
checking in that it examines individual states, called counterex-
amples to induction (CTIs), inductive generalization makes
it symbolic, allowing it to handle huge state spaces. IC3’s
success on a model thus hinges on its ability to generalize
facts that it discovers from considering specific states.

The effectiveness of generalization depends on the con-
nectivity of a model’s state graph and its encoding. Some
encodings and some models, independent of encoding, coupled
with the overapproximate nature of inductive generalization,
require IC3 to examine more individual states. Consider the
state graph in Figure 1, where 000 is the initial state and 001
is the bad state. This model has two counterexamples to the
inductiveness of the property: 110 and 100, two good states
with a bad successor.

Suppose state 100 is the first CTI that IC3 finds. Since this
state does not have predecessors, its negation is inductive, so
that IC3 concludes it is unreachable. The unreachability of this
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state is a specific fact that IC3 next tries to generalize in order
to prove that other states are unreachable as well. It does so
by attempting to drop as many literals as possible. However,
in this case no literals can be dropped. For example, if 1C3
attempts to drop the third literal, the negation of the resulting
cube 10—, where — indicates a don’t care, is not inductive
because of the predecessor 011 to state 101. If there is a cube
whose negation is inductive and excludes both 100 and 101,
that cube must also include 101’s predecessor, 011. However,
the smallest cube that includes all three states is — — —, which
includes the initial state and whose negation is therefore not
inductive. Similar reasoning shows that IC3 also cannot drop
the first and second literals. Thus the strongest clause that can
be derived through generalization only blocks the CTI itself.
IC3 then has to prove that the other CTI (110) is unreachable
without having learned much from the first CTI.

A state that hinders a generalization attempt (011 in the
example) is called a counterexample to generalization (CTG):
it prevents dropping a literal (the third in the example), i.e.,
generalizing to a larger cube. Despite being itself unreachable,
state 011 causes the inclusion of an initial state into the
cube that covers both it and 10—, which in turn causes
generalization to fail. In this case, it is useful to focus some
effort on the CTG rather than only on the CTI. Since the
negation of the CTG is inductive, IC3 can block it. Then,
with its predecessor blocked, dropping the third literal of 101
succeeds. Indeed, the second literal can be dropped as well,
as all predecessors of the cube 1 — — are blocked. This further
expansion takes care of state 110 as well, ending the analysis.

This example motivates the improved generalization proce-
dure described in this paper. The proposed procedure addresses
CTGs that appear during the generalization of some CTI-
derived relatively inductive clause. CTGs are often deep back-
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Fig. 1. Failure to generalize a clause.
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ward reachable states. Addressing them reduces the depth of
the explicit backward search IC3 performs and allows stronger
inductive generalizations.

The proposed generalization procedure is evaluated within
the implementations of IC3 in the model checkers IImc [3] and
ABC [4]. Both show considerable improvement on Hardware
Model Checking Competition (HWMCC) benchmarks [5].

Preliminaries are in Section II. Section III describes the
proposed generalization procedure. Section IV presents the
results of improved generalization on the HWMCC 2010-2012
benchmark suites. The behavior of IC3 with the improved pro-
cedure is studied in detail in Section V. Section VI discusses
related work. Finally, conclusions are in Section VII.

II. PRELIMINARIES
A. Transition Systems and Induction

Following standard practice, a finite-state system is repre-
sented as a tuple S : (i, z, I(z), T(i,7,T’)) consisting of
primary inputs 4, state variables T, a propositional formula
I(Z) describing the initial configurations of the system, and
a propositional formula T'(i,Z,Z’) describing the transition
relation. Primed state variables T’ represent the next state.

A state of the system is an assignment of Boolean values to
all variables = and is described by a cube over T, which is a
conjunction of literals, each literal a variable or its negation.
An assignment s to all variables of a formula F' either satisfies
the formula, s = F, or falsifies it, s &= F. If s is interpreted
as a state and s = F), then s is called an F'-state. A formula F’
implies another formula G, written F' = G, if every satisfying
assignment of F' satisfies G. The (in)validity of F' = G is
established by querying a SAT solver for the unsatisfiability
of FA-G.

A clause is a disjunction of literals. A subclause d C c is a
clause d whose literals are a subset of c’s literals.

A run of S, sg, s1, S2, . . ., which may be finite or infinite in
length, is a sequence of states such that s |= I and for each
adjacent pair (s;,s;11) in the sequence, 3i.(4, 55,55, ,) = T.
That is, a run is the sequence of assignments in an execution
of the transition system. A state that appears in some run of
the system is reachable.

Checking a safety property of S is reducible to checking
an invariance property [6]. An invariance property P(T), a
propositional formula, asserts that only P-states are reachable.
P is invariant for the system S (that is, S-invariant) if indeed
only P-states are reachable. If P is not invariant, then there
exists a finite counterexample run sg, s1, . . . , g, such that s, £
P. An invariance property P(Z) is inductive if

1) (initiation) every initial state satisfies the property:

I1(z) = P(z); and
2) (consecution) every transition from a P-state leads to a
P-state: P(Z) AT (i,7,7') = P(T').
While an inductive property P is invariant, the converse is
not necessarily true. In this case, it is customary to seek an
inductive strengthening of P, which is a formula F' such that
F' A P is inductive.
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An assertion F' is inductive relative to another assertion G,
possibly containing primed variables, if
1) every initial state satisfies F: I(T) = F(Z); and
2) F satisfies consecution under assumption G:
Gz, T)NF(x)ANT(i,7,7") = F(T').
B. An Overview of IC3

IC3 maintains a sequence of overapproximations F; to sets
of states reachable within ¢ steps, for 0 < ¢ < k, where Fj is
the frontier. Each Fj is a conjunction of the property P with an
initially empty set of clauses. For each k£ > 0, IC3 refines the
F;’s for ¢ < k as needed to prove inductiveness of P relative
to F},. This refinement is property-driven: a counterexample to
the inductiveness (CTI) of the property, which is an F}-state
with a —P-successor, triggers IC3 to derive a clause to block
it. If successful, it applies induction to generalize the clause
to block many more states than the CTI alone. It then adds
the generalized clause to F; for all ¢ < k.

Otherwise, it explores (transitive) predecessors of the CTI
to derive supporting strengthening clauses until the original
CTI can itself be addressed relative to F},. This exploration of
concrete predecessors is guided by a priority queue of pairs
of states and frame indices: (s,¢) represents the obligation
that state s must be inductively excluded relative to F;, i.e.,
proved unreachable for at least ¢ + 1 steps. Obligations are
handled in lowest-index-first order, guaranteeing termination.
IC3 aggressively generalizes from states: once it addresses
(s,i) by finding a clause ¢ C —s that is inductive relative
to some F}, j > 4, IC3 adds obligation (s,j+1) to the queue
if j < k. This aggressive strategy not only facilitates early
discovery of mutually inductive clauses; it also allows IC3 to
find deep counterexamples even when k is small.

When no CTIs remain (for F}), IC3 checks each clause
of each F; to determine if it can be propagated forward, i.e.,
if it has become inductive relative to Fj since its creation
because of subsequent strengthening of F;. In the process,
IC3 determines whether any F; has become an inductive
strengthening of the property, in which case the property is
declared to hold. If not, it increments k£ and “bootstraps” the
new frontier Fj with all clauses that are inductive relative
to Fj_1. This process continues until IC3 finds an inductive
strengthening of the property or finds a counterexample by
following a sequence of CTIs back to an initial state.

IC3 generalizes a clause by using induction to guide the
dropping of literals. IC3’s generalization procedure is de-
scribed in Listing 1. Notice, when reading the pseudocode,
that cubes are passed by reference. The minimum-inductive
clause procedure (MIC) attempts to drop each literal in turn
from ¢, calling down to validate each potential strengthening
of the clause (and, as a side effect, to further strengthen the
clause). If down reports that the literal cannot be dropped, MIC
returns it to the clause.

Given a cube ¢, the down procedure seeks the maximal
inductive subclause of —gq. It returns true if found and false if
no inductive subclause exists. The down procedure effectively
computes an overapproximation of states backward reachable



Listing 1. IC3 generalization procedure.
void MIC(q: cube ref, i: level):
foreach literal [ in gq:
q = q\l
if down(q, i):
q =4

bool down(g: cube

while true
if I#4 —q:
return false
if FEA-qAT = —q':
return true
with (F; A —q)—state s:
q = qUs

ref, 7: level):
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from a given state set. It limits the cost by maintaining sets
of states in the form of a single cube. If upon reaching a
fixpoint, the cube does not include any of the initial states,
the cube represents a set of states that are unreachable in
i + 1 steps. Denoting the cube at iteration j by ¢;, each
fixpoint iteration queries the SAT solver for the existence of an
(F; A —qj)-predecessor to some g;-state. The absence of such
a predecessor indicates the inductiveness of —¢; relative to F;.
Otherwise, there is an (F; A —g;)-state s that is a predecessor
to some gj-state. A new cube ¢;41 is formed by taking the
common literals in ¢; and s (denoted by g; L s). The number
of literals in the cube thus strictly decreases in every iteration,
effectively expanding the set of states in g;.

The MIC procedure can be optimized using the up procedure
[7], which is outside the scope of this paper.

III. ADDRESSING
COUNTEREXAMPLES-TO-GENERALIZATION

A. Presentation of the Procedure

Keeping only the common literals of ¢; and s provides an
overapproximating union over state sets—a join in the cube
lattice. While this operation responds to the need to include
the g;-predecessor s in the state set described by g;41, it also
typically brings in other Fj-states. Therefore, even when all
qo-states are unreachable, down (eventually) fails if, through
overapproximation, it incorporates a reachable state.

State s is called a counterexample to generalization (CTG)
since it is encountered in the context of dropping a literal
(in MIC) in order to generalize a cube. Unlike CTIs, states
brought in as a result of dropping a literal or joining are not
necessarily backward reachable from the error. On one hand,
if s is backward reachable—and it represents a set of deep
backward reachable states—then addressing it could save IC3
from having to explicitly traverse the state graph from the
error state to s. On the other hand, if s is neither backward
nor forward reachable, it could still obstruct generalization:
when it is joined with ¢; to form ¢;41, it could cause the
inclusion of a reachable state. As described so far, IC3 would
never attempt directly to block s since it only generalizes from
backward reachable states. Yet blocking s, rather than joining

with it, could enable finding an inductive subclause, thereby
helping the generalization procedure produce stronger clauses
and potentially shortening the way to a proof.

Listing 2. Proposed generalization procedure.

void MIC(q: cube ref, i: level): 1
MIC(gq, i, 1) 2
3

void MIC(gq: cube ref, i: level, d: recDepth): |4
foreach literal [ in gq: 5
G := g\l 6
if ctgDown(g, i, d): 7

q = q 8

9

bool ctgDown(g: cube ref, ¢: level, 10
d: recDepth): 11

ctgs := 0 12
while true: 13
if I# —q: 14
return false 15

if EA-qAT = —q': 16
return true 17
with (F; A —q)—state s: 18
if d > maxDepth: 19
return false 20

if ctgs <maxCTGs and i >0 and 21
(I=-s) and (Fio1 A—sAT = —s'): 22

ctgs = ctgs+1 23

for j := ¢ to k do: 24

if FjA-sAT # —s': 25

break 26

MIC(s, j—1, d+1) 27
clauses(F;) := clauses(F;)U s 28

else: 29
ctgs = 0 30

q = qUs 31

A generalization procedure that addresses CTGs is pre-
sented in Listing 2. Similarly to down, ctgDown first checks
whether —q is inductive (lines 14—17). However, if it is not
inductive, it does not immediately join ¢ with the discovered
predecessor s. Rather, it attempts to block s at level i by
proving it inductive relative to F;_; (line 22). If this attempt
succeeds, it tries to block it at higher levels (lines 24-26).
It then strengthens the clause at the highest level relative to
which it was found to be inductive by applying MIC (line
27). (Again, notice that cubes are passed by reference, so that
when MIC returns, the cube s may be significantly expanded.)
Having addressed one cause for the non-inductiveness of —g,
ctgDown returns its attention to gq.

To maintain its focus on the main goal of strengthening —g,
ctgDown considers at most maxCTGs CTGs between joins
(line 21). If the limit is exceeded or a CTG is not found to
be inductive, the CTG is joined with ¢ (line 31). New states
brought in as a result of the join present an opportunity to
explore behaviors farther from the error, so ctgDown resets
the number of allowable CTGs to maxCTGs (line 30).

Since ctgDown calls MIC, the version of MIC associated with
ctgDown monitors the recursion depth through its d parameter.
The recursion depth is initialized by the wrapper function
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to 1 (line 2) and updated by the call to MIC from ctgDown
(line 27). At a recursion depth of 1, ctgDown examines CTGs
that are encountered during generalization of a CTI-induced
clause. For larger depths, an encountered CTG is one that
interferes with the generalization of a CTG-induced clause. A
limit, maxDepth, limits the effort spent on addressing CTGs
of CTG-induced clauses. When this limit is exceeded (line
19), CTGs are not examined, and joins are disabled; instead,
ctgDown fails immediately if —g is not inductive (line 20).

B. Discussion

The recycled limit on handling CTGs results in an interest-
ing pattern of state exploration. IC3 itself explores, through its
priority queue, the state space in an explicit manner backward
from the error. Let s be such a state: s can reach the error in
a relatively few number of steps. If IC3 is forced to consider
a predecessor of s, then it is known that the predecessor, too,
can reach the error. In contrast, when MIC is applied to s, the
first step is to drop a literal, enlarging the represented state
set. In ctgDown, up to maxCTGs times, predecessors of the
enlarged cube are then considered as CTGs. They are likely
to be backward reachable; they are also likely to be about as
close to an error as s is!.

Eventually maxCTGs is exhausted, forcing a join. Predeces-
sors to the enlarged cube are then considered as CTGs. These
predecessors are less likely to be backward reachable but more
likely to be “farther” from an error than s. Deep backward
reachable states may be particularly valuable. This cycle can
continue for several iterations, each iteration exploring states
that are increasingly far from the error but at the cost of being
increasingly likely not to be able to reach the error. Further
iterations of dropping literals by MIC add layers of likelihoods
of depth and backward reachability to the state exploration.

Another behavior worth noting is that ctgDown can fail
more softly than down. When down fails, the only gained
information is that the dropped literal is actually required.
In contrast, ctgDown may successfully handle some CTGs
on the way to failing to prove the inductiveness of the given
cube. These CTG-derived lemmas could well prove useful in
addressing the overall model checking problem.

In early attempts at considering CTGs, a scheme that
delayed the handling of CTGs as much as possible was
investigated. Rather than prioritizing the direct handling of
CTGs over joining with them, it aggressively joined and
only handled CTGs upon failure. If —g; failed initiation, the
last-encountered CTG s was addressed directly. Successful
elimination of s would enable the reconsideration of g;_1;
failure would cause the CTG leading from ¢;_» to g;_1 to
be addressed instead, and so on. This version was inferior
to ctgDown, possibly because too much effort was put into
addressing states that were either not actually backward reach-
able or too removed from the original CTI to be relevant to the

I'While there are models for which this assumption is invalid, the fraction
of state bits of a large digital system that changes at each clock cycle is often
less than one tenth. This fraction supports the view that similarity between
states decreases with their distance in the state graph.
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generalization effort. ctgDown explores CTGs in an outwardly
expanding set from the error; the unsuccessful variant explored
CTGs in an inwardly contracting set.

While these explanations assume characteristics of a state
space that need not hold for a given model, they offer an
intuitive motivation for using ctgDown instead of down: with
some trade-offs, it jumps to deep states, complementing IC3’s
conservative top-level behavior. Section V compares, empiri-
cally, the behavior of IC3 with down versus with ctgDown.

IV. RESULTS

In this section IC3 with ctgDown is compared empirically to
existing standard implementations of IC3. The new procedure
was implemented within the IC3 engines in IImc v1.3 (upcom-
ing release) [3] and in ABC vbbOdeac (Apr 3, 2013) [4].
The implementations of ctgDown differ from the pseudocode
of Listing 2 in the following respects:

o In the IImc implementation, the consecution call in line
26 was implemented as a call to down. This change
enables blocking a CTG at a (higher) level at which
its negation is not inductive but contains an inductive
subclause. The experiments are inconclusive with regards
to which version is better.

o In the ABC implementation, the CTG cube is expanded
through ternary simulation before it is checked for induc-
tiveness (line 18) [8].

ABC'’s standard implementation of IC3 does not employ down
in its generalization procedure; in particular, it never joins.
However, the implementation of ctgDown includes joining.
Experiments (whose details are not reported here) show that
a variant of ctgDown in which joining was disabled is inferior
to full ctgDown.

Hence, experiments with IImc compare the effects of ctg-
Down against down, while experiments with ABC compare the
effects of ctgDown against ABC’s generalization procedure.

The following parameter values were used in the experi-
ments for both implementations of ctgDown: maxDepth = 1
and maxCTGs = 32.

The benchmark suite was gathered from the HWMCC
2010-2012 benchmarks—with one exception. Backward-
encoded BEEM models (distinguished by the names
beemxibj) were replaced with their corresponding “func-
tional” versions, also available from [5]. The backward en-
coding of these models involves two features®:

1) Serial exists-step transition relation [9]: this feature adds
“shortcut” transitions to the state graph.

2) Reverse relational encoding: the transition relation is
inverted, and the initial states are swapped with the
bad states. The latch updates are directly from primary
inputs, and a valid bit is added to track whether a
state is backward reachable in the original design.

2Generally, small values for maxCTGs (2-5) gave the best performance.
For higher values, IC3 tended to derive too many clauses.
3See http://fmv.jku.at/aiger/README.beemaigs for details.



IImc has a “reverse” option to invert the transition relation
and exchange the initial and error states. With this option,
IImc typically works better on reverse-encoded models and
worse on forward-encoded ones. A possible explanation is that
a clause is a natural logical means of describing a design
intention; moreover, conjunctions of clauses capture local
arguments. In contrast, disjunctions of cubes—which is what
IC3 produces from the forward perspective on reverse-encoded
designs—do not. With both the functional and the backward
encodings of these models available, one would never choose
to use the backward encoding with IC3. Conclusions drawn
from data based on such benchmarks are misguided.

As a preprocessing step, IImc’s sr simplification tactic was
applied to each benchmark. Then, Ilmc and ABC with and
without the new generalization procedure were run on the
simplified benchmarks only invoking their IC3 engines. No
other features of IImc or ABC—e.g., multi-threading, other
proof engines, or more powerful simplification techniques—
were used. Each benchmark was run for up to 900 seconds.
To account for variability, each benchmark was run five times
with different random seeds. The experiments were performed
on two identical machines with four 2.80 GHz Intel cores
and 9 GBs of memory. The full results can be found at
http://vlsi.colorado.edu/fmcad13.
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Fig. 2. Cactus plot comparing the performance of IImc and ABC with and
without ctgDown.

A comparison between the performance of IC3 with and
without ctgDown is presented in Figures 2—4. Figure 2 shows
cactus plots for IImc and ABC and Figures 3 and 4 show
scatter plots. All the plots use the results of the median runs.

For the easier models, the use of ctgDown does not typically
reduce CPU time (Figures 3 and 4). An exception is the effect
on the run times of failing properties with IImc.

Detailed results by benchmark family are presented in Table
I. Benchmark families with at least 60 benchmarks are listed
separately. The remaining benchmarks are included in the
“other” category. The “Solved” columns show the minimum,
median, and maximum number of solved instances over the
five runs. The “Time” columns reports the median CPU time in
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seconds. Overall, Ilmc and ABC with ctgDown solve 17 and 27
more instances, respectively, than their standard counterparts*.
The same trend was observed when the timeout was increased
to one hour: IImc and ABC solved 17 and 24 more instances
respectively.

V. ANALYSIS OF IC3’S BEHAVIOR

An observed weakness in IC3 with down is that on some
models, it handles long chains of states explicitly rather than
symbolically. ctgDown is intended to address this weakness

4Since the median is used, the sum of the gains for the individual families
is not necessarily equal to the overall gain.
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TABLE 1
DETAILED RESULTS BY BENCHMARK FAMILY.

IImc ABC
Standard With ctgDown Standard With ctgDown
Family Size Solved  Time (s) Solved  Gain  Time (s) Solved  Time (s) Solved  Gain  Time (s)
139 99 98/99/99 2524 99/99/99 0 1230 99/99/99 701 99/99/99 0 754
6s 120 18/19/22 93466 19/21/22 2 94211 19/23/24 88401 27/30/31 7 82941
beem 86 46/48/49 38149 47/50/51 2 39594 50/51/53 34098 54/56/57 5 31191
bob 149 | 121/122/125 25804 120/120/122 (2) 28679 | 122/123/124 24292 122/124/127 1 24083
intel 60 22/23/23 35004 29/30/31 7 31153 23/23/23 35665 25/26/27 3 34249
pdt 350 | 330/331/332 19291  336/336/337 5 15469 | 327/329/329 22162 333/333/333 4 18120
other 280 | 270/271/272 11947  272/274/275 3 11463 | 269/270/271 12591  272/274/274 4 10359
Total 1144 | 910/913/917 226790  924/930/932 17 222460 | 914/916/919 218906  936/943/944 27 201417
by accelerating IC3’s exploration of deep backward reachable 100000
states while still maintaining its characteristic focus on the Worse Performance  +
property. It attempts to achieve this objective by considering Better Performance  x
CTGs. As discussed, CTGs interfere with generalizing from 10000
CTIs and so are worthwhile candidates for blocking with
generalization—although they need not be backward reach-  _
. . . . = 1000
able. This section presents an analysis that, through measuring & X
several metrics, suggests that ctgDown achieves its intended E
behavior. It highlights differences in the behavior of IC3 with  © 100
the standard (down) and improved (ctgDown) generalization §0 “
. . . St
procedures. The data in this section were collected from IImc’s 2 10 g
IC3 runs. Data collected from ABC’s runs also support the < 3@;3% .
observations made. = S
. . . . . X X
Data points for scatter plots in this section are divided 1 A
into two categories: those for which IC3 performs better with
ctgDown, marked by a x in the plots, and those for which IC3 0.1
performs better with down, marked by a +. 0.1 1 10 100 1000 10000 100000
The first experiment compares the average distances of Average CTG Depth

CTGs and CTIs from an error. To measure the depths of
CTGs, exact BDD-based backward reachability is performed;
the resulting “onion rings” can be used to compute the depth
of a given state. Of the CTGs handled in these experiments,
42% were backward reachable. For the depths of the CTIs,
the length of the chain through which a CTI was found
provides an upper bound on its actual backward depth. Figure
5 shows a plot for the average CTI depth against the average
CTG depth for the 294 benchmarks for which the preliminary
BDD-analysis managed to complete within 12 hours. The
plot confirms that CTGs are typically deeper than CTIs—
sometimes by several orders of magnitude. The plot also
indicates that ctgDown helps in the cases where IC3 is forced
to explore deep CTIs.

Next, several metrics of IC3 runs were analyzed to under-
stand when the proposed generalization procedure helps or
harms the performance of IC3. The metrics are the maximum
length of traces from states in the priority queue to an error;
the average size of derived clauses; the convergence level, i.e.,
the level at which a proof or a counterexample is found; and
the average number of clauses derived per level.

Plots comparing IC3 with and without the proposed general-
ization procedure on the four metrics are shown in Figures 6a—
6d. The same information is presented with box-and-whisker
plots in Figure 6e with the ratio of each metric with ctgDown
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Fig. 5. A comparison between the depths of CTIs and CTGs.

to without.

Figure 6a indicates a significant reduction in the depth
of the explicit search performed by IC3 when ctgDown is
used. Statistics indicate an average reduction of 22.3% in the
depth of IC3’s explicit search over all benchmarks. A higher
reduction in the depth of the search often indicates better
performance for IC3. This is confirmed by the non-overlapping
notches in the box plot, which indicate a significant difference
in the median depth ratios between cases with better and those
with worse performance.

The point in the lower right corner of Figure 6a represents
an extreme case in which IC3 with ctgDown proved the
property with very little explicit backward search; with down,
the depth of the priority queue went up to 2049.

Figure 6b points out ctgDown’s ability to produce stronger
CTI-induced clauses. Again, a stronger clause indicates im-
proved performance. On average, ctgDown drops 14% more
literals than down, which is statistically significant as indicated
by the box plot.

A characteristic of the new procedure is that it often in-
creases the convergence level of IC3, as indicated in Figure 6c¢.
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(e) Box plots for the ratios of the metrics shown in parts a—d.

Fig. 6. Analyzing the effects of ctgDown on the IImc runs.
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This potentially undesirable side effect is probably attributable
to the aggressiveness of ctgDown in deriving clauses to block
CTGs—which, again, need not actually be backward reach-
able. In contrast, the standard procedure only derives clauses
in response to truly backward reachable states. A clause that
blocks a forward reachable state is certainly not inductive and
thus cannot appear in the final inductive strengthening. Such
clauses can cause overstrengthening of the F;’s; then IC3 must
propagate to higher levels in order to drop the clauses. Points
to the far right in Figure 5 represent cases in which such
behavior is exhibited. Although CTGs are much deeper than
CTIs, the percentage of handled CTGs that are forward reach-
able is higher than average causing overstrengthening. Also,
as Figure 6¢ shows, a higher convergence level is significantly
correlated with worse performance. Similar observations hold
for ABC with ctgDown as Figure 7 indicates. The box plot in
Figure 6e shows that 75% of the runs in which ctgDown was
beneficial did not increase the convergence level. In contrast,
for 75% of the runs that did not benefit from ctgDown, the
convergence level was higher. On the other hand, statistics
indicate that the increase in convergence level only occurs
for passing properties; for 75% of the failing properties, the
convergence level isn’t affected.

Points on the y-axis in Figure 6¢ correspond to benchmarks
for which IC3 with down converges at level 1 while IC3
with ctgDown converges at higher levels. A characteristic
behavior of IC3 with down is that clauses generated at level
1 are globally inductive until IC3 is forced to step back to
level 0. Subsequently, generated clauses have the support of
clauses generated relative to F{y and thus need not be globally
inductive. Aggressive handling of CTGs interferes with this
initial behavior. A variant implementation was tried in which
CTG handling was disabled until IC3 was forced to step back
to level 0. IC3 with this variant ctgDown then converged
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at level 1 on these benchmarks; however, the performance
difference across the benchmark suite was insignificant.

Finally, Figure 6d and the corresponding box plot indicate
a clear correlation between the performance difference and
the average number of clauses derived per level. An excessive
number of clauses derived to block CTGs is often accompanied
by longer runtimes.

VI. RELATED WORK

Several improvements orthogonal to the generalization
method presented here have been described for IC3. Ternary
simulation [8] and SAT-based [10] methods of enlarging CTI
cubes significantly improve running time. A scheme for inte-
grating lazy abstraction with IC3 has also been developed [11].

VII. CONCLUSION

This paper presents an improved generalization procedure
for IC3. Generalization is a key operation that lifts IC3 from
explicit to symbolic analysis. Addressing states that impede
generalization allows IC3 to deal with deep counterexamples
to induction with less effort. The proposed procedure has
been shown to significantly improve the performance of two
independent implementations of IC3. While ctgDown achieves
the objective of decreasing the depth of the explicit search, the
impact on convergence level is mixed. Ongoing investigations
seek to explain the interplay between the strength of lemmas,
the convergence level, and the overall performance of IC3.
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