
COVER 4 COVER 1COVER 4 COVER 1

FMCAD 2013 SPONSORS
FMCAD 2013

Formal Methods in Computer–Aided Design
Portland, OR, USA, 20–23 October 2013

Edited by Barbara Jobstmann and Sandip Ray

In cooperation with
ACM Special Interest Group on Programming Languages

ACM Special Interest Group on Software Engineering

Technical co-sponshorship of IEEE Council on Electronic
Design Automation

FMCAD 2013 SPONSORS
FMCAD 2013 SPONSORS

54418_IEEEFMCAD_COVER_bo.indd 1 10/9/2013 1:37:46 PM

Table of Contents

Preface .. iv
Barbara Jobstmann, Sandip Ray

Conference Organization ... v

Tutorials

Syntax-Guided Synthesis ... 1
Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, Sanjit A. Seshia,
Rishabh Singh, Armando Solar-Lezama, Emina Torlak, Abhishek Udupa

Network Programming in Frenetic .. 9
Nate Foster, Arjun Guha, Mark Reitblatt, Cole Schlesinger

Firmware Validation: Challenges and Opportunities... 11
Jim Grundy

Secure Programs via Game-based Synthesis ... 12
Somesh Jha, Tom Reps, Bill Harris

Keynotes and Special Events

Using Process Modeling and Analysis Techniques to Reduce Errors in Healthcare ... 14
Lori A. Clarke

Static Verification Based Signoff - A Key Enabler for Managing Verification Complexity in the Modern SoC 15
Pranav Ashar

Student Forum ... 16
Thomas Wahl

Panel .. 17
Panagiotis Manolios

Session 1: Synthesis

Distributed Synthesis for LTL Fragments ... 18
Krishnendu Chatterjee, Thomas Henzinger, Jan Otop and Andreas Pavlogiannis

Counter-Strategy Guided Refinement of GR(1) Temporal Logic Specifications .. 26
Rajeev Alur, Salar Moarref and Ufuk Topcu

Efficient Handling of Obligation Constraints in Synthesis from Omega-Regular Specifications 34
Saqib Sohail and Fabio Somenzi

i

On the Feasibility of Automation for Bandwidth Allocation Problems in Data Centers ... 42
Yifei Yuan, Anduo Wang, Rajeev Alur and Boon Loo

Session 2: Decision Procedure Enhancements

Computing prime implicants ... 46
David Deharbe, Pascal Fontaine, Daniel Le Berre and Bertrand Mazure

A Circuit Approach to LTL Model Checking .. 53
Niklas Een, Baruch Sterin and Koen Claessen

Invariants for Finite Instances and Beyond ... 61
Sylvain Conchon, Amit Goel, Sava Krstic, Alain Mebsout and Fatiha Zaidi

Session 3: Interpolation, Quantifier Elimination, Synthesis

Exploring Interpolants ... 69
Philipp Ruemmer and Pavle Subotic

Synthesizing Multiple Boolean Functions using Interpolation on a Single Proof ... 77
Georg Hofferek, Ashutosh Gupta, Bettina Könighofer, Jie-Hong Roland Jiang and Roderick Bloem

Quantifier Elimination via Clause Redundancy .. 85
Eugene Goldberg and Panagiotis Manolios

Interpolation for Synthesis on Unbounded Domains ... 93
Viktor Kuncak and Régis Blanc

Session 4: Verification of Digital, Hybrid, and Analog Systems

Relational STE and Theorem Proving for Formal Verification of Industrial Circuit Designs 97
John O'Leary, Roope Kaivola and Tom Melham

Satisfiability Modulo ODEs .. 105
Sicun Gao, Soonho Kong and Edmund Clarke

Verifying Global Convergence for a Digital Phase-Locked Loop ... 113
Jijie Wei, Mark Greenstreet, Yan Peng and Ge Yu

Session 5: Embedded Software Verification

Formal Co-Validation of Low-Level Hardware/Software Interfaces .. 121
Alex Horn, Michael Tautschnig, Celina Val, Lihao Liang, Tom Melham, Jim Grundy and Daniel Kroening

An SMT Based Method for Optimizing Arithmetic Computations in Embedded Software Code 129
Hassan Eldib and Chao Wang

Verifying Periodic Programs with Priority Inheritance Locks .. 137
Sagar Chaki, Arie Gurfinkel and Ofer Strichman

ii

Abstractions for Model Checking SDN Controllers .. 145
Divjyot Sethi, Srinivas Narayana and Sharad Malik

Session 6: IC3 and Debugging

Efficient Modular SAT Solving for IC3 .. 149
Sam Bayless, Celina Val, Thomas Ball, Holger Hoos and Alan Hu

Better Generalization in IC3 .. 157
Zyad Hassan, Aaron Bradley and Fabio Somenzi

Parameter Synthesis with IC3 .. 165
Alessandro Cimatti, Alberto Griggio, Sergio Mover and Stefano Tonetta

Generalized Counter-Examples to Liveness Properties ... 169
Gadi Aleksandrowicz, Jason Baumgartner, Alexander Ivrii and Ziv Nevo

Session 7: SAT/SMT

The Design and Implementation of the Model Constructing Satisfiability Calculus ... 173
Dejan Jovanović, Clark Barrett and Leonardo De Moura

Trimming while Checking Clausal Proofs ... 181
Marijn Heule, Warren Hunt and Nathan Wetzler

Sum of Infeasibility Simplex for SMT .. 189
Timothy King, Clark Barrett and Bruno Dutertre

Efficient MUS Extraction with Resolution .. 197
Alexander Nadel, Vadim Ryvchin and Ofer Strichman

Session 8: Software Verification

Parameterized Model Checking of Fault-tolerant Distributed Algorithms by Abstraction 201
Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith and Josef Widder

Verifying Multithreaded Software with Impact ... 210
Björn Wachter, Daniel Kroening and Joel Ouaknine

Proving Termination of Imperative Programs Using Max-SMT ... 218
Daniel Larraz, Albert Oliveras, Enric Rodríguez Carbonell and Albert Rubio

On the Concept of Variable Roles and its Use in Software Analysis (Short Paper) .. 226
Yulia Demyanova, Helmut Veith and Florian Zuleger

Author index .. 213

iii

Preface

The International Conference on Formal Methods in Computer-Aided Design, FMCAD, is a series of conferences on the
theory and application of formal methods to the computer-aided design and verification of hardware and systems. The thirteenth
conference in the series, FMCAD 2013, was held in Portland, OR, USA, October 20-23.

In the past, FMCAD took place in the United States on even years and its sister conference CHARME was held in Europe
on odd years. In 2006, these two conferences merged to form an annual conference with a unified international community. The
merged conference inherited the name FMCAD, and is now held annually. FMCAD provides a leading forum to researchers
in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools
for reasoning formally about computing systems. FMCAD covers the spectrum of formal aspects of computer-aided system
design, including verification, specification, synthesis, and testing. This year, the conference received in-cooperation status with
ACM under the Special Interest Group on Programming Languages and the Special Interest Group on Software Engineering.
It also received technical sponsorship from the IEEE Council on Electronic Design Automation. Three additional events were
co-located with the conference this year: (1) MEMOCODE 2013, the Eleventh ACM-IEEE International Conference on Formal
Methods and Models of Codesign, (2) DIFTS 2013, Workshop on Design and Implementation of Formal Tools and Systems,
and (3) the Hardware Model Checking Competition (HWMCC). The 2013 FMCAD Proceedings are anticipated to be available
through the ACM Digital Library, the IEEE Xplore Digital Library, or as a free download from the FMCAD Website.

FMCAD 2013 received 79 submissions (after discounting for withdrawn submissions). Each submission was reviewed
by at least four reviewers, and some submissions received five or six reviews. After a long decision process that involved
often vigorous discussions by Program Committee members and subreviewers, 30 submissions were eventually selected
for presentation at the conference — 23 as regular papers and 7 as short papers. The accepted papers covered topics
ranging from model checking and solver technology to design for verification. Moreover, they addressed a broad spectrum
of abstraction levels, including analog and mixed-signal, low-level software/hardware interfaces, networking systems, and
synchronous hardware designs and software programs.

A novelty of this year’s conference is the Student Forum, intended specifically to attract students by providing them with a
platform for introducing their research to the FMCAD community and obtain feedback. The forum included short presentations
and a poster by a student author of each accepted submission.

Besides reviewed submissions, the program includes two keynote presentations, four tutorials, and a panel. Pranav Ashar,
Chief Technology Officer of Real Intent, gave a keynote titled “Static Verification Based Signoff — A Key Enabler for
Managing Verification Complexity in the Modern SoC”. Lori Clarke, Professor at the University of Massachusetts, gave a
keynote titled “Using Process Modeling and Analysis Techniques to Reduce Errors in Healthcare”. The tutorials were hosted
jointly by FMCAD and MEMOCODE. Rajeev Alur, Professor at University of Pennsylvania, gave a tutorial on Computer
Augmented Program Engineering. Jim Grundy, Research Scientist at Intel Corporation, discussed challenges and opportunities
in firmware validation. Somesh Jha and Tom Reps, Professors at the University of Wisconsin-Madison, together with their
graduate student Bill Harris, spoke on security and techniques based on game-theory for enforcing security policies. Nate
Foster, Assistant Professor at Cornell University and Arjun Guha, Assistant Professor at University of Massachusetts, Amherst,
together with Mark Reitblatt, Ph.D. student at Cornell University, and Cole Schlesinger, Ph.D. Student at Princeton University,
gave a tutorial on software-defined networking. The panel, moderated by Panagiotis Manolios, discussed and debated on the
role and importance of formal methods in computer science education, and on approaches to integrate the subject in graduate
and undergraduate curricula.

We sincerely thank our industrial sponsors for their financial support of FMCAD 2013: Atrenta, Galois, IBM Corporation,
Intel Corporation, Jasper Design Automation, Mentor Graphics, Microsoft Corporation, NEC Labs America, NVIDIA, OneSpin
Solutions, Oski Technology, Real Intent, Synopsys, and Xpliant. We thank FMCAD Inc. for continuous support of the conference
series. We owe a large debt to this year’s organizing committee, composed of Joe Leslie-Hurd (Local Arrangements), Julien
Schmaltz (Publication), Chao Yan (Publicity), Thomas Wahl (Student Forum), Malay Ganai (Tutorials), and Shilpi Goel
(Webmaster). Special thanks are due to Vigyan Singhal for his untiring efforts to secure industrial sponsorship on behalf
of FMCAD. We also thank the members of the FMCAD Steering Committee Jason Baumgartner, Armin Biere, Aarti Gupta,
Warren Hunt, and Panagiotis Manolios, for their kind advice during the conference preparation process. Big thanks to all
members of the Program Committee who, with the help of many subreviewers, did a stellar job not only of selecting this
year’s exciting program, but also of providing feedback to the authors to help them improve their papers for publication. Last
but not least, the conference would not be possible without all the authors who submitted papers and all the attendees.

Barbara Jobstmann and Sandip Ray
(FMCAD 2013 Co-Chairs)

viv

Conference Organization

General and Program Co-chairs
Barbara Jobstmann, EPFL, Jasper Design Automation, and CNRS-Verimag
Sandip Ray, Intel Corporation

Local Arrangements Chair
Joe Leslie-Hurd, Intel Corporation

Publications Chair
Julien Schmaltz, Open University of The Netherlands

Tutorial Chair
Malay Ganai, NEC Laboratories America

Student Forum Chair
Thomas Wahl, Northeastern University

Publicity Chair
Chao Yan, Intel Corporation

Webmaster
Shilpi Goel, The University of Texas at Austin

Steering Committee
Jason Baumgartner, IBM
Armin Biere, Johannes Kepler University in Linz
Aarti Gupta, NEC Labs America
Warren A. Hunt, Jr., The University of Texas at Austin
Panagiotis Manolios, Northeastern University

Program Committee
Jason Baumgartner, IBM Corporation
Dirk Beyer, University of Passau
Armin Biere, Johannes Kepler University
Per Bjesse, Synopsys
Nikolaj Bjorner, Microsoft Research
Roderick Bloem, TU Graz
Gianpiero Cabodi, Politecnico di Torino
Hana Chockler, IBM Research
Alessandro Cimatti, FBK-irst
Koen Claessen, Chalmers University of Technology
Malay Ganai, NEC Labs America
Steven German, IBM
Ganesh Gopalakrishnan, University of Utah
Alberto Griggio, FBK-irst
Ziyad Hanna, Jasper Design Automation
Keijo Heljanko, Aalto University
Alan Hu, University of British Columbia

vi v

William Hung, Synopsys
Warren Hunt, University of Texas
Susmit Jha, Strategic CAD Lab, Intel
Shuvendu Lahiri, Microsoft Research
Panagiotis Manolios, Northeastern University
Tom Melham, University of Oxford
John O’Leary, Intel Corporation
Lee Pike, Galois
Ruzica Piskac, Yale University
Philipp Ruemmer, Uppsala University
Cesar Sanchez, IMDEA Software Institute
Julien Schmaltz, Open University of The Netherlands
Natasha Sharygina, University of Lugano
Anna Slobodova, Centaur Technology
Niklas Sorensson, Mentor Graphics
Daryl Stewart, ARM
Thomas Wahl, Northeastern University
Georg Weissenbacher, Vienna University of Technology

External Reviewers
Karam Abdelkader, Francesco Alberti, Gadi Aleksandrowicz, Leonardo Alt, Gogul Balakrishnan, Samuel Bayless, Aaron
Bradley, Pavol Cerny, Harsh Raju Chamarthi, Xin Chen, Jason Dagit, Abhijit Davare, Iavor Diatchki, Bruno Dutertre, Rüdiger
Ehlers, Pontus Ekberg, Emanuelle Encrenaz, Grigory Fedyukovich, Bernd Finkbeiner, Goran Frehse, Khalil Ghorbal, Shilpi
Goel, Eugene Goldberg, Mark Greenstreet, Jim Grundy, Frédéric Haziza, Joe Hendrix, Marijn Heule, Pat Hickey, Håkan
Hjort, Georg Hofferek, Andreas Holzer, Antti Hyvärinen, Alexander Ivrii, Swen Jacobs, Mitesh Jaiin, Himanshu Jain, Mitesh
Jain, Sumit Kumar Jha, Kevin Jones, Sebastiaan Joosten, Kari Kähkönen, Roope Kaivola, Matt Kaufmann, Ayrat Khalimov,
Zurab Khasidashvili, Johannes Kloos, Alfred Koelbl, Bettina Könighofer, Robert Könighofer, Laura Kovacs, Tuomas Kuismin,
Armando Lezama, Wenchao Li, Scott Little, Peizun Liu, Stefan Löwe, Carmelo Loiacono, Oded Margalit, Johan Mårtensson,
Sergio Mover, Filip Nikšić, Xiaoyue Pan, Vasilis Papavasileiou, Paolo Pasini, Flavio M. de Paula, Denis Poitrenaud, Corneliu
Popeea, Sylvie Putot, Stefano Quer, Jaideep Ramachandran, John Regehr, Heinz Riener, Simone Fulvio Rollini, Sitvanit
Ruah, Leonid Ryzhyk, Indranil Saha, Jun Sawada, Bas Schaafsma, Martina Seidl, Ben Selfridge, Antti Tapani Siirtola, Radu
Siminiceanu, Rohit Sinha, Andreas Stahlbauer, Baruch Sterin, Pavle Subotic, Philippe Suter, Sol Swords, Aaron Tomb, Celina
G. Val, Danilo Vendraminetto, Freek Verbeek, Yakir Vizel, Chao Wang, Markus Wedler, Philipp Wendler, Nathan Wetzler, Josef
Widder, Siert Wieringa, Simon Winwood, Guy Wolfovitz, Jessie Xu, Karen Yorav, Andy Yu, Jun Yuan, Aleksandar Zeljić, Yan
Zhang

viivi

Syntax-Guided Synthesis

Rajeev Alur† Rastislav Bodik‡ Garvit Juniwal‡ Milo M. K. Martin† Mukund Raghothaman†

Sanjit A. Seshia‡ Rishabh Singh] Armando Solar-Lezama] Emina Torlak‡ Abhishek Udupa†
†University of Pennsylvania ‡University of California, Berkeley]Massachusetts Institute of Technology

Abstract—The classical formulation of the program-synthesis
problem is to find a program that meets a correctness specifica-
tion given as a logical formula. Recent work on program synthesis
and program optimization illustrates many potential benefits
of allowing the user to supplement the logical specification
with a syntactic template that constrains the space of allowed
implementations. Our goal is to identify the core computational
problem common to these proposals in a logical framework. The
input to the syntax-guided synthesis problem (SyGuS) consists
of a background theory, a semantic correctness specification
for the desired program given by a logical formula, and a
syntactic set of candidate implementations given by a grammar.
The computational problem then is to find an implementation
from the set of candidate expressions so that it satisfies the
specification in the given theory. We describe three different
instantiations of the counter-example-guided-inductive-synthesis
(CEGIS) strategy for solving the synthesis problem, report on
prototype implementations, and present experimental results on
an initial set of benchmarks.

I. INTRODUCTION

In program verification, we want to check if a program
satisfies its logical specification. Contemporary verification
tools vary widely in terms of source languages, verification
methodology, and the degree of automation, but they all
rely on repeatedly invoking an SMT (Satisfiability Modulo
Theories) solver. An SMT solver determines the truth of
a given logical formula built from typed variables, logical
connectives, and typical operations such as arithmetic and
array accesses (see [1], [2]). Despite the computational in-
tractability of these problems, modern SMT solvers are ca-
pable of solving instances with thousands of variables due
to sustained innovations in core algorithms, data structures,
decision heuristics, and performance tuning by exploiting
the architecture of contemporary processors. A key driving
force for this progress has been the standardization of a
common interchange format for benchmarks called SMT-LIB
(see smt-lib.org) and the associated annual competition (see
smtcomp.org). These efforts have proved to be instrumental
in creating a virtuous feedback loop between developers and
users of SMT solvers: with the availability of open-source
and highly optimized solvers, researchers from verification
and other application domains find it beneficial to translate
their problems into the common format instead of attempting
to develop their own customized tools from scratch, and the
limitations of the current SMT tools are constantly exposed by
the ever growing repository of different kinds of benchmarks,
thereby spurring greater innovation for improving the solvers.

In program synthesis, we wish to automatically synthesize
an implementation for the program that satisfies the given
correctness specification. A mature synthesis technology has

the potential of even greater impact on software quality than
program verification. Classically, program synthesis is viewed
as a problem in deductive theorem proving: a program is
derived from the constructive proof of the theorem that states
that for all inputs, there exists an output, such that the desired
correctness specification holds (see [3]). Our work is motivated
by a recent trend in synthesis in which the programmer, in
addition to the correctness specification, provides a syntactic
template for the desired program. For instance, in the pro-
gramming approach advocated by the SKETCH system, a pro-
grammer writes a partial program with incomplete details, and
the synthesizer fills in the missing details using user-specified
assertions as the correctness specification [4]. We call such
an approach to synthesis syntax-guided synthesis (SyGuS).
Besides program sketching, a number of recent efforts such as
synthesis of loop-free programs [5], synthesis of Excel macros
from examples [6], program de-obfuscation [7], synthesis of
protocols from the skeleton and example behaviors [8], synthe-
sis of loop-bodies from pre/post conditions [9], integration of
constraint solvers in programming environments for program
completion [10], and super-optimization by finding equivalent
shorter loop bodies [11], all are arguably instances of syntax-
guided synthesis. Also related are techniques for automatic
generation of invariants using templates and by learning [12]–
[14], and recent work on solving quantified Horn clauses [15].

Existing formalization of the SMT problem and the in-
terchange format does not provide a suitable abstraction for
capturing the syntactic guidance. The computational engines
used by the various synthesis projects mentioned above rely
on a small set of algorithmic ideas, but have evolved inde-
pendently with no mechanism for comparison, benchmarking,
and sharing of back-ends. The main contribution of this paper
is to define the syntax-guided synthesis (SyGuS) problem in
a manner that (1) captures the computational essence of these
recent proposals and (2) is based on more canonical formal
frameworks such as logics and grammars instead of features
of specific programming languages. In our formalization, the
correctness specification of the function f to be synthesized
is given as a logical formula ϕ that uses symbols from a
background theory T . The syntactic space of possible im-
plementations for f is described as a set L of expressions
built from the theory T , and this set is specified using a
grammar. The syntax-guided synthesis problem then is to find
an implementation expression e ∈ L such that the formula
ϕ[f/e] is valid in the theory T . To illustrate an application of
the SyGuS-problem, suppose we want to find a completion of
a partial program with holes so as to satisfy given assertions.
A typical SyGuS-encoding of this task will translate the

viii 1ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

concrete parts of the partial program and the assertions into
the specification formula ϕ, while the holes will be represented
with the unknown functions to be synthesized, and the space
of expressions that can substitute the holes will be captured
by the grammar.

Compared to the classical formulation of the synthesis
problem that involves only the correctness specification, the
syntax-guided version has many potential benefits. First, the
user can use the candidate set L to limit the search-space for
potential implementations, and this has significant computa-
tional benefits for solving the synthesis problem. Second, this
approach gives the programmer the flexibility to express the
desired artifact using a combination of syntactic and semantic
constraints. Such forms of multi-modal specifications have the
potential to make programming more intuitive. Third, the set
L can be used to constrain the space of implementations for
the purpose of performance optimizations. For example, to
optimize the computation of the product of two two-by-two
matrices, we can limit the search space to implementations that
use only 7 multiplication operations, and such a restriction can
be expressed only syntactically. Fourth, because the synthesis
problem boils down to finding a correct expression from the
syntactic space of expressions, this search problem lends itself
to machine learning and inductive inference as discussed in
Section III. Finally, it is worth noting that the statement “there
exists an expression e in the language generated by a context-
free grammar G such that the formula ϕ[f/e] is valid in a
theory T ” cannot be translated to determining the truth of a
formula in the theory T , even with additional quantifiers.

The rest of the paper is organized in the following manner.
In Section II, we formalize the core problem of syntax-
guided synthesis with examples. In Section III, we discuss
a generic architecture for solving the proposed problem us-
ing the iterative counter-example guided inductive synthesis
strategy [16] that combines a learning algorithm with a ver-
ification oracle. For the learning algorithm, we show how
three techniques from recent literature can be adapted for our
purpose: the enumerative technique generates the candidate
expressions of increasing size relying on the input-output
examples for pruning; the symbolic technique encodes parse
trees of increasing size using variables and constraints, and
it calls an SMT solver to find a parse tree consistent with
all the examples encountered so far; and the stochastic search
uniformly samples the set L of expressions as a starting point,
and then executes (probabilistic) traversal of the graph where
two expressions are neighbors if one can be obtained from
the other by a single edit operation on the parse tree. We
report on a prototype implementation of these three algorithms,
and evaluate their performance on a number of benchmarks in
Section IV.

II. PROBLEM FORMULATION

At a high level, the functional synthesis problem consists
of finding a function f such that some logical formula ϕ
capturing the correctness of f is valid. In syntax-guided
synthesis, the synthesis problem is constrained in three ways:
(1) the logical symbols and their interpretation are restricted
to a background theory, (2) the specification ϕ is limited

to a first order formula in the background theory with all
its variables universally quantified, and (3) the universe of
possible functions f is restricted to syntactic expressions
described by a grammar. We now elaborate on each of these
points.

Background Theory: The syntax for writing specifications is
the same as classical typed first-order logic, but the formulas
are evaluated with respect to a specified background theory
T . The theory gives the vocabulary used for constructing
formulas, the set of values for each type, and the interpretation
for each of the function and relation (predicate) symbols in
the vocabulary. We are mainly interested in theories T for
which well-understood decision procedures are available for
determining satisfaction modulo T (see [1] for a survey).
A typical example is the theory of linear integer arithmetic
(LIA) where each variable is either a boolean or an integer,
and the vocabulary consists of boolean and integer constants,
standard boolean connectives, addition (+), comparison (≤),
and conditionals (ITE). Note that the background theory can
be a combination of logical theories, for instance, LIA and the
theory of uninterpreted functions with equality.

Correctness Specification: For the function f to be syn-
thesized, we are given the type of f and a formula ϕ as
its correctness specification. The formula ϕ is a Boolean
combination of predicates from the background theory, in-
volving universally quantified free variables, symbols from the
background theory, and the function symbol f , all used in a
type-consistent manner.

Example 1: Assuming the background theory is LIA, con-
sider the specification of a function f of type int× int 7→ int:

ϕ1 : f(x, y) = f(y, x) ∧ f(x, y) ≥ x.

The free variables in the specification are assumed to be
universally quantified: a given function f satisfies the above
specification if the quantified formula ∀x, y. ϕ1 holds, or
equivalently, if the formula ϕ1 is valid.

Set of Candidate Expressions: In order to make the synthe-
sis problem tractable, the “syntax-guided” version allows the
user to impose structural (syntactic) constraints on the set of
possible functions f . The structural constraints are imposed
by restricting f to the set L of functions defined by a given
context-free grammar GL. Each expression in L has the same
type as that of the function f , and uses the symbols in the
background theory T along with the variables corresponding
to the formal parameters of f .

Example 2: Suppose the background theory is LIA, and the
type of the function f is int× int 7→ int. We can restrict the set
of expressions f(x, y) to be linear expressions of the inputs
by restricting the body of the function to expressions in the
set L1 described by the grammar below:

LinExp := x | y | Const | LinExp + LinExp

Alternatively, we can restrict f(x, y) to conditional expres-
sions with no addition by restricting the body terms from the
set L2 described by:

Term := x | y | Const | ITE(Cond,Term,Term)

Cond := Term ≤ Term | Cond ∧ Cond | ¬Cond | (Cond)

ix2

Grammars can be conveniently used to express a wide range
of constraints, and in particular, to bound the depth and/or the
size of the desired expression.

SyGuS Problem Definition: Informally, given the correct-
ness specification ϕ and the set L of candidates, we want
to find an expression e ∈ L such that if we use e as
an implementation of the function f , the specification ϕ is
valid. Let us denote the result of replacing each occurrence
of the function symbol f in ϕ with the expression e by
ϕ[f/e]. Note that we need to take care of binding of input
values during such a substitution: if f has two inputs that the
expressions in L refer to by the variable names x and y, then
the occurrence f(e1, e2) in the formula ϕ must be replaced
with the expression e[x/e1, y/e2] obtained by replacing x and
y in e by the expressions e1 and e2, respectively. Now we can
define the syntax-guided synthesis problem, SyGuS for short,
precisely:

Given a background theory T , a typed function
symbol f , a formula ϕ over the vocabulary of T
along with f , and a set L of expressions over the
vocabulary of T and of the same type as f , find an
expression e ∈ L such that the formula ϕ[f/e] is
valid modulo T .

Example 3: For the specification ϕ1 presented earlier, if the
set of allowed implementations is L1 as shown before, there
is no solution to the synthesis problem. On the other hand, if
the set of allowed implementations is L2, a possible solution
is the conditional if-then-else expression ITE(x ≥ y, x, y).

In some special cases, it is possible to reduce the deci-
sion problem for syntax guided synthesis to the problem of
deciding formulas in the background theory using additional
quantification. For example, every expression in the set L1 is
equivalent to ax+by+c, for integer constants a, b, c. If ϕ is the
correctness specification, then deciding whether there exists an
implementation for f in the set L1 corresponds to checking
whether the formula ∃ a, b, c. ∀X.ϕ[f/ax + by + c] holds,
where X is the set of all free variables in ϕ. This reduction
was possible for L1 because the set of all expressions in L1

can be represented by a single parameterized expression in the
original theory. However, the grammar may permit expressions
of arbitrary depth which may not be representable in this way,
as in the case of L2.

Synthesis of Multiple Functions: A general synthesis prob-
lem can involve more than one unknown function. In principle,
adding support for problems with more than one unknown
function is merely a matter of syntactic sugar. For exam-
ple, suppose we want to synthesize functions f1(x1) and
f2(x2), with corresponding candidate expressions given by
grammars G1 and G2, with start non-terminals S1 and S2,
respectively. Both functions can be encoded with a single
function f12(id, x1, x2). The set of candidate expressions is
described by the grammar that contains the rules of G1 and
G2 along with a new production S := ITE(id = 0, S1, S2),
with the new start non-terminal S. Then, every occurrence of
f1(x1) in the specification can be replaced with f12(0, x1, ∗)
and every call to f2(x2) can be replaced with f12(1, ∗, x2).
Although adding support for multiple functions does not

fundamentally increase the expressiveness of the notation,
it does offer significant convenience in encoding real-world
synthesis problems.

Let Expressions in Grammar Productions: The SMT-LIB
interchange format for specifying constraints allows the use of
let expressions as part of the formulas, and this is supported by
our language also: (let [var = e1] e2). While let-expressions
in a specification can be desugared, the same does not hold
when they are used in a grammar. As an example, consider
the grammar below for the set of candidate expressions for
the function f(x, y):

T := (let [z = U] z + z)

U := x | y | Const | U + U | U ∗ U | (U)

The top-level expression specified by this grammar is the
sum of two identical subexpressions built using arithmetic
operators, and such a structure cannot be specified using a
standard context-free grammar. In the example above, every
let introduced by the grammar uses the same variable name. If
the application of let-expressions are nested in the derivation
tree, the standard rules for shadowing of variable definitions
determine which definition corresponds to which use of the
variable.

SYNTH-LIB Input Format: To specify the input to the
SyGuS problem, we have developed an interchange format,
called SYNTH-LIB, based on the syntax of SMT-LIB2—the
input format accepted by the SMT solvers (see smt-lib.org).
The input for the SyGuS problem to synthesize the function f
with the specification ϕ1 in the theory LIA, with the grammar
for the languages L1 is encoded in SYNTH-LIB as:

(set-logic LIA)
(synth-fun f ((x Int) (y Int)) Int

((Start Int (x y
(Constant Int)
(+ Start Start)))))

(declare-var a Int)
(declare-var b Int)
(constraint (= (f a b) (f b a)))
(constraint (>= (f a b) a))
(check-synth)

Optimality Criterion: The answer to our synthesis problem
need not be unique: there may be two expressions e1 and e2 in
the set L of allowed expressions such that both implementa-
tions satisfy the correctness specification ϕ. Ideally, we would
like to associate a cost with each expression, and consider the
problem of optimal synthesis which requires the synthesis tool
to return the expression with the least cost among the correct
ones. A natural cost metric is the size of the expression. In
presence of let-expressions, the size directly corresponds to the
number of instructions in the corresponding straight-line code,
and thus such a metric can be used effectively for applications
such as super-optimization.

III. INDUCTIVE SYNTHESIS

Algorithmic approaches to program synthesis range over a
wide spectrum, from deductive synthesis to inductive synthesis.
In deductive program synthesis (e.g., [3]), a program is synthe-
sized by constructively proving a theorem, employing logical
inference and constraint solving. On the other hand, inductive

x 3

synthesis [17]–[19] seeks to find a program matching a set
of input-output examples. It is thus an instance of learning
from examples, also termed as inductive inference or machine
learning [20], [21]. Many current approaches to synthesis
blend induction and deduction [22]; syntax guidance is usually
a key ingredient in these approaches.

Inductive synthesizers generalize from examples by search-
ing a restricted space of programs. In machine learning, this
restricted space is called the concept class, and each element
of that space is often called a candidate concept. The concept
class is usually specified syntactically. Inductive learning is
thus a natural fit for the syntax-guided synthesis problem
introduced in this paper: the concept class is simply the set L
of permissible expressions.

A. Synthesis via Active Learning

A common approach to inductive synthesis is to formulate
the overall synthesis problem as one of active learning using
a query-based model. Active learning is a special case of
machine learning in which the learning algorithm can control
the selection of examples that it generalizes from and can
query one or more oracles to obtain both examples as well as
labels for those examples. In our setting, we can consider the
labels to be binary: positive or negative. A positive example
is simply an interpretation to f in the background theory
T that is consistent with the specification ϕ; i.e., it is a
valuation to the arguments of the function symbol f along with
the corresponding valuation of f that satisfies ϕ. A negative
example is any interpretation of f that is not consistent with ϕ.
We refer the reader to a paper by Angluin [23] for an overview
of various models for query-based active learning.

In program synthesis via active learning, the query oracles
are often implemented using deductive procedures such as
model checkers or satisfiability solvers. Thus, the overall
synthesis algorithm usually comprises a top-level inductive
learning algorithm that invokes deductive procedures (query
oracles); e.g., in our problem setting, it is intuitive, although
not required, to implement an oracle using an SMT solver for
the theory T . Even though this approach combines induction
and deduction, it is usually referred to in the literature simply
as “inductive synthesis.” We will continue to use this termi-
nology in the present paper.

Consider the syntax-guided synthesis problem of Sec. II.
Given the tuple (T , f , ϕ, L), there are two important choices
one must make to fix an inductive synthesis algorithm: (1)
search strategy: How should one search the concept class L?
and (2) example selection strategy: Which examples do we
learn from?

B. Counterexample-Guided Inductive Synthesis

Counterexample-guided inductive synthesis (CEGIS) [16],
[24] shown in Figure 1 is perhaps the most popular approach
to inductive synthesis today. CEGIS has close connections
to algorithmic debugging using counterexamples [19] and
counterexample-guided abstraction refinement (CEGAR) [25].
This connection is no surprise, because both debugging and
abstraction-refinement involve synthesis steps: synthesizing a

Candidate
Concept

Counterexample

Learning SucceedsLearning Fails

“Concept Class”, Initial Examples

Fig. 1. Counterexample-Guided Inductive Synthesis (CEGIS)

repair in the former case, and synthesizing an abstraction
function in the latter (see [22] for a more detailed discussion).

The defining aspect of CEGIS is its example selection strat-
egy: learning from counterexamples provided by a verification
oracle. The learning algorithm, which is initialized with a
particular choice of concept class L and possibly with an initial
set of (positive) examples, proceeds by searching the space of
candidate concepts for one that is consistent with the examples
seen so far. There may be several such consistent concepts,
and the search strategy determines the chosen candidate, an
expression e. The concept e is then presented to the verification
oracle OV , which checks the candidate against the correctness
specification. OV can be implemented as an SMT solver that
checks whether ϕ[f/e] is valid modulo the theory T . If the
candidate is correct, the synthesizer terminates and outputs this
candidate. Otherwise, the verification oracle generates a coun-
terexample, an interpretation to the symbols and free variables
in ϕ[f/e] that falsifies it. This counterexample is returned to
the learning algorithm, which adds the counterexample to its
set of examples and repeats its search; note that the precise
encoding of a counterexample and its use can vary depending
on the details of the learning algorithm employed. It is possible
that, after some number of iterations of this loop, the learning
algorithm may be unable to find a candidate concept consistent
with its current set of (positive/negative) examples, in which
case the learning step, and hence the overall CEGIS procedure,
fails.

Several search strategies are possible for learning a can-
didate expression in L, each with its pros and cons. In the
following sections, we describe three different search strategies
and illustrate the main ideas in each using a small example.

C. Illustrative Example

Consider the problem of synthesizing a program which
returns the maximum of two integer inputs. The specification
of the desired program max is given by:

max(x, y) ≥ x ∧ max(x, y) ≥ y ∧
(max(x, y) = x ∨max(x, y) = y)

The search space is suitably defined by an expression
grammar which includes addition, subtraction, comparison,
conditional operators and the integer constants 0 and 1.

xi4

Expression to Verifier Learned Test Input

x 〈x = 0, y = 1〉
y 〈x = 1, y = 0〉
1 〈x = 0, y = 0〉

x+ y 〈x = 1, y = 1〉
ITE(x ≤ y, y, x) –

TABLE I
A RUN OF THE ENUMERATIVE ALGORITHM

D. Enumerative Learning

The enumerative learning algorithm [8] adopts a dynamic
programming based search strategy that systematically enu-
merates concepts (expressions) in increasing order of complex-
ity. Various complexity metrics can be assigned to concepts,
the simplest being the expression size. The algorithm needs
to store all enumerated expressions, because expressions of
a given size are composed to form larger expressions in the
spirit of dynamic programming. The algorithm maintains a
set of concrete test cases, obtained from the counterexamples
returned by the verification oracle. These concrete test cases
are used to reduce the number of expressions stored at each
step by the dynamic programming algorithm.

We demonstrate the working of the algorithm on the illus-
trative example. Table I shows the expressions submitted to
the verification oracle (an SMT solver) during the execution of
the algorithm and the values for which the expression produces
incorrect results. Initially, the algorithm submits the expression
x to the verifier. The verifier returns a counterexample 〈x =
0, y = 1〉, corresponding to the case where the expression
x violates the specification. The expression enumeration is
started from scratch every time a counterexample is added. All
enumerated expressions are checked for conformance with the
accumulated (counter)examples before making a potentially-
expensive query to the verifier. In addition, suppose the
algorithm enumerates two expressions e and e′ which evaluate
to the same value on the examples obtained so far, then only
one of e or e′ needs to be considered for the purpose of
constructing larger expressions.

Proceeding with the illustrative example, the algorithm then
submits the expression y and the constant 1 to the verifier. The
verifier returns the values 〈x = 1, y = 0〉 and 〈x = 0, y =
0〉, respectively, as counterexamples to these expressions. The
algorithm then submits the expression x+y to the verifier. The
verifier returns the values 〈x = 1, y = 1〉 as a counterexample.
The algorithm then submits the expression shown in the last
row of Table I to the verifier. The verifier certifies it to be
correct and the algorithm terminates.

The optimization of pruning based on concrete counterex-
amples helps in two ways. First, it reduces the number of
invocations of the verification oracle. In the example we have
described, the correct expression was examined after only
four calls to the SMT solver, although about 200 expressions
were enumerated by the algorithm. Second, it reduces the
search space for candidate expressions significantly (see [8]
for details). For instance, in the run of the algorithm on
the example, although the algorithm enumerated about 200
expressions, only about 80 expressions were stored.

Production Component
E → ITE(B,E,E) Inputs: (i1 : B)(i2, i3 : E)

Output: (o : E)
Spec: o = ITE(i1, i2, i3)

B → E ≤ E Inputs: (i1, i2 : E)
Output: (o : B)
Spec: o = i1 ≤ i2

TABLE II
COMPONENTS FROM PRODUCTIONS

E. Constraint-based Learning

The symbolic CEGIS approach uses a constraint solver
both for searching for a candidate expression that works
for a set of concrete input examples (concept learning) and
verification of validity of an expression for all possible inputs.
We use component based synthesis of loop-free programs
as described by Jha et al. [5], [7]. Each production in the
grammar corresponds to a component in a library. A loop-
free program comprising these components corresponds to an
expression from the grammar. Some sample components for
the illustrative example are shown in Table II along with their
corresponding productions.

The input/output ports of these components are typed and
only well-typed programs correspond to well-formed expres-
sions from the grammar. To ensure this, Jha et al.’s encod-
ing [5] is extended with typing constraints. We illustrate the
working of this algorithm on the maximum of two integers
example. The library of allowed components is instantiated
to contain one instance each of ITE and all comparison
operators(≤,≥,=) and the concrete example set is initialized
with 〈x = 0, y = 0〉. The first candidate loop-free program
synthesized corresponds to the expression x. This candidate
is submitted to the verification oracle which returns with
〈x = −1, y = 0〉 as a counterexample. This counterexample is
added to the concrete example set and the learning algorithm
is queried again. The SMT formula for learning a candidate
expression is solved in an incremental fashion; i.e., the con-
straint for every new example is added to the list of constraints
from the previous examples. The steps of the algorithm on the
illustrative example are shown in Table III.

If synthesis fails for a component library, we add one in-
stance of every operator to the library and restart the algorithm
with the new library. We also tried a modification to the
original algorithm [5], in which, instead of searching for a
loop-free program that utilizes all components from the given
library at once, we search for programs of increasing length
such that every line can still select any component from the
library. The program length is increased in an exponential

Iteration Loop-free program Learned counter-example

1 o1 := x 〈x = −1, y = 0〉
2 o1 := x ≤ x

o2 := ITE(o1, y, x) 〈x = 0, y = −1〉
3 o1 := y ≥ x

o2 := ITE(o1, y, x) –

TABLE III
A RUN OF THE CONSTRAINT LEARNING ALGORITHM

xii 5

fashion (1, 2, 4, 8, · · ·) for a good coverage. This approach
provides better running times for most benchmarks in our set,
but it can also be more expensive in certain cases.

F. Learning by Stochastic Search
The stochastic learning procedure is an adaptation of the

algorithm recently used by Schufza et al. [11] for program
super-optimization. The learning algorithm of the CEGIS loop
uses the Metropolis-Hastings procedure to sample expressions.
The probability of choosing an expression e is proportional to a
value Score(e), which indicates the extent to which e meets the
specification ϕ. The Metropolis-Hastings algorithm guarantees
that, in the limit, expressions e are sampled with probability
proportional to Score(e). To complete the description of the
search procedure, we need to define Score(e) and the Markov
chain used for successor sampling. We define Score(e) to be
exp(−βC(e)), where β is a smoothing constant (set by default
to 0.5), and the cost function C(e) is the number of concrete
examples on which e does not satisfy ϕ.

We now describe the Markov chain underlying the search.
Fix an expression size n, and consider all expressions in L with
parse trees of size n. The initial candidate is chosen uniformly
at random from this set [26]. Given a candidate e, we pick a
node v in its parse tree uniformly at random. Let ev be the
subexpression rooted at this node. This subtree is replaced by
another subtree (of the same type) of size equal to |ev| chosen
uniformly at random. Given the original candidate e, and a
mutation e′ thus obtained, the probability of making e′ the
new candidate is given by the Metropolis-Hastings acceptance
ratio α(e, e′) = min(1, Score(e′)/Score(e)).

The final step is to describe how the algorithm selects the
expression size n. Although the solver comes with an option
to specify n, the expression size is typically not known a priori
given a specification ϕ. Intuitively, we run concurrent searches
for a range of values for n. Starting with n = 1, with some
probability pm (set by default to 0.01), we switch at each step
to one of the searches at size n±1. If an answer e exists, then
the search at size n = |e| is guaranteed to converge.

Consider the earlier example for computing the maxi-
mum of two integers. There are 768 integer-valued expres-
sions in the grammar of size six. Thus, the probability of
choosing e = ITE(x ≤ 0, y, x) as the initial candidate
is 1/768. The subexpression to mutate is chosen uniformly
at random, and so the probability of deciding to mutate
the boolean condition x ≤ 0 is 1/6. Of the 48 boolean
conditions in the grammar, y ≤ 0 may be chosen with
probability 1/48. Thus, the mutation e′ = ITE(0 ≤ y, y, x)
is considered with probability 1/288. Given a set of con-
crete examples {(−1,−4), (−1,−3), (−1,−2), (1, 1), (1, 2)},
Score(e) = exp(−2β), and Score(e′) = exp(−3β), and so e′

becomes the new candidate with probability exp(−β). If, on
the other hand, e′ = ITE(x ≤ y, y, x) had been the mutation
considered, then Score(e′) = 1, and e′ would have become
the new candidate with probability 1.

Our algorithm differs from that of Schufza et al. [11] in
three ways: (1) we do not attempt to optimize the size of
the expression while the super-optimizer does so; (2) we
synthesize expression graphs rather than straight-line assembly

code, and (3) since we do not know the expression size n, we
run concurrent searches for different values of n, whereas the
super-optimizer can use the size of the input program as an
upper bound on program size.

IV. BENCHMARKS AND EVALUATION

We are in the process of assembling a benchmark suite
of synthesis problems to provide a basis for side-by-side
comparisons of different solution strategies. The current set
of benchmarks is limited to synthesis of loop-free functions
with no optimality criterion; nevertheless, the benchmarks
provide an initial demonstration of the expressiveness of the
base formalism and of the relative merits of the individual
solution strategies presented earlier. Specifically, in this section
we explore three key questions about the benchmarks and the
prototype synthesizers.
• Complexity of the benchmarks. Our suite includes a

range of benchmarks from simple toy problems to non-
trivial functions that are difficult to derive by hand. Some
of the benchmarks can be solved in a few hundredths of
a second, whereas others could not be solved by any of
our prototype implementations. In all cases, however, the
complexity of the problems derives from the size of the
space of possible functions and not from the complexity
of checking whether a candidate solution is correct.

• Relative merits of different solvers. The use of a
standard format allows us to perform the first side-to-
side comparison of different approaches to synthesis.
None of the implementations were engineered with high-
performance in mind, so the exact solution times are not
necessarily representative of the best that can be achieved
by a particular approach. However, the order of magni-
tude of the solution times and the relative complexity of
the different approaches on different benchmarks can give
us an idea of the relative merits of each of the approaches
described earlier.

• Effect of problem encoding. For many problems, there
are different natural ways to encode the space of desired
functions into a grammar, so we are interested in observ-
ing the effect of these differences in encoding for the
different solvers.

To account for variability and for the constant factors
introduced by the prototype nature of the implementations,
we report only the order of magnitude of the solution times
in five different buckets: 0.1 for solution times less than half
a second, 1 for solution times between half a second and 15
seconds, 100 for solution times up to two minutes, 300 for
solution times of up to 5 minutes, and infinity for runs that
time out after 5 minutes.

The benchmarks themselves are grouped into three cate-
gories: hacker’s delight problems, integer benchmarks, and
assorted boolean and bit-vector problems.

Hacker’s delight benchmarks: This set includes 57 differ-
ent benchmarks derived from 20 different bit-manipulation
problems from the book Hacker’s Delight [27]. These bit-
vector problems were among the first to be successfully
tackled by synthesis technology and remain an active area of

xiii6

0.01

0.1

1

10

100

1000

ap
pr

ox
im

at
e

tim
e

in
 se

c.
Relative Performance on a Sample of Hacker's Delight Benchmarks

Enumerative Stochastic (median) Symbolic

0.01

0.1

1

10

100

1000

ap
pr

ox
im

at
e

tim
e

in
 se

c.

Relative Performance of Integer Benchmarks

Enumerative Stochastic (median) Symbolic

0.01

0.1

1

10

100

1000

ap
pr

ox
im

at
e

tim
e

in
 se

c.

Relative Performance of Bit-vector and Boolean Problems

Enumerative Stochastic (median) Symbolic

Fig. 2. Selected performance results for the three classes of benchmarks

research [4], [5], [16]. For these benchmarks, the goal is to
discover clever implementations of bit-vector transformations
(colloquially known as bit-twiddling). For most problems,
there are three different levels of grammars numbered d0, d1
and d5; level d0 involves only the instructions necessary for
the implementation, so the synthesizer only needs to discover
how to connect them together. Level d5, on the other extreme,
involves a highly unconstrained grammar, so the synthesizer
must discover which operators to use in addition to how to
connect them together.

Fig. 2 shows the performance of the three solvers on a sam-
ple of the benchmarks. For the Hacker’s Delight benchmarks
(hd) we see that the enumerative solver dominates, followed
by the stochastic solver. The symbolic search was the slowest,
failing to terminate on 29 of the 57 benchmarks. It is worth
mentioning, however, that none of the grammars for these
problems required the synthesizer to discover the bit-vector
constants involved in the efficient implementations. We have
some evidence to suggest that the symbolic solver can discover
such constants from the full space of 232 possible constants
with relatively little additional effort. On the other hand, for
many of these problems the magic constants come from a
handful of values such as 1, 0, or 0xffffffff, so it is
unnecessary for the enumerative solver to search the space of
232 possible bit-vectors.

Finally, because these benchmarks have different grammars
for the same problem, we can observe the effect of using
more restrictive or less restrictive grammars as part of the
problem description. We can see in the data that all solvers
were affected by the encoding of the problem for at least some
benchmark; although in some cases, the pruning strategies
used by the solvers were able to ameliorate the impact of
the larger search space.

Integer benchmarks: These benchmarks are meant to be
loosely representative of synthesis problems involving func-
tions with complex branching structures involving linear inte-
ger arithmetic. One of the benchmarks is array-search,
which synthesizes a loop-free function that finds the index of
an element in a sorted tuple of size n, for n ranging from
2 to 16. This benchmark proved to be quite complex, as no
solver was able to synthesize this function for n > 4. The max
benchmarks are similar except they compute the maximum of
a tuple of size n.

Fig. 2 shows the relative performance of the three solvers
on these benchmarks for sizes up to 4. With one exception, the
enumerative solver is the fastest for this class of benchmarks,
followed by the stochastic solver. The exception was max3
where the stochastic solver was faster.

Boolean/Bit-vector benchmarks: The parity benchmark
computes the parity of a set of Boolean values. The different
versions represent different grammars to describe the set of
Boolean functions. As with other benchmarks, the enumerative
solver was always faster, whereas the symbolic solver failed
on every instance. These results show the impact that different
encodings of the same space of functions can have on the
solution time for both of the solution strategies that succeeded.
Unlike the hd benchmarks where the different grammars for
a given benchmark were strict subsets of each other, in this
case the encodings AIG and NAND correspond to different
representations of the same space of functions.

The Morton benchmarks, which involve the synthesis
of a function to compute Morton numbers, are intended as
challenge problems, and could not be completed by any of
the synthesizers.

Observations: The number of benchmarks and the maturity
of the solvers are too limited to draw broad conclusions,

xiv 7

but the overall trend we observe is that the encoding of
the problem space into grammar has a significant impact on
performance, although the solvers are often good at mitigating
the effect of larger search spaces. We can also see that non-
symbolic techniques can be effective in exploring spaces of
implementations and can surpass symbolic techniques, espe-
cially when the problems do not require the synthesizer to
derive complex bit-vector constants, which is true for all the
bit-vector benchmarks used. Moreover, we observe that the
enumerative technique was better than the stochastic search for
all but two benchmarks, so although both implementations are
immature, these results suggest that it may be easier to derive
good pruning rules for the explicit search than an effective
fitness function for the stochastic solver.

The symbolic solver used for these experiments represents
one of many possible approaches to encoding the synthesis
problem into a series of constraints. We have some evidence
that more optimized encodings can make the symbolic ap-
proach more competitive, although there are still many prob-
lems for which the enumerative approach is more effective.
Specifically, we have transcribed all the hacker’s delight and
integer benchmarks into the input language of the Sketch
synthesis system [24]. Sketch completed all but 11 of the hd
benchmarks, and it was able to synthesize array-search
up to size 7. This experiment is not an entirely fair comparison
because, although Sketch uses a specialized constraint solver
and carefully tuned encodings, the symbolic solver presented
in this paper uses a direct encoding of the problem into
sequences of constraints and uses Z3, a widely used off-
the-shelf SMT solver which is not as aggressively tuned for
synthesis problems. Despite these limitations, the symbolic
solver was able to solve many of the benchmarks, providing a
lower bound on what can be achieved with a straightforward
use of off-the-shelf technology.

Moreover, the enumerative solver was able to solve more
hd problems than even the more optimized symbolic solver.
The problems where the enumerative solver succeeded but
Sketch failed were the d5 versions of problems 11, 12, 14
and 15, which suggests that the enumerative solver was better
at pruning unnecessary instructions from the grammar. On
the other hand, the more optimized symbolic solver did have
a significant advantage in the array-search benchmarks
which the enumerative solver could only solve up to size 4.

V. CONCLUSIONS

Aimed at formulating the core computational problem
common to many recent tools for program synthesis in a
canonical and logical manner, we have formalized the problem
of syntax-guided synthesis. Our prototype implementation of
the three approaches to solve this problem is the first attempt
to compare and contrast existing algorithms on a common set
of benchmarks. We are already working on the next steps in
this project. These consist of (1) finalizing the input syntax
(SYNTH-LIB) based on the input format of SMT-LIB2, with
an accompanying publicly available parser, (2) building a
more extensive and diverse repository of benchmarks, and
(3) organizing a competition for SyGuS-solvers. We welcome
feedback and help from the community on all of these steps.

Acknowledgements: We thank Nikolaj Bjorner and Stavros
Tripakis for their feedback. This research is supported by the
NSF Expeditions in Computing project ExCAPE (award CCF
1138996).

REFERENCES

[1] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, 2009, vol. 4, ch. 8.

[2] L. M. de Moura and N. Bjørner, “Satisfiability modulo theories: Intro-
duction and applications,” Commun. ACM, vol. 54, no. 9, 2011.

[3] Z. Manna and R. Waldinger, “A deductive approach to program synthe-
sis,” ACM TOPLAS, vol. 2, no. 1, pp. 90–121, 1980.

[4] A. Solar-Lezama, R. Rabbah, R. Bodı́k, and K. Ebcioglu, “Programming
by sketching for bit-streaming programs,” in PLDI, 2005.

[5] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-
free programs,” SIGPLAN Not., vol. 46, pp. 62–73, June 2011.

[6] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” Commun. ACM, vol. 55, no. 8, pp. 97–105, 2012.

[7] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in ICSE, 2010, pp. 215–224.

[8] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. Martin,
and R. Alur, “TRANSIT: Specifying Protocols with Concolic Snippets,”
in PLDI, 2013, pp. 287–296.

[9] S. Srivastava, S. Gulwani, and J. S. Foster, “From program verification
to program synthesis,” in POPL, 2010, pp. 313–326.

[10] V. Kuncak, M. Mayer, R. Piskac, and P. Suter, “Software synthesis
procedures,” Commun. ACM, vol. 55, no. 2, pp. 103–111, 2012.

[11] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,”
in ASPLOS, 2013, pp. 305–316.

[12] M. Colón, S. Sankaranarayanan, and H. Sipma, “Linear invariant gener-
ation using non-linear constraint solving,” in CAV, 2003, pp. 420–432.

[13] A. Rybalchenko, “Constraint solving for program verification: Theory
and practice by example,” in CAV, 2010, pp. 57–71.

[14] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori,
“A data driven approach for algebraic loop invariants,” in ESOP, 2013,
pp. 574–592.

[15] N. Bjørner, K. L. McMillan, and A. Rybalchenko, “On solving univer-
sally quantified Horn clauses,” in SAS, 2013, pp. 105–125.

[16] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” in ASPLOS, 2006.

[17] E. M. Gold, “Language identification in the limit,” Information and
Control, vol. 10, no. 5, pp. 447–474, 1967.

[18] P. D. Summers, “A methodology for LISP program construction from
examples,” J. ACM, vol. 24, no. 1, pp. 161–175, 1977.

[19] E. Y. Shapiro, Algorithmic Program Debugging. Cambridge, MA, USA:
MIT Press, 1983.

[20] D. Angluin and C. H. Smith, “Inductive inference: Theory and methods,”
ACM Computing Surveys, vol. 15, pp. 237–269, Sep. 1983.

[21] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[22] S. A. Seshia, “Sciduction: Combining induction, deduction, and structure

for verification and synthesis,” in DAC, 2012, pp. 356–365.
[23] D. Angluin, “Queries and concept learning,” Machine Learning, vol. 2,

pp. 319–342, 1988.
[24] A. Solar-Lezama, “Program synthesis by sketching,” Ph.D. dissertation,

University of California, Berkeley, 2008.
[25] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,

“Counterexample-guided abstraction refinement for symbolic model
checking,” J. ACM, vol. 50, no. 5, pp. 752–794, 2003.

[26] B. McKenzie, “Generating strings at random from a context free
grammar,” 1997.

[27] H. S. Warren, Hacker’s Delight. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

xv8

Tutorial: Practical Verification of Network Programs
Nate Foster

Cornell University
Arjun Guha

University of Massachusetts, Amherst
Mark Reitblatt

Cornell University
Cole Schlesinger

Princeton University

I. TRADITIONAL NETWORKING

Computer networks are essential infrastructure in modern
society. Much like the electric power grid, we expect net-
works to always function, and there are often serious material
consequences when they fail. Unfortunately, network failures
are all too common. At Amazon, a configuration error during
routine maintenance triggered cascading failures that shut
down a datacenter and the customer machines hosted there.
At GoDaddy, a corrupted routing table disabled their domain
name service (DNS) for a day, causing a widespread outage.
At United Airlines, a network connectivity issue disabled their
reservation system, leading to thousands of flight cancellations
and a “ground stop” at their San Francisco hub. Even worse,
each of these failures could have been avoided—they were all
caused by operator errors or software bugs [6], [13], [22].

The high rate of network failures should not be surprising.
A typical datacenter or enterprise network is a complex system
with thousands of devices: routers and switches, web caches
and load balancers, monitoring middleboxes and firewalls, and
more. Each type of device runs a stack of interrelated protocols
and is configured by idiosyncratic, vendor-specific interfaces.
Network operators have to grapple with this complexity to
implement high-level, end-to-end policies. For example, an
access control policy or a quality of service guarantee may
need to be implemented by stringing together configurations
on several devices. Network operators who can accomplish
these feats have been called “masters of complexity” [18], for
good reason!

The complexity of traditional networks has also made it
extremely difficult to build automated tools for reasoning
precisely about end-to-end behavior. To make an effective tool,
one would need to somehow reverse-engineer the semantics
of numerous poorly-documented devices, construct parsers for
proprietary protocols, and formalize their concurrent execution
and asynchronous interactions. Although formal models of
traditional networks have been developed, they are either too
complex to be effective or too abstract to be practical.

II. SOFTWARE-DEFINED NETWORKING

Recently, a new network architecture has emerged called
software defined networking (SDN) that addresses the many of
the issues listed above. An SDN eliminates the heterogeneous
devices used in traditional networks—switches, routers, load
balancers, firewalls, etc.—and replaces them with commodity
programmable switches. These switches are managed and
programmed by a logically-centralized controller machine,

which communicates with switches using a standard protocol
such as OpenFlow [14].

Since OpenFlow-programmable switches conform to a well-
defined interface, it is possible to reason about their behavior
and even build formal models of their operation. This has
sparked a lot of interest in building verification tools for soft-
ware defined networks. Before introducing verification, this
tutorial will start with begin with an introduc to OpenFlow it-
self. Using OX, a simple, OCaml-based controller, participants
will first learn how to write some simple SDN applications. The
skills they learn will be directly applicable to other popular
platforms, such as NOX [7], POX [17], Beacon [3], Nettle [19],
and Floodlight [5].

III. PROGRAMMING WITH FRENETIC

OpenFlow and SDN make network programming possible,
but they do not make it easy. The first part of the tutorial
will make it evident that the OpenFlow abstraction is quite
low-level; although it abstracts away several hardware details,
it still feels like an “assembly language” for switch program-
ming. It is particularly hard to run several programs or modules
simultaneously when programming directly with OpenFlow.
If composed naively, two applications are almost certain to
destroy each others’ network state. Broadly, OpenFlow itself
lacks the mechanisms that we need to construct software from
separate, modular components.

To address this issue, we will introduce Frenetic, a high-
level language for programming SDN. Unlike OpenFlow,
which requires programmers to carefully manipulate low-level
switch-state, Frenetic provides a much higher level of ab-
straction: a Frenetic program denotes a mathematical, packet-
processing function. Frenetic provides a collection of simple
functions for filtering, modifying, counting, and forwarding
packets, as well as several operators that combine smaller
functions into larger ones. The Frenetic compiler takes care
of translating these functions into low-level OpenFlow instruc-
tions, and the Frenetic runtime system addresses several other
details of OpenFlow.

In this tutorial, we will show participants how to program
SDNs in a modular way, using Frenetic’s abstractions. We will
build several realistic network applications from the ground
up, and also learn to use more sophisticated modules, such as
NAT and MAC-learning, which are part of the Frenetic standard
library. We will also look under the hood to see how the
Frenetic compiler and runtime system work.

Although the tutorial will focus on Frenetic, we hope
to impart an understanding of other network programming

xvi 9ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

languages, such as Pyretic [15], Maple [20], and PANE [4].
Although these languages provide a variety of abstractions,
they all address issues of modularity and composition that
Frenetic also tackles.

IV. VERIFICATION WITH FRENETIC

Frenetic’s modularity and composition operators make SDN
programming much easier; however, SDN promises to make
networks verifiable, too. There are several verification tools
that operate directly on low-level network state [1], [10], [12],
[11], but Frenetic programs can be verified at the source-level.

This tutorial will introduce the Frenetic verification tool,
which can check reachability properties of source-level Fre-
netic programs automatically. This tool enables programmers
to automatically answer questions such as, “is host A reachable
from host B?”, “is there a loop involving C?”, “is all SSH
traffic blocked?”, and so on. These are precisely the kinds
of questions that network operators ask whilst debugging and
troubleshooting their networks.

Under the hood, the Frenetic verification tool operates by
encoding programs and properties as SAT formulae and checks
their satisfiability using the Z3 theorem prover. Thanks to
Frenetic’s well-defined, high-level semantics, the encoding is
fairly straightforward and certainly much simpler than tools
that work with OpenFlow directly.

V. CONCLUSION

We hope this tutorial will show you how programming
languages technology and formal methods can be used to both
build networks and verify important network properties. Since
this is an in-depth, hands-on tutorial, we will only get to use a
small selection of tools and technologies, developed as part of
the Frenetic project. However, your experience with Frenetic
and its tools will also help you understand the many other
languages and tools that have been developed for this domain.

Acknowledgments: Our work is supported in part by the
National Science Foundation under grant CNS-1111698, the
Office of Naval Research under award N00014-12-1-0757, a
Sloan Research Fellowship, and a Google Research Award.

REFERENCES

[1] Ehab Al-Shaer and Saeed Al-Haj. FlowChecker: Configuration analysis
and verification of federated OpenFlow infrastructures. In SafeConfig,
2010.

[2] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo,
Natasha Gude, Nick McKeown, and Scott Shenker. Rethinking enter-
prise network control. IEEE/ACM Transactions on Networking, 17(4),
Aug 2009.

[3] David Erickson. The Beacon OpenFlow controller. In HotSDN, 2013.
[4] Andrew D. Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca,

and Shriram Krishnamurthi. Participatory networking: An API for
application control of SDNs. In SIGCOMM, 2013.

[5] Floodlight OpenFlow Controller. http://floodlight.openflowhub.org/.
[6] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding

network failures in data centers: measurement, analysis, and implica-
tions. In SIGCOMM, 2011.

[7] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado,
Nick McKeown, and Scott Shenker. NOX: Towards an operating system
for networks. SIGCOMM CCR, 38(3), 2008.

[8] Nikhil Handigol, Srinivasan Seetharaman, Mario Flajslik, Nick McK-
eown, and Ramesh Johari. Plug-n-Serve: Load-balancing web traffic
using OpenFlow, Aug 2009. Demo at ACM SIGCOMM.

[9] Brandon Heller, Srini Seetharaman, Priya Mahadevan, Yiannis Yiak-
oumis, Puneet Sharma, Sujata Banerjee, and Nick McKeown. Elastic-
Tree: Saving energy in data center networks. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Apr 2010.

[10] Peyman Kazemian, George Varghese, and Nick McKeown. Header space
analysis: Static checking for networks. In NSDI, 2012.

[11] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P. Brighten Godfrey. Veriflow: Verifying network-wide invariants in
real time. In NSDI, 2013.

[12] Haohui Mai, Ahmed Khurshid, Raghit Agarwal, Matthew Caesar,
P. Brighten Godfrey, and Samuel Talmadge King. Debugging the data
plane with Anteater. In SIGCOMM, 2011.

[13] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya,
Chen-Nee Chuah, Yashar Ganjali, and Christophe Diot. Characterization
of failures in an operational IP backbone network. IEEE/ACM Trans-
actions on Networking, 16(4):749–762, Aug 2008.

[14] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. SIGCOMM CCR,
38(2):69–74, 2008.

[15] Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and
David Walker. Composing software-defined networks. In NSDI, Apr
2013.

[16] Tim Nelson, Arjun Guha, Daniel J. Dougherty, Kathi Fisler, and Shriram
Krishnamurthi. A balance of power: Expressive, analyzable controller
programming. In HotSDN, 2013.

[17] The POX OpenFlow controller, Jul 2011. Available from http://www.
noxrepo.org/pox/about-pox.

[18] Scott Shenker, Martin Casado, Teemu Koponen, and Nick McKeown.
The future of networking and the past of protocols, Oct 2011. Invited
talk at Open Networking Summit.

[19] Andreas Voellmy and Paul Hudak. Nettle: Functional reactive program-
ming of OpenFlow networks. In PADL, 2011.

[20] Andreas Voellmy, Junchang Wang, Y. Richard Yang, Bryan Ford, and
Paul Hudak. Maple: Simplifying SDN programming using algorithmic
policies. In SIGCOMM, 2013.

[21] Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-based
server load balancing gone wild. In Workshop on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services
(Hot-ICE), Boston, MA, Mar 2011.

[22] Zuoning Yin, Matthew Caesar, and Yuanyuan Zhou. Towards under-
standing bugs in open source router software. In SIGCOMM CCR,
2010.

xvii10

http://floodlight.openflowhub.org/
http://www.noxrepo.org/pox/about-pox
http://www.noxrepo.org/pox/about-pox

Firmware Validation:
Challenges and Opportunities

Jim Grundy
Intel Corporation

ABSTRACT

Firmware validation is driven by imperatives and challenges distinct from those of application level software. In this tutorial
we will survey the characteristics of firmware projects, focusing on those that make them particularly challenging and important
to validate. Well look at the tasks accomplished using firmware, the environments in which it executes, and how firmware is
shaped by the constraints imposed by the greater product development program in which it fits. Finally, well look at some of
our experiences in firmware validation and the lessons weve learned from them. Specifically, well be looking for lessons that
can help to guide the selection of problems to study and appropriate case studies on which to evaluate them.

SHORT BIOGRAPHY

Jim Grundy is a research scientist with the Strategic CAD Labs at Intel Corporation, where he leads the Logic Verification
group in developing formal tools and methods for modeling and analysis of designs to be realized in both hardware and software.
He has published in the fields of automated and interactive reasoning, software verification, and functional programming. Prior
to joining Intel in 2000, Jim was faculty a member of the Department of Computer Science at The Australian National
University. Jim has also worked as a post-doctoral researcher at bo Akademi in Finland, and as a research scientist at the
Australian Defence Science and Technology Organisation. Jim holds a PhD from the University of Cambirdge, UK and BSc
from the University of Queensland in Australia.

xviii 11ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

Secure Programs via Game-based Synthesis
Somesh Jha
Tom Reps
Bill Harris

University of Wisconsin (Madison)

ABSTRACT

Several recent operating systems provide system calls that allow an application to explicitly manage the privileges of modules
with which the application interacts. Such privilege-aware operating systems allow a programmer to a write a program that
satisfies a strong security policy, even when the program interacts with untrusted modules. However, it is often non-trivial to
rewrite a program to correctly use the system calls to satisfy a high-level security policy.

This paper concerns the policy-weaving problem, which is to take as input a program, a desired high-level policy for the
program, and a description of how system calls affect privilege, and automatically rewrite the program to invoke the system
calls so that it satisfies the policy. We describe a reduction from the policy-weaving problem to finding a winning strategy to a
two-player safety game. We then describe a policy-weaver generator that implements the reduction and a novel game-solving
algorithm, and present an experimental evaluation of the generator applied to a model of the Capsicum capability system. We
conclude by outlining ongoing work in applying the generator to a model of the HiStar decentralized-information-flow control
(DIFC) system.

SHORT BIOGRAPHIES

Somesh Jha received his B.Tech from Indian Institute of Technology, New Delhi in Electrical Engineering. He received his
Ph.D. in Computer Science from Carnegie Mellon University in 1996. Currently, Somesh Jha is a Professor in the Computer
Sciences Department at the University of Wisconsin (Madison), which he joined in 2000. His work focuses on analysis
of security protocols, survivability analysis, intrusion detection, formal methods for security, and analyzing malicious code.
Recently he has also worked on privacy-preserving protocols. Somesh Jha has published over 100 articles in highly-refereed
conferences and prominent journals. He has won numerous best-paper awards. Somesh also received the NSF career award in
2005.

Thomas W. Reps is Professor of Computer Science in the Computer Sciences Department of the University of Wisconsin,
which he joined in 1985. Reps is the author or co-author of four books and more than one hundred seventy-five papers
describing his research (see http://www.cs.wisc.edu/ reps/). His work has concerned a wide variety of topics, including program
slicing, dataflow analysis, pointer analysis, model checking, computer security, code instrumentation, language-based program-
development environments, the use of program profiling in software testing, software renovation, incremental algorithms, and
attribute grammars.

His collaboration with Professor Tim Teitelbaum at Cornell University from 1978 to 1985 led to the creation of two systems
the Cornell Program Synthesizer and the Synthesizer Generator that explored how to build interactive programming tools
that incorporate knowledge about the programming language being supported. The systems that they created were similar to
modern program-development environments, such as Microsoft Visual Studio and Eclipse, but pre-dated them by more than
two decades. Reps is President of GrammaTech, Inc., which he and Teitelbaum founded in 1988 to commercialize this work.

Since 1985, Professor Reps has been co-leader, with Professor Susan Horwitz, of a research group at the University of
Wisconsin that has carried out many investigations of program slicing and its applications in software engineering. His most
recent work concerns program analysis, computer security, and software model checking.

In 1996, Reps served as a consultant to DARPA to help them plan a project aimed at reducing the impact of the Year 2000
Problem on the U.S. Department of Defense. In 2003, he served on the F/A-22 Avionics Advisory Team, which provided
advice to the U.S. Department of Defense about problems uncovered during integration testing of the planes avionics software.

Professor Reps received his Ph.D. in Computer Science from Cornell University in 1982. His Ph.D. dissertation won the
1983 ACM Doctoral Dissertation Award.

Repss 1988 paper on interprocedural slicing, with Susan Horwitz and his then-student David Binkley, was selected as one of
the 50 most influential papers from the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 1979-99. According to Google Scholar, the 1988 paper and the subsequent journal version have received over 1,600
citations.

His 2004 paper about analysis of assembly code, with his student Gogul Balakrishnan, received the ETAPS Best-Paper
Award for 2004 from the European Association for Programming Languages and Systems (EAPLS). His 2008 paper about a
system for generating static analyzers for machine instructions, with his student Junghee Lim, received the ETAPS Best-Paper

xix12ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

Award for 2008 from EAPLS. In 2010, his 1984 paper ”The Synthesizer Generator”, with Tim Teitelbaum, received an ACM
SIGSOFT Retrospective Impact Paper Award. In 2011, his 1994 paper ”Speeding up slicing”, with Susan Horwitz, Mooly
Sagiv, and Genevieve Rosay, also received an ACM SIGSOFT Retrospective Impact Paper Award.

Three of his students, Gogul Balakrishnan, Akash Lal, and Junghee Lim have been the recipients of the Outstanding
Graduate Student Research Award given by the University of Wisconsin Computer Sciences Department. Akash Lal was also
a co-recipient of the 2009 SIGPLAN Outstanding Doctoral Dissertation Award, and he was named as one of the 18 awardees
selected for the 2011 India TR-35 list (top innovators under 35).

In 2003, Reps was recognized as a ”Highly Cited Researcher” in the field of Computer Scienceone of 230 worldwide who
received such recognition by the Institute for Scientific Information. As of February 2013, Reps was ranked 8th (citations) and
4th (field rating) on Microsoft Academic Searchs list of most-highly-cited authors in the field of Programming Languages, and
23rd (citations) and 13th (field rating) on its list of most-highly-cited authors in the field of Software Engineering.

Reps has also been the recipient of an NSF Presidential Young Investigator Award (1986), a Packard Fellowship (1988), a
Humboldt Research Award (2000), and a Guggenheim Fellowship (2000). He is also an ACM Fellow (2005).

Reps has held visiting positions at the Institut National de Recherche en Informatique et en Automatique (INRIA) in
Rocquencourt, France (1982-83), the University of Copenhagen, Denmark (1993-94), the Consiglio Nazionale delle Ricerche
in Pisa, Italy (2000-2001), and the University Paris Diderot Paris 7 (2007-2008).

William Harris is a PhD student and research assistant at the University of Wisconsin-Madison, where he is advised by Somesh
Jha and Thomas Reps. His current research focuses on applying formal methods to problems in computer security. He received
his B.S. from Purdue University in 2007, and received his M.S. from the University of Wisconsin-Madison in 2011. He has
worked as a visiting researcher for NEC Labs America and Microsoft Research. He was a Microsoft Research Fellow from
2010 - 2011.

xx 13

Using Process Modeling and Analysis Techniques
to Reduce Errors in Healthcare

Lori A. Clarke
University of Massachusetts, Amherst

ABSTRACT

As has been widely reported in the news lately, healthcare errors are a major cause of death and suffering. In the University
of Massachusetts Medical Safety Project, we are exploring the use of process modeling and analysis technologies to help
reduce medical errors and improve efficiency. Specifically, we are modeling healthcare processes using a process definition
language and then analyzing these processes using model checking, fault-tree analysis, discrete event simulation, and other
techniques. Working with the UMASS School of Nursing and the Baystate Medical Center, we are undertaking in-depth case
studies on error-prone and life-critical healthcare processes. In many ways, these processes are similar to complex, distributed
systems with many interacting, concurrent threads and numerous exceptional conditions that must be handled carefully.

This talk describes the technologies we are using, discusses case studies, and presents our observations and findings to date.
Although presented in terms of the healthcare domain, the described approach could be applied to human-intensive processes
in other domains to provide a technology-driven approach to process improvement.

SHORT BIOGRAPHY

Lori A. Clarke is chair of the School of Computer Science at the University of Massachusetts, Amherst and is co-director of
the Laboratory for Advanced Software Engineering Research (LASER). She is a Fellow of the ACM and IEEE, and a board
member of the Computing Research Associations Committee on the Status of Women in Computing Research (CRA-W).
She received the 2012 ACM Special Interest Group on Software Engineering (SIGSOFT) Outstanding Research Award, the
2011 University of Massachusetts Outstanding Accomplishments in Research and Creative Activity Award, the 2009 College of
Natural Sciences and Mathematics Outstanding Faculty Service Award, the 2004 University of Colorado, Boulder Distinguished
Engineering Alumni Award, the 2002 SIGSOFT Distinguished Service Award, a 1993 University Faculty Fellowship, and the
1991 University of Massachusetts Distinguished Faculty Chancellors Medal. She is a former vice chair of the Computing
Research Association (CRA), co-chair of CRA-W, IEEE Publication Board member, associate editor of ACM Transactions on
Programming Languages and Systems (TOPLAS) and IEEE Transactions on Software Engineering (TSE), member of the CCR
NSF advisory board, ACM SIGSOFT secretary/treasurer, vice-chair and chair, IEEE Distinguished Visitor, and ACM National
Lecturer. She has written numerous papers, served on many program committees, and was program co-chair of the 14th and
general chair of the 25th International Conference on Software Engineering. She has been a Principal Investigator on a number
of NSF, DoD, and DARPA projects.

Dr. Clarkes research is in the area of software engineering, primarily focusing on verification and requirements engineering
for human-intensive systems. She has been investigating techniques for detecting errors and safety and security vulnerabilities
in complex processes in domains such as healthcare and digital government. She is also involved in several efforts to increase
participation of underrepresented groups in computing research.

xxi14ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

Static Verification Based Signoff –
A Key Enabler for Managing Verification

Complexity in the Modern SoC
Pranav Ashar

Real Intent

ABSTRACT

Application-based verification, i.e., partitioning the verification process by verification concerns, has become an important
approach for managing verification complexity in the billion-transistor SoC. This new verification paradigm has truly come into
focus with the proliferation of layers of complexity in an SoC beyond the baseline complexity of its constituent components.
In a sense, the nature of chip complexity has shifted from how much goes into a chip to what goes into a chip. Given a
narrow verification concern like clock-domain verification, power, dft, reset analysis etc, the specification, analysis and debug
dimensions of the verification problem become meaningfully solvable. This is a new paradigm in a sense because it focuses
technologists toward the development of complete solutions and closure for the problem at hand as a whole rather than on
just nuts-and-bolts technologies like simulation and ABV. Static formal analysis is able to play a key role in this paradigm
for various reasons. With the narrow focus on a specific verification problem, much of the specification becomes precise and
implicit. In addition, the limited scope allows the formal analysis to be controlled and nominally tractable. Further, even when
the formal analysis remains bounded, it is still possible to return actionable information to the user. Finally, debug becomes
much more precise and actionable in the context of the narrow verification concern being addressed. These aspects all come
to fore in the verification of clock domain crossings in the modern SoC. Used to be that a chip would have a handful of clock
domains and the clock-domain checking could be done manually. With 100s of clocks domains on chip, that luxury is not
available any more. No SoC gets taped out today without a dedicated sign-off of clock-domain crossings using verification
tools specialized for this problem. Another reason clock-domain verification is good to highlight as an example of the new
paradigm is that it is at the intersection of chip functionality and timing. This verification task cannot be completed by just
functional simulation or just by static timing analysis. It needs a specialized solution, with static formal analysis at its core, to
do justice to it.

SHORT BIOGRAPHY

Dr. Pranav Ashar is the Chief technology Officer at Real Intent Inc., a System-on-Chip verification company. Pranav received
his Ph.D. in EECS with emphasis on EDA from the University of California, Berkeley in 1991. He was then at NEC Labs
in Princeton, NJ for 13 years where he developed a number of EDA technologies that have influenced the industry. Pranav
has authored about 70 refreed publications with more than 1000 citations, and co-authored a book titled ”Sequential Logic
Synthesis”. He has 35 patents granted and pending. Pranav was an adjunct faculty in the CSEE department at Columbia
University where he has taught graduate and undergraduate courses on VLSI design automation, VLSI Verification, and VLSI
design.

xxii 15ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

The FMCAD Graduate Student Forum
Thomas Wahl, Student Forum Chair

Northeastern University, College of Computer and Information Science
Boston, Massachusetts 02115

FMCAD 2013 featured an event new to the FMCAD
conference series, the Graduate Student Forum, held on Mon-
day October 21, following the joint MEMOCODE/FMCAD
Tutorial Day. The intention of the Forum was to specifically
attract students to the conference, by providing them with a
platform for introducing their research to the wider Formal
Methods community, and obtain feedback on it. Submissions
were solicited in the form of short reports describing research
ideas, or ongoing work in the scope of the FMCAD conference
that the student is currently pursuing.

In response to the Call for Student Forum papers, the Orga-
nizing Committee received 29 submissions (after discounting
a few withdrawals), many of them of very high quality. As
expected for a first-time (rather than a “broken-in”) event,
the flavor of submissions varied considerably, from initial
reports on brand-new research, to extensions of work pub-
lished before, and survey-style articles summarizing previous
results by the author. The submissions also varied greatly by
topic, ranging from software model checking and HW/SW
co-verification, to foundational papers on automata theory
and games, to micro-architecture verification and behavioral
hardware synthesis.

The submissions were reviewed by members of a small
subset of the FMCAD 2013 Program Committee. After an
initial review by one committee member, each submission was
discussed in detail by the Student Forum sub-committee. The
reviews focused on novelty of the work, the technical maturity
of the submission, and on the quality of the presentation.
While both proposed future work as well as already conducted
work was acceptable, in either case some (unpublished) novel
insight or contribution was expected. Following the discussion,
a total of 14 submissions were accepted for inclusion in the
FMCAD 2013 program, amounting to an acceptance rate of

around 50%. The list of accepted submissions can be found
on the following page in these proceedings.

The Student Forum itself consisted of very short presen-
tations by the student authors of each accepted submission,
and of a poster that was on display throughout the duration of
FMCAD.

The FMCAD Student Forum Chair wishes to express his
sincere gratitude to FMCAD’s sponsors for their very gen-
erous support of the event, in particular via a substantial
financial contribution from FMCAD Inc., via several travel
grants made available by NVIDIA Corporation directly for the
Student Forum, and via further financial support by Atrenta
Inc., Galois Inc., IBM Corporation, Intel Corporation, Jasper
Design Automation, Mentor Graphics, Microsoft Corporation,
NEC Labs America, OneSpin Solutions, Oski Technology Inc.,
Real Intent, Synopsys, and Xpliant. Thanks to this support, it
was possible to provide a large number of student participants
with a substantial travel grant. The FMCAD Graduate Student
Forum would not have been possible in this format without
this extensive sponsorship.

The Student Forum would also not have been possible
without the hard work by the student authors and their many
excellent submissions. The Chair is grateful to all contributors
to this successful event, especially to the FMCAD 2013
General and Program Chairs, Barbara Jobstmann and Sandip
Ray, for their advice, assistance, and encouragement.

Portland, October 21, 2013

Thomas Wahl
Student Forum Chair

xxiii16ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

LIST OF ACCEPTED PAPERS

The following list shows the names of the author(s) and the
title of each of the accepted FMCAD 2013 Student Forum
submissions, in alphabetical order of the last name of the first
author of each submission.

[1] Kai Cong. Symbolic Execution of Virtual Devices
[2] Eva Darulova. Programming with Uncertainties
[3] Marko Dimjasevic. Automatic Testing of Software Li-

braries
[4] Shilpi Goel. A Formal Model for Machine Code Proofs

[5] Mitesh Jain and Panagiotis Manolios. Skipping Re-
finement

[6] Sebastiaan Joosten and Julien Schmaltz. Automated
Deadlock Verification in Register Transfer Level De-
signs of Communication Fabrics

[7] Jan Lanik. Low-Power gate decomposition for spatially
correlated temporal-dependent input vectors

[8] Li Lei. Hardware/Software Co-monitoring
[9] Lihao Liang. Effective Verification of Low-Level Soft-

ware with Nested Interrupts
[10] Peizun Liu and Zhaoliang Liu. On-the-fly Parameter-

ized Boolean Program Exploration
[11] Disha Puri. Towards Certifiable Loop Pipelining Trans-

formations in Behavioral Synthesis
[12] Arjun Radhakrishna. A Case for Quantitative Specifi-

cations
[13] Bernard van Gastel and Julien Schmaltz. Formal Ver-

ification of Communication Fabrics Micro-Architectures

[14] Zhenkun Yang. Compiler Transformation Validation in
Behavioral Synthesis

xxiv 17

Distributed Synthesis for LTL Fragments
Krishnendu Chatterjee, Thomas A. Henzinger, Jan Otop, Andreas Pavlogiannis

IST Austria
{chatterjee, tah, jotop, pavlogiannis}@ist.ac.at

Abstract—We consider the distributed synthesis problem for
temporal logic specifications. Traditionally, the problem has
been studied for LTL, and the previous results show that the
problem is decidable iff there is no information fork in the
architecture. We consider the problem for fragments of LTL
and our main results are as follows: (1) We show that the
problem is undecidable for architectures with information forks
even for the fragment of LTL with temporal operators restricted
to next and eventually. (2) For specifications restricted to globally
along with non-nested next operators, we establish decidability
(in EXPSPACE) for star architectures where the processes
receive disjoint inputs, whereas we establish undecidability for
architectures containing an information fork-meet structure. (3)
Finally, we consider LTL without the next operator, and establish
decidability (NEXPTIME-complete) for all architectures for a
fragment that consists of a set of safety assumptions, and a set
of guarantees where each guarantee is a safety, reachability, or
liveness condition.

I. INTRODUCTION

Synthesis and distributed synthesis. The synthesis problem
is the most rigorous form of systems design, where the goal
is to construct a system from a given temporal logic specifi-
cation. The problem was originally proposed by Church [1]
for synthesis of circuits, and has been revisited in many
different contexts, such as supervisory control of discrete event
systems [2], synthesis of reactive modules [3], and several
others. In a seminal work, Pnueli and Rosner [4] extended
the classical synthesis problem to a distributed setting. In
the distributed synthesis problem, the input consists of (i) an
architecture of synchronously communicating processes, that
exchange messages through communication channels; and
(ii) a specification given as a temporal logic formula; and the
synthesis question asks for a reactive system for each process
such that the specification is satisfied. The most common logic
to express the temporal logic specification is the linear-time
temporal logic (LTL) [5].
Previous results for distributed synthesis for LTL. In gen-
eral the distributed synthesis problem is undecidable for LTL,
but the problem is decidable for pipeline architectures [4]. The
undecidability proof uses ideas originating from the undecid-
ability proof of three-player imperfect-information games [6],
[7]. The decidability results for distributed synthesis have
been extended to other similar architectures, such as one-
way rings [8], and also a distributed games framework was
proposed in [9]. Finally, a complete topological criterion on
the architecture for decidability of distributed synthesis for
LTL was presented [10], where it was shown that the problem
is decidable if and only if there is no information fork in
the underlying architecture. Architectures without information
forks can essentially be reduced to pipelines.

Fragments of LTL. While LTL provides a very rich frame-
work to express temporal logic specifications, in recent years,
several fragments of LTL have been considered for efficient
synthesis of systems in the non-distributed setting. Such
fragments often encompass a large class of properties that
arise in practice and admit efficient synthesis algorithms, as
compared to the whole LTL. In [11], [12] the authors con-
sidered a fragment of LTL with only eventually (reachability)
and globally (safety) as the temporal operators. In [13] LTL
with only eventually and globally operators (but without next
and until operators) was considered for efficient translation
to deterministic automata. The temporal logic specifications
for reactive systems often consist of a set of assumptions
and a set of guarantees, and the reactive system must satisfy
the guarantees if the environment satisfies the assumptions.
In [14] the GR1 (generalized reactivity 1) fragment of LTL was
introduced where each assumption and guarantee is a liveness
condition; and it has been shown that GR1 synthesis is very
effective to automatically synthesize industrial protocols such
as the AMBA protocol [15], [16].

Our contributions. In this work we consider the distributed
synthesis problem for fragments of LTL. The previous results
in the literature considered the whole LTL and characterized
architectures that lead to decidability of distributed synthesis.
In contrast, we consider fragments of LTL to present finer
characterizations of the decidability results. Our main contri-
butions are as follows:

1) Reachability properties. First we consider the fragment
of LTL with next and eventually (reachability) as the
only temporal operators, and establish that the distributed
synthesis problem is undecidable if there is an infor-
mation fork in the underlying architecture. In particular,
the problem is undecidable with one nesting depth of
the next operator and only one eventually operator; i.e.,
if we consider the fragment of LTL that consists of
Boolean combinations of atomic propositions and next
of atomic propositions; and only one eventually as the
temporal operator, then the distributed synthesis problem
is undecidable iff there is an information fork in the
architecture.

2) Safety properties. We then consider the fragment of LTL
with next and globally (safety) as the only temporal op-
erators, with a single occurrence of the globally operator.
We show that the distributed synthesis problem can be
decidable under the existence of information forks; in
particular we establish decidability (in EXPSAPCE) for
the star architecture where processes have no common
inputs from the environment. However, we show that

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 118ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

the problem remains undecidable for architectures con-
taining an information fork-meet, a structure in which
two processes receive sets of disjoint inputs, (as in the
information fork case), and a third process receives the
union of those sets. Moreover, our undecidability proof
again uses specifications that do not contain nested next
operators. In other words, if there is information fork,
the problem may be decidable, but if there is information
fork, and then the forked information meets again, then
we obtain undecidability.

3) Temporal specifications without the next operator. Since
our results show that even with one nesting depth of the
next operator, distributed synthesis is undecidable with
reachability and safety objectives, we finally consider the
problem without the next operator. We show that if we
consider a set of safety assumptions, and a set of guar-
antees such that each guarantee is a safety, reachability,
or a liveness guarantee, then the distributed synthesis
problem is decidable (and NEXPTIME-complete) for all
architectures.

Hence, our paper improves upon existing results by present-
ing finer (un)decidability characterizations of the distributed
synthesis problem for fragments of LTL. We also remark
that when we establish decidability, it is either EXPSPACE
or NEXPTIME-complete, as compared to previous proofs of
decidability in distributed synthesis setting where the complex-
ity is non-elementary. Thus as compared to the complexity
of previous decidability results (tower of exponentials), our
complexities (at most two exponentials) are very modest.

II. MODEL DESCRIPTION

Architectures. An architecture is a tuple A = (P, pe, V, E),
where P = {pe, p1, p2, . . . pn} is a set of n + 1 processes,
pe is a distinguished process representing the environment, V
is a set of (output) binary variables, and E : P × P → 2V

defines the communication variables between processes (i.e,
E(p, q) = {u, v} means that p writes to variables u, v, and q
reads from them). For every process p ∈ P , we denote with
O(p) =

⋃
q∈P E(p, q) the set of output variables of p, and

with I(p) =
⋃
q∈P E(q, p) the set of input variables of p. We

require that for all p, q ∈ P : O(p) ∩ O(q) = ∅, i.e., no two
processes write to the same variable. Finally, we will denote
with P− = P \ {pe}.

An architecture describes a distributed reactive system, with
the environment providing the inputs via O(pe), and the
system responding via I(pe). The pair (P, E) describes the
architecture of the system as a multigraph, with P being the
set of nodes, and E(p, q) the set of directed p→ q edges with
the corresponding variables as labels.
Trees. We define a (full) B-tree T over some finite set B as the
set of all nodes x ∈

(
2B
)∗

. A (possibly infinite) sequence of
nodes π = (x1, x2 . . .) forms a path in T , if for every i ≥ 1 we
have xi+1 = xiz, for some z ∈ 2B . For such a path π, we will
use π[i] to denote the element of π at the i-th position, while
π[i,∞] denotes the infinite suffix of π starting at position i.
An A-labeled B-tree Tλ is a B-tree equipped with a labeling
function of its nodes, λ :

(
2B
)∗ → 2A. For every node

x = yz ∈ Tλ with z ∈ 2B we denote with `λ(x) = z ∪ λ(x),
i.e., the `λ of x consists of the branch z from the parent and
the label λ(x). For a (possibly infinite) path π = (x1, x2, . . .),
we define with `λ(π) = (`λ(x1), `λ(x2) . . .).
Local strategies. For every process p ∈ P−, a local strategy
σp is a function σp :

(
2I(p)

)∗ → 2O(p), setting the output
variables of p according to the history of its input variables.
Observe that every such local strategy σp can be viewed as
a labeling of an O(p)-labeled I(p)-tree Tσp . A local strategy
σp has finite memory if there exists a finite set M, m0 ∈M,
and functions f : M × 2I(p) → M and g : M → 2O(p)

such that for all x = x1x2 . . . xk with xi ∈ 2I(p), we have
σp(x) = g(f(. . . (f(f(m0, x1), x2) . . . , xk)). The memory of
σp is said to be |M|, while if |M| = 1, then σp is called
memoryless.
Collective strategies. The collective strategy of the architec-
ture A is a function σ :

(
2O(pe)

)∗ → 2V \O(pe), mapping every
finite sequence of the outputs of the environment to a subset
of the outputs of the processes p according to the composition
(σp : p ∈ P−). The collective strategy σ can be viewed as a
(V \O(pe))-labeled O(pe)-tree Tσ and for any infinite path π
in Tσ , we will call `σ(π) a computation. Hence, Tσ describes a
distributed algorithm, and every infinite path π = (x1, x2, . . .)
starting from the root represents a distributed computation
`σ(π), according to the local strategies (σp : p ∈ P−).
Synthesis (realizability). We will consider distributed reactive
systems with specifications given by temporal logic formulae.
For temporal logic formulae we will consider LTL; see [5]
for the formal syntax and semantics of LTL. The problem of
realizability of a temporal logic formula φ in an architecture A
asks whether there exist local strategies σp for every process
p, such that for every infinite path π of the (V \O(pe))-labeled
O(pe)-tree Tσ of the collective strategy σ, with π starting from
the root, we have `σ(π) |= φ. If φ admits such strategies σp for
every p ∈ P−, then it is called realizable, and the collective
strategy σ gives an implementation for φ on A.

III. SYNTHESIS FOR REACHABILITY SPECIFICATIONS

In the current section we discuss the synthesis problem
for reachability specifications, where the objective consists of
propositional formulae connected with Boolean operators and
non-nested X (next) operators. We will show that even under
such restrictions, the synthesis problem remains undecidable
for all architectures containing an information fork, via a
reduction from the halting problem of Turing machines.
Fragment LTL♦. We consider LTL♦ that consists of formulae
φ from the following LTL fragment:

θ = P | XP
ψ = θ1 ∧ θ2 | θ1 ∨ θ2 | ¬θ
φ = Q→ ♦ψ

where P , Q are propositional formulae, X is the next operator,
♦ is the eventually temporal operator. We consider the standard
semantics of LTL. Formula ♦ψ represents a reachability ob-
jective, and Q will capture the initial input in the architecture.
Turing machines. Let M be a deterministic Turing machine
fixed throughout this section and let Q be the set of states

2 19

of M (see [17] for detailed descriptions of Turing machines).
The machine M works over the alphabet {0, 1,t}, and its
tape is bounded by # symbols. The machine M cannot move
left on a # symbol, and moving right to a # symbol effects
in extending the tape by a blank symbol t. In our analysis,
M starts with the empty tape. A configuration of M is a word
#vqaut#, where a ∈ {0, 1}, v, u ∈ {0, 1}∗ and q ∈ Q. Such
a configuration has the standard interpretation as an infinite
tape such that v is the part of the tape preceding the head, q
is the current state of M , a is the letter under the head, and
u is a sequence of symbols succeeding the head. The blank
symbol t represents the rightmost cell of the tape that has not
been altered by M . We define the projection π⊥ over words
w from some alphabet containing ⊥, such that π⊥(w) is the
result of omitting all ⊥ symbols from w. We define a scattered
configuration C of M as a word over Σ = {0, 1,t,⊥,#}∪Q
such that π⊥(C) is a configuration of M .
Information-fork architecture. We first consider the archi-
tecture A0 (Figure 1), characterized as an information fork
in [10], for which the problem of realizability has been
shown to be undecidable, using LTL formulae with nested
until operators (in [4]). Here we show that the problem
remains undecidable for A0 and specifications in the restricted
fragment of LTL♦. This is obtained through a reduction from
the halting problem of M , by constructing a specification
φ ∈ LTL♦ which is realizable iff M halts on the empty input.
Proof idea. The architecture A0 consists of the environment pe
and two processes p1 and p2. The processes act as I/O streams,
outputting configurations of M ; the environment sends sepa-
rately to each process next and stall signals, indicating that
the corresponding process should output the next letter from
{0, 1,t,#}∪Q of the current configuration of M , or it should
output ⊥.
Construction of ϕ. First, we will provide a regular safety
property ϕ which specifies that if the environment satisfies an
alternation assumption, i.e., every stall signal is followed by a
next signal, then p1 and p2 conform with a series of guarantees.
The property ϕ does not belong to the LTL♦ fragment, but we
will show how it can be expressed by a safety automaton Asafe.
Then, we will prove that if ϕ is realizable, and the environment
conforms with the alternation assumption, then the processes
output a legal sequence of configurations of M , scattered with
the ⊥ symbol.
Conversion to LTL♦. Next, we will provide the specification
for the synthesis problem φ ∈ LTL♦, such that φ is real-
izable iff ϕ is realizable and M halts on the empty input.
Formula φ does not express ϕ directly, but it asserts that the
environment simulates a run of Asafe faithfully, and finally
one of the processes outputs a halting configuration of M .
More precisely, the environment simulates a run of Asafe
storing the current state of Asafe in a set of hidden variables
{q1, . . . , qm} ∈ E(pe, pe), and φ encodes that eventually
either (i) the environment cheats in the simulation of Asafe,
or (ii) one of the processes outputs a halting state q of M ,
while the current state of Asafe is not rejecting (i.e., q was
reached legally with respect to M). We will conclude that φ
is realizable iff M halts on the empty input.

pe

p1 p2

x1 x2

q1, . . . , qm

y1 y2

Fig. 1: The architecture A0 which consists an information fork.

Formal proof. A safety automaton cannot express a scattered
configuration that is finite. Thus, we define a scattered precon-
figuration C (of M) as a (possibly infinite) word whose every
finite prefix can be extended to a scattered configuration of M .
A scattered preconfiguration is formally defined as a finite or
infinite word over Σ that begins with #, there is at most one
symbol from Q, there are no symbols after the second # and
the t symbol is followed by the # symbol.

Let C1, C2 be scattered preconfigurations. We denote with
⊥(C) the set of positions in C where ⊥ occurs, and write
C1 ‖ C2 if the symmetric difference of ⊥(C1) and ⊥(C2) has
at most one element, i.e., |⊥(C1)4⊥(C2)| ≤ 1. We define as
C1 ` C2 if C1 ‖ C2 and

(i) π⊥(C2) follows legally from π⊥(C1) according to M ,
or

(ii) both C1, C2 are infinite preconfigurations such that every
finite prefix can be extended to finite preconfigurations
C ′1, C

′
2 such that π⊥(C ′2) follows legally from π⊥(C ′1).

For infinite words w1, w2, we define w1 ⊗ w2 as a word
over Σ × Σ such that the i-th letter of w1 ⊗ w2 is a pair
of the i-th letters of w1, w2. Observe that there are safety
automata working over Σ × Σ that recognize the languages
{C1 ⊗ C2 : C1 ‖ C2} and {C1 ⊗ C2 : C1 ` C2}.
Construction of ϕ. We first construct the regular safety prop-
erty ϕ = L →

∧
0≤i≤4 Condi, where L (the alternation

assumption) and Condi are defined as follows:

L: for every process, every stall signal is followed by
a next signal.

Cond0: each process outputs ⊥ when its input is stall,
otherwise it outputs a letter from Σ \ {⊥},

Cond1: each process produces a sequence of scattered
preconfigurations,

Cond2: initially, each process produces two scattered con-
figurations of M , whose projections are the first two
valid configurations of M ,

Cond3: if starting from some position i, p1 outputs consec-
utively C1, C2 and p2 outputs consecutively C ′1, C

′
2,

then C ′1 ` C1 implies C ′2 ` C2 or C ′2 ∦ C2,
Cond4: if D,D′ are outputs of p1, p2 up to some positions

such that D ‖ D′ and |π⊥(D)| = |π⊥(D′)|, then
π⊥(D) = π⊥(D′).

We provide a high-level description of the construction of an
alternating safety automaton Asafe (see [18] for the definition
of alternating automata) which verifies that every execution
satisfies ϕ. Note that Asafe can be transformed to a non-
deterministic automaton by a standard power-set construction.
Clearly, conditions L, Cond0 and Cond1 can be expressed
by a safety automaton. For the condition Cond2, observe

320

that the first two configurations of M have at most 9 letters
#q0 t ##q1a t #, with a ∈ {0, 1, ε}. To show that the
rest of conditions can be expressed by a safety automaton,
we assume that L is satisfied; otherwise those conditions
do not have to be checked (note that if L is violated, Asafe
accepts unconditionally). Because of L, Asafe can verify that
p1 and p2 conform with Cond2 by checking the first 18 output
letters. For the condition Cond3, Asafe operates as follows:
whenever it encounters a # symbol marking the beginning of a
configuration, it splits universally. One copy looks for the next
configuration, and the second copy, denoted by A3, verifies
that Cond3 holds at the current position, as follows. It ignores
⊥ symbols and compares whether C1 ‖ C ′1, configurations
π⊥(C1) and π⊥(C ′1) are equal everywhere except for positions
adjunct to the head of M , and the letters adjunct to the
head are consistent with the transition of M . If one of these
conditions is violated, C ′1 6` C1, therefore A3 accepts the
word regardless of what follows. Otherwise, if those conditions
hold, i.e., C ′1 ` C1, A3 non-deterministically verifies one
of the following conditions: C ′2 6‖ C2 or C ′2 ` C2. Both
conditions can be verified by safety automata, since C2 and
C ′2 either start concurrently, or C2 is delayed by 1 step from
C ′2. For the condition Cond4 observe that if D ‖ D′ and
|π⊥(D)| = |π⊥(D′)|, then ||D|−|D′|| ≤ 1 and the automaton
needs to remember at most one symbol to compare π⊥(D) and
π⊥(D′). We can now prove the following lemma.

Lemma 1. If ϕ is realizable, then for every k ∈ N , in all
executions where L holds, both p1 and p2 output sequences of
scattered configurations whose π⊥ projections are sequences
of at least k consecutive valid configurations of M , starting
with the initial configuration on the empty input.

Proof: First note that there exist executions where the
environment indeed satisfies L, and thus p1 and p2 satisfy con-
ditions Cond0-Cond4. The lemma clearly holds for k = 1, 2,
due to conditions Cond0 − Cond2. For the inductive step,
assume that the lemma holds for k ≥ 2. Consider a sequence
of inputs to p1 consisting of next signals only. Then, there
is a sequence of inputs to p2 consisting of some number
of next signals and exactly |π⊥(Ck)| stall signals placed
in a such way that p1 outputs C1 . . . CkCk+1, p2 outputs
C ′1 . . . C

′
k−1C

′
k, and CkCk+1, C ′k−1C

′
k are synchronized, i.e.

they start at the same position and Ck ‖ C ′k−1, Ck+1 ‖ C ′k. By
the induction assumption π⊥(C ′k−1) and π⊥(Ck) = π⊥(C ′k)
are, respectively, (k − 1)-th and k-th configurations of M .
Therefore, C ′k−1 ` Ck and, by Cond3, C ′k ` Ck+1. This
implies that Ck+1 is a finite scattered preconfiguration and
π⊥(Ck+1) is the (k + 1)-th configuration of M .

Given that for an input consisting of next signals only, p1
outputs C1 . . . CkCk+1 satisfying the statement, we can show
that regardless of the number of stall signals, under condition
L, p1, p2 output k + 1 scattered configurations satisfying the
statement. First, the condition Cond4 implies that if p2 also
has an input sequence consisting of next signals alone, it will
output the same sequence, that is, C1 . . . CkCk+1. By a simple
induction on the number of stall signals each process receives,
and condition Cond4, we conclude that for any number of stall
signals, as long as L is satisfied by the environment, p1, p2

output k + 1 scattered configurations whose projections are
the first k + 1 consecutive configurations of M .

Conversion to LTL♦. Given the safety automaton Asafe which
verifies that ϕ is satisfied, we can construct a specification
φ ∈ LTL♦, such that φ is realizable if and only if the Turing
machine M does not halt on the empty input. The environment
uses the hidden (not visible to p1, p2) variables q1, . . . , qk ∈
E(pe, pe) to simulate the automaton Asafe. We provide a high
level description of the following formulae:
Q specifies that the first state of Asafe according to the output

variables {q1, . . . qm} is compatible with the initial values
of x1, x2, y1 and y2 (i.e. {q1, . . . qm} represent the state
of Asafe reached from the initial state after reading the
initial values of x1, x2, y1 and y2; Q is propositional)

ψ1 specifies that Asafe has a transition from the current state
to the next state, encoded by the values of {q1, . . . qm}
in the current and the next round, according to the value
of variables x1, x2, y1 and y2 in the next round (i.e., pe
simulates Asafe faithfully; ψ1 contains only propositionals
and non-nested X operators).

ψ2 specifies that the current state of Asafe is not rejecting, and
p1 or p2 outputs a halting state of M (i.e., some process
reached a halting configuration of M , and both processes
behaved according to Asafe; ψ2 is propositional).

Finally, we construct φ = Q → ♦(¬ψ1 ∨ ψ2), with
φ ∈ LTL♦. If φ is realizable, the processes satisfy ψ2 in
all runs where the environment faithfully simulates Asafe and
conforms with condition L(i.e., Q and ψ1 are true). Then
p1, p2 output a halting state of M and satisfy ϕ, which by
Lemma 1, guarantees that the halting state was reached by a
legal sequence of configurations of M . In the inverse direction,
if M halts, then φ is realizable by (finite) local strategies
which output a finite, legal sequence of configurations of M
and conform with condition Cond0. Hence, we obtain the
following theorem.

Theorem 1. The realizability of specifications from LTL♦ in
A0 is undecidable.

Similarly as in [10], the above argument can be carried out
to any architecture which contains an information fork, by
introducing additional safety conditions in ϕ, which require
that all processes propagate the inputs of the environment to
the two processes constituting the information fork. It has also
been shown in [10] that in architectures without information
forks, the realizability of every LTL specification is decidable.
Hence, Theorem 1 together with the results from [10] lead to
the following corollary.

Corollary 1. For every architecture A, the realizability of
specifications from LTL♦ in A is decidable iff A does not
contain an information fork.

IV. SYNTHESIS FOR SAFETY SPECIFICATIONS

In the current section we consider safety specifications
where the safety condition consists of propositional formulae
connected with Boolean operators, and the X temporal oper-
ator. First, we show that the synthesis problem is undecidable

4 21

for architectures containing an information fork-meet (see
Figure 3), by a similar construction as in the case of LTL♦.
Then we show that the problem is decidable for a family of
star architectures, despite the existence of information forks.
Fragment LTL�. We consider LTL� that consists of formulae
φ from the following LTL fragment:

ψ = P | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ¬ψ | Xψ
φ = Q ∧�ψ

where P , Q are propositional formulae, and � is the globally
operator. We consider the standard semantics of LTL. The
�ψ part of φ specifies a safety condition, and we interpret
Q as the initial conditions. The fragment LTL� can express
safety specifications, one of the most basic specifications in
verification.

While the information fork criterion is decisive for the
undecidability of reachability specifications, here we extend
this criterion to the family of star architectures of n + 1
processes, denoted as Sn (i.e., pe is the central process ,
and

⋃
i I(pi) = O(pe)) (Figure 2) and show that: (i) the

realizability of some φ ∈ LTL� in Sn is decidable if all
processes receive pairwise disjoint inputs, (ii) it is undecidable
if n ≥ 3 and we allow overlapping inputs. The latter can be
generalized to all architectures which contain such a structure,
which we call an information fork-meet.

pe p1
I(p1) O(p1)

p2

I(p2)

O(p2)

pn
I(pn)O(pn)

Fig. 2: The family of start architectures Sn.

A. Overlapping inputs

Here we demonstrate undecidability of realizability of spec-
ifications φ ∈ LTL� for star architectures with overlapping
inputs, and with φ having X -depth 1 (i.e., φ belongs to a
subclass of LTL� where X operators are not nested). We
first consider the star architecture A1 (Figure 3), and obtain
the undecidability of realizability of such specifications via a
reduction from the (non) halting problem.

pe

p2

x2

y2

p1

x1

y1
p3

x1 x2

q1, . . . , qm

Fig. 3: The architecture A1 consists an information fork-meet.

Given a Turing machine M , recall the specification ϕ (from
Section 3 for LTL♦) encoding conditions L and Cond0 −
Cond4 through the safety automaton Asafe. In contrast with

the previous section, here we require that process p3 (instead
of pe) faithfully simulates the safety automaton Asafe using
the output variables q1, . . . qm ∈ E(p3, pe). Note that Asafe
operates on the variables x1, x2, y1, y2, while p3 does not have
access to y1 and y2. However, it can infer these values by
simulating p1 and p2 internally, since p3 receives both x1 and
x2 (overlapping inputs).
Formal proof. We provide a high level description of the
following formulae:
Q specifies that the first state of Asafe according to the output

variables {q1, . . . qm} is compatible with the initial values
of x1, x2, y1 and y2 (i.e. {q1, . . . qm} represent the state
of Asafe reached from the initial state after reading the
initial values of x1, x2, y1 and y2; Q is propositional)

ψ1 specifies that Asafe has a transition from the current state
to the next state, encoded by the values of {q1, . . . qm}
in the current and the next round, according to the value
of variables x1, x2, y1 and y2 in the next round (i.e., pe
simulates Asafe faithfully; ψ1 contains only propositionals
and non-nested X operators).

ψ2 specifies that p1 and p2 do not output a halting state of
M (i.e., M does not terminate; ψ2 is propositional).

ψ3 specifies that Asafe does not reach a rejecting state (i.e.,
the processes conform to conditions Cond0-Cond4 or the
environment violates L; ψ3 is propositional).

We construct φ = Q∧�(ψ1 ∧ψ2 ∧ψ3). Similarly as in the
case of LTL♦, if φ is realizable, p3 faithfully simulates Asafe
(Q and ψ1 are true), and p1, p2 satisfy ϕ in all runs where
the environment conforms with condition L (ψ3 is true). By
Lemma 1, p1 and p2 output a legal sequence of configurations
of M , and ψ2 guarantees that M does not halt. In the inverse
direction, if M does not halt, φ is realizable by local strategies
where (i) p1, p2 output a legal sequence of configurations of
M and conform with condition Cond0, and (ii) p3 faithfully
simulates Asafe. Hence we have the following result.

Theorem 2. The realizability of specifications from LTL� in
A1 is undecidable.

Remark 1. We remark that our proof of undecidability in
Theorem 2 makes use of infinite-memory strategies, since
the processes p1 and p2 are required to output an infinite,
non-halting computation. However, the realizability problem
for LTL� in A1 remains undecidable even if we restrict the
strategies to be finite-memory. We refer to the longer version
of this paper in [19] for the proof.

Information fork-meet. We say that an architecture A =
(P, pe, V, E) has an information fork-meet if there are three
processes p1, p2, p3 ∈ P− and paths π1, π2 in the underlying
graph such that

1) the first edges in π1, π2 are labeled by output variables
of pe,

2) the last edge of π1 is an input variable of p1, but not p2
3) the last edge of π2 is an input variable of p2, but not p1
4) the last edges of π1, π2 are input variables of p3
Observe that an information fork-meet is a special case

of information fork, with a third process that collects all
information that is divided between p1 and p2.

522

As in the case of LTL♦, the undecidablity argument can
be carried to any architecture containing such a structure, by
introducing additional conditions in ϕ which require the rest
of the processes to propagate the inputs of the environment to
p1, p2 and p3 accordingly.

Corollary 2. The realizability of LTL� specifications in archi-
tectures containing an information fork-meet is undecidable.

B. Pairwise disjoint inputs

In this subsection we discuss synthesis for formulae φ ∈
LTL� for the class of star architectures, with the additional
property that all pairs of processes receive disjoint inputs (i.e.,
∀i 6= j : I(pi) ∩ I(pj) = ∅), denoted as Sn. Our goal is to
prove decidability of realizability of such φ ∈ LTL� in every
architecture A ∈ Sn, by showing that whenever such φ is
realizable, it admits strategies of bounded memory.

Consider some architecture A ∈ Sn and an arbitrary φ =
Q∧�ψ ∈ LTL�, with the nesting level of X operators in ψ
being k. Assume that φ is realizable in A by local strategies
σi for every process pi. These strategies can be represented by
O(pi)-labeled I(pi)-trees Tσi

. We will show how to construct
strategies τi that also realize φ, where each tree I(pi)-tree Tτi
representing τi is defined from first 22

k|V | + 1 levels of Tσi

by applying a folding function given below. We first define the
notion of some i ∈ N closing ¬ψ in some computation.

Definition 1. For a computation `(π) and some i ∈ N we
say that i closes ¬ψ in `(π) if `(π)[i− k,∞] |= ¬ψ.

Remark 2. `(π) |= �ψ iff no i closes ¬ψ in `(π).

Let σ1, . . . , σn be local strategies and σ be the collective
strategy induced by σ1, . . . , σn. For every i ∈ {1, . . . , n}, the
local strategy σi is represented by an O(pi)-labeled I(pi)-tree
Tσi

. For every node x ∈ Tσi
, with |x| ≥ k, we denote with

πx = (xk, xk−1 . . . x1) the k-node suffix of the unique path to
x = x1, and define the type of x under σi as tσi(x) = `σi(πx).
For every level l ≥ k we define the type of l under σ as
tσ(l) = {tσi

(x) : i ∈ {1, . . . , n}, x ∈ Tσi
and |x| = l}, i.e.,

the type of a level l is the set of the types of the nodes of level
l of every Tσi

, where i ∈ {1, . . . , n}. Note that there exist at
most 2k|V | distinct types of nodes. Consequently, there exist
at most 22

k|V |
distinct types of levels.

We naturally extend the definition of types to nodes of
the (V \ O(pe))-labeled O(pe)-tree Tσ as tσ(x) = `σ(πx).
Consider some computation `σ(π) in Tσ . Observe that whether
some i closes ¬ψ in π depends only on the `σ(π)[i] i.e., the
type tσ(π[i]) determines whether i closes ¬ψ in π. Hence, we
have the following remark:

Remark 3. For a formula φ ∈ LTL� there exists a set of
types ∆ such that for every tree Tσ , a path π in Tσ satisfies
φ if `σ(π)[1] |= Q and for all i ∈ N , we have tσ(π[i]) ∈ ∆,
i.e., the set of types of nodes in Tσ is a subset of ∆.

Folding function. Assume that there exist two levels l1 < l2
such that tσ(l1) = tσ(l2). Then for every tree Tσi , for every
node x in level l2 there exists a node y in level l1 such that
tσi

(x) = tσi
(y), i.e., x and y have the same type. For such

l1, l2, and every process pi, we define the folding function
fi :

(
2I(pi)

)∗ → (
2I(pi)

)∗
recursively as follows:

fi(x) =

x if |x| < l2

y if |x| = l2 where |y| = l1 and tσi
(x) = tσi

(y)

fi(fi(y)z) if |x| > l2 for x = yz with z ∈ 2I(p)

and construct local strategies τi(x) = σi(fi(x)). Hence, every
strategy τi behaves as σi up to level l2, while for nodes further
below, it maps them to nodes between levels l1 and l2, by
recursively folding the levels l1 and l2 with respect to the types
of their nodes. Since the collective strategies σ and τ behave
identically on the first l1 levels, τ realizes the propositional
Q. The following analysis focuses on the �ψ part of φ.

The strategies τi preserve the types under σi of all local
nodes up to level l2, and only those. Because of the pairwise
disjoint inputs, this property is implied for the global nodes
of the collective strategy τ as well. The set of all such types
serves as the set ∆ of Remark 3, which in turn guarantees
that the collective strategy τ also realizes φ, as it does not
introduce new types. We formalize these arguments below.

The following lemma establishes that for all nodes x in all
Tτi , the type of x is the same as the type of its image under
fi in the corresponding Tσi

.

Lemma 2. For every x ∈
(
2I(pi)

)∗
with |x| ≥ k, we have

that tτi(x) = tσi
(fi(x)).

Proof: Our proof proceeds by induction on |x|:
1) |x| < l2: For all nodes w in πx, we have that τi(w) =

σi(fi(w)) = σi(w), hence `τi(πx) = `σi
(πx) and thus

tτi(x) = tσi
(f(x)).

2) |x| = l2: The statement holds by definition.
3) |x| = m+ 1: Let x = yz with |y| = m. By the inductive

hypothesis, tτi(y) = tσi(fi(y)). We distinguish between
the following cases, depending on whether fi(y) extended
by z hits the level l2 (Figure 4):
(i) |fi(y)| < l2 − 1: Then fi(x) = fi(fi(y)z) = fi(y)z,
that is, if we reach node x by extending node y by an
edge z, the same holds for their corresponding images
under fi. Then τi(x) = σi(fi(x)) = σi(fi(y)z), thus
tτi(x) = tσi

(fi(y)z) = tσi
(fi(x)) (i.e., the strategy τi

will label x as σi labels its image fi(x), and the types
of these two nodes are equal).
(ii) |fi(y)| = l2 − 1: By construction, tσi

(fi(x)) =
tσi(fi(y)z) (i.e., fi(y) extended by z hits level l2, and
the folding function fi will bring x to level l1, to a node
of the same type). Then τi(x) = σi(fi(x)) = σi(fi(y)z),
hence as in (i), tτi(x) = tσi

(fi(y)z) = tσi
(x).

The desired result follows.
The following remark observes that for every architecture

from Sn, every node in the collective strategy tree corresponds
to a unique set of nodes in the local strategy trees and vice
versa, and that the collective strategy on that node equals the
union of the local strategies on the corresponding local nodes.

Remark 4. The following assertions hold:
1) For every global node x = x1x2 . . . xm in Tσ with every

xi ∈ 2O(pe), for every tree Tσj
, there exists a (unique)

node xj = x1jx
2
j . . . x

m
j such that xij = xi ∩ 2I(pj), and

6 23

l1

l2

z
y

x

z
fi(y)

fi(x)

(a) Case (i)

l1

l2

z
y

x

z
fi(y)

fi(x)

(b) Case (ii)

Fig. 4: The two cases of the inductive step of Lemma 2.

2) for every set of nodes {xj = x1jx
2
j . . . x

m
j } with one xj

from each Tσj , there exists a (unique) global node x such
that for all i we have xi =

⋃
j x

i
j .

Moreover, for every collective strategy σ, we have σ(x) =⋃
j σj(xj).

It follows from the above remark and Lemma 2, that
for every x ∈ Tσ we have that tτ (x) = tσ(f(x)), where
f(x) =

⋃
i fi(xi). That is, the local folding functions fi result

in a unique, global folding function f , and the types in the
corresponding collective strategy tree are preserved between
the global nodes, and their images under f . This implies that
the set of types occurring in Tτ is a subset of types of Tσ .
Then, by Remark 3 we conclude:

Lemma 3. The collective strategy τ implements φ.

Hence, whenever for a realizable φ ∈ LTL� exist levels
l1 and l2 with the same type under σ, we can construct a
collective strategy τ for which every local strategy τi uses
only the first l2 levels of the corresponding σi, and Lemma 3
guarantees that τ implements φ. By our previous observation
and the pigeonhole principle, l2 is upper bounded by 22

k|V |
+1,

and thus every local strategy τi operates in the first 22
k|V |

+ 1
levels of the corresponding I(pi)-tree. There are a bounded
number of local strategies with this property, thus the problem
of realizability in this case reduces to exhaustively exploring
all of them. Moreover, it follows from our analysis that local
nodes in the same level and having the same type can be
merged, since the local strategy that behaves identically in both
subtrees preserves the set of types appearing in the global tree.
Hence, the width of each level is bounded by the number of
different possible types, 2k|V |. This leads to Theorem 3 (we
refer to [19] for the formal proof).

Theorem 3. The realizability of φ ∈ LTL� for the class Sn
of star architectures with pairwise disjoint inputs is decidable
in EXPSPACE.

V. SYNTHESIS WITHOUT THE NEXT OPERATOR

In the current section we consider a fragment of LTL
without the X operator, for which the problem of realizability
is decidable in non-deterministic exponential time in the size
of the specification.

Fragment LTLAG. We consider LTLAG that consists of for-
mulae φ from the following LTL fragment:

φ =
∧
i

�Pi →

(∧
i

�Qi ∧
∧
i

�♦Ri ∧
∧
i

♦Fi

)

≡ �
∧
i

Pi →

(
�
∧
i

Qi ∧
∧
i

�♦Ri ∧
∧
i

♦Fi

)

≡ �P →

(
�Q ∧

∧
i

�♦Ri ∧
∧
i

♦Fi

)
for i ∈ {1, . . .m}, with Pi, Qi, Ri, Fi propositional formulae,
and P =

∧
i Pi, Q =

∧
iQi. We consider the standard

semantics of LTL. The LTLAG can express specifications that
consist of conjunction of safety assumptions, and guarantees
where each guarantee is a safety, reachability, or a liveness
condition.

A propositional formula Q has the property that can either
be realized in a single step, or is not realizable. This implies
that realizable formulae �Q admit memoryless strategies
which repeat the single step realization of Q. A similar
argument establishes that reachability and safety specifications
of propositional formulae are equivalent with respect to real-
izability. We formally state these observations in Lemmas 4
and 5, and refer to [19] for the proofs.

Lemma 4. Let A be any architecture. Every formula ψ = �Q,
for some propositional Q, is realizable in A iff it is realizable
by memoryless strategies.

Lemma 5. Let A be any architecture. For every formula ψ =
�Q for some propositional Q, ψ is realizable inA iff ψ′ = ♦Q
is realizable in A.

Lemma 6 shows that the realizability of some φ ∈ LTLAG
reduces to realizing a set of safety formulae of the form of
Lemma 4.

Lemma 6. Let A be any architecture and φ = �P →
(�Q ∧

∧
i�♦Ri ∧

∧
i ♦Fi) ∈ LTLAG. The formula φ is re-

alizable in A iff every φRi
= �(P → (Q ∧ Ri)) and every

φFi = �(P → (Q ∧ Fi)) is realizable in A.

Proof: (i) For the right to left direction, assume that there
exist families of memoryless (by Lemma 4) local strategies
(σRi
j) and (σFi

j) for every process pj , such that the collective
strategy σRi implements φRi

, and the collective strategy σFi

implements φFi
. Construct local strategies τj such that for

every x = yz with |z| = (1 + |x| mod 2m), we have
τj(x) = σ

R|z|
j (z) if |z| ≤ m, and τj(x) = σ

F|z|−m

j (z) if
|z| > m (i.e. the local strategy τj repeatedly alternates between
all the strategies σRi

j in the first m steps, and between all
the strategies σFi

j the next m steps). Let τ be the collective
strategy of all τj and consider an arbitrary path π in T . Either
`τ (π)[k] |= ¬P for some k, or for all k, it holds `τ (π)[k] |= P ,
and by construction, for i = 1 + k mod 2m, we have
`τ (π)[k] |= Q ∧ Ri when i ≤ m and `τ (π)[k] |= Q ∧ Fi−m
when i > m. In both cases, `τ (π) |= φ.
(ii) For the left to right direction, assume that for some i, φRi

is not realizable (the analysis is similar for φFi). By Lemma 5,
♦(P → (Q ∧ Ri) is not realizable. Hence, for any collective
strategy σ there exists some path π in Tσ , such that for all

724

k, we have `σ(π)[k] |= P ∧ (¬Q ∨ ¬Ri), and σ does not
implement φ.

Hence, Lemma 6 establishes that every formula φ ∈ LTLAG
is realizable if and only if it admits local strategies for all the
corresponding φFi

, φRi
, by providing a constructive argument.

As a consequence of Lemma 4, deciding whether every
φFi

, φRi
is realizable reduces to realizing the propositional

formulae (P → (Q∧Ri) and (P → (Q∧Fi). This can be done
in NEXPTIME, by having a non-deterministic Turing machine
guessing the local strategies of all processes, and verifying
that such strategies satisfy the formula under all the (expo-
nentially many) possible inputs of the environment. We show
that the problem is also NEXPTIME-hard, via a reduction
from the Dependency Quantifier Boolean Formula (DQBF)
validity problem introduced in [20] to study time bounded
multi-player alternating machines. A DQBF is a quantified
Boolean formula with a succinct description of dependencies
between the quantified variables. Every DQBF has an equiv-
alent form in which all existentially quantified variables are
substituted by existentially quantified Skolem functions de-
fined over their dependencies, and appearing at the beginning
of the formula (e.g. ∀x1∀x2∃y1(x1)∃y2(x2)ϕ(x1, x2, y1, y2)
is a DQBF stating that yi depends on xi, and has a functional
form ∃σ1∃σ2∀x1∀x2ϕ(x1, x2, σ1(x1), σ2(x2)) with σ1, σ2 the
Skolem functions).

Lemma 7. Given an architecture A and a formula φ ∈ LTLAG,
deciding whether φ is realizable in A is NEXPTIME-hard.

Proof: Consider any DQBF formula ψ :
∀x1 . . .∀xk∃y1(−→x1) . . .∃yn(−→xn)ϕ(x1, . . . xk, y1 . . . yn) with
k universally quantified variables xi and n existentially
quantified variables yi. We assume w.l.o.g. that the
dependencies of each yi are only on some universally
quantified variables −→xi . We construct the architecture
A = (P, pe, V, E), where P contains n + 1 processes,
V = {xi ∈ ψ} ∪ {yi ∈ ψ}, process pi receives as inputs
from the environment all −→x i, outputs variable yi, while the
environment uses all remaining xj as hidden variables. We
construct the specification φ = �ϕ ∈ LTLAG. Both A and
φ are polynomial in the size of ψ. Because of Lemma 4,
φ is realizable in A iff ϕ is realizable in A. In turn, ϕ is
realizable iff ψ is valid, with local strategies σi corresponding
to the Skolem functions in the functional form of ψ, and
universal variables corresponding to all possible choices of the
environment in A. Since DQBF validity is NEXPTIME-hard
[20], the statement follows.

Hence, we have the following result.

Theorem 4. Given an architecture A and a specification φ ∈
LTLAG, the realizability of φ in A is NEXPTIME-complete.

Observe that Lemma 6 reduces the problem of realizability
of some ϕ ∈ LTLAG to realizing a set of formulae of the
form �Q, where Q is propositional. This in turn is reducible
to DQBF validity (because of Lemma 4), and because of
Lemma 7, the two problems are equivalent. In consequence,
efficient algorithms for solving DQBF, such as [21], yield
efficient synthesis procedures for LTLAG, and vice versa.
Moreover, if the DQBF tool outputs the corresponding Skolem

functions, then a witness collective strategy for realizability
can be obtained.

VI. CONCLUSIONS

In this paper we studied the distributed synthesis prob-
lem for relevant fragments of LTL. We presented a much
finer characterization of undecidability results for distributed
synthesis in terms of LTL fragments that uses eventually,
globally and next operators. In contrast to previous decidability
results that were non-elementary, we identify fragments where
the complexity is EXPSPACE (or NEXPTIME-complete). An
interesting direction of future work would be to develop
algorithms for the problems for which we establish decid-
ability, obtain efficient implementations of the algorithms for
distributed synthesis problems, and finally consider some case-
studies of practical examples.
Acknowledgments. The research was supported by Austrian Science
Fund (FWF) Grant No P 23499- N23, FWF NFN Grant No S11407-
N23 (RiSE), ERC Start grant (279307: Graph Games), Microsoft
faculty fellows award, the Austrian Science Fund NFN RiSE (Rig-
orous Systems Engineering), the ERC Advanced Grant QUAREM
(Quantitative Reactive Modeling).

REFERENCES

[1] A. Church, “Logic, arithmetic and automata,” in Proceedings of the
international congress of mathematicians, pp. 23–35, 1962.

[2] P. Ramadge and W. Wonham, “Supervisory control of a class of discrete
event processes,” SIAM Journal on Control and Optimization, vol. 25,
no. 1, pp. 206–230, 1987.

[3] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,” POPL
’89, pp. 179–190, ACM, 1989.

[4] A. Pnueli and R. Rosner, “Distributed reactive systems are hard to
synthesize,” SFCS ’90, pp. 746–757 vol.2, 1990.

[5] A. Pnueli, “The temporal logic of programs,” in FOCS, pp. 46–57, 1977.
[6] J. H. Reif, “Universal games of incomplete information,” STOC ’79,

pp. 288–308, ACM, 1979.
[7] G. L. Peterson and J. H. Reif, “Multiple-person alternation,” in FOCS,

pp. 348–363, 1979.
[8] O. Kupferman and M. Y. Vardi, “Synthesizing distributed systems,” in

LICS, pp. 389–398, 2001.
[9] S. Mohalik and I. Walukiewicz, “Distributed games,” in FSTTCS,

pp. 338–351, 2003.
[10] B. Finkbeiner and S. Schewe, “Uniform distributed synthesis,” LICS,

pp. 321–330, 2005.
[11] R. Alur, S. La Torre, and P. Madhusudan, “Playing games with boxes

and diamonds,” in CONCUR, pp. 127–141, 2003.
[12] R. Alur and S. La Torre, “Deterministic generators and games for LTL

fragments,” ACM Trans. Comput. Log., vol. 5, no. 1, pp. 1–25, 2004.
[13] J. Kretı́nský and J. Esparza, “Deterministic automata for the (F, G)-

fragment of LTL,” in CAV, pp. 7–22, 2012.
[14] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,”

in VMCAI, LNCS 3855, Springer, pp. 364–380, 2006.
[15] Y. Godhal, K. Chatterjee, and T. A. Henzinger, “Synthesis of AMBA

AHB from formal specification: A case study,” STTT, 2011.
[16] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and

M. Weiglhofer, “Interactive presentation: Automatic hardware synthesis
from specifications: a case study,” in DATE, pp. 1188–1193, 2007.

[17] C. Papadimitriou, Computational complexity. Addison-Wesley, 1994.
[18] O. Kupferman, M. Y. Vardi, and P. Wolper, “An automata-theoretic

approach to branching-time model checking,” Journal of the ACM
(JACM), vol. 47, no. 2, pp. 312–360, 2000.

[19] K. Chatterjee, T. A. Henzinger, J. Otop, and A. Pavlogiannis, “Dis-
tributed synthesis for LTL fragments,” 2013. Technical Report: IST-
2013-128 https://repository.ist.ac.at/130/1/Distributed Synthesis.pdf.

[20] G. Peterson, J. Reif, and S. Azhar, “Lower bounds for multiplayer non-
cooperative games of incomplete information,” Journal of Computers
and Mathematics with Applications, vol. 41, pp. 957–992, 2001.

[21] A. Fröhlich, G. Kovásznai, and A. Biere, “A DPLL algorithm for solving
DQBF,” Pragmatics of SAT, vol. 2012, 2012.

8 25

Counter-Strategy Guided Refinement of GR(1)
Temporal Logic Specifications

Rajeev Alur, Salar Moarref, and Ufuk Topcu
University of Pennsylvania, Philadelphia, USA. {alur,moarref,utopcu}@seas.upenn.edu

Abstract—The reactive synthesis problem is to find a finite-
state controller that satisfies a given temporal-logic specification
regardless of how its environment behaves. Developing a for-
mal specification is a challenging and tedious task and initial
specifications are often unrealizable. In many cases, the source
of unrealizability is the lack of adequate assumptions on the
environment of the system. In this paper, we consider the problem
of automatically correcting an unrealizable specification given in
the generalized reactivity (1) fragment of linear temporal logic by
adding assumptions on the environment. When a temporal-logic
specification is unrealizable, the synthesis algorithm computes a
counter-strategy as a witness. Our algorithm then analyzes this
counter-strategy and synthesizes a set of candidate environment
assumptions that can be used to remove the counter-strategy
from the environment’s possible behaviors. We demonstrate the
applicability of our approach with several case studies.

I. INTRODUCTION

Automatically synthesizing a system from a high-level
specification is an ambitious goal in the design of reactive
systems. The synthesis problem is to find a system that satisfies
the specification regardless of how its environment behaves.
Therefore, it can be seen as a two-player game between
the environment and the system. The environment attempts
to violate the specification while the system tries to satisfy
it. A specification is unsatisfiable if there is no input and
output trace that satisfies the specification. A specification is
unrealizable if there is no system that can implement the spec-
ification. That is, the environment can behave in such a way
that no matter how the system reacts, the specification would
be violated. In this paper we consider specifications which
are satisfiable but unrealizable. We address the problem of
strengthening the constraints over the environment by adding
assumptions in order to achieve realizability.

Writing a correct and complete formal specification which
conforms to the (informal) design intent is a hard and tedious
task [4], [5]. Initial specifications are often incomplete and
unrealizable. Unrealizability of the specification is often due
to inadequate environment assumptions. In other words, as-
sumptions about the environment are too weak, leading to an
environment with too many behaviors that makes it impossible
for the system to satisfy the specification. Usually there is
only a rough and incomplete model of the environment in
the design phase; thus it is easy to miss assumptions on the
environment side. We would like to automatically find such
missing assumptions that can be added to the specification
and make it realizable. Computed assumptions can be used

This research was partially supported by NSF Expedition in Computing
project ExCAPE (grant CCF 1138996), and AFOSR (grant number FA9550-
12-1-0302).

to give the user insight into the specification. They also
provide ways to correct the specification. In the context of
compositional synthesis [6], [9], derived assumptions based
on the components specifications can be used to construct
interface rules between the components.

An unrealizable specification cannot be executed or simu-
lated which makes its debugging a challenging task. Counter-
strategies are used to explain the reason for unrealizabilty
of linear temporal logic (LTL) specifications [5]. Intuitively,
a counter-strategy defines how the environment can react to
the outputs of the system in order to enforce the system to
violate the specification. Konighofer et al. in [5] show how
such a counter-strategy can be computed for an unrealizable
LTL specification. The requirement analysis tool RATSY [2]
implements their method for a fragment of LTL known as
generalized reactivity (1) (GR(1)). We also consider GR(1)
specifications in this paper because the realizability and synthe-
sis problems for GR(1) specifications can be solved efficiently
in polynomial time and GR(1) is expressive enough to be used
for interesting real-world problems [3], [12].

Counter-strategies can still be difficult to understand by
the user especially for larger systems. We propose a debug-
ging approach which uses the counter-strategies to strengthen
the assumptions on the environment in order to make the
specification realizable. For a given unrealizable specification,
our algorithm analyzes the counter-strategy and synthesizes a
set of candidate assumptions in the GR(1) form (see section
II). Any of the computed candidate assumptions, if added to
the specification, restricts the environment in such a way that
it cannot behave according to the counter-strategy—without
violating its assumptions—anymore. Thus we say the counter-
strategy is ruled out from the environment’s possible behaviors
by adding the candidate assumption to the specification.

The main flow for finding the missing environment as-
sumptions is as follows. If the specification is unrealizable,
a counter-strategy is computed for it. A set of patterns are
then synthesized by processing an abstraction of the counter-
strategy. Patterns are LTL formulas of special form that define
the structure for the candidate assumptions. We ask the user to
specify a set of variables to be used for generating candidates
for each pattern. The user can specify the set of variables which
she thinks contribute to unrealizability or are underspecified.
The variables are used along with patterns to generate the can-
didate assumptions. Any of the synthesized assumptions can
be added to the specification to rule out the counter-strategy.
The user can choose an assumption from the candidates in an
interactive way or our algorithm can automatically search for
it. The chosen assumption is then added to the specification

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 926ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

and the process is repeated with the new specification.

The contributions of this paper are as follows: We propose
algorithms to synthesize environment assumptions by directly
processing the counter-strategies. We give a counter-strategy
guided synthesis approach that finds the missing environment
assumptions. The suggested refinement can be validated by
the user to ensure compatibility with her design intent and
can be added to the specification to make it realizable. We
demonstrate our approach with examples and case studies.

The problem of correcting an unrealizable LTL specifica-
tion by constructing an additional environment assumption is
studied by Chatterjee et al. in [4]. They give an algorithm
for computing the assumption which only constrains the envi-
ronment and is as weak as possible. Their approach is more
general than ours as they consider general LTL specifications.
However, the synthesized assumption is a Büchi automaton
which might not translate to an LTL formula and can be
difficult for the user to understand (for an example, see Fig. 3
in [4]). Moreover, the resulting specification is not necessarily
compatible with the design intent [7]. Our approach generates
a set of assumptions in GR(1) form that can easily be validated
by the user and be used to make the specification realizable.

The closest work to ours is the work by Li et al. [7]
where they propose a template-based specification mining
approach to find additional assumptions on the environment
that can be used to rule out the counter-strategy. A template
is an LTL formula with at least one placeholder, ?b, that
can be instantiated by the Boolean variable b or its negation.
Templates are used to impose a particular structure on the
form of generated candidates and are engineered by the user
based on her knowledge of the environment. A set of candidate
assumptions is generated by enumerating all possible instanti-
ations of the defined templates. For a given counter-strategy,
their method finds an assumption from the set of candidate
assumptions which is satisfied by the counter-strategy. By
adding the negation of such an assumption to the specification,
they remove the behavior described by the counter-strategy
from the environment. Similar to their work, we consider
unrealizable GR(1) specifications and achieve realizability by
adding environment assumptions to the specification. But,
unlike them, we directly work on the counter-strategies to
synthesize a set of candidate assumptions that can be used
to rule out the counter-strategy. Similar to templates, patterns
impose structure on the assumptions. However, our method
synthesizes the patterns based on the counter-strategy and the
user does not need to manipulate them. We only require the
user to specify a subset of variables to be used in the search for
the missing assumptions. The user can specify a subset that she
thinks leads to the unrealizability. In our method, the maximum
number of generated assumptions for a given counter-strategy
is independent from what subset of variables is considered,
whereas increasing the size of the chosen subset of variables
in [7] will result in exponential growth in the number of
candidates, while only a small number of them might hold
over all runs of the counter-strategy (unlike our method).
Moreover, we compute the weakest environment assumptions
for the considered structure and given subset of variables. Our
work takes an initial step toward bridging the gap between
[4] and [7]. Our method synthesizes environment assumptions
that are simple formulas, making them easy to understand and

practical, and they also constrain the environment as weakly
as possible within their structure. We refer the reader to [7]
for a survey of related work.

II. PRELIMINARIES

Linear temporal logic (LTL) is a formal specification
language with two kinds of operators: logical connectives
(negation (¬), disjunction (∨), conjunction (∧) and implication
(→)) and temporal modal operators (next (©), always (2),
eventually (3) and until (U)). Given a set P of atomic
propositions, an LTL formula is defined inductively as follows:
1) any atomic proposition p ∈ P is an LTL formula. 2) if φ
and ψ are LTL formulas, then ¬φ, φ ∨ ψ, ©φ and φU ψ are
also LTL formulas. Other operators can be defined using the
following rules: φ ∧ ψ = ¬(¬φ ∨ ¬ψ), φ → ψ = ¬φ ∨ ψ,
3φ = TrueU φ and 2φ = ¬3¬φ. An LTL formula is
interpreted over infinite words ω ∈ (2P)ω . For an LTL formula
φ, we define its language L(φ) to be the set of infinite words
that satisfy φ, i.e., L(φ) =

{
ω ∈ (2P)ω | ω |= φ

}
.

A finite transition system (FTS) is a tuple T = 〈Q,Q0, δ〉
where Q is a finite set of states, Q0 ⊆ Q is the set of initial
states and δ ⊆ Q ×Q is the transition relation. An execution
or run of a FTS is an infinite sequence of states σ = q0q1q2...
where q0 ∈ Q0 and for any i ≥ 0, qi ∈ Q and (qi, qi+1) ∈
δ. The language of a FTS T is defined as the set L(T) =
{ω ∈ Qω | ω is a run of T }, i.e., the set of (infinite) words
generated by the runs of T . We often consider a FTS as a
directed graph with a natural bijection between the states and
transitions of the FTS and vertices and edges of the graph,
respectively. Formally for a FTS T = 〈Q,Q0, δ〉, we define the
graph GT = 〈V,E〉 where each vi ∈ V corresponds to a unique
state qi ∈ Q, and (vi, vj) ∈ E if and only if (qi, qj) ∈ δ.

Let P be a set of atomic propositions, partitioned into input,
I, and output, O, propositions. A Moore transducer is a tuple
M = (S, s0, I,O, δ, γ), where S is the set of states, s0 ∈ S is
the initial state, I = 2I is the input alphabet, O = 2O is the
output alphabet, δ : S × I → S is the transition function and
γ : S → O is the state output function. A Mealy transducer is
similar, except that the state output function is γ : S × I →
O. For an infinite word ω ∈ Iω , a run of M is the infinite
sequence σ ∈ Sω such that σ0 = s0 and for all i ≥ 0 we have
σi+1 = δ(σi, ωi). The run σ on input word ω produces an
infinite word M(ω) ∈ (2P)ω such that M(ω)i = γ(σi)∪ωi for
all i ≥ 0. The language of M is the set L(M) = {M(ω) | ω ∈
Iω} of infinite words generated by runs of M .

An LTL formula φ is satisfiable if there exists an infinite
word ω ∈ (2P)ω such that ω |= φ. A Moore (Mealy)
transducer M satisfies an LTL formula φ, written as M |= φ, if
L(M) ⊆ L(φ). An LTL formula φ is Moore (Mealy) realizable
if there exists a Moore (Mealy, respectively) transducer M
such that M |= φ. The realizability problem asks whether
there exists such a transducer for a given LTL specification φ.

A two-player deterministic game graph is a tuple G =
(Q,Q0, E) where Q can be partitioned into two disjoint sets
Q1 and Q2. Q1 and Q2 are the sets of states of player 1 and
2, respectively. Q0 is the set of initial states. E = Q×Q is the
set of directed edges. Players take turns to play the game. At
each step, if the current state belongs to Q1, player 1 chooses
the next state. Otherwise player 2 makes a move. A play of

10 27

the game graph G is an infinite sequence σ = q0q1q2... of
states such that q0 ∈ Q0, and (qi, qi+1) ∈ E for all i ≥ 0.
We denote the set of all plays by Π. A strategy for player
i ∈ {1, 2} is a function αi : Q∗.Qi → Q that chooses the
next state given a finite sequence of states which ends at a
player i state. A strategy is memoryless if it is a function of
current state of the play, i.e., αi : Qi → Q. Given strategies
α1 and α2 for players and a state q ∈ Q, the outcome is
the play starting at q, and evolved according to α1 and α2.
Formally, outcome(q, α1, α2) = q0q1q2... where q0 = q, and
for all i ≥ 0 we have qi+1 = α1(q0q1...qi) if qi ∈ Q1 and
qi+1 = α2(q0q1...qi) if qi ∈ Q2. An objective for a player is
a set Φ ⊆ Π of plays. A strategy α1 for player 1 is winning
for some state q if for every strategy α2 of player 2, we have
outcome(q, α1, α2) ∈ Φ.

Given an LTL formula φ over P and a partitioning of
P into I and O, the synthesis problem is to find a Mealy
transducer M with input alphabet I = 2I and output alphabet
O = 2O that satisfies φ. This problem can be reduced to
computing winning strategies in game graphs. A deterministic
game graph G, and an objective Φ can be constructed such
that φ is realizable if and only if the system (player 1) has
a memoryless winning strategy from the initial state in G
[11]. Every memoryless winning strategy of the system can
be represented by a Mealy transducer that satisfies φ. If the
specification φ is unrealizable, then the environment (player
2) has a winning strategy. A counter-strategy for the synthesis
problem is a strategy for the environment that can falsify the
specification, no matter how the system plays. Formally, a
counter-strategy can be represented by a Moore transducer
Mc = (S′, s′0, I ′,O′, δ′, γ′) that satisfies ¬φ, where I ′ = O
and O′ = I are the input and output alphabet for Mc which
are generated by the system and the environment, respectively.

In this paper, we consider specifications of the form

φ = φe → φs, (1)

where φα for α ∈ {e, s} can be written as a conjunction of
the following parts:

• φαi : A Boolean formula over I if α = e and over I∪O
otherwise, characterizing the initial state.

• φαt : An LTL formula of the form
∧
i2ψi. Each

subformula 2ψi is either characterizing an invariant,
in which case ψi is a Boolean formula over I ∪O, or
it is characterizing a transition relation, in which case
ψi is a Boolean formula over expressions v and ©v′
where v ∈ I ∪O and, v′ ∈ I if α = e and v′ ∈ I ∪O
if α = s.

• φαg : A formula of the form
∧
i23Bi characterizing

fairness/liveness, where each Bi is a Boolean formula
over I ∪O.

For the specifications of the form in (1), known as GR(1)
formulas, Piterman et al. [10] show that the synthesis problem
can be solved in polynomial time. Intuitively, in (1), φe
characterizes the assumptions on the environment and φs
characterizes the correct behavior (guarantees) of the system.
Any correct implementation of the specification guarantees to
satisfy φs, provided that the environment satisfies φe.

For a given unrealizable specification φe → φs, we define
a refinement ψ =

∧
i ψi as a conjunction of a collection

of environment assumptions ψi in the GR(1) form such that
φe ∧ψ → φs is realizable. Intuitively it means that adding the
assumptions ψi to the specification results in a new specifica-
tion which is realizable. We say a refinement ψ is consistent
with the specification φe → φs if φe ∧ ψ is satisfiable. Note
that if φe ∧ ψ is not satisfiable, i.e., φe ∧ ψ = False, the
specification φe ∧ ψ → φs is trivially realizable [7], but
obviously ψ is not an interesting refinement.

III. PROBLEM STATEMENT AND OVERVIEW

A. Problem Statement

Given a specification φ = φe → φs in the GR(1) form
which is satisfiable but unrealizable, find a refinement ψ =∧
i ψi as a conjunction of environment assumptions ψi such

that φe ∧ ψ is satisfiable and φe ∧ ψ → φs is realizable.

B. Overview of the Method

We now give a high-level view of our method. Specification
refinements are constructed in two phases. First, given a
counter-strategy’s Moore machine Mc, we build an abstraction
which is a FTS Tc. The abstraction preserves the structure of
the counter-strategy (its states and transitions) while removing
the input and output details. The algorithm processes Tc and
synthesizes a set of LTL formulas in special forms, called
patterns, which hold over all runs of Tc. Our algorithm then
uses these patterns along with a subset of variables specified
by the user to generate a set of LTL formulas which hold
over all runs of Mc. We ask the user to specify a subset
of variables which she thinks contribute to the unrealizability
of the specification. This set can also be used to guide the
algorithm to generate formulas over the set of variables which
are underspecified. Using a smaller subset of variables leads
to simpler formulas that are easier for the user to understand.

The complement of the generated formulas form the set of
candidate assumptions that can be used to rule out the counter-
strategy from the environment’s possible behaviors. We remove
the candidates which are not consistent with the specification
in order to avoid a trivial solution False.

Any assumption from the set of generated candidates can
be used to rule out the counter-strategy. Our approach does
a breadth-first search over the candidates. If adding any of
the candidates makes the specification realizable, the algorithm
returns that candidate as a solution. Otherwise at each iteration,
the process is repeated for any of the new specifications
resulting from adding a candidate. The depth of the search
is controlled by the user. The search continues until either a
consistent refinement is found or the algorithm cannot find
one within the specified depth (hence the search algorithm is
sound, but not complete).

Example 1. Consider the following example borrowed from
[7] with the environment variables I = {r, c} and system
variables O = {g, v}. Here r, c, g and v stand for request,
clear, grant and valid signals respectively. We start with no
assumption, that is we only assume φe = True. Consider
the following system guarantees: φ1 = 2(r → ©3g), φ2 =
2((c ∨ g)→©¬g), φ3 = 2(c→ ¬v) and φ4 = 23(g ∧ v).

1128

(a)

q0 q1

q2

q3

(b)

Fig. 1: (a) A counter-strategy produced by RATSY for the
specification of Example 1 with the additional assumption
23(¬r). c = True is constant in all states. (b) The abstract
finite transition system for the counter-strategy of part (a).

Let φs be the conjunction of these formulas. φ1 requires that
every request must be granted eventually starting from the next
step by setting signal g to high. φ2 says that if clear or grant
signal is high, then grant must be low at the next step. φ3 says
if clear is high, then the valid signal must be low. Finally, φ4
says that system must issue a valid grant infinitely often.

The specification φe → φs is unrealizable. A simple
counter-strategy is for the environment to keep r and c high
at all times. Then, by φ3, v needs to be always low and
thus φ4 cannot be satisfied by any system. RATSY produces
this counter-strategy which is then fed to our algorithm. An
example candidate found by our algorithm to rule out this
counter-strategy is the assumption ψ = 23(¬r). Adding ψ to
the specification prevents the environment from always keeping
r high, thus the environment cannot use the counter-strategy
anymore. However, the specification φe ∧ ψ → φs is still
unrealizable. RATSY produces the counter-strategy shown in
Figure 1(a) for the new specification. The new counter-strategy
keeps the c high all the times. The value of r is changed
depending on the state of the counter-strategy as shown in
Figure 1(a). The top block in each state of Figure 1(a) is
the name of the state. RATSY produces additional information,
shown in middle blocks, on how the counter-strategy enforces
the system to violate the specification. We do not use this
information in the current version of the algorithm.

The following formulas are examples of consistent re-
finements produced by our algorithm for the specification
φe → φs:

• ψ1 = 2(¬r ∨ ¬c) ∧2(r ∨ ¬c)
• ψ2 = 2(r →©¬c) ∧2(¬r →©¬c)
• ψ3 = 23(¬r) ∧2(¬c ∨ r) ∧2(¬r →©¬c))

Assumptions in both of the refinements ψ1 and ψ2 imply
2(¬c), that is, adding them requires the environment to keep
the signal c always low. Although adding these assumptions
make the specification realizable, it may not conform to the
design intent. Refinement ψ3 does not restrict c like ψ1 and
ψ2, and only assumes that the environment sets the signal r
to low infinitely often and that, when the request signal is low,
the clear signal should be low at the same and the next step.

IV. SPECIFICATION REFINEMENT

Algorithm 1 finds environment assumptions that can be
added to the specification to make it realizable. It gets as input
the initial unrealizable specification φ = φe → φs, the set P of

subsets of variables to be used in generated assumptions and
the maximum depth α of the search. It outputs a consistent
refinement ψ, if it can find one within the specified depth.

For an unrealizable specification, a counter-strategy is
computed as a Moore transducer using the techniques in [5],
[2]. The counter-strategy is then fed to the GeneratePatterns
procedure which constructs a set of patterns and is detailed
in Section IV-C. Procedure GenerateCandidates, described
in Section IV-A, produces a set of candidate assumptions in
the form of GR(1) formulas using patterns and the set P
of variables. Algorithm 1 runs a breadth-first search to find
a consistent refinement. Each node of the search tree is a
generated candidate assumption, while the root of the tree
corresponds to the assumption True (i.e., no assumption). Each
path of the search tree starting from the root corresponds to a
candidate refinement as conjunction of candidate assumptions
of the nodes visited along the path. When a node is visited
during the search, its corresponding candidate refinement is
added to the specification. If the new specification is consistent
and realizable, the refinement is returned by the algorithm.
Otherwise, if the depth of the current node is less than the
maximum specified, a set of candidate assumptions are gen-
erated based on the counter-strategy for the new specification
and the search tree expands.

In Algorithm 1, the queue CandidatesQ keeps the candi-
date refinements which are found during the search. At each
iteration, a candidate refinement ψ is removed from the head of
the queue. The procedure Consistent checks if ψ is consistent
with the specification φ. If it is, the algorithm checks the
realizability of the new specification φnew = φe ∧ ψ → φs
using the procedure Realizable [3], [2]. If φnew is realizable, ψ
is returned as a suggested refinement. Otherwise, if the depth of
the search for reaching the candidate refinement ψ is less than
α, a new set of candidate assumptions are generated using the
counter-strategy computed for φnew. Algorithm 1 keeps track
of the number of counter-strategies produced along the path
to reach a candidate refinement in order to compute its depth
(Depth(ψ)). Each new candidate assumption ψnew results in a
new candidate refinement ψ∧ψnew which is added to the end
of the queue for future processing . The algorithm terminates
when either a consistent refinement ψ is found, or there is no
more candidates in the queue to be processed.

A. Generating Candidates

Consider the Moore transducer Mc = (S, s0, I,O, δ, γ)
of a counter-strategy, where I = 2O and O = 2I , and O
and I are the set of the system and environment variables,
respectively. Given Mc, we construct a finite transition system
Tc = 〈Q, {q0} , δ〉 which preserves the structure of the Mc

while removing all details about its input and output. More
formally, for each state si ∈ S, Tc has a corresponding state
qi ∈ Q, and q0 ∈ Q is the state corresponding to s0 ∈ S.
There exists a transition (qi, qj) ∈ δ if and only if there exists
y ∈ I such that δ(si, y) = sj . It is easy to see that any run of
Tc corresponds to a run of Mc and vice versa.

By processing the abstract FTS Tc of the counter-strategy,
we synthesize a set of patterns which are LTL formulas of
the form 32ψ1, 3ψ2 and 3(ψ3 ∧ ©ψ4) that hold over all
runs of Tc. Each ψi for i ∈ {1, 2, 3, 4} is a disjunction of
a subset of states of Tc, i.e., ψi =

∨
q∈Qi

q where Qi ⊆ Q.

12 29

Algorithm 1: Specification Refinement
Input: φ = φe → φs, initial specification
Input: P , set of subsets of variables to be used in

patterns
Input: α, maximum depth of the search
Output: ψ, additional assumptions such that

φe ∧ ψ → φs is realizable
1 Mc := CounterStrategy(φ);
2 Patterns := GeneratePatterns(Mc);
3 CandidatesQ := GenerateCandidates(Patterns,P);
4 while CandidatesQ is not Empty do
5 ψ := CandidatesQ.DeQueue;
6 if Consistent(φ,ψ) then
7 φnew = φe ∧ ψ → φs;
8 if Realizable(φnew) then
9 return ψ;

10 else
11 if Depth(ψ) < α then
12 Mc := CounterStrategy(φnew);
13 Patterns := GeneratePatterns(Mc);
14 newCandidates :=

GenerateCandidates(Patterns,P) ;
15 foreach ψnew ∈ newCandidates do
16 CandidatesQ.EnQueue(ψ ∧ ψnew);
17 return No refinement was found;

The complements of these formulas, 23¬ψ1 (liveness), 2¬ψ2

(safety), and 2(ψ3 → ©¬ψ4) (transition), respectively, are
of the desired GR(1) form and provide the structure for
the candidate assumptions that can be used to rule out the
counter-strategy. Note that similar to [7], we do not synthesize
assumptions characterizing the initial state because they are
easy to specify in practice. Besides, it is simple to discover
them from the counter-strategy. Patterns are generated using
simple graph search algorithms explained in Section IV-C.

Example 2. Figure 1(b) shows the abstract FTS for the
counter-strategy of Figure 1(a). For this FTS our algo-
rithm produces the set of patterns 32(q1 ∨ q2 ∨ q3),
3q0,3q1,3q2,3q3, and 3(q0 ∧©q1), 3(q1 ∧©q2),3(q2 ∧
©q3),3(q3 ∧ ©q1). Any run of Tc satisfies all of the above
formulas. For example Tc |= 3qi for i ∈ {0, 1, 2, 3}, meaning
that any run of the Tc will eventually visit state qi. The formula
3(q1 ∧ ©q2) means that any run of Tc will eventually visit
state q1 and then state q2 at the next step. Also any run of Tc
satisfies 32(q1 ∨ q2 ∨ q3), meaning that any run of Tc will
eventually reach and stay in the set of states {q1, q2, q3}.

As we mentioned previously, each state qi ∈ Q of the FTS
Tc corresponds to a state si ∈ S of the Moore transducer
Mc of the counter-strategy. Also recall that each run of Tc
corresponds to a run of Mc. Mc, at any state si ∈ S, outputs
the propositional formula Vsi = γ(si) which is a valuation
over all environment variables. Formally, for any state si ∈ S
of Mc, we have Vsi = `i1 ∧ `i2 ∧ ... ∧ `in where each `ij is a
literal over the environment variable xj ∈ I . We call Vsi the
state predicate of si and also qi. We replace the states in the
patterns with their corresponding state predicates to get a set
of formulas which hold over all runs of the counter-strategy.

Example 3. Consider the counter-strategy shown in Figure

1(a). The state predicates are VS0 = VS1 = VS3 = c ∧ r
and VS2 = c∧¬r, where S0, S1, S2 and S3 are the states of
Mc. Using the patterns obtained in Example 2 and replacing
the states with their corresponding state predicates, we obtain
LTL formulas which hold over all runs of Mc. For example,
the pattern 32(q1 ∨ q2 ∨ q3) gives us the formula 32((c ∧
r) ∨ (c ∧ ¬r)) = 32c. Replacing q2 with VS2 in the pattern
3q2 leads to 3(c ∧ ¬r). Similarly, the pattern 3(q1 ∧©q2)
gives 3((c ∧ r) ∧©(c ∧ ¬r)).

The structure of the state predicates and patterns is such
that any subset of the environment variables can be used along
with the patterns to generate candidates and the resulting for-
mulas still hold over all runs of the counter-strategy. Algorithm
1 gets the set P = {P1, P2, P3, P4} as input, where each Pi
is a subset of environment variables that should be used in
the corresponding ψi for generating the candidate assumptions
from the patterns of the form 32ψ1, 3ψ2 and 3(ψ3∧©ψ4).

Example 4. Assume that the designer specifies P1 = {r},
P2 = {c}, P3 = {r, c} and P4 = {c}. Then the pattern
32(q1 ∨ q2 ∨ q3) results in 32(r∨¬r∨ r) = 32True. From
3q2 we obtain 3c, and 3(q1∧©q2) leads to 3((c∧r)∧©c).
Note that using a smaller subset of variables leads to simpler
formulas (and sometimes trivial as in 32(True)). However,
this simplicity may result in assumptions which put more
constraints on the environment as we will show later.

The complement of the generated formulas form the set of
candidate assumptions that can be used to rule out the counter-
strategy. For instance, formulas 23(¬r ∧ r) = 23(False),
2(¬c), 2((c ∧ r) → ©(¬c)) and 2((c ∧ ¬r) → ©(¬c)) are
the candidate assumptions computed based on the user input
in Example 4. Note that there might be repetitive formulas
among the generated candidates. We remove the repeated
formulas in order to prevent the process from checking the
same assumption repeatedly. We also use some techniques to
simplify the synthesized assumptions (see [1]).

B. Removing the Restrictive Formulas

Given two non-equivalent formulas φ1 and φ2 we say φ1
is stronger than φ2 if φ1 → φ2 holds. Assume ψ1 and ψ2 are
two formulas that hold over all runs of the counter-strategy
computed for the specification φe → φs, and that ψ1 → ψ2.
Note that ¬ψ2 → ¬ψ1 also holds, that is ¬ψ1 is a weaker
assumption compared to ¬ψ2. Adding either ¬ψ1 or ¬ψ2 to
the environment assumptions φe rules out the counter-strategy.
However, adding the stronger assumption ¬ψ2 restricts the
environment more than adding ¬ψ1. That is, φe ∧ ¬ψ2 puts
more constraints on the environment compared to φe ∧ ¬ψ1.

As an example, consider the counter-strategy Mc shown in
Figure 1(a). Both ψ1 = 3(c∧¬r) and ψ2 = 3(c) hold over all
runs of Mc. Moreover, ψ1 → ψ2. Consider the corresponding
assumptions ¬ψ1 = 2(¬c∨r) and ¬ψ2 = 2(¬c). Adding ¬ψ2

restricts the environment more than adding ¬ψ1. ¬ψ2 requires
the environment to keep the signal c always low, whereas in
case of ¬ψ1, the environment is free to assign additional values
to its variables. It only prevents the environment from setting
c to high and r to low at the same time.

We construct patterns which are strongest formulas of
their specified form that hold over all runs of the counter-

1330

strategy. Therefore, the generated candidate assumptions are
the weakest formulas that can be constructed for the given
structure and the user specified subset of variables.

C. Synthesizing Patterns

In this section we show how certain types of patterns can be
synthesized using the abstract FTS Tc of the counter-strategy.
A pattern P , is an LTL formula φP which holds over all runs
of the FTS Tc, i.e., Tc |= φP . We are interested in patterns
of the form 32ψ, 3ψ and 3(ψ1 ∧©ψ2). The complements
of these patterns are of the GR(1) form and, after replacing
states with their corresponding state predicates, will yield to
candidate assumptions for removing the counter-strategy.

1) Patterns of the Form 3ψ: For a FTS Tc = 〈Q, {q0} , δ〉,
we define a configuration C ⊆ Q as a subset of states of
Tc. We say a configuration C is an eventually configuration
if for any run σ of Tc there exists a state q ∈ C and
a time step i ≥ 0 such that σi = q. That is, any run
of Tc eventually visits a state from the configuration C. It
follows that if C is an eventually configuration for Tc, then
Tc |= 3

∨
q∈C q. We say an eventually configuration C is

minimal if there exists no C ′ ⊂ C such that C ′ is an eventually
configuration. Note that removing any state q ∈ C from
a minimal eventually configuration leads to a configuration
which is not an eventually configuration.

Algorithm 2 constructs eventually patterns which corre-
spond to the minimal eventually configurations of Tc with
size less than or equal to β. The larger configurations lead
to larger formulas which are hard for the user to parse. The
user can specify the value of β. Heuristics can also be used
to automatically set β based on the properties of Tc, e.g.
the maximum outdegree of the vertices in the correspond-
ing directed graph GTc , where the outdegree of a vertex is
the number of its outgoing edges. In Algorithm 2, the set
3Configurations keeps the minimal eventually configurations
discovered so far. Algorithm 2 initializes the sets Patterns and
3Configurations to {3q0} and {q0}, respectively. Note that
3q0 holds over all runs of Tc. The algorithm then checks
each possible configuration Q′ ⊆ Q − {q0} with size less
than or equal to β in a non-decreasing order of |Q′| to find
minimal eventually configurations. Without loss of generality
we assume that all states in Tc have outgoing edges1. At each
iteration, a configuration Q′ is chosen. Algorithm 2 checks
if there is a minimal eventually configuration Q′′ which is
already discovered and Q′′ ⊂ Q′. If such Q′′ exists, Q′ is not
minimal. Otherwise, the algorithm checks if it is an eventually
configuration by first removing all the states in Q′ and their
corresponding incoming and outgoing transitions from Tc to
obtain another FTS T ′c . Now, if there is an infinite run from q0
in T ′c , then there is a run in Tc that does not visit any state in
Q′. Otherwise, Q′ is a minimal eventually configuration and
is added to 3Configurations. The corresponding formula ψ =
3
∨
q∈Q′ q is also added to the set of eventually patterns. Note

that checking if there exists an infinite run in T ′c can be done by
considering T ′c as a graph and checking if there is a reachable
cycle from q0, which can be done in linear time in number

1A transition from any state with no outgoing transition can be added to a
dummy state with a self loop. Patterns which include the dummy state will
be removed.

Algorithm 2: Generating 3ψ patterns
Input: Finite state transition system Tc = 〈Q, {q0} , δ〉
Input: β, maximum number of states in generated

patterns
Output: a set of patterns of the form 3ψ where

Tc |= 3ψ
1 Patterns := {3q0};
2 3Configurations := {q0};
3 foreach Q′ ⊆ Q− {q0} with non-decreasing order of
|Q′| where |Q′| ≤ β do

4 if 6 ∃Q′′ ∈ 3Configurations s.t. Q′′ ⊆ Q′ then
5 Let T ′c = 〈Q−Q′, {q0} , δ′〉 where

δ′ = {(q, q′) ∈ δ|q 6∈ Q′ ∧ q′ 6∈ Q′};
6 if there is no infinite run from q0 in T ′c then
7 Add Q′ to 3Configurations;
8 Let ψ = 3

∨
qi∈Q′ qi;

9 Add ψ to Patterns;
10 return Patterns;

of states and transitions of Tc. Therefore, the algorithm is of
complexity O(|Q|β(|Q|+ |δ|)).

Example 5. Consider the FTS shown in Figure 2. Algorithm 2
starts at initial configuration {q0} and generates the formula
3q0. None of {q1}, {q2} or {q3} is an eventually configura-
tion. For example for configuration {q1}, there exists the run
σ = q0, (q3)ω which never visits q1. Configurations {q1, q3}
and {q2, q3} are minimal eventually configurations. For exam-
ple removing {q1, q3} will lead to a FTS with no infinite run
(no cycle is reachable from q0 in the corresponding graph).
It is easy to see that configuration {q1, q2} is not an eventu-
ally configuration. Configuration {q1, q2, q3} is not minimal,
although it is an eventually configuration. Thus Algorithm 2
returns the set of patterns {3q0,3(q1 ∨ q3),3(q2 ∨ q3)}.

2) Patterns of the Form 32ψ: To compute formulas of
the form 32ψ which hold over all runs of the FTS Tc =
〈Q, {q0} , δ〉 of the counter-strategy, we view Tc as a graph
and separate its states into two groups: Qcycle ⊆ Q, the set of
states that are part of a cycle in Tc (including the cycle from
one node to itself), and Q′ = Q − Qcycle. Without loss of
generality we assume that any state q ∈ Q is reachable from
q0. Therefore, any state q ∈ Qcycle belongs to a reachable
strongly connected component C of Tc. Also for any strongly
connected component C of Tc , there exists a run σ of Tc which
reaches states in C and keeps cycling there forever. Hence, the
formula ψ1 = 32

∨
q∈C q holds over the run σ. Indeed ψ1 is

the minimal formula of disjunctive form which holds over all
runs that can reach the strongly connected component C. That
is, by removing any of the states from ψ1, one can find a
run σ′ which can reach the strongly connected component C
and visit the removed state, falsifying the resulted formula.
Therefore, eventually for any execution of Tc, the state of the
system will always be in one of the states q ∈ Qcycle. Thus
the formula ψ = 32

∨
q∈Qcycle q is the minimal formula of

the form eventually always which holds over all runs of Tc.

To partition the states of the Tc into Qcycle and Q′

we use Tarjan’s algorithm for computing strongly connected
components of the graph. Thus the algorithm is of linear time

14 31

q0

start

q1 q2q3

Fig. 2: A non-deterministic finite state transition system Tc

complexity in number of states and transitions of Tc.
Example 6. Consider the non-deterministic FTS shown in
Figure 2. It has three strongly connected components: {q0},
{q1, q2} and {q3}. Only the latter two components include
a cycle inside them, that is Qcycle = {q1, q2, q3}. Thus,
the pattern ψ = 32(q1 ∨ q2 ∨ q3) is generated. Note that
the possible runs of the system are σ1 = q0, (q1, q2)ω and
σ2 = q0, (q3)ω . The generated pattern ψ holds over both of
these runs. Observe that removing any of the states in ψ will
result in a formula which is not satisfied by Tc any more.

3) Patterns of the Form 3(ψ1 ∧©ψ2): To generate candi-
dates of the form 3(ψ1 ∧©ψ2), first note that 3(ψ1 ∧©ψ2)
holds only if 3ψ1 holds. Therefore, a set of eventually patterns
3ψ1 is first computed using Algorithm 2. Then for each for-
mula 3ψ1, the pattern 3(ψ1∧©

∨
q∈Next(ψ1)

q) is generated,
where Next(ψ1) is the set of states that can be reached in
one step from the configuration specified by ψ1. Formally,
Next(ψ1) = {qi ∈ Q | ∃qj ∈ C s.t. (qj , qi) ∈ δ} and C is
the configuration represented by ψ1 =

∨
q∈C q. The most

expensive part of this procedure is computing the eventually
patterns, therefore its complexity is the same as Algorithm 2.
Algorithms for computing 32ψ and 3(ψ1 ∧ ©ψ2) patterns
can be found in the technical report [1].

Example 7. Consider the FTS shown in Figure 2. Given the
set of eventually formulas produced in Example 5, patterns
3(q0 ∧©(q1 ∨ q3)), 3((q1 ∨ q3) ∧©(q2 ∨ q3)) and 3((q2 ∨
q3) ∧©(q1 ∨ q3)) are generated.

The procedures described for producing patterns, lead to
assumptions which only include environment variables, and
are enough for resolving unrealizability in our case studies.
However, in general, GR(1) assumptions can also include the
system variables. The procedures can be easily extended to the
general case (see [1]).

The following theorem states that the procedures described
in this section, generate the strongest patterns of the specified
forms. Its proof can be found in [1]. Removing the weaker
patterns leads to shorter formulas which are easier for the
user to understand. It also decreases the number of generated
candidates at each step. More importantly, it leads to weaker
assumptions on the environment that can be used to rule out
the counter-strategy. If the restriction imposed by any of these
candidates is not enough to make the specification realizable,
the method analyzes the counter-strategy computed for the
new specification to find assumptions that can restrict the
environment more. This way the counter-strategies guide the
method to synthesize assumptions that can be used to achieve
realizability.

Theorem 1. For any formula of the form 3ψ,32ψ, or 3(ψ1∧
©ψ2) which hold over all runs of a given FTS Tc, there is an
equivalent or stronger formula of the same form synthesized
by the algorithms described in Section IV-C.

V. CASE STUDIES

We now present two case studies. We use RATSY to
generate counter-strategies and Cadence SMV model checker
[8] to check the consistency of the generated candidates. In
our experiments, we set α in Algorithm 1 to two, and β
in Algorithm 2 to the maximum outdegree of the vertices
of the counter-strategy’s abstract directed graph. We slightly
change Algorithm 1 to find all possible refinements within the
specified depth.

A. Lift Controller

We borrow the lift controller example from [3]. Consider
a lift controller serving three floors. Assume that the lift has
three buttons, denoted by the Boolean variables b1, b2 and
b3, which are controlled by the environment. The location of
the lift is represented using Boolean variables f1, f2 and f3
controlled by the system. The lift may be requested on each
floor by pressing the corresponding button. We assume that
(1) once a request is made, it cannot be withdrawn, (2) once
the request is fulfilled it is removed, and (3) initially there
are no requests. Formally, the specification of the environment
is φe = φeinit ∧ φe11 ∧ φ

e
12 ∧ φ

e
13 ∧ φ

e
21 ∧ φ

e
22 ∧ φ

e
23 , where

φeinit = (¬b1 ∧ ¬b2 ∧ ¬b3), φe1i = 2(bi ∧ fi → ©¬bi), and
φe2i = 2(bi ∧ ¬fi →©bi) for 1 ≤ i ≤ 3.

The lift initially starts on the first floor. We expect the lift
to be only on one of the floors at each step. It can move at most
one floor at each time step. We want the system to eventually
fulfill all the requests. Formally the specification of the system
is given as φs = φsinit ∧ φs1

∧
i φ

s
2,i ∧ φs3

∧
j φ

s
4,j ∧ φs5, where

• φsinit = f1 ∧ ¬f2 ∧ ¬f3,

• φs1 = 2(¬(f1 ∧ f2) ∧ ¬(f2 ∧ f3) ∧ ¬(f1 ∧ f3)),

• φs2,i = 2(fi →©(fi−1 ∨ fi ∨ fi+1)),

• φs3 = 2((f1 ∧©f2) ∨ (f2 ∧©f3)→ (b1 ∨ b2 ∨ b3)),
and

• φs4,j = 23(bj → fj).

The requirement φs3 says that the lift moves up one floor
only if some button is pressed. The specification φ = φe → φs
is realizable. Now assume that the designer wants to ensure
that all floors are infinitely often visited; thus she adds the
guarantees

∧
j φ

s
5,j where φs5,j = 23(fj) to the set of system

requirements. The specification φ′ = φe → φs
∧
j φ

s
5,j is not

realizable. A counter-strategy for the environment is to always
keep all bi’s low. We run our algorithms with the set of all the
environment variables {b1, b2, b3} for all assumption forms.
The algorithm generates the refinements ψ1 = 23(b1 ∨ b2 ∨
b3) and ψ2 = 2((¬b1 ∧ ¬b2 ∧ ¬b3) → ©(b1 ∨ b2 ∨ b3)).
Refinement ψ1 requires that the environment infinitely often
presses a button. Refinement ψ2 is another suggestion which
requires the environment to make a request after any inactive
turn. Refinement ψ1 seems to be more reasonable and the user
can add it to the specification to make it realizable.

Only one counter-strategy is processed during the search
for finding refinements and three candidate assumptions are
generated overall, where one of the candidates is inconsistent
with φ′ and the two others are refinements ψ1 and ψ2. Thus, the
search terminates after checking the generated assumptions at

1532

first level. Only 0.6 percent of total computation time was spent
on generating candidate assumptions from the counter-strategy.
Note that to generate ψ1 using the template-based method in
[7], the user needs to specify a template with three variables
which leads to 23 = 8 candidate assumptions, although only
one of them is satisfied by the counter-strategy.

B. AMBA AHB

ARM’s Advanced Microcontroller Bus Architecture
(AMBA) defines the Advanced High-Performance Bus (AHB)
which is an on-chip communication protocol. Up to 16 masters
and 16 slaves can be connected to the bus. The masters start
the communication (read or write) with a slave and the slave
responds to the request. Multiple masters can request the bus
at the same time, but the bus can only be accessed by one
master at a time. A bus access can be a single transfer or a
burst, which consists of multiple number of transfers. A bus
access can be locked, which means it cannot be interrupted.
Access to the bus is controlled by the arbiter. More details
of the protocol can be found in [3]. We use the specification
given by one of RATSY’s example files (amba02.rat). There
are four environment signals:

• HBUSREQ[i]: Master i requests access to the bus.

• HLOCK[i]: Master i requests a locked access to the bus.
This signal is raised in combination with HBUSREQ[i].

• HBURST[1 : 0]: Type of transfer. Can be SINGLE (a
single transfer), BURST4 (a four-transfer), or INCR
(unspecified length burst).

• HREADY: Raised if the slave has finished processing
the data. The bus owner can change and transfers can
start only when HREADY is high.

The first three signals are controlled by the masters and
the last one is controlled by the slaves. The specification of
amba02.rat consists of one master and two slaves. For our
experiment, we remove the fairness assumption 23HREADY
from the specification. The new specification is unrealizable.
We run our algorithm with the sets of variables {HREADY},
{HREADY, HBUSREQ[0], HBUSREQ[1], HLOCK[0], HLOCK[1]},
{HREADY} and {HBUSREQ[0], HBUSREQ[1]} to be used in
liveness, safety, left and right hand side of transition
assumptions, respectively. Some of the refinements
generated by our method are: ψ1 = 23HREADY,
ψ2 = 2(HREADY∨¬HBUSREQ[0]∨¬HLOCK[0]∨¬HBUSREQ[1]∨
¬HLOCK[1]) ∧ 23HREADY, and ψ3 = 2(HREADY →
©¬HBUSREQ[0]) ∧ 2(¬HREADY → ©¬HBUSREQ[0]). Note
that although ψ2 is a consistent refinement, it includes ψ1

as a subformula and it is more restrictive. The refinement
ψ3 implies that HBUSREQ[0] must always be low from the
second step on. Among these suggested refinements, ψ1

appears to be the best option. Our method only processes
one counter-strategy with five states and generates five
candidate assumptions to find the first refinement ψ1. To find
all refinements within the depth two, overall five counter-
strategies are processed by our method during the search,
where the largest counter-strategy had 25 states. The number
of assumptions generated for each counter-strategy during the
search is less than nine. 28.6 percent of total computation
time was spent on generating candidate assumptions from the
counter-strategies.

VI. CONCLUSION AND FUTURE WORK

We presented a counter-strategy guided approach for
adding environment assumptions to an unrealizable specifica-
tions in order to achieve realizability. We gave algorithms for
synthesizing weakest assumptions of certain forms (based on
“patterns”) that can be used to rule out the counter-strategy.

We chose to apply explicit-state graph search algorithms
on the counter-strategy because the available tools for solving
games output the counter-strategy as a graph in an explicit
form. Symbolic analysis of the counter-strategy may be de-
sirable for scalability, but the key challenge for this is to de-
velop algorithms for solving games that can produce counter-
examples in compact symbolic form. Synthesizing symbolic
patterns is one of the future directions.

Counter-strategies provide useful information for explain-
ing reasons for unrealizability. However, there can be multiple
ways to rule out a counter-strategy. We plan to investigate how
the multiplicity of the candidates generated by our method can
be used to synthesize better assumptions. Furthermore, our
method asks the user for subsets of variables to be used in
generating candidates. The choice of the subsets can signif-
icantly impact how fast the algorithm can find a refinement.
Automatically finding good subsets of variables that contribute
to the unrealizability problem is another future direction. Syn-
thesizing environment assumptions for more general settings,
and using the method for synthesizing interfaces between
components in context of compositional synthesis are subject
to our current work.

REFERENCES

[1] R. Alur, S. Moarref, and U. Topcu. Counter-strategy guided re-
finement of gr(1) temporal logic specifications. Technical report.
arXiv:1308.4113 [cs.LO].

[2] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Könighofer,
M. Roveri, V. Schuppan, and R. Seeber. Ratsy–a new requirements
analysis tool with synthesis. In CAV 2010, pages 425–429. Springer,
2010.

[3] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis
of reactive (1) designs. Journal of Computer and System Sciences,
78(3):911–938, 2012.

[4] K. Chatterjee, T. Henzinger, and B. Jobstmann. Environment assump-
tions for synthesis. In CONCUR 2008, pages 147–161. Springer, 2008.

[5] R. Konighofer, G. Hofferek, and R. Bloem. Debugging formal specifica-
tions using simple counterstrategies. In FMCAD 2009, pages 152–159,
2009.

[6] O. Kupferman, N. Piterman, and M. Vardi. Safraless compositional
synthesis. In CAV 2006, pages 31–44. Springer, 2006.

[7] W. Li, L. Dworkin, and S. Seshia. Mining assumptions for synthesis.
In MEMOCODE 2011, pages 43–50. IEEE, 2011.

[8] K. McMillan. Cadence SMV. http://www.kenmcmil.com/smv.html.
[9] N. Ozay, U. Topcu, and R. Murray. Distributed power allocation for

vehicle management systems. In CDC-ECC 2011, pages 4841–4848.
IEEE, 2011.

[10] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive (1) designs.
In VMCAI 2006, pages 364–380. Springer, 2006.

[11] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module.
In POPL 1989, pages 179–190. ACM, 1989.

[12] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon
temporal logic planning. IEEE Transactions on Automatic Control,
57(11):2817–2830, 2012.

16 33

Efficient Handling of Obligation Constraints in
Synthesis from Omega-Regular Specifications

Saqib Sohail and Fabio Somenzi
University of Colorado at Boulder

Abstract—A finite state reactive system (for instance a hard-
ware controller) can be specified through a set of ω-regular
properties, most of which are often safety properties. In the game-
based approach to synthesis, the specification is converted to a
game between the system and the environment. A deterministic
implementation is obtained from the game graph and a system’s
winning strategy. However, there are obstacles to extract an
efficient implementation from the game in hardware. On the
one hand, a large space must be explored to find a strategy that
has a concise representation. On the other hand, the transition
structure inherited from the game graph may correspond to a
state encoding that is far from optimal.

In the approach presented in this paper, the game is formulated
as a sequence of Boolean equations. That leads to significant
improvements in the quality of the implementation compared to
existing automata-based techniques. It is also shown discussed to
extend this approach to the synthesis from obligation properties.

I. INTRODUCTION

Synthesizing reactive systems from ω-regular specifications
[20] allows designers to focus on intended behavior rather than
implementation details. Acceptance of automated techniques,
however, is in proportion to their ability to deliver designs
that meet cost and performance targets and are comparable to
those produced by humans.

We present techniques that increase the performance of syn-
thesis algorithms and lead to more compact implementations.
While the algorithms are general, our implementation is geared
towards the synthesis of hardware controllers. We assume that
the specification of the reactive system to be synthesized is
given by a list of ω-regular properties (system guarantees)
that must hold when the environment satisfies another list of
ω-regular properties (environment assumption). Each property
is first translated to a deterministic parity automaton [18]. In
special cases—like specifications in general reactive(1) form
[19]—our algorithms take full advantage of this restricted form
of specification. However, we do not impose restrictions on the
input specification beyond ω-regularity.

Our approach extends the one of [21] in several ways. We
synthesize safety properties by first reducing them to relation
constraints and then manipulating the constraints in a fully
symbolic form. Unlike previous techniques, this approach does
not tend to embed the structures of the property automata
in the implementation and produces designs with fewer state
bits, better state encoding, and simpler combinational logic. It
can also be considerably faster than techniques that work on

This work was supported in part by SRC contract 2012-TJ-2271.

explicit representations of the automata, especially when many
safety properties are combined. The result of the process is a
parameterized system suitable for incremental synthesis. This
is useful when the specification has more than just safety or
obligation properties.

We extend the symbolic approach based on transition con-
straint to the synthesis from obligation properties [14], which
include implications between safety properties. For such im-
plications, in particular, we show how to reduce the synthesis
game to two safety games based on transition constraints.

The typical approach of automatic synthesis from the spec-
ification derives deterministic automata for each safety prop-
erty; these automata operate in parallel to constrain the transi-
tions of the system. The transition function of the composition
of these automata is then inherited by the implementation. In
this paper, we propose a novel way to extract the transition
function of the implementation. When all the safety properties
describe a language that can be generated by a relation so that
the problem of sequential synthesis is converted to a problem
of combination synthesis. Otherwise, we add just enough
memory so that the conversion is correct. We then solve
the problem of combinational synthesis by solving Boolean
equations. The general solutions capture all the possible ways
in which the system can satisfy the safety properties in the
specification. The parameterized representation of the general
solutions allows us to take advantage of the incremental
synthesis framework of [21]. An additional advantage of our
approach is that it is symbolic and thus adept at manipulating
a large set of safety properties.

The size of the synthesized implementation depends on the
transition function of the game and on the system’s winning
strategy. The authors in [1] provide a heuristic to select a
winning strategy that attempts to minimize the amount of
combinational logic in the implementation. On the other hand,
the authors in [6] provide a heuristic to select a winning
strategy that attempts to minimize the amount of sequential
logic. However, improving the symbolic representation of the
game obtained from the specification is not the focus of these
works. The importance of efficient game representation has
also been observed in [13]. The author remarks that current
techniques are unable to extract an efficient transition structure
of the implementation and proposes a tree-based approach to
reduce the dependency of the implementation on the syntax
of the specification. No experiments are reported.

The paper is organized as follows: Sec. II covers background
and introduces notation. Sec. III, IV and V show that safety
properties can be generated by a relation. Sec. VI and VII

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 1734ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

discuss the synthesis from safety properties from such a
relation. Sec. VIII extends the relation-based approach to
obligation properties. Experimental results are described in
Sec. IX and conclusions are drawn in Sec. X.

II. PRELIMINARIES

A. Linear-Time Properties
A finite automaton on ω-words 〈Σ, Q, qin, δ, α〉 (an ω-au-

tomaton) is defined by a finite alphabet Σ, a finite set of states
Q, an initial state qin ∈ Q, a transition function δ : Q× Σ→
2Q that maps a state and an input letter to a set of possible
successors, and an acceptance condition α that describes a
subset of Qω , that is, a set of infinite sequences of states.
A deterministic automaton is such that δ(q, σ) is empty or a
singleton for all states q ∈ Q and all letters σ ∈ Σ. (In the
case δ(q, σ) is a singleton, we write δ(q, σ) = q′ for δ(q, σ) =
{q′}.) A run of automaton A on ω-word w = w0w1 . . . is a
sequence q0, q1, . . . such that q0 = qin, and for i ≥ 0, qi+1 ∈
δ(qi, wi). A run is accepting iff (if and only if) it belongs to
the set described by α, and a word is accepted iff it has an
accepting run in A. The subset of Σω accepted by A is the
language of A, written L(A).

Several types of acceptance conditions α are in use. We are
concerned with parity conditions [16], [8], which concern the
set of states inf(ρ) that occur infinitely often in a run ρ. A
parity condition assigns a priority to each state: a condition
of index k is a function π : Q → {i | 0 ≤ i ≤ k}. A run
ρ is accepting iff max{π(q) | q ∈ inf(ρ)} is odd; that is, iff
the highest recurring priority is odd [5], [9]. A deterministic
parity word automaton (DPW) is a deterministic ω-automaton
equipped with a parity condition; it is of minimum index
if there is no other DPW for the same language with an
acceptance condition of lower index. In the sequel, parity
automata are deterministic and of minimum index [5]. A
conjunctive parity condition is a set of parity conditions; and
a run is accepting iff it is accepting by every parity condition.
A disjunctive parity condition is a set of parity conditions;
and a run is accepting iff it is accepting by some parity
condition. Automata are also assumed to be reduced: all states
are reachable from the initial state and the language accepted
from them is nonempty.

We fix a finite set of atomic propositions X and consider
the alphabet Σ = 2X . An ω-regular linear-time property is a
subset of Σω that is accepted by a DPW. A linear-time safety
property is a closed set of the product topology of Σω . Safety
properties are accepted by DPWs of index 2 such that there is
no path from priority 0 states to priority 1 states. Non-safety
properties are progress properties [15]. A safety automaton is
irredundant if no two states accept the same language.

Linear-time temporal logic (LTL) is a specification mech-
anism that can express a subset of the ω-regular properties.
Formulae of LTL are built from the atomic propositions in
X by applying Boolean connectives and temporal operators U
(until), R (releases), and X (next). Convenient abbreviations
include G (globally), F (eventually), and W (weak until).
An LTL formula is in negation normal form if negation is
restricted to atomic propositions. The language described by
the LTL formula φ is denoted by L(φ).

B. Realizability, Synthesis, and Games

An ω-regular property W is satisfiable if it has a model.
For a given partition (Xe, Xs) of the atomic propositions,
W is realizable if there exists a winning strategy for the
player controlling Xs (the system) in the following game
against the player controlling Xe (the environment): at each
turn the environment and the system choose subsets of the
propositions they control, jointly selecting an element of Σ.
The elements chosen at successive turns form an infinite
sequence ρ ∈ Σω . If ρ is in W , then the system wins;
otherwise the environment wins. If the system has a winning
strategy, then W is realizable, in which case a program or
circuit satisfying W can be extracted from the strategy.

A full specification of the game requires detailing what
each player knows of the opponent’s choices when making
its own choices. Variants of realizability result from different
assumptions: If the system is fully apprised of the envi-
ronment’s choice for the same turn, Mealy realizability is
obtained. In the opposite case, Moore realizability follows. We
adopt a formulation that encompasses both Mealy and Moore
realizability as special cases.

An ω-regular property φ over X specifying a reactive
system is accepted by a DPW Aφ = 〈Σ, Q, qin, δ, π〉. To check
the realizability of φ, Aφ is interpreted as an input-based parity
game Gφ = 〈Σ, Q, qin, δ, π〉, where X = Xed∪Xs∪Xep, and
Σ is the Cartesian product of a disclosed environment alphabet
Σed = 2Xed , a system alphabet Σs = 2Xs , and a private
environment alphabet Σep = 2Xep . When the token is in state
q ∈ Q, the environment chooses a letter σed and discloses it to
the system; then the system chooses a letter σs and discloses
it to the environment; finally the environment selects a letter
σep and the token moves to state q′ = δ(q, (σed, σs, σep)). If
the system has a strategy τs : S × Q × Σed → Σs × S to
win this game from qin then φ is realizable1. The set S is the
system’s memory.

III. R-GENERABILITY

This section is concerned with the safety languages that can
be generated by a relation on the alphabet Σ. It characterizes
the R-generable languages in terms of the automata that
accept them and establishes the correspondence between the
automata-based view and the linguistic view of [7]. The
automata-based approach provides efficient membership tests
that are used in subsequent sections to devise an efficient
synthesis procedure for properties that are R-generable.

Definition 1. A set of infinite words W ⊆ Σω is R-generable
if there exists a binary relation R on Σ such that a sequence
w0w1w2 . . . is in W iff ∀i ≥ 0, (wi, wi+1) is in R.

The subset of Σω generated by R ⊆ Σ × Σ is denoted by
L(R). It has been shown in [7] that a set of infinite words
W ⊆ Σω is R-generable iff it is suffix-closed, fusion-closed,
and limit-closed2. These concepts are defined as follows:

1If |Σed| = 1 then system’s winning strategy has a Moore implementation.
2In the context of synthesis, it is convenient to drop the requirement that

the relation be total. As part of the realizability check of a specification, a
subset of the alphabet is computed over which the relation is indeed total.

18 35

Definition 2. The language W ⊆ Σω is suffix-closed if for
every word w0w1w2 . . . ∈W then the suffix w1w2 . . . is in W .
The language W ⊆ Σω is fusion-closed if the words xvy and
avb are in W , then xvb ∈ W (and avy ∈ W). The language
W ⊆ Σω is limit-closed if whenever the words w0a, w0w1b,
w0w1w2c, . . . belong to W , then the limit of the prefixes
w0, w0w1, w0w1w2, . . ., which is the infinite word w0w1w2 . . .
is also in W .

Limit-closed ω-regular languages are accepted by safety
automata [11]. The structure of the ω-automata that recognize
suffix-closed and fusion-closed languages are now examined.
For lack of space, most proofs are omitted, except those that
provide constructions used in the algorithms.

Definition 3. An automaton A = 〈Σ, Q, qin, δ, π〉 is initially
free iff ∀σ ∈ Σ . δ(qin, σ) = {q′ | ∃q ∈ Q . δ(q, σ) = q′}.

Lemma 1. An ω-regular language W ⊆ Σω is suffix-closed
iff it is accepted by an initially-free automaton over Σ.

To check whether an ω-automaton A accepts a suffix-closed
language, one constructs an initially-free automaton A′ as
described in the proof of Theorem 1 below. If L(A′) ⊆ L(A)
then L(A) is suffix-closed. When A is a deterministic safety
automaton, if its initial state simulates every other state then
L(A) is suffix-closed.

Definition 4. An ω-automaton A is 1-definite if the current
state of A is determined by the most recent letter read.

The following result is a special case of the test for
definiteness [17], [10]:

Lemma 2. An automaton is 1-definite iff for every input letter
σ ∈ Σ, there exists a state q ∈ Q such that for every state
q′ ∈ Q, δ(q′, σ) is either ∅ or q.

The notion of definiteness is relaxed to characterize fusion-
closed languages in terms of automata.

Definition 5. An automaton A = 〈Σ, Q, qin, δ, π〉 is half
definite iff for every letter σ ∈ Σ the states in {q′ | ∃q ∈
Q . q′ ∈ δ(q, σ)} are language equivalent.

Lemma 3. If an ω-regular language W ⊆ Σω is fusion-
closed, then all deterministic automata that accept it are half-
definite. If an ω-regular language W ⊆ Σω is accepted by a
half-definite deterministic automaton, then it is fusion-closed.

Corollary 1. An ω-regular language W ⊆ Σω is fusion-
closed and limit-closed iff it is accepted by a 1-definite safety
automaton.

The following theorem characterizes the ω-regular lan-
guages that are R-generable in terms of the structure of their
accepting automata. This provides an efficient membership test
for safety languages that can be generated by relations.

Theorem 1. A language W ⊆ Σω is R-generable iff it is
accepted by an initially-free, 1-definite safety automaton.

Proof: If a set W ⊆ Σω is generated by a relation R, an
initially-free, 1-definite safety automaton A = 〈Σ, Q, qin, δ, Q〉
can be built as follows. For each letter σ ∈ Σ that appears in

>

g

r ∧ ¬g

r ∧ ¬g

r

¬r

Aφ
Aψ

rW g
G(r → X(r ∨ g))

¬r ∧ g

G(r → X(rW g))

Fig. 1. Irredundant automata for three LTL formulae. All states have priority 1.
Aφ is 1-definite and shows that both formulae represent transition constraints
(transition constraints are defined in Sec. IV). Aψ is not 1-definite because
the input word (r ∧ ¬g)ω cannot distinguish the target state.

some pair of R, a state qσ is added to Q, distinct from qin.
Let δ(qσ, σ′) = qσ′ for each pair (σ, σ′) ∈ R . Moreover, let
δ(qin, σ) = qσ for every letter σ that appears in first position in
some pair of R. This guarantees that A is initially-free because
qin is connected to every state in Q \ qin that has at least one
outgoing transition. Then, A accepts W .

If A = 〈Σ, Q, qin, δ, Q〉 is an initially-free, 1-definite safety
automaton accepting W , a relation R is built as follows. The
pair of letters (σ, σ′) is added to R when δ(q, σ′) = q′ and σ
is a letter that labels the transitions into q. (No pair is added to
R for a state with no incoming transitions.) Then, R generates
W .

The check of Theorem 1 can be simplified when the safety
automaton is known to be deterministic and irredundant.

Lemma 4. If a deterministic safety automaton A =
〈Σ, Q, qin, δ, π〉 is initially-free then it is also 1-definite.

Example 1. Consider Aφ shown in Figure 1. It is a reduced,
deterministic, initially-free, and 1-definite automaton. The lan-
guage L(Aφ) isR-generable and the relation R is given by the
Boolean formula (¬r∧¬r′)∨(¬r∨r′)∨(r∧r′)∨(r∧¬r′∧g′),
which can be simplified to ¬r ∨ r′ ∨ g′.

If a language W ⊆ Σω is fusion-closed and limit-closed
then it is a subset of some R-generable language W ′ ⊆ Σω .
For Rin ⊆ Σ, let L(Rin) be RinΣω .

Theorem 2. Given a fusion-closed and limit-closed language
W ⊆ Σω , let Rin = {σ | ∃σw ∈ W}. Then there exists an
R-generable language W ′ such that W = W ′ ∩ L(Rin).

An acceptor for the language W ′ in Theorem 2 is obtained
through the construction in the proof of Theorem 1.

The following result is already foreshadowed in [17]. This
theorem provides us with a method to detect ω-regular prop-
erties which are R-generable.

Theorem 3. If an irredundant safety automaton A =
〈Σ, Q, qin, δ, π〉 that accepts the ω-regular safety property ϕ
is not 1-definite, then no other automaton that accepts ϕ is
1-definite.

IV. LTL AND R-GENERABILITY

This section provides a syntactic characterization of a subset
of the LTL formulae that describe R-generable languages.
When a formula is syntactically R-generable, the automata-
based procedure of Sec. III can be skipped.

1936

Definition 6. An LTL formula φ is a transition-constraint if
it belongs to the class defined by the following grammar, in
which x is a proposition:

P ::= G(f), f ::= p | n | f ∧ f | f ∨ f,
p ::= x | ¬x, n ::= X p .

The grammar defines LTL formulae in negation normal
form. Only the X operator is permissible inside the G operator
and its nesting is not allowed. The set of safety properties
described by Definition 6 is closed under conjunction.

Given a formula φ produced by the grammar in Definition 6,
the relation R that generates the language of φ is obtained
by replacing each subformula Xx by x′ and each subformula
X¬x by ¬x′. Finally, the G operator is discarded to obtain
the propositional formula that is the representation of R.
Conversely, given a relation R ⊆ Σ × Σ′, an LTL safety
formula φR in the form described in Definition 6 can be
obtained by replacing each x′ by Xx and ¬x′ by ¬Xx, finally
applying the G operator. (The relation R ⊆ Σ × Σ generated
from a transition constraint is a Boolean formula, a minterm
that satisfies this formula describes a pair (σ, σ′) ∈ R such that
the cube of non-primed variables extracted from the minterm
encodes σ and the cube of primed variables extracted from
the minterm encodes σ′.)
Example 2. Some LTL formulae describe transition constraints
even though they are do not satisfy Definition 6. Simple
rewriting suffices for something like φ = G(r → X(r ∨ g)),
while the construction of an irredundant safety automaton
is used to show that ψ = G(r → X(rW g)) describes the
transition constraint φ. The formula rW g does not describe a
transition constraint. The automaton for this property is shown
on the right in Figure 1; this automaton is not 1-definite, but
it is deterministic and irredundant. By Theorem 3, it does not
accept an R-generable language.

V. GENERAL SAFETY PROPERTIES

Safety properties like rW g are neither suffix-closed nor
fusion-closed. The objective of this section is to find an
R-generable language Ŵ that embeds an arbitrary safety
language W . It is shown that a fusion-closed and limit-closed
language Ŵ over an augmented alphabet exists such that
it is in one-to-one correspondence with W . Theorem 2 can
be invoked to decompose Ŵ into the intersection of an R-
generable language and one that constrains the initial letter.

Given a safety language L that is not R-generable, the
problem of augmenting the alphabet Σ to Σ̂ = Σ × K is
solved through the irredundant automaton A that accepts L.

Let Aφ = 〈Σ, Q, qin, δ, π〉 be an irredundant deterministic
safety automaton that accepts property φ. If Aφ is not 1-
definite then there exists σ ∈ Σ such that the automaton
Aφ can be in two or more different states after reading the
letter σ. This ambiguity of the irredundant automaton Aφ
after reading one letter defines an incompatibility graph. The
vertices of the graph are the states of the automaton, and
there is an edge between two distinct vertices v1 and v2 iff
there is a letter σ ∈ Σ such that, for some states t1 and t2,
δ(t1, σ) = v1 and δ(t2, σ) = v2. The chromatic number of

this graph gives the minimum cardinality of the K required to
turn the irredundant automaton into a 1-definite automaton.
Each element of K corresponds to one of the colors and
γ : Q → K maps states to colors. One can obtain another
safety automaton Âφ = 〈Σ̂, Q, qin, δ̂, π〉, where Σ̂ = Σ×K and
δ̂(q, (σ, γ(δ(q, σ)))) = δ(q, σ). The label of each transition is
augmented with the color of the target state; this guarantees
that Âφ is a 1-definite safety automaton. (If Aφ can be in
several different states after reading a letter σ ∈ Σ then
all the states are colored differently in the incompatibility
graph.) Since Âφ is 1-definite, the transition function δ̂ can
be replaced by a new transition function δ̃ : Σ̂ → Q where
δ̃((σ, k)) = {q′ | ∃q ∈ Q . q′ = δ̂(q, σ) ∧ k = γ(q′)}. The
state coloring function γ can also be replaced by an edge
coloring function γ̃ : Q×Σ̂→ K, where γ̃(q, σ) = γ(δ(q, σ)).
(The color of an initial state that does not have any incoming
transitions is not important.) It will be seen in Sec. VI that
the map γ̃ is convenient when checking realizability of the
property φ through its transition constraint.
Example 3. The irredundant automaton Aφ1

for the property
φ1 = rW g is shown in Figure 2. This is not a fusion-closed
language, therefore no 1-definite automaton exists. Because of
the input r∧¬g the two states are incompatible. The chromatic
number of the incompatibility graph derived from Aφ1

is 2.

The automaton Âφ derived from an irredundant Aφ through
the coloring procedure described earlier accepts a fusion-
closed and limit-closed language over the alphabet Σ̂. The
language of Âφ can be represented by a relation Rφ and an
initial predicate Rin. Let ζ : Σ̂→ Σ be the projection function
that maps letter (σ, k) ∈ Σ̂ to σ; let ζ(w) and ζ(W) denote
the point-wise extensions of ζ to a word w ∈ Σ̂ω and to a
language W ⊆ Σ̂ω . Then the language of Âφ embeds the
language described by φ so that ζ(L(Âφ)) = L(φ).

The following lemma shows that the safety language ac-
cepted by Aφ is embedded in the language accepted by Âφ.
It proves that every word in L(Aφ) has a corresponding word
in L(Âφ) through the runs of the automata Aφ and Âφ.

Lemma 5. Given a safety property W ⊆ Σω , there exists an
augmented alphabet Σ̂ and an R-generable language Ŵ ⊆
Σ̂ω such that ζ : Σ̂ω → Σω is a bijection from Ŵ to W .

Proof: Let Aφ be an irredundant safety automaton accept-
ing W ; let Âφ be the 1-definite automaton obtained through
the procedure described above. Let Ŵ be the language of Âφ.
The automata Aφ and Âφ are isomorphic and every edge (q, σ)
of Aφ has a unique corresponding edge (q, (σ, γ̃(q, σ))) in Âφ.

Therefore, for every word w ∈ W , there is a unique word
ŵ ∈ Σ̂ω such that ζ(ŵ) = w and ŵ has a run in Âφ. This
run ρ̂ is identical to the run ρ of w in Aφ. Hence, ŵ ∈ Ŵ .
Since, there is an injection from Ŵ to Σ̂, the restriction of the
function ζ to Ŵ ⊆ Σ̂ is a bijection from Ŵ to W .
Example 4. Continuing Example 3. The safety property φ1 =
rW g is defined over the alphabet Σ = 2{r,g}. Let K =
{¬x, x} as |K| = 2. The irredundant 1-definite automaton
Âφ1 is shown in Figure 2. The relation Rφ1 is

((r ∧ ¬g ∧ ¬x) ∧ ((r′ ∧ ¬g′ ∧ ¬x′) ∨ (g′ ∧ x′))) ∨ (x′)

20 37

(¬r ∨ g) ∧ ¬y

¬r ∧ ¬g ∧ y
g ∧ x

r ∧ ¬g ∧ ¬x

r ∧ ¬g ∧ ¬y

x

g ∧ ¬y

r ∧ ¬g ∧ ¬y

qin

q2

q1

qin

q1

Âφ1 Âφ2

Fig. 2. Automata for φ1 = rW g and φ2 = G(r∧¬g → X(r∨g∨X(r∨g)))

and Rin is ((r ∧ ¬g ∧ ¬x) ∨ (g ∧ x)).

Example 5. The LTL formula φ2 = G(r ∧ ¬g → X(r ∨ g ∨
X(r ∨ g)) over Σ = 2{r,g} does not describe a fusion-closed
language. States qin and q2 are incompatible with each other.
Let K = {¬y, y} as |K| = 2. The automaton Âφ2 is shown
in Figure 2. The predicate Rin is ¬y and the relation Rφ2 is

((¬r ∧ ¬g ∧ y ∧ ((r′ ∨ g′) ∧ ¬y′)) ∨ ((¬r ∨ g) ∧ ¬y ∧ ¬y′))
∨ (r ∧ ¬g ∧ ¬y ∧ (((r′ ∨ g′) ∧ ¬y′) ∨ (¬r′ ∧ ¬g′ ∧ y′))) .

There exists another approach that can derive a transition
constraint from an arbitrary safety property. A transition con-
straint can be derived from an LTL safety property by putting it
in separated normal form [2]. For instance, G(r → X(rW g))
can be written as G((r → Xx1)∧(x1 → g∨(r∧Xx1))). This
rewriting, however, may use more auxiliary variables than the
approach based on the incompatibility graph.

Of course, given a conjunction of safety properties, obtain-
ing transition constraints from each of them in turn and then
conjoining all the transition constraints does not guarantee
optimality. This is because the product automaton obtained
from composing the irredundant automata for the correspond-
ing safety properties may be neither reduced nor irredundant.
In fact, the conjunction of two languages that are not fusion-
closed and limit-closed may result in a fusion-closed and limit-
closed (and maybe even suffix-closed) language.

VI. REALIZABILITY OF TRANSITION CONSTRAINTS

This section describes how to check the realizability of a
safety property φ embedded in a fusion-closed, limit-closed
language Ŵ . The language Ŵ is described by an initial
predicate Rin and a relation Rφ. One can obtain an input-
based game Gφ from the automaton Aφ that recognizes the
language described by φ. One can also derive an input-based
game Ĝφ from the automaton that accepts Ŵ . Finally a game
ĜRφ can be derived from Rφ and Rin. It can be shown that
one can obtain system’s or environment’s winning strategy
for Gφ by playing Ĝφ or vice-versa. Moreover, one can
obtain system’s or environment’s winning strategy for Ĝφ by
playing ĜRφ or vice-versa. Therefore, one can obtain system’s
or environment’s winning strategy for Gφ by playing ĜRφ .

For lack of space, the details of the constructions of
strategies for one game from those of the other are omitted.
(These constructions are rather lengthy and tedious and are not
used in the synthesis process: they are only used to prove its
correctness.) However, it must be mentioned that in ĜRφ the

input letter includes the “color” added to Aφ to obtain Âφ.
The choice of the color is given to the system. Since there is
only one way to choose the right color, and the system needs
to make the right choice to win, this additional responsibility
does not affect the outcome of the game.

Now it is shown how to check for the existence of winning
strategies in ĜRφ symbolically; that is, by an algorithm that
manipulates the characteristic functions of sets and relations
over Σ̂. The game ĜRφ is played in two stages; the first stage
checks the realizability of Rφ and the second stage checks the
realizability of Rin ∧Rφ. Given a set of target letters T (X ′),
that is, a set expressed in terms of next-state variables, the
pre-image operator3 MX is defined as follows:

MXφ T = ∀X ′ed .∃X ′s .∀X ′ep .∃X ′K . Rφ(X,X ′) ∧ T (X ′) .

The greatest fixpoint operator MGφ is defined as MGφ p =
νZ . p ∧MXφ Z. The realizability of Rφ is checked by com-
puting the realizable subset Σ̂φr of Σ̂ such that Σ̂φr = MGφ>.
The greatest fixpoint computation removes the terminal letters
from the alphabet Σ̂. The terminal letters of the alphabet are
defined inductively as letters after which there does not exist a
strategy to pick a next letter such that Rφ is satisfied or letters
after which only terminal letters can be selected to satisfy Rφ.
Finally, the realizability of Rin ∧ Rφ is checked. The system
wins the game ĜRφ iff MXin MGφ> = >, where

MXin T = ∀X ′ed .∃X ′s .∀X ′ep .∃X ′K . Rin(X ′) ∧ T (X ′) .

For every letter in Σ̂φr , the system can always pick the next
letter from the same set so that Rφ is satisfied. The operator
MXin establishes the system’s ability to start a word from a
letter in Σ̂φr such that Rin is satisfied. Therefore, the system
wins the game ĜRφ iff MXin MGφ> = >, which means that
the system can force the selection of a letter from Σ̂φr (Σ̂φr =
MGφ>) such that the predicate Rin is also satisfied.

Example 6. Examples 4 and 5 are continued here. Consider the
property φ = φ1∧φ2 where φ1 = rW g and φ2 = G(r∧¬g →
X(r ∨ g ∨ X(r ∨ g))). Let Xed = ∅, Xs = {r}, Xep = {g},
and XK = {x, y}. Initially r is asserted until g is asserted;
after that, whenever r is asserted then it must be reasserted at
least every other step until g is asserted. The iterates of the
MGφ> computation are Z0 = >, Z1 = (x∧¬y)∨ (x∧¬r ∧
¬g) ∨ (¬y ∧ r ∧ ¬g), Σ̂φr = Z2 = Z1. Since MXin Z2 = >,
property φ is realizable.

VII. SYNTHESIS FROM TRANSITION CONSTRAINTS

This section reviews Boolean equations [4] and their relation
to safety games. In particular, the connection between the
solution of Boolean equations and the winning strategy of the
safety game is established. The synthesis approach discussed
in this section scales well when the specification contains a
large percentage of safety properties.

3 In Sec. VIII the environment has to check the realizabil-
ity of an assumption φ. In that case the pre-image operator is
MXφ T = ∃X′

ed .∀X
′
s .∃X′

ep .∃X′
K . Rφ(X,X′) ∧ T (X′).

2138

A. Boolean Equations

Let x1, . . . , xm and yi, . . . , yn be two sets of variables
ranging over a Boolean algebra B. (¬, ∨, and ∧ denote com-
plementation, join, and meet in B, respectively.) A Boolean
equation in independent variables x1, . . . , xm and unknowns
y1, . . . , yn is a formula of the form

∀x1.., xm.∃y1.., yn.F0(x1.., xm)=F (y1.., yn, x1.., xm), (1)

where F0 = ∃y1, . . . , yn . F is the consistency condition of F .
When no confusion arises, we write F to signify (1).

A particular solution of (1) is a set of Boolean functions
fi(x1, . . . , xm), for 1 ≤ i ≤ n, such that

∀x1.., xm . F0(x1.., xm) = F (f1.., fn, x1.., xm) .

A general solution in parametric form of (1) is a set of
Boolean functions gi(x1, . . . , xm, p1, . . . , pi), for 1 ≤ i ≤ n,
where each pj is a Boolean function of x1, . . . , xm, such that

∀p1.., pn .∀x1.., xm . F0(x1.., xm) = F (g1.., gn, x1.., xm) ,

and for every particular solution {f1, . . . , fn} of (1) there is a
choice of pj’s that produces a particular solution {f ′1, . . . , f ′n}
such that, for 1 ≤ i ≤ n,

∀x1.., xm . F0(x1.., xm) ≤ fi(x1.., xm)↔ f ′i(x1.., xm) .

A general solution to (1) can be computed by the method
of successive eliminations [4], which, given F , returns F0 and
the solution functions gi. Letting Fn = F and Fi−1 = ∃yi . Fi
for 1 ≤ i ≤ n, it produces

gi = ¬Fi(g1.., gi−1,⊥, x1.., xm)∨
(pi ∧ Fi(g1.., gi−1,>, x1.., xm)) .

(2)

Example 7. Consider F2 = (¬x1 ∧ y1) ∨ (x2 ∧ y2). Then

F1=∃y2.F2=(¬x1 ∧ y1) ∨ x2 F0=∃y1.F1=¬x1 ∨ x2

g1(x1, x2, p1) = ¬x2 ∨ (p1 ∧ ¬x1) ∨ (p1 ∧ x2)

g2(x1, x2, p1, p2) = x1 ∨ (x2 ∧ ¬p1) ∨ p2 .

One can verify that ∀p1, p2, x1, x2.¬x1∨x2=F (g1, g2, x1, x2).
Setting p1 = p2 = ⊥ in g1 and g2, one obtains the particular

solution f1 = ¬x2, f2 = x1 ∨ x2. The same solution is
obtained for p1 = ¬x2 and p2 = x1 ∨ x2. The particular
solution f ′1 = ¬x2, f ′2 = x2 cannot be obtained from g1 and
g2, but, for i ∈ {1, 2}, ∀x1, x2 .¬x1 ∨ x2 ≤ fi ↔ f ′i . Note
that when the consistency condition is identically satisfied,

¬Fi(g1.., gi−1,⊥, x1.., xm) ≤ Fi(g1.., gi−1,>, x1.., xm)) .

Therefore, if pi is taken in the interval defined by the two
bounds, the particular solution obtained for yi is pi itself.

Solving a Boolean equation can be interpreted as finding
winning strategies for a two-player game. One player selects
a value (x̂1, . . . , x̂m) ∈ ({⊥,>})m for the independent
variables, while the other must choose a value (ŷ1, . . . , ŷn) ∈
({⊥,>})n for the unknowns such that F0(x̂1, . . . , x̂m) =
F (ŷ1, . . . , ŷn, x̂1, . . . , x̂m). A particular solution to the equa-
tion gives one winning strategy for the second player, while
a general solution describes all winning strategies (that differ
over the consistency condition).

B. Parameterized Solutions and Transition Constraints

Once the realizability of an ω-regular safety property φ is
established, an implementation that satisfies φ can be gener-
ated from a system’s winning strategy in the game ĜRφ . This
section describes the procedure to obtain an implementation
that satisfies φ from the initial predicate Rin and relation Rφ.
The solution of equations derived from Rin defines the initial
condition, while the solution of equations derived from Rφ
defines the steady state behavior.

The parameterized reactive system Mφ that implements φ
consists of the solutions for the initial values and steady state
values for variables in X ′s ∪X ′K and a state variable I which
is initially ⊥ and then is > forever. For each element u′ ∈
(X ′s ∪X ′K), let uin be the initial solution and u∞ the steady-
state solution. The initial value of u is ⊥ and its update is
given by u′ = (¬I ∧ u′in) ∨ (I ∧ u′∞). The initialization bit
distinguishes between the initial and steady state solutions.

We now describe how the solutions for initial values and
steady state values are computed. The relation Rφ is defined
over the variables X̂ and X̂ ′, where X̂ = Xed∪Xs∪Xep∪XK ,
while X̂ ′ = X ′ed ∪X ′s ∪X ′ep ∪X ′K . Given Σ̂φr = MGφ> the
following four relations are used to synthesize an implemen-
tation for the property φ:

F = Rφ(X̂, X̂ ′) ∧ Σ̂φr (X̂ ′) Fs = ∀X ′ep .∃X ′K . F
I = Rin(X̂ ′) ∧ Σφr (X̂ ′) Is = ∀X ′ep .∃X ′K . I .

The existence of solutions of these Boolean equations has
been established by checking the realizability of φ through Rin
and Rφ. The steady state solution for the variables in X ′s is
computed from Fs. The steady state solution for the variables
in X ′K is computed from F . The solution for the initial values
for variables in X ′s is computed from Is. The solution for
the initial values for variables in X ′K is computed from I . If
a variable X ′s appears in the steady-state (initial) solution of
X ′K then it is substituted by its steady-state (initial) solution.

Example 8. Continuing Example 6, a system Mφ is ob-
tained through the synthesis of x′, y′ and r′. The steady
state Boolean equation for the unknown variables {x′, y′} is
F4 = Rφ(X̂, X̂ ′) ∧ Σ̂φr (X̂ ′). This equation can be computed
from the values of Rφ and Σφr described in Example 6. Let
{ri, xi, yi} be the set of parameters, then the steady state
solution of variables {x′, y′} is given by:

y′∞ = ¬F¬y
′

3 ∨ (yi ∧ F y
′

3) = r ∧ ¬g ∧ ¬p1 ∧ x ∧ ¬g′ ,
x′∞ = ¬F¬x

′

4 ∨ (xi ∧ F x
′

4) = ¬r ∨ g ∨ x ∨ g′ .

If the variable y′ had appeared in x′∞ then y′ would be
substituted by its function y′∞. The steady state solution of
the variables in {r′} is computed from the Boolean equation
F1 = ∀g′ .∃{x′, y′} . F4, where

r′∞ = ¬F¬r
′

1 ∨ (ri ∧ F r
′

1) = p1 ∨ ¬x ∨ y ,

Likewise the initial values for {x′, y′} are synthesized from
I = ((r′ ∧ ¬g′ ∧ ¬x′) ∨ (g′ ∧ x′)) ∧ ¬y′, where

y′in=¬I3(0) ∨
(
yi ∧ I3(1)

)
=⊥, x′in=¬I(0) ∨

(
xi ∧ I(1)

)
=g′.

22 39

The initial value of r′ is computed from I1 = ∀X ′ep .∃X ′K . I ,
where r′in = ¬I1(0) ∨

(
(ri ∧ I1(1)

)
= >.

Each variable v ∈ X̂ represents a latch (register) which
stores the current value of the corresponding value of v′ ∈ X̂ ′.
Each variable o′ ∈ X ′s represents the output of the sequential
machine and is labeled as the corresponding variable o. Each
variable o′ ∈ X ′K is stored in the latch represented by the
variables in XK , these are treated as internal signals.

The solution is kept in parameterized form so that winning
strategies for the progress properties can be found. This is done
by computing the appropriate values of the parameters (which
may be functions requiring some finite memory to satisfy the
progress properties). If the specification does not contain any
progress properties then a simplified Mφ can be obtained by
assigning any values to the parameters.

VIII. OBLIGATION PROPERTIES

If a game with an ω-regular winning condition has a graph
with more than one strongly connected component (SCC) then
the winning and losing states can be computed inductively
starting from the terminal SCCs. At each non-terminal SCC,
one computes the states that each player can control to
its winning states outside of the SCC (which are already
known). The game is then played on the remaining states.
This approach is discussed in [12]. In this section this idea is
applied to the obligation properties defined by the implication
of two safety properties (e.g., environment assumption and
system guarantee). Every obligation property results in a DPW
of minimum index 1 with more than one SCC.

To check realizability of an implication between two safety
properties such as ψ → φ, one converts ψ and φ to parity
games Gψ and Gφ with safety conditions πψ and πφ. The
SCCs of their product can be partitioned in three ordered sets;
the bottom set SB contains the states in which the antecedent
has been violated. The middle set SM contains the states in
which only the consequent has been violated, and the top set
ST contains the states where both properties hold. The states
in ST ∪ SB have priority 1; those in SM have priority 0.

This game does not need to be built explicitly, though.
Given an implication Φ = ψ → φ, where both ψ and φ are
safety properties, one can obtain the relations Rψ and Rφ as
described in Sec. V. These relations are used to check the
realizability of Φ. The pre-image operator MXφ defined in
Sec. VI cannot be used for checking Φ because it computes
the states that can be forced by the protagonist to stay within
the SCC, while in a game obtained from Φ, the protagonist
may be able to win the game by staying within ST or by
forcing a move out of ST to states from which it can force the
play to SB . Therefore, a modified pre-image operator needs
to be defined that takes into account the protagonist’s option
to escape the SCC. For lack of space we only outline its use.

The solution of the game obtained from Φ follows three
steps. In the first step one plays the game MGψ > to compute
the letters from which the environment can satisfy Rψ . In this
game the environment is the protagonist and the system is
the antagonist. One may need to augment the alphabet Σ to
Σ̃ = Σ ×Ke as described in Sec. V; the control of coloring

variables XKe is assigned to the environment. The system is
eventually able to force a violation of Rψ from the letters in
Σ̃\Σψr . From the letters Σψr , the system can only satisfy RΦ by
satisfying Rφ. The new pre-image operator is used to compute
MGΦ>; the objective of the system is to keep satisfying Rφ
while the environment cannot use strategies that will give the
system the option to choose the letter from Σ̃\Σψr . Once again,
one may need to augment the alphabet Σ̃ to Σ̂ = Σ̃ × Ks.
The system is able to satisfy RΦ from the letters in ΣΦ

r =
MGΦ>∪ (Σ̂\ (Σψr ×Ks)). Finally, the system wins the game
obtained from Φ when the constraint Rψin → Rφin allows the
system to select a letter from ΣΦ

r .
As discussed in Sec. V, the control of coloring variables is

assigned to the player who is trying to satisfy the property.
This is why the variables in XKe

(XKs
) are controlled by the

environment (system) when it is trying to satisfy ψ (φ). This
distinction is at work in the following example.

Example 9. Consider the LTL formula Φ = ψ → φ, where
ψ = G(r ∧ X r → XX(r → l)) and φ = G((r ∧ ¬l → ¬g) ∧
(r ∧ X r → XX(r → g))). Then Rψin is ¬x and Rψ is

(¬r → ¬x′) ∨ (r ∧ ¬x→ (r′ ↔ x′))∨
(r ∧ x→ ((r′ ∧ l′ ∧ x′) ∨ (¬r′ ∧ ¬x′))) ,

while Rφin is (¬r ∨ l ∨ ¬g) ∧ ¬y and Rφ is

(r ∧ ¬l→ ¬g) ∧
(
(¬r → ¬y′) ∨ (r ∧ ¬y → (r′ ↔ y′))

∨ (r ∧ y → ((r′ ∧ g′ ∧ y′) ∨ (¬r′ ∧ ¬y′)))
)
.

The alphabets ΣΦ = 2{r,l,g} and Σ̂Φ = 2{r,l,g,x,y}, where

Xed={r, l}, Xs={g}, Xep=∅, XKe
={x}, XKs

={y}.

The system loses both games G¬ψ and Gφ, but it can win
the game GΦ. In the game Gφ the environment can force
the system to violate φ at any time by playing the sequence
r ∧ ¬l, r ∧ ¬l, r ∧ ¬l. On the other hand, in the game GΦ,
this sequence forces the environment to violate ψ and if the
environment never plays this sequence then system can always
satisfy φ. Thus GΦ is won by the system.

IX. EXPERIMENTAL RESULTS

The approach described here has been implemented in Vis
[3] as an extension of the SAFETY-FIRST approach described
in [21]. We report on preliminary experiments conducted on
a parameterized example coming from [1] (AMBA Bus). The
performance and quality of the implementation is compared
in Table I to ANZU [1] and our SAFETY-FIRST approach.

The specifications used for ANZU are different from those
used by the other two tools because ANZU requires the safety
components to be pre-synthesized into transition constraints.
The salient feature of our approach is the significantly smaller
sizes of the implementation. We only report latch count in [21],
but starting from a more abstract specification than ANZU was
paid with higher latch and gate counts. The new approach,
however, keeps the simpler and more abstract specification,
and still manages to achieve the most efficient designs.

The specification of the AMBA bus controller for n clients
contains n − 1 properties that are R-generable, but are not

2340

TABLE I. Experimental Results

Model Safety Parity Properties Time(s) latches Gates
E S E S ANZU ANZU SF SF+TC ANZU SF SF+TC ANZU SF+TC

AMBA2 3 17 2 3 56 2.39 6.87 0.44 24 37 15 4409 281
AMBA3 4 22 2 4 68 44.67 14.2 1.25 30 42 18 20686 586
AMBA4 5 26 2 5 80 35.30 109.9 3.47 34 48 20 17501 860
AMBA5 6 31 2 6 93 224.06 139.7 5.23 39 56 22 48154 1747
AMBA6 7 34 2 7 105 1011.7 301.1 10.18 43 55 23 74948 1792
AMBA7 8 38 2 8 117 1758.5 965.6 17.93 48 61 24 88808 1714
AMBA8 9 41 2 9 129 2034.9 875.3 76.72 52 67 26 222598 3621
AMBA9 10 44 2 10 141 7861.2 1439.6 193.90 57 77 28 175298 4597
AMBA10 11 48 2 11 153 28319.8 3727.6 224.21 61 81 29 172195 4941
AMBA11 12 51 2 12 165 8403.3 3154.0 410.44 65 87 30 179291 6240
AMBA12 13 55 2 13 177 49138.7 6641.2 878.63 69 92 31 224266 7223
AMBA13 14 60 2 14 189 13163.4 32562.4 1335.04 73 98 32 239494 9361
AMBA14 15 64 2 15 200 17104.9 12202.2 1865.70 77 105 33 284027 8202
AMBA15 16 69 2 16 212 TO TO 2611.00 - - 34 - 12385

produced by the grammar in Definition 6. The specification
also contains two safety properties that are not R-generable
irrespective of the number of clients.

We also implemented a limited retiming step (not applicable
in the SAFETY-FIRST approach), applied after the safety
properties of the system have been synthesized. Consider the
function f = (aL ∧ bL) ∨ fi, where aL and bL are the
latched versions of the signals a and b. One can implement
this function with one latch c = a ∧ b then f = cL ∨ fi.
This step may reduce the number of memory elements in the
parameterized representation of the transition function. Both
the combinational and sequential logic is reduced by this step.

In the case of AMBA bus controller, retiming has significant
impact because this controller can be implemented as a Moore
machine. When a Moore implementation is not possible,
the effectiveness of retiming may be less noticeable. The
runtime of the algorithm is affected by retiming because the
parameterized representation is also simplified: with fewer
BDD variables finding suitable variable orders becomes easier.

The results of Table I do not make use of conversion of
general safety properties to transition constraints. Rather the
automata for these properties are used directly. In the case
when general safety properties are converted to transition con-
straints, the extraction of an optimal parameterized transition
relation incurs significant penalty and is being investigated.

X. CONCLUSION

We have presented a technique that obtains a significantly
simpler representation of the synthesis game. This results in
significant improvement in solving the game and produces
implementations that are an order of magnitude smaller than
previous techniques. The results being reported here include
the logic that keeps track of the environment’s assumptions.
However, this logic is often not required after the game has
been played. We are investigating techniques that will allow
the extraction of an implementation that only depends on this
logic when absolutely necessary.

REFERENCES

[1] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Automatic hardware synthesis from specifications: A
case study. In In Proceedings of the Design, Automation and Test in
Europe, pages 1188–1193, 2007.

[2] A. Bolotov and M. Fisher. A resolution method for CTL branching
time temporal logic. In Fourth International Workshop on Temporal
Representation and Reasoning (TIME). IEEE Press, 1997.

[3] R. K. Brayton et al. VIS: A system for verification and synthesis.
In T. Henzinger and R. Alur, editors, Eighth Conference on Computer
Aided Verification (CAV’96), pages 428–432. Springer-Verlag, Rutgers
University, 1996. LNCS 1102.

[4] F. M. Brown. Boolean Reasoning: The Logic of Boolean Equations.
Kluwer, Boston, 1990.

[5] O. Carton and R. Maceiras. Computing the Rabin index of a parity
automaton. Theoretical Informatics and Applications, 33:495–505, 1999.

[6] R. Ehlers, R. Könighofer, and G. Hofferek. Symbolically synthesizing
small circuits. In Proceedings of the 12th Conference on Formal Methods
in Computer-Aided Design (FMCAD 2012), pages 91–100, 2012.

[7] E. A. Emerson. Alternative semantics for temporal logics. Theoretical
Computer Science, 26:121–130, 1983.

[8] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and
determinacy. In Proc. 32nd IEEE Symposium on Foundations of
Computer Science, pages 368–377, Oct. 1991.

[9] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponen-
tial algorithm for solving parity games. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, pages 117–123, Miami,
FL, Jan. 2006.

[10] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New
York, second edition, 1978.

[11] L. H. Landweber. Decision problems for ω-automata. Mathematical
Systems Theory, 3(4):376–384, 1969.

[12] M. Lange and O. Friedmann. The pgsolver collection of parity game
solvers. Technical report, Ludwig-Maximilians-Universität - München,
2009.

[13] P. Madhusudan. Synthesizing reactive programs. In CSL, pages 428–
442, 2011.

[14] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Annual
ACM Symposium on Principles of Distributed Computing, pages 377–
410, Quebec City, Quebec, Canada, Aug. 1990.

[15] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995.

[16] A. W. Mostowski. Regular expressions for infinite trees and a standard
form of automata. In A. Skowron, editor, Computation Theory, pages
157–168. Springer-Verlag, 1984. LNCS 208.

[17] M. Perles, M. O. Rabin, and E. Shamir. The theory of definite automata.
IEEE Transactions on Electronic Computers, pages 233–243, 1963.

[18] N. Piterman. From nondeterministic Büchi and Streett automata to
deterministic parity automata. In 21st Symposium on Logic in Computer
Science, pages 255–264, Seattle, WA, Aug. 2006.

[19] N. Piterman, A. Pnueli, and Y. Sa´ar. Synthesis of reactive(1) designs.
In 7th International Conference on Verification, Model Checking and
Abstract Interpretation, pages 364–380. Springer, 2006. LNCS 3855.

[20] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
Proc. Symposium on Principles of Programming Languages (POPL ’89),
pages 179–190, 1989.

[21] S. Sohail and F. Somenzi. Safety first: A two-stage algorithm for the
synthesis of reactive systems. Software Tools for Technology Transfer
(Online First), pages 1–22, 2012.

24 41

On the Feasibility of Automation for Bandwidth
Allocation Problems in Data Centers

Yifei Yuan, Anduo Wang, Rajeev Alur, and Boon Thau Loo
University of Pennsylvania

Abstract—Mapping virtual networks to physical networks
under bandwidth constraints is a key computational problem
for the management of data centers. Recently proposed heuristic
strategies for this problem work efficiently, but are not guaran-
teed to always find an allocation even when one exists. Given that
the bandwidth allocation problem is NP-complete, and the state-
of-the-art SAT solvers have recently been successfully applied
to NP-hard problems in planning and formal verification, the
goal of this paper is to study whether these SAT solvers can
be used to solve the bandwidth allocation problem exactly with
acceptable overhead. We investigate alternative ways of encoding
the allocation problem, and develop techniques for abstraction
and refinement of network graphs for scalability. We report
experimental comparisons of the proposed encodings with the
existing heuristics for typical data-center topologies.

I. INTRODUCTION

Allocating computing resources to customers’ requests is
the central task for a data center provider. The requests
submitted usually define virtual networks involving a number
of virtual machines (VMs) and also the bandwidth requirement
for virtual links between VMs. To handle such a request, the
data center provider should allocate server resources, as well as
bandwidth on the links of the data center’s physical network.

However, bandwidth allocation is a computationally hard
problem. It is NP-complete to determine whether there is
a valid allocation even for simple topologies of physical
networks and virtual networks. Current proposed techniques
focus on designing heuristic algorithms processing requests
efficiently ([1], [2], [3]). These heuristics only consider local
constraints, e.g. if there is enough link bandwidth of a server to
host a VM [1], to determine allocation. While these techniques
work efficiently, they provide no guarantee to always succeed
in finding an allocation even if one exists.

On the other hand, recent success of applying SAT/SMT
solvers [4], that is, solvers for constraint satisfaction problems,
to NP-hard problems in planning and formal verification
suggests a promising way to solve NP-hard problems in prac-
tice ([5], [6], [7], [8]). In this paper, we encode the bandwidth
allocation problem into SAT formulas and utilize state-of-
the-art SAT/SMT solvers to find the feasible allocation. We
develop abstraction and refinement for the physical networks
for scalability. Our experimental results show that the SAT
approaches work effectively with acceptable overhead for
small data center networks.

This research was partially supported by the NSF Expeditions in Computing
project ExCAPE (CCSF 1138996).

The remaining paper is organized as follows. Section II
provides a formulation of the bandwidth allocation problem,
and the hardness result of it when restricting to the topology
of trees. In Section III, we show the SAT encoding of the
bandwidth allocation problem and we develop abstraction and
refinement techniques for scalability. In Section IV, we show
the simulation results. Section V concludes this paper.

II. PROBLEM FORMULATION

In this section, we provide a formal definition of the band-
width allocation problem. Formally, we model the physical
network of a data center as a graph PN = (A∪B,L), where
A is the set of host servers, B is the set of switches. L is
the set of physical links that connect servers(switches) with
switches. Moreover, each host server s ∈ A has a capacity
c(s) that models the maximum number of virtual machines
which a server can host. Each physical link l ∈ L has a
bandwidth b(l). The virtual network is also modeled as a
graph V N = (V,E), and V is the set of virtual machines,
E is the set of virtual links connecting virtual machines. Each
virtual link e ∈ E has a bandwidth requirement r(e). The
mapping f : V → A maps a VM to a host server. Due to
the capacity of servers, f should not map VMs more than
a server’s capacity. Let P denote the set of paths in PN .
The mapping ρ : E → P defines the routing path for each
virtual link. That is ρ(v1, v2) = (f(v1), · · · , f(v2)). To meet
the bandwidth requirement, every physical link on the routing
path must have enough available bandwidth for the virtual link.

We define the bandwidth allocation problem as follows.
Given a physical network PN = (A ∪ B,L) with server

capacity c and link bandwidth b, and a virtual network
V N = (V,E), the bandwidth allocation problem seeks to find
the mapping functions f and ρ, satisfying the following two
conditions: (1) ∀s ∈ A, c(s) ≥ |{v ∈ V |f(v) = s}|, and (2)
∀l ∈ L, b(l) ≥

∑
e∈E:l∈ρ(e) r(e).

A feasible allocation can be checked in polynomial time
and thus the bandwidth allocation problem is in the class NP.
It is also proved in [1] that the bandwidth allocation problem
is NP-hard in a general physical network.

In data centers, the tree structure is widely deployed for the
physical network topology. Even though the routing path in a
tree between any two servers is unique, the bandwidth con-
straint is still the bottleneck for solving the problem efficiently.
We show that even when restricting the physical network
topology to be a tree, the bandwidth allocation problem is

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 2542ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

still strongly NP-hard, i.e., NP-hard even when the numerical
parameters are encoded in unary.

Theorem 1 (NP-hardness for Trees). Given a physical net-
work PN in the tree structure, and a virtual network V N ,
finding the mappings f and ρ is strongly NP-complete.

Proof. Membership in NP is evident. For the NP-hardness,
we show the reduction from a strongly NP-complete problem,
namely, the 3-partition problem: given a multiset S of 3m
positive numbers {x1, ..., x3m}, partition S into m subsets
S1, ...Sm, such that each subset has 3 numbers and the sum of
the numbers in each subset is equal. We construct the physical
network as a 1-level tree with m + 1 servers s1, ..., sm+1.
Each server si connects to a switch s. For i = 1, ...,m, set
the bandwidth of the link connecting si and s to be t, which
is the desired sum of each subset in the 3-partition problem,
and the bandwidth of link (sm+1, s) to be 3t, which is the
sum of all the numbers. Let the capacity of each server be 3.
We construct a virtual network as a 1-level tree with 3m+ 1
virtual machines. Suppose the leaves are v1, .., v3m and the
root is v3m+1. The bandwidth requirement for the virtual link
(vi, v3m+1) is xi. Since the virtual machine v3m+1 can only
be mapped to the server sm+1, it is evident that there is a one-
to-one mapping between these two instances. Therefore, the
bandwidth allocation problem for trees is also NP-hard.

III. SAT APPROACH

In this section, we provide an alternative solution to the
bandwidth allocation problem using SAT/SMT solvers. First,
we show how to encode the bandwidth allocation problem into
SAT formulas with integers. Second, we develop abstraction
and refinement of physical network topologies for scalability.

A. SAT Encoding

In this section, we show how to encode a bandwidth
allocation problem into SAT formulas that work for any
physical network topology and virtual network topology. For
each virtual machine v ∈ V , and server s ∈ A, let X(v, s)
be an integer variable indicating f(v) = s, i.e. X(v, s) = 1
if f(v) = s, and X(v, s) = 0, otherwise. To ensure that each
virtual machine gets mapped, and only mapped to one server,
we have the constraint that

αs :
∧
v∈V

(∑
s

X(v, s) = 1

)
.

To encode the routing path for each pair of virtual machines,
we define the variable R(l, e, k) to indicate that the physical
link l is the k’th link of the routing path that is allocated to the
virtual link e. The following formula encodes the constraint
that there is no more than 1 physical link as the k’th one:

αr :
∧
e,k

(∑
l∈L

R(l, e, k) ≤ 1

)
.

The following constraint ensures that R(l, e, k) indeed encodes
a path in the physical network.

αc :
∧
e,k

 ∨
l1,l2:l1,l2 are adjacents

R(l1, e, k) ∧R(l2, e, k + 1)

 .

The constraint
∨
l1,l2:l1,l2 are adjacents R(l1, e, k)∧R(l2, e, k+1)

means that the k’th and the k + 1’th physical link on the
routing path assigned for the virtual link e should be adjacent.
For each physical link l ∈ L and virtual link e ∈ E, let Y (l, e)
be an integer variable indicating the bandwidth of l reserved
for virtual link e. We have the following constraint:

αy : Y (l, e) = r(e)⇔
∨
k

R(l, e, k) = 1.

To encode the constraint that for each virtual link, there is a
routing path between the host servers to which the two VMs
of the virtual link are mapped, we have:

αv :
∧

(v1,v2)∈E,
s1,s2∈A,s1 6=s2

(
(X(v1, s1) = 1 ∧X(v2, s2) = 1)→

∨
l1:s1∈l1
l2:s2∈l2

(Y (l1, e) = r(e) ∧ Y (l2, e) = r(e))

)
.

Finally, the server capacity condition can be encoded as

βserver :
∧
s∈A

(∑
v

X(v, s) ≤ c(s)

)
, and the link capacity condition is encoded as

βlink :
∧
l∈E

(∑
e

Y (l, e) ≤ b(l)

)
.

Putting all the pieces together, we have the encoding
ΦPN,V N for the bandwidth allocation problem:

ΦPN,V N = αs ∧ αr ∧ αc ∧ αy ∧ αv ∧ βserver ∧ βlink.

The following theorem easily follows.

Theorem 2. Given any physical network PN = (A ∪ B,L)
and virtual network V N = (V,E), there exists mappings f
and ρ satisfying the requirements of the bandwidth allocation
problem, if and only if the formula ΦPN,V N is satisfied.

B. Abstraction and Refinement

We use 2-level tree as an example topology for the data
centers to demonstrate how to abstract and refine the network
topology. In the tree topology, all the leaves are host servers,
and there are two levels of switches. On the first level, the
switches connect with the host servers, and the root switch
sitting on the second level connects with the switches on the
first level. For notation brevity, let T denote the physical tree
topology. We denote the root of the 2-level tree as r, and its
children as w1, ..., wk, and si,j as the jth children of wi.

The routing path for any two servers in a tree is unique,
therefore, the encoding involving R(l, e, k) can be omitted.

26 43

For each pair of host servers u, v, let p(u, v) be the unique
path between them. The constraint αv can be simplified as:

αv :
∧

(v1,v2)∈E,
s1,s2∈A,s1 6=s2

(
(X(v1, s1) = 1 ∧X(v2, s2) = 1)→

∧
l∈p(s1,s2)

(Y (l, e) = r(e))

)
.

Therefore, the whole formula is:

ΦPN,V N = αs ∧ αv ∧ βserver ∧ βlink.

a) Abstraction: In the abstraction phase, we “compress”
T into a 1-level tree Tabs, which has a single root r with its
children w1, ..., wk. By abstracting the subtree rooted at wi,
we set the capacity of wi to be the sum of capacities of all
its children. That is, c(wi) =

∑
j c(si,j). Using the encoding

technique above, we build the constraint ΦTabs,V N and solving
the constraint gives us a solution for the allocation problem
for the abstracted tree and the original virtual network.

b) Refinement: In the refinement phase, we need to solve
for the subtree Ti with root wi and its children si,1, ...si,m. By
solving the abstracted tree Tabs in the first phase, we know
the set of virtual machines that are mapped to this subtree.
The virtual network V Ni that are mapped to the subtree Ti
is a subgraph of the original virtual network. Suppose the set
of VMs that are mapped to the subtree is Vi, then V Ni =
(Vi, Ei), and here (v1, v2) ∈ Ei if and only if v1, v2 ∈ Vi and
(v1, v2) ∈ E. The formula ΦTi,V Ni encodes the constraint for
mapping the virtual network V Ni to the subtree Ti. However,
this is not sufficient to ensure that the mapping is feasible for
the original virtual network. In fact, there may be a virtual link
of which only one end is mapped to the subtree. To handle
this situation, we need to establish a route for the server which
the virtual machine is mapped to and the root switch in the
subtree. That is,

αv′ :
∧

(v1,v2)∈E,v1∈Vi,
v2 6∈Vi,s1∈Ti

(
X(v1, s1) = 1→

Y ((s1, wi), e) = r(e)

)
.

Therefore, the formula for the refinement is

ΦTi,V Ni,V N = ΦTi,V Ni
∧ αv′ .

The algorithm for the abstraction and refinement approach is
shown as algorithm 1. The algorithm first solves the formula of
the abstracted tree (line 4), and then refines each subtree (line
5-7). To facilitate the search, if the refinement phase of some
subtree fails, we stop refining the next subtree and return back
to solve the first phase. To force the SMT solver to provide
a different solution, we add the counter-example that makes
the refinement fail. That is αcounter : ¬

(∧
v∈Vi

X(v, wi) = 1
)

(line 8-11). If all the subtrees can be refined, the algorithm
finds a feasible solution (line 13-17). Otherwise, the formula
Φ for the abstracted tree is unsatisfied after a number of

iterations, in which case, there is no feasible solution (line
19).

Algorithm 1 Abstraction&Refinement SAT solving.
1: build the formula ΦTabs,V N for the abstracted tree Tabs;
2: Φ = ΦTabs,V N ;
3: while Φ is satisfied do
4: solve Φ;
5: for all i do
6: let V Ni = (Vi, Ei) be the virtual network that

needs to be mapped to the subtree Ti;
7: build the formula ΦTi,V Ni,V N ;
8: if ΦTi,V Ni,V N is unsatisfiable then
9: Φ = Φ ∧ ¬

(∧
v∈Vi

X(v, wi) = 1
)
;

10: break;
11: end if
12: end for
13: if all subtrees can be refined then
14: set f(v) = s if X(v, s) = 1;
15: compute ρ using the unique routing path in T ;
16: return f and ρ;
17: end if
18: end while
19: return no solution;

IV. SIMULATION RESULTS

In this section, we show some empirical evaluation of our
SAT solution. The topology of the physical network in our
evaluation is a 2-level tree and the leaves denote the host
servers and there are 2-levels of switches. There are 200
servers and each server can host 4 VMs and we set the
bandwidth of the lower level link to be 20, while the higher
level links’ bandwidth is set to be 200. We use the topology
generated by connecting 3 complete graph with 3 links as
the topology of the virtual network. This topology is used to
model the distributed storage systems that have 3 identical
replicas, and each replica communicates with one another.
We use two different size of replicas, namely 3 VMs and 5
VMs in one replica, and thus 9 VMs and 15 VMs in the
virtual network respectively. In each replica, the bandwidth
requirement for each virtual link ranges from 0 to 2 at random,
and the bandwidth of the links connecting each replica is
always 1. That is, each virtual link requires 5% to 10%
bandwidth of that of the lower level links in the physical
network. For comparison, we run the SAT encoding algorithm
without abstraction and refinement (referred as sat), as well as
the SAT encoding with the abstraction and refinement (referred
as sat abs). In addition, we compare the algorithm proposed
in [1] (referred as secondnet). For each virtual network, we
try to map as many copies of the virtual network as possible
to the physical network using the allocation algorithms. We
run 3 times for each virtual network, and compare the server
utilization, link utilization and the running time of the 3
algorithms. All the evaluations are run on a server with quad-
core 2.67GHz Intel Xeon CPU, 4GB of RAM, and we use

2744

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

9	 vms	 15	 vms	

A
vg
.	 s
er
ve
r	
u*

liz
a*

on
	

#	 of	 VMs	 in	 the	 virtual	 network	

secondnet	
sat	
sat_abs	

9	 VMs	 	 	 	 	 	 	 	 	 	 	 	 	 	 15	 VMs	 	 	

(a) Average Server Utilization.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

9	 vms	 15	 vms	

A
vg
.	 l
in
k	
u+

liz
a+

on
	

#	 of	 VMs	 in	 the	 virtual	 network	

secondnet	
sat	
sat_abs	

9	 VMs	 	 	 	 	 	 	 	 	 	 	 	 	 	 15	 VMs	 	 	

(b) Average Link Utilization.

0.01	

0.1	

1	

10	

100	

9	 vms	 15	 vms	

Ru
nn

in
g	
'
m
e	
pe

r	
V
N
	

(s
ec
on

ds
)	

#	 of	 VMs	 in	 the	 virtual	 network	

secondnet	
sat	
sat_abs	

9	 VMs	 	 	 	 	 	 	 	 	 15	 VMs	 	 	

(c) Running Time.

Fig. 1: Simulation Results.

Z3 [5] as the SAT/SMT solver in the allocation algorithms.
Figure 1a shows the server utilization for the 3 allocation
algorithms. Server utilization measures the ratio of the number
of VMs that are mapped to the physical network and the total
capacity of the network. The larger the server utilization is, the
more effective the allocation algorithm is. As shown in Figure
1a, both algorithms based on SAT encodings achieve 99%
server utilization, while the secondnet heuristic only achieves
30% server utilization in both virtual networks with 9 VMs
and 15 VMs, respectively. The reason why secondnet can only
map a few virtual networks is that it only takes the requirement
for servers into account, and does not consider whether there
is a feasible routing path between the servers that two VMs
are mapped to. Moreover, secondnet is highly sensitive to the
order in which the VM connections are requested. Different
orderings result in large differences in server utilization. On
the other hand, the techniques based on SAT solving encode
the bandwidth allocation problem completely, and they achieve
high server utilization.

The link utilization measures the ratio between the link
bandwidth utilized and the total bandwidth. When achieving
the same server utilization, the allocation algorithm with
lower link utilization is usually better than those with higher
link utilization, because it leaves more bandwidth for future
allocation. As shown in Figure 1b, secondnet only maps a few
virtual networks and thus results in low link utilization. The
sat algorithm achieves very high link utilization. For the virtual
network with 15 VMs, the link utilization is more than 70%.
Mapping the same number of virtual networks, sat abs utilizes
the link bandwidth no more than 2/3 of that by sat. This is
due to the abstraction technique. With abstraction, VMs are
mapped more locally, and thus more communication happens
within the subtree. Without abstraction, the two VMs on a
virtual link are more likely to be mapped into two different
subtrees, and thus increases the link utilization on the links
between the root switch and other switches.

Figure 1c shows the running time of allocating 1 vir-
tual network using each allocation technique. The heuristic
of secondnet runs in polynomial time, and it is orders of
magnitude more efficient than the other two algorithms. In

particular, the sat runs for about 3 hours to map 53 virtual
networks with 15 VMs, while secondnet takes no more than
2 seconds to map 13 virtual networks. It is also shown that
abstraction reduces the running time significantly. To map a
virtual network with 15 VMs, sat takes 200 seconds, while
sat abs only uses about 2 seconds. Let’s remark that the
SAT encoding approaches and existing approaches are not
mutually exclusive. In practice, those approaches can be run in
parallel and the first outputting feasible allocation is adopted.
Moreover, SAT encoding approaches can be applied when
optimizing the data center by re-locating allocated virtual
networks. In this case, finding the optimal solution is more
critical than running time.

V. CONCLUSION

Bandwidth allocation problem is the key computational
problem in data center management. In this paper, we show
an alternative approach that encodes the problem into SAT
formulas and apply SAT/SMT solvers to solve the problem.
We report simulation results showing that by using abstraction
and refinement techniques, we are able to provide high quality
solutions within acceptable overhead.

REFERENCES

[1] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in Proceedings of the 6th International
COnference. ACM, 2010, p. 15.

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards pre-
dictable datacenter networks,” in ACM SIGCOMM, 2011.

[3] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proc. IEEE INFOCOM,
vol. 2, 2006, pp. 1–12.

[4] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduction
and applications,” Commun. ACM, vol. 54, no. 9, pp. 69–77, Sep. 2011.
[Online]. Available: http://doi.acm.org/10.1145/1995376.1995394

[5] ——, “Z3: An efficient smt solver,” in Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2008, pp. 337–340.

[6] B. Dutertre and L. De Moura, “The Yices SMT solver,” Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, vol. 2, p. 2, 2006.

[7] L. De Moura, S. Owre, H. Rueß, J. Rushby, N. Shankar, M. Sorea, and
A. Tiwari, “Sal 2,” in Computer Aided Verification. Springer, 2004, pp.
496–500.

[8] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “Slam and static driver
verifier: Technology transfer of formal methods inside microsoft,” in
Integrated formal methods. Springer, 2004, pp. 1–20.

28 45

Computing prime implicants
David Déharbe∗, Pascal Fontaine†, Daniel Le Berre‡, Bertrand Mazure‡

∗ UFRN, Brazil
† Inria, U. of Lorraine, France
‡ CRIL, U. of Artois, France

Abstract—Model checking and counter-example guided ab-
straction refinement are examples of applications of SAT solving
requiring the production of models for satisfiable formulas. Better
than giving a truth value to every variable, one can provide an
implicant, i.e. a partial assignment of the variables such that
every full extension is a model for the formula. An implicant is
prime if every assignment is necessary. Since prime implicants
contain no literal irrelevant for the satisfiability of the formula,
they are considered as highly refined information.

We here propose a novel algorithm that uses data structures
found in modern CDCL SAT solvers to efficiently compute prime
implicants starting from an existing model. The original aspects
are (1) the algorithm is based on watched literals and a form
of propagation of required literals, adapted to CDCL solvers (2)
the algorithm works not only on clauses, but also on generalized
constraints (3) for clauses and, more generally for cardinality
constraints, the algorithm complexity is linear in the size of the
constraints found. We implemented and evaluated the algorithm
with the Sat4j library.

I. INTRODUCTION

Although SAT is a decision problem whose answer on an
input formula is “satisfiable” or “unsatisfiable”, it is often
necessary or useful to obtain an explanation of this output,
i.e. proofs of unsatisfiability for unsatisfiable formulas and
models for satisfiable formulas. As a side effect of the data
structures they use, modern SAT solvers output full models for
satisfiable formulas, i.e. they assign a value to every variable
in the input (even if the value of some variables is irrelevant).
For some applications, a partial model or implicant (i.e. a
partial assignment that is sufficient to satisfy all clauses) is
preferred to a full assignment. Bounded model checking is
one such application: an assignment corresponds to an error
trace, and the smaller the assignment, the simpler it usually
is to understand the flaw [1]. Using implicants instead of
models is also useful when performing Boolean optimization
(e.g. Pseudo Boolean Optimization or MaxSAT). Evaluating
an objective function over an implicant provides a range of
values (which may contain a single element) instead of a
single value with a model. As such, optimization approaches
based on strengthening may compute better upper bounds
from implicants rather than from models. Generating partial

This work has been partially supported by CAPES grant 2347-13-0, CNPq
grants 308008/2012-0, 573964/2008-4 (National Institute of Science and
Technology for Software Engineering—INES), Nord-Pas de Calais Regional
Council and FEDER through the ’Contrat de Projets Etat Region (CPER)
2007-2013’, and ANR TUPLES.

assignments is also useful in Satisfiability Modulo Theories
(see [2] for a thorough introduction) when the theory reasoner
has a high complexity. Implicants are also used in the context
of compilation of knowledge base, the cover of implicants
being a classical way to compile a knowledge base [3]–[5].

An implicant is prime if none of its proper subsets is an
implicant. The paper addresses the problem of efficiently de-
riving a prime implicant from an existing model of a satisfiable
formula. A prime implicant can be derived from a model by
iteratively removing the assignments that are not necessary.
In this paper, we present two instances of this greedy ap-
proach. The first associates counters to constraints, yielding
the algorithm sketched in [6]. This algorithm has complexity
linear in the size of the constraints, but requires specialized
indexing and dedicated counters as found in DPLL-based
solvers. We propose a new algorithm benefiting from the lazy
data structures (i.e. watched literals [7]) available in modern
SAT solvers. Our approach is not only suitable for clauses but
generalizes to e.g. cardinality constraints. For sets of clauses
and cardinality constraints, the complexity of this algorithm
is also linear, thanks to a dedicated propagation procedure on
the constraints.
Related work. We focus on computing one prime implicant
(not necessarily of minimum size) out of a given model, using
the data structures used in modern SAT solvers. Algorithm 1
(Section II-C) is quickly discussed in [6] and [8], without
concrete implementation or complexity study; in Section II-C
we provide a concrete instantiation of it, and discuss its
complexity. An algorithm embedding SAT solving techniques
is proposed in [9] and motivated by experimental results. Some
other techniques, e.g. [10], involve encoding the problem
of finding prime implicants to linear programming. Getting
minimal assignments (i.e. prime implicants) for a CNF (Con-
junctive Normal Form) from a model provided by a SAT solver
is discussed in [1], and several techniques are sketched. The
authors of this work notably notice that literals assigned by
propagation are mandatory in any prime implicant included in
the model; for completeness, we restate formally this result in
Section II-C. They also mention brute-force lifting, noticing
it can be implemented in time quadratic in the size of the
CNF formula. In the same context, the time complexity of our
algorithms is linear.

A lot of research concentrates on the problem of generating
one prime implicant or the set of all prime implicants for a

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 2946ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

formula, without previous knowledge of models, e.g. [3], [8],
[11]–[13]. Also, many works focus on the more complex prob-
lem of finding prime implicants of minimum size (e.g. [14]
in propositional logic, and [15] in the context of SMT); the
techniques presented here could be used repeatedly to find
prime implicants of minimum size, but this goes beyond the
scope of this paper.
Overview. Section II introduces definitions and notations. In
Section II-C, we give an original formal presentation of some
of the results mentioned above. Section III then presents our
algorithm based on watched literals and propagation. This
algorithm has been implemented in the Sat4j library [16];
experimental results are given in Section IV.

II. BASIC PRINCIPLES

A. Definitions and notations

We assume the standard notions of propositional logic,
model, propositional variable, literal and clause. A (set of)
formula(s) B is a logical consequence of a (set of) formula(s)
A (A |= B) if every model of (all elements in) A is also
a model of (all elements in) B. In this paper, we use the
term constraint for formula, implicitly understanding that a
constraint c most often denotes:
• a clause, a disjunctive set of literals;
• a cardinality constraint

∑
`i∈c `i ≥ k where k (the

degree) is an integer and each literal `i is either 0 (false)
or 1 (true) — a clause can be seen as a cardinality
constraint of degree 1;

• a pseudo-Boolean constraint
∑

`i∈c wi`i ≥ k, where k
and each wi are positive integers.

A set of constraints is viewed as the conjunctive combination
of its elements and a literal as a Boolean assignment of a
propositional variable. Throughout this paper, a set of literals
cannot contain two opposite literals, so that sets of literals es-
sentially are partial mappings from the lexicon of propositional
variables to the Boolean values. In the following we identify
a model for a (set of) formula(s) with the set of all the literals
it satisfies.

A set of literals M is an implicant for a set of constraints
C if, for every constraint c ∈ C, M |= c. An implicant M of
C is a prime implicant if, for every proper subset M ′ of M ,
M ′ is not an implicant of C. Assuming M |= c and ` ∈ M ,
we say ` is a required literal in M for constraint c, and write
Req(M, `, c), when M \ {`} 6|= c. In particular, for a clause
c such that M |= c, we have Req(M, `, c) iff M ∩ c = {`}.
A required literal ` for M and a set of constraints C, denoted
Req(M, `, C), is such that there exists a constraint c ∈ C with
Req(M, `, c).

B. Elements of SAT solving

Modern CDCL-based SAT solvers assume their input is
given as a set of clauses, but the techniques described here
may be generalized to handle cardinality and pseudo-Boolean
constraints. To decide if a set of clauses is satisfiable, a
solver must find a variable assignment that satisfies all clauses.
Three key aspects of this search are decision, propagation and

learning. Decision consists in setting an unassigned variable
to a Boolean value. A variable assignment is propagated if
it is enforced by the previous assignments, i.e. this happens
when all but one literal in a clause have been assigned to
false. Then this last literal must be true for the set of clauses
to be satisfiable. It may happen that propagation implies
a conflicting assignment. In that case, a new clause (the
conflict) is learnt, being recorded as a new constraint. Then
backtracking and further propagation occur. If propagation
terminates without conflict, either all variables are assigned
and the set is satisfiable, or a new decision occurs. On an
unsatisfiable set of constraints, the algorithm will eventually
reach a conflicting assignment with no decided variable.

In practice, the computation cost is dominated by prop-
agation. A naı̈ve algorithm could be: whenever a variable
is assigned a value, all clauses containing the literal set to
false are checked for unsatisfiability or new propagations. The
watched literals technique is a heuristic that effectively reduces
that cost in practice. In the case of clauses, it is based on the
observation that a clause needs to be inspected only when all
but one literal are assigned to false. So, for each clause, only
two of its literals are watched, and the clause is inspected only
when one of the two watched literals is assigned to false. This
technique generalizes to cardinality constraints, by watching
at most k + 1 literals, for a constraint of degree k.

C. Greedy computation of prime implicants from models

Consider a model M for a set of constraints C. Most often,
the model M is computed with a solver using propagation;
knowing which literals in M are propagated, and which
are not, is highly valuable information for computing prime
implicants out of M . Indeed, the following simple lemma
allows to directly identify elements in M that have to be in
every prime implicant included in M .

Lemma 1: Assume 1) M is an implicant for a set of formulas
C, 2) c is a logical consequence of C, 3) and M \ {`} 6|= c.
Then M \ {`} is not an implicant of C. In other words, the
literal ` belongs to every prime implicant included in M .
Proof. If c is a logical consequence of C, then every implicant
of C is an implicant of c. As M \ {`} is not an implicant of
c, M \ {`} is not an implicant of C. ut

In the context of CDCL solvers, the above trivial lemma
has an interesting corollary. Assume ` ∈ M is propagated,
i.e. there exists a constraint c in C or learnt from C — in
both cases, c is a logical consequence of C — and a subset
M ′ ⊆ M \ {`} such that M ′, c |= `. Then M , C, c and `
fulfill the requirements of the lemma: ` is mandatory in every
implicant included in M . Only decision literals may possibly
be removed from M to obtain a stronger implicant.

The abstract Algorithm 1 computes a prime implicant for
a set of constraints C, starting from a model M0 of C and a
subset Π0 of the literals known to be in a prime implicant
(e.g., the empty set, or the set of all propagated literals in the
CDCL solver that produced M0). Variable M is an implicant
for C of decreasing size, and Π is an increasing subset of a
prime implicant included in M . The algorithm checks each

30 47

literal ` in M \Π and greedily adds it to Π if it is required or
removes it from M otherwise. There may be several different
prime implicants included in M0; the successive choices of `
in line 3 determine which of those prime implicants is returned
by the algorithm.

Algorithm 1 Abstract computation of prime implicants
1: procedure PRIME(C,M0,Π0)
2: M,Π←M0,Π0

3: while ` ∈M \Π do
4: if Req(M, `, C) then Π← Π ∪ {`}
5: else M ←M \ {`}
6: return Π

The algorithm can be refined in a practical and efficient
algorithm. Remember that checking if Req(M, `, C) is true
comes to check if Req(M, `, c) is true for some constraint in
c ∈ C. It is thus useful, in order not to check every constraint
in C, to have an index W (`) that gives the set of constraints
containing `. This index can be built efficiently, though it
requires to read the entire set of constraints.

Algorithm 2 was sketched in [6] and is specialized for sets
of clauses; it can be extended easily (at the expense of heavier
notations) to cardinality constraints while preserving the linear
complexity. It can also be extended to arbitrary constraints, but
requires to define the concrete code for Req(M, `, c) for an
arbitrary constraint c. If c is a clause, Req(M, `, c) is true if
and only if M ∩ c = {`}. Such a test can be done efficiently
using counters for the true literals in every clause c; in Alg. 2,
line 10, ∃c ∈ W (`) . N[c] = 1 stands for a loop on W (`)
that stops returning true if N[c] = 1 for some c, and returns
false otherwise. For every clause c, N[c] has to be initialized
to |M0 ∩ c|. The counters in N have to be updated each time
a literal is removed from M (line 13).

Algorithm 2 Prime implicants for CNFs.
1: procedure PRIME(C,M0,Π0)
2: M,Π←M0,Π0

3: for all ` ∈M do W (`)← ∅
4: for all c ∈ C do
5: N[c]← 0
6: for all ` ∈ c do W (`)←W (`) ∪ {c}
7: for all ` ∈M do
8: for all c ∈W (`) do N[c]← N[c] + 1

9: for all ` ∈M \Π do
10: if ∃c ∈W (`) . N[c] = 1 then
11: Π← Π ∪ {`}
12: else
13: for all c ∈W (`) do N[c]← N[c]− 1

14: M ←M \ {`}
15: return Π

Theorem 1: Given a satisfiable set of clauses C, a model
M0, and a set Π0 of literals mandatory in all prime implicants

included in M0, Algorithm 2 returns a prime implicant for C.
It runs in time O(

∑
c∈C |c|).

Proof. If the set of literals given as argument of the function
is a model, then the returned set of literals is also a (partial)
model for C. Indeed, a literal ` is removed from the model if
and only if all clauses are still satisfied when ` is removed.

Furthermore, the returned partial model M is minimal.
Assume M \ {`} is also a partial model for C. If ` has not
been removed, either there exists a clause c ∈ C such that ` is
the sole true literal, or ` was initially in Π0. In the first case,
M \ {`} cannot be a partial model for c and hence for C. The
second case would contradict the theorem hypothesis on Π0.

Assume that, for each clause c, the counter N[c] can be read
and modified in constant time. Assume also that, for each `,
the indexing W (`) of clauses containing literal ` is such that
1) it can be emptied in constant time, 2) an element can be
added in constant time, 3) all its elements can be iteratively
read in cumulative linear time. We also suppose that iterating
on C, M and M\Π has a cumulative cost which is respectively
O(|C|), O(|M |), and O(|M |).

Under the above assumptions, Algorithm 2 is linear with
respect to the size of the clause set

∑
c∈C |c|. We consider

that every literal is present in at least one clause so that
O(
∑

c∈C |c|+ |M |) = O(
∑

c∈C |c|). Line 3 is O(|M |). Lines
4–6 involve inspecting each clause and each literal in the
clause, and execute a constant time operation (at line 6) for
each of those literals. This block is thus O(

∑
c∈C |c|). Lines 7–

8 involve inspecting each clause c at most |c| times, and is thus
also O(

∑
c∈C |c|). In the last loop at lines 9-14, each clause

c from C is again examined at most 2× |c| times. Overall, all
four loops are O(

∑
c∈C |c|). ut

Algorithm 2 has linear complexity, but requires to build an
index of constraints by literals and counters. Also, a constraint
is examined once for every of its literals satisfied in the model
(not unlike what happens in SAT solving with counters instead
of watched literals). Rather than preventing a counter from
decreasing to 0 (which, for SAT solving, would correspond
to a conflict), it is more reasonable to directly put in Π the
last satisfied literal of a clause as soon as the counter reaches
one (i.e. using some kind of propagation). This motivates the
version presented in the next section, using watched literals,
instead of indexes and counters.

III. COMPUTING PRIME IMPLICANTS BY PROPAGATION

It can be argued that the above algorithm uses late detection
of literals to add in the prime implicant. Indeed, a literal `
is iteratively selected, and Req(M, `, c) is checked for every
constraint c containing `. Another possibility is to use early
detection of literals for addition to Π, similarly to Boolean
constraint propagation in SAT solvers. This yields the algo-
rithms described in this section.

A. An abstract version

Algorithm 3 is the early detection equivalent of abstract
Algorithm 1: it computes a prime implicant out of an implicant

3148

M0 for a set of constraints C, and any subset Π0 of the required
literals in M0. Variable M , initialized to M0, is an implicant
for C of strictly decreasing size, and Π is an increasing subset
of a prime implicant included in M . The larger Π0 is, the
faster the convergence1; also it is optional as the algorithm is
sound if it is empty. We introduce it for future specializations.

Algorithm 3 Abstract propagation-based algorithm
1: procedure PRIME(C,M0,Π0)
2: M,Π←M0,Π0

3: Π← Π ∪ IMPLIED(C,M)
4: while ` ∈M \Π do
5: M ←M \ {`}
6: Π← Π ∪ IMPLIED(C,M)

7: return Π

Algorithm 3 first identifies and adds to Π the required
literals of M (l. 3). Repeatedly one of the remaining literals
in M \ Π is removed (l. 4) until M \ Π is empty. This may
trigger other remaining literals to be added to Π (l. 6). The
call IMPLIED(C,M) yields a subset of M such that

IMPLIED(C,M) \Π =
{
` | Req(M, `, C)

}
\Π,

i.e. IMPLIED(C,M) returns the set of literals in M that
should be added to Π because, for each of these literals, a
constraint requires this literal to be true. Note that, in contrast
to Algorithm 1, the literal chosen in l. 4 is removed from the
prime implicant without further test. Lines 3 and 6 establish
the property that no literal in M \Π is required.

Proposition 1: Given a set of constraints C, an implicant
M0, and Π0, a subset of {` | Req(M0, `, C)}, Algorithm 3
terminates and returns a prime implicant of C included in M0.
Proof. The loop in Algorithm 3 satisfies the following
invariants:
I1: Π = {` | Req(M, `, C)};
I2: Π ⊆M ⊆M0;
I3: M is an implicant.
Invariant I1 is verified at the start of the loop as a consequence
of line 3 (assuming the pre-condition Π0 ⊆ {` | Req(M, `, C)}
for the call to PRIME) and is preserved thanks to line 6.
I2 is trivial, and I3 is verified at the start of the loop as a
consequence of line 2. It is preserved since ` at lines 4 and 5
is not in Π, thus is not required: ∀c .M \ {`} |= c. The new
value of M is again an implicant for all c.

The loop variant |M \Π| is a strictly decreasing sequence of
natural numbers; the loop terminates when M ⊆ Π, i.e. when
M = Π (thanks to invariant I2) and Π ⊆M0. From invariant
I3, Π is an implicant and from invariant I1, this implicant is
prime. This establishes the property.

The above proof is suitable for any type of Boolean con-
straints. For the special case of a clause c ∈ C, notice that, as a
direct consequence of the loop invariant, c∩Π 6= ∅∨|c∩M | ≥
2. ut

1Technically, a SAT solver should assign Π0 to the set of literals assigned
by unit propagation while establishing M0 |= C.

There may exist several prime implicants in M0. The one
produced by Algorithm 3 depends only on the successive
choices of ` in line 4. Any prime implicant subset of M0

may be produced, given the right sequence of chosen literals.
A prime implicant produced by Algorithm 1 or Algorithm 2
is obtained by Algorithm 3 by picking literals in the same
sequence and dropping literals that are already in prime.

B. Implementation with watched literals

A concrete implementation of the above abstract algorithm
would best use the data structures implemented in state-of-
the-art SAT solvers. This is the approach of Algorithm 4: in
addition to the model M0, it reuses the watched literals relation
at the ending state of the SAT solver. We consider a general
notion of watched literals as a relation W between literals and
constraints such that, for every literal `, W (`) is a (sub)set of
constraints containing `. We now require Π0 to initially contain
all the literals that are directly entailed by one constraint in
C.2 Since such literals are included in {` | Req(M, `, C)} the
precondition for Algorithm 3 is verified.

Algorithm 4 Prime implicants using watched literals
1: procedure PRIME(C,M0,Π0,W)
2: M,Π←M0,Π0

3: IMPLIEDW,0(C,M,Π,W)
4: while ` ∈M \Π do
5: M ←M \ {`}
6: IMPLIEDW (C,M, `,Π,W)

7: return Π

8: procedure IMPLIEDW,0(C,M, ref Π, ref W)
9: for all ` ∈M \Π do

10: IMPLIEDW (C,M, ¯̀,Π,W)

11: procedure IMPLIEDW (C,M, `, ref Π, ref W)
12: W` ←W (`)
13: for all c ∈W` do
14: HDL CONSTR(c,M, `,Π,W)

The data in Algorithm 4 includes the variables of Algo-
rithm 3, namely M and Π, and the watched literals relation W .
The inherent property of the watched literals for a constraint
c, i.e. W−1(c), is that, as long as all watched literals remain
either undefined or true, nothing can be deduced from c in the
current assignment. In our context Π plays a role similar to the
current partial assignment in the SAT solver. Let us define, for
a constraint c, the set of literals S(c) = Π∪W−1(c). Formally,
W is always such that:
W1(c): ∀` ∈W−1(c) \Π .¬Req(S(c), `, c)
W2(c): S(c) ∩M |= c

Both properties should be satisfied by the inputs given to our
algorithm. Observe that: 1) if Π |= c, then W1(c) is true; 2)

2In particular, Π0 should contain all literals in unit clauses.

32 49

when a literal ` is removed from M , W1(c) is not affected;
and 3) if ` furthermore satisfies ¬Req(M, `, c), then W2(c)
is also preserved. The algorithm first establishes an additional
loop invariant (line 3):
W3(c): S(c) ⊆M

As in Algorithm 3, the main loop repeatedly removes one
(unrequired) literal ` from M \Π (line 5), possibly augmenting
Π with new literals, and repairs the invariant properties for
the watched literals (line 6). Function HDL CONSTR (Algo-
rithm 5) reestablishes these properties for each c affected by
the removal of ` from M . Its definition is left general enough
so that it can be specialized for different classes of constraints
and watched literals strategies. This greedy approach is similar
to Boolean propagation in SAT solving, Π emulating the
assignment whereas M restricts the choice for watched literals
and possible propagations.

Algorithm 5 HDL CONSTR for arbitrary constraints
1: procedure HDL CONSTR(c,M, `, ref Π, ref W)
2: Π← Π ∪ {`′ ∈W−1(c) | Req(M, `′, c)}
3: if Π 6|= c then
4: Choose W ′ such that
5: W ′ ⊆ (W−1(c) ∪M) \ {`}
6: (Π ∪W ′) ∩M |= c
7: ∀`′ ∈W ′ \Π .¬Req(W ′ ∪Π, `′, c)
8: in W−1(c)←W ′

Proposition 2: Given a set of constraints C, an implicant
M0, a set of literals Π0, and a relation W between literals
and constraints in C such that:
• {` | ∃c ∈ C . c |= `} ⊆ Π0 ⊆ {` | Req(M0, `, C)},
• ∀c ∈ C .W1(c) ∧W2(c)

then Algorithm 4 terminates and returns a prime implicant of
C contained in M0.
Proof. The proof is similar to that of Algorithm 3, the same
invariants being satisfied: we prove that lines 3 and 6 estab-
lish these invariants through the successive calls to function
HDL CONSTR (Algorithm 5).

First, consider the call in line 3. Before the call, invariants
I2 and I3 are satisfied, as well as W1(c) and W2(c) for each
constraint c, and Π ⊆ {` | Req(M0, `, C)}, thanks to the
preconditions of PRIME. The call establishes W3(c) for every
constraint c, and at the same time, introduces literals in Π so
that {` | Req(M0, `, C)} ⊆ Π. This is a direct consequence
of line 2 in Algorithm 5, the other lines ensuring that W1(c),
and W2(c) remain preserved even if ¯̀ is removed. When all
the negations of literals in M have been removed from the
watched literals by the successive calls, W3(c) is also satisfied
for each c. Every element ` added in Π can be related to a
constraint c such that Req(M, `, c).

Now consider the call in l. 6. The invariants are satisfied,
if it were not for the absence of ` in M . Again, for each
constraint c, the successive calls to HDL CONSTR repair the
invariant W3(c) while preserving W1(c) and W2(c). This may
insert new literals in Π if they are required by c. ut

Algorithm 6 HDL CONSTR for clause or cardinality con-
straints

1: procedure HDL CONSTR(c,M, `, ref Π, ref W)
2: if ∃`′ ∈ c ∩M . `′ /∈W−1(c) then
3: W ← (W ∪ {`′ 7→ c}) \ {` 7→ c}
4: else Π← Π ∪ (W−1(c) \ {`})

Function HDL CONSTR in Algorithm 5 is generic and
may be refined to handle specific classes of constraints. One
such concrete implementation is given for clauses and, more
generally, for cardinality constraints in Algorithm 6. Assuming
|W−1(c)| ≥ 2, c ∈ W (`) and ` 6∈ M , either there exists
another literal `′ that may be watched by c, in which case W
is updated with the new association, or there is no such literal,
and the literals in W−1(c) must be in the prime implicant and
are inserted into Π. In the special case of clauses, then there
is only one such literal.

Proposition 3: When C is a set of clauses and HDL CONSTR
is specified as in Algorithm 6, Algorithm 4 runs in time
O(
∑

c∈C |c|).
Proof. IMPLIEDW (C,M, `,Π,W) has cumulated complexity
in O(

∑
c∈C |c|). To achieve this rate, one has to ensure

that, for every clause c, the cumulative time for the calls to
HDL CONSTR with c is O(|c|). This can simply be done by
storing clauses as arrays of literals indexed from 1 to |c|, using
a pointer initialized to 1 in this array, and looking for the
suitable literal from this pointer on (and updating its value).
The successive calls to HDL CONSTR on clause c would then
resume their search from the previous position. Each literal in
each clause would therefore be processed at most once.

For every literal ` in M , there is one call to
IMPLIEDW (C,M, ¯̀,Π,W) in function IMPLIEDW,0. Every
clause in C is satisfied by at least one of its watched literals.
If a clause appears in W (¯̀), its other watched literal is thus
in M , and the watched ¯̀ will be replaced by another watched
literal in M (or the clause stays in W (¯̀) and its other watched
literal is added to Π). So every clause will be examined at most
once for the whole run of IMPLIEDW,0. Assuming the search
for another watched literal in line 2 of Algorithm 6 remains
linear with respect to the size of the clause, IMPLIEDW,0 runs
in time O(

∑
c∈C |c|).

IMPLIEDW is called at most once for each literal ` in M0

on line 6 in Algorithm 4. If the watch relation for clause c
is modified (on line 3 in Algorithm 6), c will never occur
again in W (`), since ` is removed forever from M . As a
consequence, every clause c will be considered at most |c|
times by the successive calls of Algorithm 6. In these calls,
the cumulated searches for a new watched literal (condition
on line 2 in Alg. 6) accounts for a factor linear in the size of
c. ut

Prop. 3 may be generalized to any class of constraints
and watched literals strategy where the cumulated time of
HDL CONSTR(c) has a complexity linear in the size of c.
This holds for cardinality constraints, as the watched literals

3350

strategy may also be employed.

IV. EXPERIMENTAL EVALUATION

A classical implementation of Algorithm 1 with quadratic
complexity in the size of M0 \Π0 has already been available
in Sat4j for several years. In practice, this implementation
performed well on many SAT benchmarks because a vast
majority of the literals of the model found by the SAT solver
are implied by unit propagation, so M0 \ Π0 was initially
much smaller than M0 (Π0 containing all propagated literals
initially). There are however classes of problems for which
this is not true.

Sat4j MaxSAT uses selector variables to translate MaxSAT
problems into Pseudo-Boolean Optimization problems [16].
In that context, counting the number of satisfied selector
variables provides an upper bound on the minimum number of
constraints that must be falsified. However, despite a strategy
to always branch first on falsified selector variables, some se-
lector variables may be satisfied even if the original constraint
is satisfied. To improve the bounds, two solutions exist: using
an encoding enforcing that the selector variable can only be
satisfied if the original constraint is falsified, or counting the
selector variables on a prime implicant. The former solution
adds many binary clauses to the original CNF (as many binary
clauses as literals in the original formula) and is inefficient in
practice.

We present here some experimental results of the proposed
algorithm on a specific set of benchmarks from the MaxSAT
2010 evaluation. The previous version of Sat4j could not com-
pute prime implicants for industrial MaxSAT benchmarks from
circuit debugging with millions of variables and clauses [17].
We used those benchmarks to compare the proposed algorithm
based on watched literals against one based on counters, both
of linear complexity.

Since we use prime implicants to improve the upper bounds
computed by our MaxSAT solver, prime implicants have to be
computed on a set of clauses plus one cardinality or pseudo-
boolean constraint representing the bound of the objective
function. On the following, we present the time required to
compute the first prime implicant of each benchmark, thus on
clauses only.

Algorithm 4 (for clauses) and Algorithm 6 (for clauses,
cardinality and pseudo-Boolean constraints) have been im-
plemented in the Sat4j library. As described in the previous
section, the implementation includes a propagation procedure
similar to the classical unit propagation scheme found in
CDCL solvers with two key differences: i) the propagation
always eventually finds a satisfied literal and ii) the number
of steps to update the watched literals is reduced by storing
the last position in the search between each call to the
propagation procedure. Note that for clauses, where only two
literals are watched, a constraint with n literals is traversed
at most n times if there is no bookkeeping, and it may be
a good tradeoff to avoid storing that information for short
clauses to save memory. For larger clauses, or cardinality
constraints, bookkeeping the state of the search as proposed

for Algorithm 6 is crucial: on some examples, the time spent
to compute a prime implicant was dramatically reduced (e.g.
from 240 seconds to less than one second) by such a simple
implementation detail, that guarantees the linearity of the
algorithm. For pseudo-Boolean constraints, we use a counter
based implementation and extra care is required to update the
state during backtracking and to handle the literals that do not
belong to the implicant. Finally, learned clauses are ignored
for the propagation. The implementation details can be found
in the source code of Sat4j.

The results are summarized in Table I. The Sean Safarpour
benchmark set contains 52 benchmarks. Sat4j is able to load
36, running out of memory for the others (when given 2GB
of memory). For those 36 benchmarks, we give the number
of variables (including the selector variables, one per clause),
the number of clauses, the total number of literals in the
formula (the cumulated size of the clauses), the number of
literals implied by unit propagation in the model (#implied),
and the time taken respectively by the counter vs. watched
literals approaches to compute a prime implicant from the first
model found by the MaxSAT solver. We also give the median
values on those 36 benchmarks. The proposed algorithm was
able to compute prime implicants for all benchmarks within a
second, while the counter based approach missed one (due to
memory out) and lead in some cases to much greater runtimes
(up to one order of magnitude). Those results illustrate the
advantage of reusing the solver data structures to minimize
memory requirements and the advantage in practice of using
those lazy data structure for computing prime implicants.

V. CONCLUSION

We propose and discuss an algorithm to compute prime
implicants in time linear in the size of the input formula
designed for easy integration in modern SAT solvers. This
algorithm is based on lazy data structures such as watched
literals [7]. The efficiency of the algorithm is maintained
for other kinds of constraints as long as some data structure
ensures the constraint will be traversed at most once during the
successive calls to the propagation procedure. This applies to
both clauses and cardinality constraints. The same algorithm
can also be applied to other kind of constraints, but linear
complexity may be lost.

We implemented the algorithm for clauses, cardinality and
pseudo-Boolean constraints in the Sat4j platform. On a class
of problems with millions of variables, we compare a counter
based algorithm against our watched literal algorithm. While
both algorithms are linear, our algorithm computed all prime
implicants in less than a second, which was not the case for the
other algorithm. These results show that applying the proposed
algorithm to compute prime implicants instead of models has
a negligible overhead.

Good prime implicant computation procedures are useful
for many applications. In particular, we investigate prime
implicants for Boolean optimization by strengthening, as the
value of the objective function computed on a prime implicant

34 51

TABLE I
EXPERIMENTAL COMPARISON OF THE PRIME IMPLICANT ALGORITHMS ON

SELECTED SEAN SAFARPOUR BENCHMARKS (2GB MEMORY).

#vars #cla #literals #implied Alg. 2 Alg. 4
(M) (M) (M) (M) (s) (s)
2.3 1.7 4.0 0.5 4.842 0.736
1.3 0.9 2.2 0.4 0.347 0.377
1.5 1.1 2.7 0.4 2.860 0.495
2.6 1.8 4.4 0.6 MO 3.463
1.5 1.0 2.5 0.3 0.541 0.380
0.7 0.5 1.3 0.2 0.210 0.230
0.7 0.5 1.3 0.2 0.212 0.237
1.0 0.7 1.8 0.3 0.729 0.364
0.9 0.7 1.8 0.2 0.225 0.252
1.0 0.7 1.9 0.2 0.559 0.283
1.0 0.7 1.9 0.2 0.552 0.283
1.0 0.8 2.1 0.2 0.578 0.301
0.2 0.16 0.4 0.04 0.154 0.120
0.5 0.4 1.1 0.1 0.552 0.221
0.2 0.9 2.4 0.25 0.280 0.353
2.0 1.5 3.9 0.5 4.191 0.486
1.6 1.2 2.9 0.4 3.956 0.377
1.0 0.8 2.1 0.2 0.638 0.284
1.8 1.0 2.8 0.3 4.008 0.354
2.0 1.6 4.5 0.4 2.567 0.486
1.1 0.9 2.6 0.2 0.326 0.304
1.1 0.9 2.6 0.2 0.333 0.289
1.1 0.9 2.6 0.2 0.319 0.330
1.1 0.9 2.6 0.2 0.343 0.684
2.0 1.6 4.6 0.4 2.493 0.493
0.8 0.7 1.9 0.1 0.232 0.269
1.2 0.9 2.5 0.2 0.621 0.348
0.2 0.1 0.3 0.04 0.152 0.102
0.2 0.1 0.3 0.04 0.154 0.077
2.2 1.7 4.8 0.4 9.225 0.510
2.2 1.7 4.8 0.4 8.946 0.490
2.2 1.7 4.8 0.4 6.086 0.556
1.5 1.2 3.4 0.3 4.250 0.366
1.5 1.2 3.4 0.3 4.172 0.370
1.0 0.8 1.9 0.3 0.643 0.285
1.0 0.8 1.9 0.3 0.645 0.273

Median
1.168 0.930 - 0.268 0.578 0.301

yields a better upper bound than the value obtained with a
model.

REFERENCES

[1] K. Ravi and F. Somenzi, “Minimal assignments for bounded model
checking,” in TACAS, 2004, vol. 2988 of LNCS.

[2] C. Barrett, R. Sebastiani, S.A. Seshia, and C. Tinelli, “Satisfiability
Modulo Theories,” in Handbook of Satisfiability, vol. 185 of Frontiers
in Artificial Intelligence and Applications. 2009.

[3] R. Schrag, “Compilation for critically constrained knowledge bases,” in
AAAI, 1996, pp. 510–515.

[4] Y. Boufkhad, É. Grégoire, P. Marquis, B. Mazure, and L. Saı̈s, “Tractable
cover compilations,” in IJCAI, 1997.

[5] A. Darwiche and P. Marquis, “A knowledge compilation map,” J.
Artificial Intelligence Research, vol. 17, 2002.

[6] T. Castell, “Computation of prime implicates and prime implicants by
a variant of the Davis and Putnam procedure,” in ICTAI, 1996.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
engineering an efficient sat solver,” in DAC, 2001.

[8] L. Palopoli, F. Pirri, and C. Pizzuti, “Algorithms for selective enumer-
ation of prime implicants,” Artif. Intell., vol. 111, no. 1-2, 1999.

[9] S. Shen, Y. Qin, and S. Li, “Minimizing counterexample with unit core
extraction and incremental SAT,” in VMCAI, R. Cousot, Ed., 2005, vol.
3385 of LNCS.

[10] C. Pizzuti, “Computing prime implicants by integer programming,” in
ICTAI, 1996.

[11] A. Kean and G. Tsiknis, “An incremental method for generating prime
implicants/implicates,” J. Symbolic Computation, vol. 9, no. 2, 1990.

[12] N. V. Murray and E. Rosenthal, “Linear response time for implicate
and implicant queries,” Knowl. Inf. Syst., vol. 22, no. 3, 2010.

[13] A. Ramesh, G. Becker, and N. V. Murray, “CNF and DNF considered
harmful for computing prime implicants/implicates,” J. Automated
Reasoning, vol. 18, no. 3, 1997.

[14] V. Manquinho, P. Flores, J. P. Marques Silva, and A. Oliveira, “Prime
implicant computation using satisfiability algorithms,” in ICTAI, 1997.

[15] I. Dillig, T. Dillig, K. L. McMillan, and A. Aiken, “Minimum satisfying
assignments for SMT,” in Computer Aided Verification (CAV), 2012, vol.
7358 of LNCS.

[16] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2,” JSAT, vol.
7, no. 2-3, 2010.

[17] S. Safarpour, H. Mangassarian, A. Veneris, M. Liffiton, and K. Sakallah,
“Improved design debugging using maximum satisfiability,” in FMCAD,
2007.

3552

A Circuit Approach to LTL Model Checking

Koen Claessen
koen@chalmers.se

Department of CSE, Chalmers University of Technology

Gothenburg, Sweden.

Niklas Een, Baruch Sterin
{een,sterin}@eecs.berkeley.edu

Department of EECS, University of California, Berkeley, USA.

Abstract—This paper presents a method for translating for-
mulas written in assertion languages such as LTL into a monitor
circuit suitable for model checking. Unlike the conventional
approach, no automata is generated for the property, but instead
the monitor is built directly from the property formula through a
recursive traversal. This method was first introduced by Pnueli et.
al. under the name of Temporal Testers. In this paper, we show the
practicality of temporal testers through experimental evaluation,
as well as offer a self-contained exposition for how to construct
them in manner that meets the requirements of industrial model
checking tools. These tools tend to operate on logic circuits with
sequential elements, rather than transition relations, which means
we only need to consider so called positive testers with no future
references. This restriction both simplifies the presentation and
allows for more efficient monitors to be generated. In the final
part of the paper, we suggest several possible optimizations that
can improve the quality of the monitors, and conclude with
experimental data.

I. AT A GLANCE

Consider the LTL formula:

for-all-paths: G¬a ∨ XF¬b

A witness to its negation satisfies:

there-exists-a-path: Fa ∧ XGb

If no such witness exists, the original formula holds. Construct
the following equisatisfiable formula by introducing a variable
for each subformula, including the full formula:

z0
∧ G(z0 ↔ z1 ∧ z2)
∧ G(z1 ↔ Fa)
∧ G(z2 ↔ Xz3)
∧ G(z3 ↔ Gb)

(1)

Since the specification is in negated normal form and all the
operators are monotonic, bi-implications can be replaced by
simple implications:

z0
∧ G(z0 → z1 ∧ z2)
∧ G(z1 → Fa)
∧ G(z2 → Xz3)
∧ G(z3 → Gb)

(2)

Two types of properties commonly supported by modern model
checking tools are:

− Safety. A counterexample is a finite path to a bad state.
− Liveness. A counterexample is an infinite path where a
set of signals f1, f2, . . . , fk are each true infinitely often.

In the following sections, it is shown how the conjuncts in (2)
can each be translated into a small monitor circuit together
with a liveness property, yielding a new model that can be
verified by existing model checking tools. Furthermore, it is
shown how the safety fragment of a temporal formula can be
checked more efficiently by producing a safety property for
that part.

Example. The conjunct G(z1 → Fa) of (2) is translated
into a circuit that outputs TRUE as long as z1 = 0, then when
z1 = 1, it starts waiting for a = 1, outputting FALSE in
the meanwhile. When a = 1 arrives, the circuit goes back
to waiting for z1 = 1, while again outputting TRUE. This
output signal needs to hold infinitely often for a witness to the
formula, and is thus added as a liveness property.

II. INTRODUCTION

A. Automata-theoretic approach

Vardi and Wolper [18] introduced the automata-theoretic ap-
proach to verification. Given a formula φ and a machine M ,
finding whether M |= φ is done by creating an automaton
A¬φ that accepts the traces that violate φ, and then checking
whether M×A¬φ is empty. In this paper we discuss generating
circuits representing finite automata for detecting finite traces
and simple Büchi automata for liveness properties.

B. Related work

Vardi and Wolper [18] showed that every LTL formula can
be translated to a Büchi automaton that accepts the same
language. There are now many approaches to perform that
translation. In this section we review the most common ones.

The first set of approaches use direct construction of a
Büchi automaton. These methods tend to be complicated, and
may generate exponentially large automata.

The second set [17] translates the LTL formula into an
alternating automaton, which is then translated into a Büchi
automaton. The main advantage is the simplicity of the re-
sulting alternating automaton, whose size is linear in the
size of the formula. The resulting Büchi automaton has an
exponential number of states in the size of the formula, but
the size of the symbolic description is linear. This approach is
also compositional; the alternating automaton for a formula is
obtained from the alternating automata for its subformulas.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 3653ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

An often overlooked problem with this approach is that a
good understanding of this flow, and especially of alternation
and its removal [5], is a non-trivial intellectual undertaking. In
an industrial environment, a simpler approach, especially if it
has few disadvantages, is to be preferred.

Kesten et. al. in [10], and later Pnueli and Zaks in [13],
[14] explored the use of temporal testers for verification of
LTL and PSL. A temporal tester for a formula φ is a transition
system that has a variable xφ such that G(xφ ↔ φ) holds; a
positive temporal tester is similar, except that G(xφ → φ)
holds instead. Temporal testers for simple properties can be
combined recursively for more complicated properties.

The approach presented in this paper is based on temporal
testers. Given a conjunct G(zi → φ), φ has to be true
whenever zi equals 1. This makes zi and the monitor state
machine for φ a positive temporal tester for φ.

Similarly, as noted in [13], translation through alternating
automata also results in positive temporal testers. The symbolic
description of the resulting Büchi automata (depending on
the translation method) has a variable for each subformula,
with the property that whenever the variable is true, so is the
subformula.

C. Finite traces

Some formulas, such as Gp can be shown to hold only by
infinite traces, other formulas, like Fp, by a finite trace, i.e.
the formula will hold on any infinite extension of that finite
trace. While, other formulas, such as Gp∨Fq, can sometimes
be shown to hold by a finite trace, and in other cases require
an infinite trace.

As verification tools are usually much more efficient in
detecting finite traces, it is preferable to detect finite traces
whenever possible. In subsection VI-A it is shown how this
can be achieved. The finite traces detected by our method are
the same as the informative prefixes defined by Kupferman and
Vardi in [11]. This is shown in section X.

D. ω-regular specifications

Although this paper shows how to build monitor circuits for
LTL and PLTL formulas, Pnueli and Zaks [14] showed how to
to extend this method by adding regular events to implement
support for ω-regular languages such as PSL or SVA.

III. NOTATION

By circuit, we mean a directed acyclic graph with two edge
types, complemented and non-complemented, and the follow-
ing node/gate types:

AND − A binary AND-gate.
PI − Primary input.
PO − Primary output.
FF − Flip-flop (unit delay).
TRUE− The constant true.

For the main discussion, temporal formulas are expressed in
Linear Temporal Logic extended with past operators (PLTL).
The temporal operators of PLTL are reviewed in Figure 1. The

ADJACENT STATE

X a − “next”: a holds in the next cycle
Y a − “yesterday”: a held in the previous cycle;

FALSE in the first cycle
Z a − “variant yesterday”: same as Y but TRUE

in the first cycle

SIMPLE OPERATORS

G a − “globally”: a holds forever
F a − “future”: a holds at least once in a future

(or the current) cycle
H a − “historically”: a a held up to (and inc-

luding) the current cycle (past dual of G)
P a − “past”: a held at least once in a past

(or the current) cycle (past dual of F)

UNTIL OPERATORS

[a W b] − “weak-until”: a holds up to the cycle before
b holds, or a holds forever

[a M b] − “weak-since”: a held since the cycle after
b last held, or a held since the first cycle
(past dual of W)

[a U b] = [a W b] ∧ Fb “until”
[a R b] = ¬[¬a U ¬b] “release”

[a S b] = [a M b] ∧Pb “since” (past dual of U)
[a T b] = ¬[¬a S ¬b] “trigger” (past dual of R)

Fig. 1. Informal overview of the semantics of PLTL operators.

extension to include past operators is trivial, but it allows us to
use a richer set of benchmarks. Detailed formal semantics of
PLTL can be found in [3]. A PLTL formula is any expression
using logical operators ∧, ∨, and ¬, and the temporal operators
reviewed in Figure 1. In our terminology, a signal (or atomic
proposition) is the output of a gate in the design (possibly
complemented) referred to by the specification.

A PLTL formula is in negated normal form (NNF) if
negations are present only on the atomic propositions. A
formula can be brought into NNF by using the identities
(¬Xa = X¬a), (¬Ga = F¬a), (¬Fa = G¬a), (¬[a U b] =
[¬a R ¬b]), and their past-operator duals. Example: ¬G(a∨
Pb) = F(¬a ∧H¬b)

IV. ON INTRODUCING AUXILIARY VARIABLES

In Section I, it was shown how each subformula is given a
name in the form of an auxiliary variable zi. The construction
is completely analogous to how the Tseitin transformation
[15] is used in SAT to convert a propositional formula into
an equisatisfiable CNF representation; but because we are
dealing with a temporal formula, the G is needed to ensure
that the auxiliary variable maintains its correspondence with
the subformula it represents. Because there is an implicit
existential quantifier around the LTL formula (“there-exists-
a-path”), with some abuse of notation we can repeatedly use
the identity φ(ψ) = ∃x.G(x ↔ ψ) ∧ φ(x), but leaving x to
be implicitly quantified.

Why is it sound to turn bi-implications into simple implica-
tions, as was done from equation (1) to (2)? The operators we

3754

allow in NNF, both logical and temporal, are all monotonically
increasing in their inputs, meaning that if op(x, y) is TRUE

in a cycle, then so are op(1, y) and op(x, 1). Hence, any
trace satisfying equation (2) can be “fixed” by identifying the
zi → RHS where zi is 0 and RHS is 1 and simply flip the
value of zi. The modified trace will satisfy (1).

V. MONITOR CIRCUITS

Assume the specification has been negated and expanded to an
equisatisfiable formula as outlined in Section I. Each conjunct
is either on the form “G (z → ∗a)” (for unary operators “*”)
or “G (z → a ∗ b)” (for binary operators). For each operator,
we describe a monitor circuit. In the next section, it is shown
how the monitors are combined to formulate a model checking
problem for the entire PLTL specification. Our monitors have
the following set of inputs and outputs:

z

a

b

pending

failed

accept

a * b

The meanings of these signals are as follows:

z: A fresh PI, also referred to as the activator, created
to match the auxiliary variable of the expansion. When it
non-deterministically goes high, the circuit starts monitoring
inputs a and b to see if they adhere to the semantics of the
operator.

a: Left input of the operator: either a signal from the design
or the activator zi of the ith monitor, synthesized for the left
subformula.

b: Right input of the operator.

pending: TRUE if the monitor has an outstanding requirement
on one or both of its input signals to be TRUE either in this
or in future cycles.

failed: TRUE if a violation has been detected, preventing
any further extension of the current trace from being a valid
witness.

accept: Must hold infinitely often for a trace to be a valid
witness. Stated negatively: if this signal goes forever FALSE,
then the trace is not valid.

The system of monitors can be thought of as follows: The top-
monitor is activated by asserting z0 = 1 in the first cycle. This
monitor, in order to meet its accept condition and avoid its
failed constraint, will force one or both of its subformulas to
be activated, either now or later. The process propagates down
through the formula tree. If we can find an infinite run with
no monitor outputting failed, and with each monitor having
an infinite number of accepts, then a witness to the temporal
formula has been produced. Note that the non-deterministic
activator variables are all existentially quantified, which means
that we can defer to the underlying model checker to “guess”
perfectly when they should be activated.

Fig. 2. Monitor circuit for G(z → Fa).

Below, we illustrate some LTL operators as monitor cir-
cuits. Yf denotes the previous value of f (which translates
directly into a zero-initialized FF whose next-state function is
f), and is init denotes a signal which is TRUE only in the first
cycle.

If accept is left out, it is assumed to be constant TRUE. If
failed or pending are left out, they are assumed to be constant
FALSE.

G(z → Xa)
pending = z
failed = Yz ∧ ¬a

G(z → Ga)
pending = (Y pending) ∨ z [= Pz]
failed = pending ∧ ¬a [= Pz ∧ ¬a]

G(z → Fa)
pending = (z ∨ (Y pending)) ∧ ¬a
accept = ¬pending

G(z → [a W b])
pending = (z ∨ (Y pending)) ∧ ¬b
failed = pending ∧ ¬a

The 1-to-1 correspondence between this textual representation
and a circuit diagram is illustrated for the F operator in
Figure 2.

Past operators Pa and Ha are trivially implemented by a
single flop remembering if a has held at least once, or always,
in the past:

once a = a ∨ (Y once a)
always a = a ∧ ¬(Y ¬always a)

VI. RUNNING THE MODEL CHECKER

Putting together all the steps of our approach:

1) The original specification φ is converted to an equivalent
NNF formula ψ.

2) ψ is expanded to an equisatisfiable conjunction of
“G(zi → 〈expr〉)” formulas by introducing a variable zi
for each subformula.

3) For each such conjunct, a monitor circuit is created.

4) The initial activator z0 is replaced by is init.

5) All failed signals are OR-ed together and a flop is
introduced to remember if any monitor has ever failed.
Formally:

init(has failed) = 0
next(has failed) = FAILED
FAILED = failed1 ∨ . . .∨ failedn ∨ has failed

38 55

Fig. 3. Monitor circuit for the LTL formula G(req → F gnt). After
negation, the formula becomes F(req ∧ G¬gnt), which is translated into:
z0 ∧ G(z0 → Fz1) ∧ G(z1 → req ∧ z2) ∧ G(z2 → G¬gnt),
where activators z1 and z2 are two new primary inputs introduced for the
subformulas and “is init”, which is true only in the first cycle, replaces z0 in
the circuit.

Which is just another way of stating:

FAILED = P (failed1 ∨ . . .∨ failedn)

6) The liveness checker is called on:

infinitely often(accept1, . . ., acceptn)

under the constraint ¬FAILED. If the checker does not
support constraints, it can be folded into the property:

infinitely often(accept1 ∧ ¬FAILED, . . .,
acceptn ∧ ¬FAILED)

An example of a final monitor circuit is shown in Figure 3.

A. Safety fragment

Remember that we are working in the negative, and that
disproving a safety property “for-all-paths: G p” corresponds
to finding a witness to “F ¬p”, i.e. a path to a bad state.
Normally witnesses of temporal formulas are infinite traces,
but in this case, any infinite extension of a finite prefix leading
to the bad state is a valid witness. This is a bounded witness or
bad prefix [11], and in our monitor formalism, it corresponds to
having no pending signals. Therefore, a search for a witness to
a temporal formula can be split into two parts: (i) the search for
a finite, non-failing trace, where the last state has no pending
signal; or (ii) the search for an infinite, non-failing trace where
all accepts happen infinitely often. The key is that the first
type of search can be carried out by a safety-checker, which is
more efficient than the more general liveness-checker needed
for the second type. The part of the property checkable by (i)
is referred to as the safety fragment.

This observation can be used to improve our model check-
ing process by:

1) Collecting pending signals:

PENDING = pending1 ∨ . . .∨ pendingn

2) Generating a safety check to be executed before the
liveness check:

reachable(¬FAILED ∧ ¬PENDING)

If this call is UNSAT (no witness found), we run the
liveness checker. The liveness property can then be con-
strained further by adding PENDING as a constraint.

B. Assumptions and Assertions

Generally, a specification is composed of two types of for-
mulas, assumptions, modeling the behavior of the external
environment, and assertions, describing the specific behavior
of the design under verification. A counterexample for the
specification must satisfy all the assumptions and violate at
least one of the assertions. Unfortunately, if combined directly
into a single LTL formula “assumptions → assertions”, the
constraints may force infinite counterexamples where finite
ones are expected easier to find. Therefore, most verification
tools check safety only under the requirement that assumptions
have not yet been violated at the point where the assertion fails.
As an example, consider a zero-initialized counter under the
assumption “G (counter < 10)” and the assertion “G (counter
6= 5)”. In five cycles, the counter will reach a bad state, but
the system has no infinite runs that satisfy the assumption.
A safety-checker would produce a counterexample, which is
reasonable because the assumption fails after the bad state
is reached. In contrast, a liveness tool would consider the
property valid because there is no infinite counterexample.

To implement this relaxation in our framework, we ignore
accept and pending for all monitors belonging to assumptions.
This clearly changes the semantics of the property, but may
be a reasonable compromise (and most probably what the user
intended). This can be presented as an option to the user to be
accepted or not.

VII. OPTIMIZATIONS

A. Monotonic signals

Suppose the user chose to use past operators to express weak
until, as in the right-hand side of the following expression:

[a W b] = G(a ∨Pb)

Then, this will lead to the following translation:

G(z0 → Gz1)
∧ G(z1 → a ∨ z2)
∧ G(z2 → Pb)

Here we see a problem: as soon as the first monitor is activated
(z0 = 1), it will be forever pending. However, the native
monitor of weak-until does not share this property. This can be
resolved by observing that Pb is a monotonic signal, and that
once true, remains true, which motivates introducing a signal
done for each monitor:

done: This signal should be TRUE only if the monitor has
reached a state where failed can never happen and accept

3956

will hold infinitely often. If this cannot be computed easily,
done could conservatively be set to FALSE.

The done signal can be produced either explicitly by each
monitor (extending the contract for what a monitor is), or
derived by an analysis of the failed and accept signals. The
pending condition for the G operator is updated to:

G(z → Ga)
pending = Pz ∧ ¬a.done
failed = pending ∧ ¬a

The default interpretation of “a.done” for a non-activator
variable a, is FALSE. But all signals in the specification can be
checked for monotonicity in the design by 1-induction, which
is typically very fast. If an atomic signal a is monotonically
increasing, “a.done” can be interpreted as just a. If not,
“a.done” should still be treated as FALSE.

As an example of how the done signal can be explicitly
produced, consider the operators:

G(z → Pa)
failed = z ∧ ¬Pa
done = Pa

G(z → a ∨ b)
failed = z ∧ ¬(a ∨ b)
done = a.done ∨ b.done

For reasonably sized LTL specifications, we can afford to
do the following automated and more precise analysis using
symbolic techniques, similar to the constraint analysis of [8]:

Done analysis. For each monitor Mi, let di denote
“accept∧¬failed” for the signals of that monitor, Let C de-
note a conjunction of constraints and invariants that known
to hold for the system. This will include “¬FAILED”
as well as “(

∧
k sk → s′k)” for the monotonic signals

s1, s2, . . . , sk derived from the design. Now, for each
monitor, check whether “di ∧C → d′i” is true using SAT.
If so, let the done signal for Mi be defined as di and
continue the analysis. Optionally, di → d′i can be added
to C to strengthen future checks.

Note! It should be emphasized at this point that the proposed
analysis of failed and accept signals, as well as the analyses
described in the next two subsections, are performed only on
the combined monitor circuit, which is small, and not on the
design, which may be large. The only exception is the 1-
induction step, which is performed on the design and offers
a highly selective way of bringing some particularly useful
information about the design into the analysis of the monitors.
This invariant information (monotonicity of signals) can be
used for the done analysis above, as well as in the analyses
described in the next two subsections.

B. Deadlock states, Acceptable states and Reachable states

Deriving constraints is useful both for strengthening the ana-
lyses described in this section, and for proving the property.
We make two observations:

− States that for any sequence of inputs will eventually reach
FAILED cannot be part of a witness.

− States that cannot, for any sequence of inputs, reach a given
accepti signal cannot be part of a witness.

The first type of states corresponds to deadlock states, and
is characterized by the transitive strong preimage of FAILED.1

This set can be computed symbolically for the combined mon-
itor circuit using e.g. BDDs or SAT based cube-enumeration.
The negation is then added as a constraint to the system.

Similarly, the second type of states can be derived by taking
the transitive (weak) preimage of each accepti and intersecting
the results. This corresponds precisely to constraint extraction
for safety properties as described in [6], interpreting each
accepti signal as a bad state.

Finally, the (forward) reachable states of the combined
monitors can be computed, and this invariant added to the set
of constraints. Although it is redundant in the sense that it will
not restrict the search space for finding witnesses, it can make
inductive proofs easier and strengthen the analyses presented
in this section.

We hypothesize that deriving constraints and invariants
will give similar benefits to determinizing the automaton [2]
when used with inductive proof-methods, such as k-induction,
interpolation and PDR/IC3.

C. Fewer auxiliary variables

Introducing an auxiliary variable for each subformula is not
always necessary. It is most obvious for the logical operators,
where a subformula with multiple ANDs and ORs can be
turned trivially into a single monitor with only one activator
zi, introducing a single new PI.

Also we can save on PIs and get a smaller translation for
the G-operator. If we have:

G(zi → Gzj)

then, assuming zj is a PI introduced for a subformula, we can
simply remove it and replace each occurrence of zj by Pzi. In
the same way, we can save up to two PIs for each ∧-operator:

G(zi → zj ∧ zk)

If zj and zk are PIs, they can be replaced by zi.

These transformations can be understood by looking at the
definition of failed, which for the G-operator is “failed =
Pzi ∧ ¬zj”. Since the left-hand side is constrained to FALSE,
we have: ¬(Pzi ∧ ¬zj) = (Pzi → zj), and since we only
need to propagate activation downwards to subformulas, it is
safe to substitute zj for Pzi.

Another way of achieving simplifications of the above sort
is by performing signal correspondence [16], [4], [12], [9]
under constraints. This analysis will detect equivalent nodes
in the combined monitor circuit and simplify the netlist by
transferring fanouts from all equivalent nodes into one repre-
sentative node. The fact that these signals are equivalent must

1The strong preimage of S is the set of predecessor for which all next states
are in S.

40 57

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

M
on

ito
r

C
irc

ui
t

Ltl2smv

Fig. 4. Scatter plot of results in log-scale. This plots include all data points,
even the short runs omitted from the table.

be maintained, but if on the left-hand side of the equivalence
is a PI (as often happens) with no other fanouts, i.e. “PI ↔
〈some node〉”, then that constraint can always be satisfied and
hence dropped.

VIII. EXPERIMENTAL RESULTS

For the experimental evaluation we used the same benchmarks
as Biere et. al. in [3], which can be downloaded from [1].
The benchmark suite consists of 14 designs, 12 of which we
could use (the 1394 and csmacd designs could not be handled
correctly by our parser). Each design contains several PLTL
properties. For each property, two monitors were generated,
one using the method described in this paper, and one us-
ing the tool LTL2SMV [7], which builds a monitor from a
Büchi automaton produced through the alternating automata
approach. Both monitors were then combined with the design
and given to a liveness checker [19]. Verification times are
reported in Figure 5 and plotted in Figure 4. The benchmarks
were carried out on a dual 8-core Intel Xeon E5-2670 with
128 GB of memory, using a timeout of 600 seconds.

Analysis. LTL2SMV provides an alternating automata based
approach without much optimizations. This was compared
against an unoptimized implementation of the method pre-
sented in this paper. Verification runtimes suggests that the
two methods are comparable with a small advantage to the new
method. Because of its simplicity, this makes it an interesting
option for industrial implementation as well as future research.

IX. ACKNOWLEDGMENTS

The authors want to thank Shoham Ben-David, Robert Brayton
and Alan Mishchenko for their invaluable feedback.

This work is partly supported by SRC contract 2265.001,
NSA grant “Enhanced equivalence checking in cryptoanalytic
applications”, and NSF, grant# 1219154. We also thank indus-
trial sponsors of BVSRC: Altera, Atrenta, Cadence, Calypto,
IBM, Intel, Jasper, Mentor Graphics, Microsemi, Real Intent,
Synopsys, Tabula, and Verific for their continued support.

Design
∣

∣ LTL2SMV CIRCUIT
∣

∣ (in sec) (in sec)

abp4-p2false
∣

∣ 6.8 0.7
abp4-p2true

∣

∣ 65.3 1.2
abp4-pold

∣

∣ 191.6 1.4
abp4-ptimo

∣

∣ 5.2 0.6
abp4-ptimoneg

∣

∣ 0.8 5.7
bc57-sensors-p0

∣

∣ 35.9 20.0
bc57-sensors-p0neg

∣

∣ 547.8 4.8
bc57-sensors-p1

∣

∣ 0.0 –
bc57-sensors-p1neg

∣

∣ 404.6 5.9
bc57-sensors-p2

∣

∣ – 24.2
bc57-sensors-p2neg

∣

∣ 164.5 5.9
bc57-sensors-p3

∣

∣ 293.1 6.6
brp-p1

∣

∣ 43.0 79.9
brp-ptimonegnv

∣

∣ 16.8 100.4
dme2-ptimo

∣

∣ 5.1 3.6
dme2-ptimonegnv

∣

∣ 5.7 4.4
pci-p1

∣

∣ 133.0 427.5
pci-pFtimo

∣

∣ 9.4 6.8
pci-ptimo

∣

∣ 35.8 20.6
prod-cons-p0

∣

∣ 1.3 2.1
prod-cons-p0neg

∣

∣ 2.6 6.7
prod-cons-p1

∣

∣ 0.7 0.6
prod-cons-p1negnv

∣

∣ 1.3 1.0
prod-cons-p5

∣

∣ 3.1 1.6
prod-cons-p5neg

∣

∣ 0.4 0.7
prod-cons-pold1

∣

∣ 3.9 1.1
prod-cons-pold3

∣

∣ 1.3 1.2
prod-cons-pold4

∣

∣ 0.5 0.7
production-cell-p0neg

∣

∣ – 167.2
production-cell-p1

∣

∣ 295.1 349.6
production-cell-p1neg

∣

∣ 300.6 122.5
production-cell-p2

∣

∣ 243.3 –
production-cell-p2neg

∣

∣ – 205.6
production-cell-p3

∣

∣ 221.0 308.7
production-cell-p3neg

∣

∣ 452.8 –
production-cell-p4

∣

∣ – 347.1

Total solved:
∣

∣ 32 33

Fig. 5. Table of results. A timeout of 10 minutes was used. Benchmarks that
were solved by both approaches in less than 0.5 seconds were removed from
the table to conserve space.

REFERENCES

[1] http://www.tcs.hut.fi/Software/benchmarks/LMCS-2006/.

[2] Roy Armoni, Sergey Egorov, Ranan Fraer, Dmitry Korchemny, and
Moshe Y. Vardi. Efficient LTL compilation for SAT-based model

checking. In ICCAD, pages 877–884, 2005.

[3] A. Biere, K. Heljanko, T. Junttila, Latvala T, and V. Schuppan. Linear

Encodings of Bounded LTL Model Checking. In Logical Methods
in Computer Science, Vol. 2 (5:5), pages 1–64, 2006.

[4] P. Bjesse and K. Claessen. SAT-based Verification without State

Space Traversal. In Proc. of FMCAD’00. LNCS, Vol. 1954, pp. 372-

389.

[5] Udi Boker, Orna Kupferman, and Adin Rosenberg. Alternation
Removal in Büchi Automata. In Samson Abramsky, Cyril Gavoille,
Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis,
editors, ICALP (2), volume 6199 of Lecture Notes in Computer Science,
pages 76–87. Springer, 2010.

[6] Gianpiero Cabodi, Paolo Camurati, Luz Garcia, Marco Murciano,
Sergio Nocco, and Stefano Quer. Speeding up Model Checking by

Exploiting Explicit and Hidden Verification Constraints. In Proc. of
DATE, 2009.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV Version 2:

4158

An OpenSource Tool for Symbolic Model Checking. In Proc.

International Conference on Computer-Aided Verification (CAV 2002),
volume 2404 of LNCS, Copenhagen, Denmark, July 2002. Springer.

[8] Koen Claessen and Niklas Sörensson. A Liveness Checking Algorithm

that Counts. In Proc. of FMCAD, pages 52–59, 2012.

[9] Berkeley Logic Synthesis Group. ABC: A System for Sequential

Synthesis and Verification. http://www.eecs.berkeley.edu/˜alanmi/abc/,
v00127p.

[10] Yonit Kesten, Amir Pnueli, and Li on Raviv. Algorithmic Verification

of Linear Temporal Logic Specifications. In Kim Guldstrand Larsen,
Sven Skyum, and Glynn Winskel, editors, ICALP, volume 1443 of
Lecture Notes in Computer Science, pages 1–16. Springer, 1998.

[11] Orna Kupferman and Moshe Y. Vardi. Model Checking of Safety

Properties. In Nicolas Halbwachs and Doron Peled, editors, CAV,
volume 1633 of Lecture Notes in Computer Science, pages 172–183.
Springer, 1999.

[12] A. Mishchenko, M. L. Case, R. K. Brayton, and S. Jang. Scalable and
Scalably-verifiable Sequential Synthesis. In Proc. of ICCAD’08, pp.

234-241.

[13] Amir Pnueli and Aleksandr Zaks. PSL Model Checking and Run-
Time Verification Via Testers. In Jayadev Misra, Tobias Nipkow,
and Emil Sekerinski, editors, FM, volume 4085 of Lecture Notes in

Computer Science, pages 573–586. Springer, 2006.

[14] Amir Pnueli and Aleksandr Zaks. On the Merits of Temporal Testers.
In Orna Grumberg and Helmut Veith, editors, 25 Years of Model

Checking, volume 5000 of Lecture Notes in Computer Science, pages
172–195. Springer, 2008.

[15] G. Tseitin. On the complexity of derivation in propositional calculus.
Studies in Constr. Math. and Math. Logic, 1968.

[16] C. A. J. van Eijk. Sequential equivalence checking based on

structural similarities. In IEEE TCAD, 19(7), July 2000, pp. 814-

819.

[17] Moshe Y. Vardi. Alternating Automata and Program Verification.
In Jan van Leeuwen, editor, Computer Science Today, volume 1000 of
Lecture Notes in Computer Science, pages 471–485. Springer, 1995.

[18] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Approach

to Automatic Program Verification (Preliminary Report). In LICS,
pages 332–344. IEEE Computer Society, 1986.

[19] Berkeley Verification and Synthesis Research Center (BVSRC).
ABC-ZZ: A C++ framework for verification and synthesis.
https://bitbucket.org/niklaseen/abc-zz.

X. APPENDIX – INFORMATIVE PREFIXES

This section shows that the monitors described in this paper
accepts precisely the informative prefixes. For brevity, the
exposition is limited to the temporal operators X and U. A
prefix, or a finite trace, refers to an assignment to the atomic
propositions for the first n cycles.

Definition 1 (Kupferman and Vardi [11]). The prefix
s1, . . . , sn is informative for a formula φ if there exists a map
L from {1, . . . , n+1} to the set of subformulas of φ such that:

1) φ ∈ L(1)

2) L(n+ 1) = ∅

3) If an atomic proposition p ∈ L(i) then si |= p

4) If a ∨ b ∈ L(i) then a ∈ L(i) or b ∈ L(i)

5) If a ∧ b ∈ L(i) then a ∈ L(i) and b ∈ L(i)

6) If Xa ∈ L(i) then a ∈ L(i+ 1)

7) if [a U b] ∈ L(i) then either b ∈ L(i) or a ∈ L(i) and
[a U b] ∈ L(i+ 1)

To match precisely the formalism of [11], an additional trivial
monitor is added for the atomic propositions. For practical

purposes it can be optimized away, resulting in the construction
described in this paper:

G(z → a)
failed = z ∧ ¬a

Proposition 1. If s1, . . . , sn is an informative prefix for
formula φ, then the trace s1, . . . , sn is accepted by the monitor
circuit of φ.

Proof: The prefix assigns values to the atomic propo-
sitions. In our monitor formalism, additional primary inputs
are introduced for for the activator variables. To complete the
trace, the activator for ψ, zψ, is set to TRUE in cycle i iff
ψ ∈ L(i). It must now be shown that the augmented trace is
accepted by the monitor. More precisely:

(a) The activator of φ is TRUE in the initial cycle.
(b) All failed signals are FALSE everywhere on the trace.
(c) All pending signals are FALSE in cycle n.

We first observe that on this augmented trace, if the pending
signal holds, the activator must hold as well in the same cycle.
For the atomic propositions, boolean connectives and X, the
pending signal is defined to be the activator signal, so the
observation trivially holds. Assume for contradiction that the
observation does not hold for ψ = [a U b], and let i be the
first cycle in which it is false, i.e. the pending signal holds
but the activator does not. From the monitor constructions, the
pending signal for [a U b] is defined to be:

pending = (zψ ∨Ypending) ∧ ¬zb)

which can be simplified by the assumption that zψ = 0:

pending = Ypending ∧ ¬zb

For pending to hold on cycle i, it must hold on cycle i−1, but
since i is the first cycle in which pending can be set without
the activator, the activator must be TRUE in cycle i − 1, and
therefore [a U b] ∈ L(i − 1). The definition of pending also
requires that zb must not hold in cycle i − 1 and therefore
b 6∈ L(i − 1). But the definition of L then forces [a U b] to
hold in cycle i which contradicts the assumption, proving the
observation for [a U b]. Now:

(a) Follows directly from φ ∈ L(1).

(b) We prove for each operator separately:

– For ψ = p, an atomic proposition. failed := zψ ∧ ¬p.
However, by definition of L, if p ∈ L(i) then si |= p.
zp is true iff p ∈ L(i), so the combination of si |= ¬p, and
zp = TRUE can never happen.

– For ψ = a ∧ b, failed := zψ ∧ ¬(za ∧ zb). However, by
definition of L, if a∧ b ∈ L(i) then a ∈ L(i) and b ∈ L(i).
The connectors are TRUE iff the corresponding formulas are
in L(i), so the combination of a ∧ b ∈ L(i), a ∈ L(i), and
b ∈ L(i), can never happen. The same applies to ψ = a∨ b.

– For ψ = Xa, failed := Y zψ∧¬za. However, by definition of
L, Xa ∈ L(i− 1) and a 6∈ L(i) can never happen together.

– for ψ = [a U b], failed := pending ∧ ¬za. We proved
that if pending holds then the activator zψ must hold as
well, therefore [a U b] ∈ L(i). Substituting the definition
of pending gives us failed := (zψ ∨Ypending)∧¬zb ∧¬za.
So for failed to be TRUE, we must also have a, b 6∈ L(i),
but cannot happen together with [a U b] ∈ L(i).

42 59

(c) For each operator that can possibly set pending to TRUE:

– For ψ = Xa, Xa ∈ L(n) requires that a ∈ L(n + 1),
and therefore the activator of Xa cannot be set on cycle n.
Therefore, neither can pending.

– For ψ = [a U b], pending := (zψ ∨ Y pending) ∧ ¬zb. to
make the pending signal TRUE in cycle n, we must have
[a U b] ∈ L(n), which requires that either a ∈ L(n) ∧
[a U b] ∈ L(n+1) or b ∈ L(n). The former cannot happen
because L(n+ 1) = ∅, and therefore zb must hold, setting
the pending signal to FALSE.

Proposition 2. If the finite trace s1, . . . , sn is accepted by the
monitor circuit of φ, then s1, . . . , sn is also an informative
prefix for formula φ.

Proof: We need to show the existence of a map L. To
facilitate its definition, we change all the activator variables
for formulas [a U b] in cycle i to TRUE if the pending signal
holds in cycle i−1. This is allowed because activator variables
are not atomic proposition, and are not used in the definition
of an informative prefix.

If pending held at cycle i before the change, then the
change does not affect failed or pending. If pending held at
cycle i − 1 and did not hold in cycle i before the change, it
means that zb must already have held in cycle i, so again, failed
and pending are not affected and the trace is still accepted by
the monitor.

We define for i ∈ {1, . . . , n}, L(i) := {ψ | activator signal
of ψ is set in cycle i} and L(n + 1) := ∅. It remains to
show that this L satisfies the requirements of definition 1. The
construction of the monitor guarantees that the activator of φ
holds in the initial cycle.

The only operators that can prevent L(n+ 1) from being
empty are X and U. For ψ = Xa, the activator cannot hold in
cycle n because it is equal to pending, therefore Xa 6∈ L(n). If
[a U b] ∈ L(n), and pending is FALSE, then zb must hold on
cycle i, and therefore b ∈ L(n), consistent with L(n+1) = ∅.

The rest of the conditions also hold. For atomic proposi-
tions, the boolean connectives and X, failed becomes TRUE

when the activator holds and the condition of L is violated. It
is only for ψ = [a U b] that this is not immediately obvious. If
the activator of [aU b] holds, then either zb holds, and pending
becomes FALSE, or zb is FALSE and pending becomes TRUE,
forcing the activator to hold in the next cycle and forcing za
to hold for failed not to become TRUE. This is exactly the
condition of definition 1.

XI. APPENDIX – LIST OF MONITORS FOR PLTL

Below is a complete list of monitors for PLTL. Variable t is
local to each monitor. If accept is left out, it is assumed to
be constant TRUE. If failed or pending are left out, they are
assumed to be constant FALSE.

G(z → Xa)
pending = z
failed = ¬is init ∧ (Yz ∧ ¬a)

G(z → Ya)
failed = z ∧ ¬Y(a)

G(z → Za)
failed = z ∧Y(¬a)

G(z → Fa)
pending = (z ∨ (Y pending)) ∧ ¬a
accept = ¬pending

G(z → Ga)
pending = (Y pending) ∨ z
failed = pending ∧ ¬a

G(z → Pa)
t = Y(t) ∨ a
failed = z ∧ ¬t

G(z → Ha)
t = ¬Y(¬t) ∧ a
failed = z ∧ ¬t

G(z → [a W b])
pending = (z ∨ (Y pending)) ∧ ¬b
failed = pending ∧ ¬a

G(z → [a U b])
pending = (z ∨ (Y pending)) ∧ ¬b
failed = pending ∧ ¬a
accept = ¬pending

G(z → [a R b])
pending = (z ∨ (Y pending)) ∧ ¬a
failed = (z ∧ ¬b) ∨ ((Ypending) ∧ ¬b)

G(z → [a S b])
t = (Yt ∧ a) ∨ b
failed = z ∧ ¬t

G(z → [a T b])
t = b ∧ (¬Y(¬t) ∨ a)
failed = z ∧ ¬t

G(z → a ∧ b)
failed = z ∧ ¬(a ∧ b)

G(z → a ∨ b)
failed = z ∧ ¬(a ∨ b)

G(z → FALSE)
failed = z

G(z → TRUE)
(nothing)

4360

Invariants for Finite Instances and Beyond

Sylvain Conchon∗† Amit Goel‡ Sava Krstić‡ Alain Mebsout∗† Fatiha Zaı̈di∗

∗LRI, Université Paris Sud CNRS, Orsay F-91405
†INRIA Saclay – Ile-de-France, Orsay cedex, F-91893

‡Strategic CAD Labs, Intel Corporation

Abstract—Verification of safety properties of concurrent pro-
grams with an arbitrary numbers of processes is an old challenge.
In particular, complex parameterized protocols like FLASH are
still out of the scope of state-of-the-art model checkers. In
this paper, we describe a new algorithm, called BRAB, that is
able to automatically infer invariants strong enough to prove a
protocol like FLASH. BRAB computes over-approximations of
backward reachable states that are checked to be unreachable in
a finite instance of the system. These approximations (candidate
invariants) are then model checked together with the original
safety properties. Completeness of the approach is ensured by
a mechanism for backtracking on spurious traces introduced by
too coarse approximations.

I. INTRODUCTION

Nowadays, modern computing systems are often relying
on multi-core or distributed architectures. Inherently, the ver-
ification of mutual exclusion or cache coherence properties
for such systems is very challenging. Consider for instance
that, in the Stanford FLASH multiprocessor architecture, the
transition system describing the cache coherence protocol has
already more than 67 million states when just four processors
are in competition [99].

A standard way of verifying a transition system is to
enumerate the entire state space [2222], [2424] (modulo reduction
and compaction techniques). However, on large problems,
efficient enumerative model checkers reach their limits in both
time and memory consumption. For instance, Murϕ fails to
prove the safety of FLASH for five processes with a timeout
limit of 24 hours and 20 GB of memory.

An alternative is to verify a parameterized version of the
system. Model checking of such systems is an old and well
studied problem [55], [1212], [1818]. Yet, all automatic techniques
that allow properties to be verified for any number of processes
do not scale very well. For instance, state-of-the-art parametric
model checkers hit their limit on academic problems: most
tools need several minutes to prove the safety of the parame-
terized protocol given by German [3636], although this protocol
only has 28,000 reachable states for four processes.

Some approaches are known to scale on large prob-
lems: compositional and abstraction model checking tech-
niques [1010] have been used to prove a parameterized version of
FLASH [3030], [3838]. However, they all require human experts to
provide hand-crafted invariants. Designing algorithms to find
automatically good quality invariants is still a challenge and
an active research area [1313], [2121], [2828], [3131], [3636].

In this paper, we propose a novel algorithm that infers
invariants capable of proving complex protocols. Our contri-
butions are as follows:

• The BRAB algorithm (illustrated in Section IISection II). It
first computes a set M of reachable states using a
forward exploration for a finite instance of the system
with a fixed number of processes. Then, it performs
a backward reachability analysis of the parameter-
ized system. At each loop iteration, BRAB computes
an over-approximation of backward reachable states
and checks that it represents states that are not in
M. All these approximations, which can be seen as
candidate invariants, are model checked together with
the original safety properties. To ensure completeness,
BRAB backtracks when it encounters a spurious trace
introduced by a too coarse approximation.
The strength of our method resides in two aspects.
First, model checking approximations together makes
it possible for the proof of an approximation to use
part of the proof of another one. A second key insight
is that finite instances (even small) are generally good
oracles for guiding the choice of approximations as
they can be seen as a concentrated knowledge of the
system.

• A formalization of BRAB for a generic symbolic
framework where sets of states are represented by
logical formulas (Section IIISection III). We only require pre-
and post-images to be computable and the decidability
of backward reachability. Under these conditions, we
prove soundness, completeness and termination of our
algorithm. Such a generic presentation allows BRAB
to be implemented in different frameworks.

• An implementation of BRAB in the framework of
array-based transition systems (Section IVSection IV). This is a
syntactically restricted class of parametrized transition
systems with states represented as arrays indexed by
an arbitrary number of processes [1919]. Our implemen-
tation is available in the Cubicle model checker [1414].

• A comparison of our approach with state-of-the-art pa-
rameterized and enumerative model checkers on a set
of significant problems (Section VSection V). This comparison
effort demonstrates that our method is promising.

To our knowledge, Cubicle (with BRAB) is the first tool
that proves automatically the safety of FLASH.

II. INVARIANTS FOR FINITE INSTANCES AND BEYOND

We illustrate our method on a simplified version of the
directory based cache coherence protocol proposed by Ger-
man [3636]. The protocol consists of a global directory which
maintains the consistency of a shared memory between a

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 4461ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

parameterized number of cache clients. The status of each
cache i is indicated by a variable Cache[i] which can be in
one of the three states: (E)xclusive (read and write accesses),
(S)hared (read access only) or (I)nvalid (no access to the
memory). Clients send requests to the directory when cache
misses occur: rs for a shared access (read miss), re for an
exclusive access (write miss). The directory has four variables:
a boolean flag Exg indicates whether a client has an exclusive
access to the main memory, a boolean array Shr, such that
Shr[i] is true when a client i is granted (read or write) access
to the memory, Cmd stores the current request (ε stands for
the absence of request), and Ptr contains the emitter of the
current request.

The initial states of the protocol are represented by the
following logical formula

∀i. Cache[i] = I ∧ ¬Shr[i] ∧ ¬Exg ∧ Cmd = ε

stating that the cache of each process is invalid, no access has
been given and there is no request to be processed.

E

S

I

Shr[i] := true
Exg := true

Exg := true

Shr[i] := true

Shr[i] := false
Exg := false

Exg := false

Shr[i] := false

Fig. 1: State diagram of the German-ish protocol

We give in Figure 1Figure 1 a high-level view of the evolution
of a single cache. Solid arrows show the evolution of the
cache following its own requests whereas, dashed arrows
depict transitions resulting from a request of another client.
For example, a cache moves from state I to S when a read
miss occurs and the directory grants it a shared access, while
recording it in the array Shr[i] := true. Similarly, when a
write miss occurs in another cache, the directory invalidates
all clients recorded in Shr before granting an exclusive access.
This has the effect of moving caches from states E or S to
state I.

The formal description of the protocol is given by the
transition system in Figure 2Figure 2. Following notations in [3636],
we describe each transition by a logical formula relating the
values of state variables before and after the transition. We
denote by X′ the value of the variable X after the execution
of the transition. For instance, transition t1 should read as: if
there exists a process i whose cache is invalid and there is no
command to be processed, then update variable Ptr to i and
set variable Cmd to rs.

This protocol ensures that when a cache client is in an
exclusive state then no other process has (read or write)
access to the memory. Proving this safety property amounts

t1 : ∃i. Cache[i] = I ∧ Cmd = ε ∧
Ptr′ = i ∧ Cmd′ = rs

t2 : ∃i. Cache[i] 6= E ∧ Cmd = ε ∧
Ptr′ = i ∧ Cmd′ = re

t3 : ∃i. Shr[i] ∧ Cmd = re ∧
¬Exg′ ∧ Cache′[i] = I ∧ ¬Shr′[i]

t4 : ∃i. Shr[i] ∧ Cmd = rs ∧ Exg ∧
¬Exg′ ∧ Cache′[i] = S

t5 : ∃i. Ptr = i ∧ Cmd = rs ∧ ¬Exg ∧
Cmd′ = ε ∧ Shr′[i] ∧ Cache′[i] = S

t6 : ∃i. Ptr = i ∧ Cmd = re ∧ ¬Exg ∧ ∀j. ¬Shr[j]
Cmd′ = ε ∧ Exg′ ∧ Shr′[i] ∧ Cache′[i] = E

Fig. 2: German-ish transition system

to checking that states that satisfy the following formula Θ
are not reachable:

Θ : ∃i, j. i 6= j ∧ Cache[i] = E ∧ Cache[j] 6= I

Finite Instance. We consider a finite instance of the protocol
with two caches. We give in Figure 3Figure 3 (left graph) the beginning
of a forward exploration starting from the state (circled node)
obtained by instantiating the initial formula with two distinct
processes #1 and #2. Each edge label t(#i) stands for the
instance of a transition t with process #i.

Backward Reachability. We then run a backward reachabil-
ity analysis for the parameterized system. Starting from Θ
(octagon node), we iteratively compute its pre-images (circle
nodes) for all transitions. Pre-images that are subsumed by
already visited nodes (dotted edges) are not expanded anymore.
This process ends either when a formula in a node intersects
the initial formula or when there is no more pre-image to
compute.

To improve this standard backward analysis, we try to
prune the search space by finding over-approximations of pre-
images. Since the set of possibilities is very large, we restrict
the choice to formulas that represent unreachable states in the
finite instance, and which are syntactic sub-formulas of pre-
images.

If it succeeds to extract an appropriate candidate, the newly
found approximation (rectangles connected with a bold dashed
arrow) replaces the original formula. To illustrate this we show
a partial graph of BRAB’s execution on the right of Figure 3Figure 3.

Starting from the unsafe formula ∃i 6= j. Cache[i] =
E ∧ Cache[j] 6= I, the pre-image by transition t5 returns the
node ∃i 6= j. ¬Exg ∧ Cmd = rs ∧ Ptr = j ∧ Cache[i] = E.
This node could be approximated by ¬Exg ∧ Cmd = rs. But
on closer inspection, ¬Exg ∧ Cmd = rs is already reachable
on the left graph of Figure 3Figure 3 as it is satisfied by a concrete
state of the finite instance (double-headed arrow with |=) so
it is undoubtedly not a good approximation. On the contrary

4562

|=

|=

. . .
. . .

¬Exg
Cmd = ε

Cache[#1] = I
Cache[#2] = I
¬Shr[#1]
¬Shr[#2]

¬Exg
Cmd = re
Ptr = #2

Cache[#1] = I
Cache[#2] = I
¬Shr[#1]
¬Shr[#2]

¬Exg
Cmd = re
Ptr = #1

Cache[#1] = I
Cache[#2] = I
¬Shr[#1]
¬Shr[#2]

¬Exg
Cmd = rs
Ptr = #2

Cache[#1] = I
Cache[#2] = I
¬Shr[#1]
¬Shr[#2]

¬Exg
Cmd = rs
Ptr = #1

Cache[#1] = I
Cache[#2] = I
¬Shr[#1]
¬Shr[#2]

Exg
Cmd = ε
Ptr = #2

Cache[#1] = I
Cache[#2] = E
¬Shr[#1]
Shr[#2]

Exg
Cmd = ε
Ptr = #1

Cache[#1] = E
Cache[#2] = I

Shr[#1]
¬Shr[#2]

¬Exg
Cmd = ε
Ptr = #2

Cache[#1] = I
Cache[#2] = S
¬Shr[#1]
Shr[#2]

Exg
Cmd = rs
Ptr = #2

Cache[#1] = E
Cache[#2] = I

Shr[#1]
¬Shr[#2]

t2(#2)

t2(#1) t1(#2)

t1(#1)

t6(#2) t6(#1) t5(#2) t5(#1)

t2(#1) t1(#1) t2(#2)
t1(#2)

t2(#2) t2(#1) t1(#1)

∃i 6= j. Cache[i] = E
Cache[j] 6= I

∃i 6= j. Exg
Cmd = rs

Cache[i] = E
Shr[j]

∃i 6= j. ¬Exg
Cmd = rs
Ptr = j

Cache[i] = E

∃i 6= j. ¬Exg
Cmd = rs
Ptr = j

Cache[i] = E

Cache[i] = E

∃i 6= j. Exg
Cmd = rs

Cache[i] = E
Shr[j]

∃i 6= j. Cmd = re
Cache[i] = E

Shr[j]

∃i. ¬Exg∃i. Cmd = rs
Cache[i] = E

¬Exg
Cmd = rs

∃i 6= j. Shr[j]
Cache[i] = E

pre(t4(j)) pre(t5(j)) pre(t6(i))

pre(t5(j))
pre(t4(j))pre(t3(j))

Fig. 3: BRAB on the German-ish protocol

no instances of ∃i. ¬Exg ∧ Cache[i] = E is reachable on
the finite system of Figure 3Figure 3. This approximation is inserted
in the backward reachability loop which continues as usual.

As we can see on the graph Figure 3Figure 3, the sub-graphs of
some approximations intersect. These sub-graphs depict the
proof of unreachability for each approximation, this means that
proofs are factorized, hence the benefit of inserting them during
the main search. For example, part of the pre-image of the first
approximation is subsumed by the second approximation (and
vice-versa).

Naturally approximations can introduce spurious traces.
When one is exposed, BRAB restarts from scratch the con-
struction of the reachability graph, while remembering this ap-
proximation to avoid exploring the same spurious behaviours.
For example, if we had built the finite model using only one
process variable, nothing would prevent the algorithm from
considering the bad approximation ∃i.Cmd = rs∧Cache[i] = E

In our example, with a finite model with two processes,
no approximation introduces an error trace and the system
is proved safe. As a consequence, each node in the graph is
unreachable and its negation is an invariant of the system.
In particular, approximations yield the following non-trivial
invariants (the last one is not shown on the graph):

I1: ∀i, j. i 6= j ∧ Cache[i] = E =⇒ ¬Shr[j]
I2: ∀i. Cache[i] = E =⇒ Exg
I3: ∀i. Cache[i] 6= I =⇒ Shr[i]

III. FORMALIZING THE BRAB ALGORITHM

A. Notations and Preliminaries

We assume the usual syntactic and semantic notions of
first-order logic. In particular, we use the symbol |= for
the logical entailment relation between sets of formulas. For
convenience, disjunctions are represented by sets of formulas.

We adopt a symbolic framework for specification of pa-
rameterized systems where states are described by a fixed set

of state variables Q. Each variable x ∈ Q is defined over a
finite or infinite domain Dx. This domain may be unspecified,
in which case we call it a parameter of the system. We assume
that in this framework (sets of) system states can be described
by formulas in a decidable fragment of the first-order logic.

A parameterized system S is defined by a pair (I, T) where
I is a formula describing the initial states of the system and
T is a set of (possibly quantified) formulas, called transitions,
relating states of S. For a state formula ϕ and a transition
τ ∈ T , let pre(τ, ϕ) be the formula describing the set of states
from which a state satisfying ϕ can be reached in one τ -step.
The pre-image closure of ϕ, denoted by PRE∗(ϕ), is defined
as follows

PRE0(ϕ) , ϕ

PREn(ϕ) ,
⋃
{pre(τ, ψ) | ψ ∈ PREn−1(ϕ), τ ∈ T }

PRE∗(ϕ) ,
⋃

k∈N PREk(ϕ)

and the pre-image of a set of formulas V is defined by
PRE∗(V) =

⋃
ϕ∈V PRE∗(ϕ). We also write PRE(ϕ) for

PRE1(ϕ). Similarly, we define the post-image post(τ, ϕ) of ϕ
with respect to τ as the set of states that are reachable from ϕ
in one step by taking the transition τ . The definition of POST∗

is given by the equations for PRE∗, with post in place of pre.
For our purpose, we assume PRE to be effectively computable
and POST to be effectively computable on finite instances.

Definition 1. A set of formulas V is said to be reachable
iff POST∗(I) ∧ V is satisfiable, or equivalently, PRE∗(V) ∧ I
satisfiable. It is unreachable otherwise.

Definition 2. An invariant of a system is any property that
holds in all reachable states of the system.

We give a standard backward reachability algorithm for this
framework, as defined by the function BWD in Algorithm 11.
Starting with an empty set V of visited nodes (state formu-
las/set really) and a queue Q of pending nodes initialized

46 63

with a formula Θ, BWD iteratively computes the backward
reachability graph of PRE∗(Θ). The algorithm terminates when
a node fails the safety check (consistency with the initial
condition — line 66), or when all nodes in Q are subsumed
by the nodes in V (line 88).

The decidability of BWD is assumed to be guaranteed in
the symbolic framework under consideration.

Algorithm 1: Backward Reachability Analysis
Input: a parameterized system (I, T) and a formula Θ
Variables:
V: visited nodes
Q: work queue

function BWD() : begin1
V := ∅;2
push(Q, Θ);3
while not_empty(Q) do4

ϕ := pop(Q);5
if (I ∧ ϕ sat) then6

return unsafe7
else if (ϕ 6|= V) then8
V := V ∪ {ϕ};9
push(Q, PRE(ϕ));10

end11
end12
return safe13

end14

B. The BRAB Algorithm

BRAB is defined by Algorithms 22 and 33. It implements an
extended version of backward reachability that computes over-
approximations during the search loop and backtracks when
spurious traces are introduced by too coarse formulas.

BRAB takes as input a parameterized system (I, T), a
formula Θ, and two integers dmax and k. In addition to the
set V of visited nodes and the work queue Q, our algorithm
requires three variables M, B and F , and a couple of maps
Kind and From. These variables are used as follows:

• M is a set of reachable states for a finite instance of
the system with k processes;

• B is a set of bad (or too coarse) over-approximations;

• F contains the last visited node that fails the safety
check during the backward analysis;

• Kind maps formulas to values in {Orig,Appr}. It
is used to differentiate formulas in PRE∗(Θ) (Orig
formulas) from pre-images of over-approximations
(Appr formulas);

• From associates pre-images with their original ances-
tor formula.

The entry point of the algorithm is the function BRAB. It
starts by initializing some variables : B is the empty set, Θ is
recorded as the initial value of PRE∗(Θ) in Kind and From,
and M is the set FWD(dmax, k) of reachable states constructed
by a forward exploration of the reachability graph starting in

I(#1) ∧ · · · ∧ I(#k) and limited to depth dmax. BRAB then
enters a verification loop (line 3636). It first calls the function
BWDA which verifies the safety of Θ in the parameterized
case by a backward reachability with approximations. If BWDA
returns safe, so does BRAB. Otherwise, F contains the last
formula that fails the safety check in BWDA and BRAB returns
unsafe if F is a pre-image of Θ. If F is (a pre-image of) an
approximation, then BRAB ignores this spurious result, saves
the original ancestor of F in B to avoid reproducing the same
trace, and continues its verification loop.

BWDA implements a reachability loop similar to Algo-
rithm 11. It only differs at two lines. It saves in F the formula
which fails the safety check (line 2323). It also calls function
Approx in place of PRE (line 2727) to find over-approximations
of the current node ϕ. The function Approx limits potential
candidates to subformulas subsuming ϕ that are not already
known to be bad approximations and which represent states
that are not in M. If it fails to find such an approximation,
Approx returns the pre-image of ϕ. Regarding the correctness
of BRAB, the set candidates(ϕ) must be finite (imple-
mentation details are given in Section IVSection IV). If Approx finds
a new approximation ψ, it is tagged with Appr in Kind and
From(ψ) is set to ψ. Otherwise, formulas in PRE(ϕ) inherit
the information of ϕ in Kind and From.

C. Correctness

The correctness of BRAB relies on the decidability of BWD
(assumed in Section III-ASection III-A) the following loop invariants:

(Inv1) V does not contain immediately reachable formu-
las, i.e. V |= ¬I

(Inv2) PRE∗(Θ) is incrementally computed in V and Q,
i.e. PRE∗(Θ) |= V ∨ PRE∗(Q)

(Inv3) if Kind(ϕ) = Orig then ϕ ∈ PRE∗(Θ)

Theorem 1. If BRAB() returns safe then Θ is unreachable.

Proof: When BRAB returns safe, the loop (line 2929) ter-
minates with Q empty. Now, by contradiction, suppose Θ is
reachable. By definition PRE∗(V)∧ I is satisfiable. Since Q is
empty, by (Inv2) PRE∗(Θ) |= V and V ∧ I thus satisfiable too,
which contradicts the invariant (Inv1) V |= ¬I .

Theorem 2. If BRAB() returns unsafe then Θ is reachable

Proof: If BRAB returns unsafe, then there exists a formula
ϕ such that ϕ ∧ I is satisfiable and Kind(ϕ) = Orig. By
(Inv3), we conclude that PRE∗(Θ) ∧ I is satisfiable.

Theorem 3. BRAB() always returns safe or unsafe

Proof: Suppose the algorithm 22 does not terminate then
whether:

1) BWDA does not terminate, or
2) BRAB does not terminate

(11) Since BWDA only differs from BWD by Approx, its
termination is assured by the fact that candidates returns a
finite set of formuals. (22) The co-domain of From is a subset of

4764

Algorithm 2: Backward Reachability with Approxima-
tions and Backtracking (BRAB)

Input: a parameterized system (I, T), a formula Θ to
be verified, the maximal depth dmax for the
forward exploration and the number k of
processes to be considered for the finite instance
of the system

Variables:
V: visited nodes
Q: work queue
M : Finite model obtained by forward exploration
B: bookkeeping of bad approximations
F : last node visited when unsafety discovered
Kind: map formulas 7−→ {Orig,Appr}
From: map formulas 7−→ formula

function Approx(ϕ) : begin1
foreach ψ in candidates(ϕ) do2

if ψ 6∈ B ∧M 6|= ψ then3
Kind(ψ) := Appr;4
if Kind(ϕ) = Orig then From(ψ) := ψ5
else From(ψ) := From(ϕ) ;6
return ψ7

end8
end9
foreach ψ in PRE(ϕ) do10

Kind(ψ) := Kind(ϕ);11
From(ψ) := From(ϕ)12

end13
return PRE(ϕ)14

end15
16

function BWDA() : begin17
V := ∅;18
push(Q, Θ);19
while not_empty(Q) do20

ϕ := pop(Q);21
if (I ∧ ϕ sat) then22
F := ϕ;23
return unsafe24

else if (ϕ 6|= V) then25
V := V ∪ {ϕ};26
push(Q, Approx(ϕ))27

end28
end29
return safe30

end31
32

function BRAB() : begin33
B:= ∅; Kind(Θ) := Orig; From(Θ) := Θ;34
M := FWD(dmax,k);35
while BWDA() = unsafe do36

if Kind(F)= Orig then return unsafe;37
B := B ∪ {From(F)};38

end39
return safe40

end41

Algorithm 3: Finite and Depth-Limited Forward Analy-
sis

Input: a parameterized system (I, T)
Variables:
V: visited nodes
Q: work queue

function FWD(dmax,k) : begin1
V := ∅;2
push(Q, (0, I(#1) ∧ · · · ∧ I(#k)));3
while not_empty(Q) do4

(d, ϕ) := pop(Q);5
if (ϕ 6∈ V and d ≤ dmax) then6
V := V ∪ {ϕ};7
N := {(d+ 1, ψ) | ψ ∈ POST(ϕ)};8
push (Q, N)9

end10
end11
return V12

end13

A =
⋃

ϕ∈Vf candidates(ϕ) (guaranteed by line 55), where
Vf is the final set obtained by BWD on Θ. Since Vf is finite,
A is also finite. The condition ψ 6∈ B at line 33 guarantees that
approximations added in B at line 3838 are always distinct and in
A. In other words B cannot grow forever, so BRAB terminates.

Remark Notice that the correctness of BRAB does not depend
on the content of M, which thus acts as an oracle.

IV. IMPLEMENTATION

We have implemented BRAB in the logical framework of
array-based transition systems that was proposed by Ghilardi
and Ranise [1919]. In this framework, states are represented by
infinite arrays indexed by processes. This class is useful to
model several infinite state systems and allows some topology
constraints to be specified on indexes (linear ordering, multi-
sets). Although this framework does not have all the desirable
properties of Section III-ASection III-A for completeness, Theorem 1Theorem 1 is still
applicable.

In this framework, unsafe properties are cubes (conjunc-
tions of literals existentially quantified by distinct variables).
Safety properties are decidable by backward reachability as
soon as a well-quasi ordering can be exhibited on models
(configurations). The interested reader is referred to [1919] for
further details. We present here the choices we made for this
implementation and its practical aspects.

In FWD, the construction of M only relies on the im-
plementation of POST. Computing POST symbolically could
be advantageous for some problems but we found out that
a forward enumerative exploration worked best (efficiency
wise) on our benchmarks. This forces us to abstract away
all variables living in unbounded domains and can lead to
a model where unreachable states were explored. Since the
correctness does not depend on the finite model in any way, its
construction can incorporate any state-of-the-art enumerative
techniques or methods tailored to bug finding. For instance,
its precision could be improved by adding a way of restricting

48 65

unbounded types (e.g. to handle infinite systems with arith-
metic operations). In any case, the only significant quality of
the partial model is to be able to disprove the majority of
wrong approximations.

In Approx, to ensure termination of BRAB, we restrict
candidates(ϕ) to a finite set of strict syntactic sub-
formulas of ϕ. In Cubicle, nodes of the proof graph are cubes,
seen as sets of literals, so when looking for an approximation,
we successively test all its subsets starting from the coarsest
ones, i.e. the ones that represent the largest sets of states.
Choosing first the most general approximations will yield
stronger invariants. We keep the first that is not disproved by
M or the set B. Notice this forbids us to directly approximate
an approximation. In some cases, no suitable approximation
can be found, and we continue the algorithm as usual. Going
further than our implementation of candidates, for instance
to consider all formula ψ such that ψ |= ϕ, is possible but is a
complicated matter as there exists infinitely many such ψ. In
addition, the framework guarantees that pre-images of cubes
are computable as disjunctions of cubes.

The efficiency of BRAB relies essentially on two aspects:
the choice of approximations and the content of the set M.
Indeed, choosing an approximation that is not general enough
will delay the convergence of the algorithm and inserting a
too general approximation will lead to unnecessary restarts.
Similarly, if the exploration of the finite instance is incomplete
or too imprecise, some wrong approximation will not be
detected before the backward reachability exposes an error
trace, resulting in a costly restart. In our implementation,
we limit the negative effect of restarts trying to do them as
early as possible, by finding wrong approximations sooner.
For example, it is a wise choice to give a higher priority
in the queue to pre-images of approximations (i.e. ψ such
that kind(ψ) = Appr) so as to ensure they will be checked
before expanding too much of the original formulas. Instead of
restarting the algorithm from scratch, a possible improvement
that we did not implement, is to keep as much information
as possible from the previous run. It is indeed possible, yet
costly, to maintain dependency information at run time to retain
the nodes of V and Q that are not affected by the wrong
approximation. BRAB is distributed in the open source model
checker Cubicle.

V. EXPERIMENTAL RESULTS

A. Experiments

We have evaluated our implementation of the BRAB al-
gorithm on challenging mutual exclusion algorithms, fault-
tolerance and cache coherence protocols. In the table Figure 4Figure 4,
we compare the performance of Cubicle when using a clas-
sical backward reachability loop (second column), and when
using BRAB (first column). We run BRAB with an unlimited
depth forward exploration for two processes in all benchmarks
excepted for the different versions of FLASH. We also in-
clude the results for an enumerative model checker CMurphi
5.4.9 [3535] and different parameterized model checkers (MCMT
2.0 [2020], PFS [2323], Undip [3737]) to show that the examples we
chose are far from trivial.

For each tool we report the execution times obtained with
the best setting we found. T.O. indicates a timeout if a tool

didn’t answer within 24 hours and O.M. means that it exceeded
a memory limit of 20 GB. For CMurphi, we give the time used
to prove the safety of each benchmark for a fixed number
of processes between parentheses. The last columns gives the
maximum number of processes we were able to reach with
20 GB. We denote by / benchmarks that we were unable
to easily translate due to syntactic restrictions. For instance
PFS does not allow the update of multiple local variables at
the same time, Undip does not allow variables of the type of
processes and MCMT doesn’t support systems with more than
50 transitions or multi-dimensional arrays.

All benchmarks were executed on a 64 bits machine with
an Intel R© Xeon R© processor @ 3.2 GHz and 24 GB of memory.
The source code for Cubicle and its implementation of the
BRAB algorithm as well as all the detailed benchmarks are
available at http://cubicle.lri.fr/fmcad2013http://cubicle.lri.fr/fmcad2013.

In this table, Szymanski at (resp. Szymanski na) is
an atomic (resp. non-atomic) version of Szymanski’s mutual
exclusion algorithm. German Baukus is a version of Steven
German’s protocol extracted from [77]. German.CTC is the
version translated from Ching-Tsun Chou’s Murϕ models,
adding data paths to German Baukus. German pfs is an
encoding of the German that was extracted from the dis-
tribution of PFS [2323] where invalidation is performed non
atomically. Chandra-Toueg is a version of Chandra and
Toueg’s reliable broadcast protocol [88] with the send omission
failures model extracted from [44].

These experiments show that BRAB is very efficient on
examples from the literature and is several orders of magnitude
faster than backward reachability on almost all benchmarks.

B. The FLASH Cache Coherence Protocol

The Stanford FLASH (FLexible Architecture for SHared
memory) multiprocessor [2727] is a modular architecture de-
signed to scale to thousands of processing units. Each pro-
cessor maintains a local cache memory, whose coherence is
ensured by a message passing protocol on a point-to-point
network with arbitrary latency. Each memory address is owned
by a processing unit called Home (the physical location of the
given memory address).

Related work. The first proof was performed by Park and
Dill [3434] in 1996 using the PVS proof assistant but it requires
to construct inductive invariants by hand and detail the proof
steps in the assistant. This protocol was also verified by
Das, Dill and Park [1515] using a manually guided predicate
abstraction. The method of compositional model checking and
data type reduction developed by McMillan [3030] which first
relied on BDD based model checking in SMV was later
elaborated by Chou, Mannava and Park in a framework called
CMP [99]. The CMP method, formalized by Krstic̀ [2626], works
by iteratively abstracting a protocol and strengthening the in-
variants from the analysis of counterexamples produced by the
model checker. As of today, it is the method that scales best but
it requires a lot of expert knowledge and manual intervention
to devise non interference lemmas from counterexamples. In
2008, Talupur and Tuttle came up with the insight of using
message flows conceived by protocol designers as a source
of potential invariants to help the CMP method converge
faster [3333], [3838]. Although their method is able to automatically

4966

http://cubicle.lri.fr/fmcad2013

BRAB Cubicle MCMT PFS Undip CMurphi
Szymanski at 0.14s 0.30s 0.29s T.O. 32.1s 8.04s (8) 5m12s (10) 2h50m (12)
Szymanski na 0.19s T.O. / / / 0.88s (4) 8m25s (6) 7h08m (8)
German Baukus 0.25s 7.03s 33m15s / 9m43s 0.74s (4) 19m35s (8) 4h49m (10)
German.CTC 0.29s 3m23s T.O. / / 1.83s (4) 43m46s (8) 12h35m (10)
German pfs 0.34s 3m58s 5m58s 36m05s T.O. 0.99s (4) 22m56s (8) 5h30m (10)
Chandra-Toueg 2m17s 2h01m 49m25s / / 5.68s (4) 2m58s (5) 1h36m (6)
Flash nodata 0.36s O.M. / / / 4.86s (3) 3m33s (4) 2h46m (5)
Flash 5m40s O.M. / / / 1m27s (3) 2h15m (4) O.M. (5)

Fig. 4: Benchmarks

generate invariant candidates from message flows, the CMP
method still requires adding extra hand crafted non interference
lemmas to achieve convergence on the German and FLASH
protocols.

We have modeled this protocol in Cubicle’s input language
from the Murϕ models by Ching-Tsun Chou that were used
in [99], [3838]. These models only account for one memory line
but they (and their properties) are straightforwardly general-
izable to an arbitrary number of memory addresses. The only
difference we introduced is that we abstracted away the Home
processor and for all arrays indexed by Home, each occurrence
of A[Home] was replaced by a global variable A home. The
control property we want to verify for FLASH is

∀x, y. x 6= y ⇒
CacheState[x] = Exclusive⇒ CacheState[y] 6= Exclusive

and the data properties are

∀x. CacheState[x] = Exclusive⇒ Data[x] = Currdata
∀x. CacheState[x] = Shared ∧ Collecting

⇒ Data[x] = PrevData
∀x. CacheState[x] = Shared ∧ ¬Collecting⇒

Data[x] = CurrData

where CurrData, PrevData and Collecting are auxiliary
variables introduced only to specify these data properties.

We show the results obtained with Cubicle ran with op-
tion -brab on different versions of the FLASH protocol in
Figure 5Figure 5. The line nodata gives the result when we only asked
to verify control properties whereas in line Flash we asked to
verify both control and data properties. Finally we give the
results on a version of FLASH where we introduced an error
in line buggy. On this version, Cubicle exhibits an error trace
highlighting a buggy behaviour.

Forward Backward Total
k dmax |M| time |V| # inv |B| time

nodata 2 6 439 0.02s 37 30 0 0.36s
buggy 2 6 445 0.02s 228 / 0 2.97s
Flash 3 14 452,523 8.54s 1047 131 0 5m40s

Fig. 5: Verification of FLASH with Cubicle

Below are a few of the invariants inferred for the FLASH:
they are not trivial although each one of them connects the

values of only two or three variables.

(Inv1) ¬Invmarked[Home]
(Inv2) CacheState[Home] = Shared⇒

(Dir Local ∨ ¬Dir Pending)
(Inv3) ∀x. CacheState[x] = Exclusive⇒ Dir Dirty
(Inv4) ∀x. CacheState[x] = Exclusive⇒

(x = Home⇒ ¬Dir HeadVld) ∧
(x 6= Home⇒ Dir HeadVld)

VI. RELATED WORK

Parameterized verification being a largely studied problem,
we focus here on the most closely related work.

Invariant generation: Ghilardi and Ranise describe in
[1919] an invariant synthesis algorithm for array-based systems.
Their backward reachability analysis always computes precise
formulas and their mechanism of guessing candidate invariants
guided by the goal is similar to BWDA but the candidates are
only filtered by syntactic heuristics. The main difference with
our approach is that candidates are model checked one at a
time in a completely independent resource limited backward
reachability loop. Other approaches for generating inductive
invariants include network invariants [2121] which uses finite
automata learning algorithms and split invariants [3232] which
connects small-model properties, inductive methods and com-
positional reasoning.

Cutoffs: The method of invisible invariants [66], [3636]
aims at discovering inductive invariants for parameterized
systems that are checked up to a certain cutoff value obtained
with a syntactic criterion. Similarly to our approach, it extracts
information from a forward exploration of a finite instance
of the original system. This information is generalized and,
contrary to our technique, must amount to inductive invariants,
whereas we only use it as an oracle. Although in Section IISection II
I1 ∧ I2 ∧ I3 ∧ ¬Θ is an inductive invariant, it is generally not
the case. In [1717], finite instances are also used in conjunction
with a template mechanism to obtain formulas that describe
interesting system behaviors. Approaches based on cutoff and
small model properties have been most successful when the
value is detected dynamically such as in [2525] although their
method only works for petri-nets, and most recently in [33]
which is capable of handling multiple process topologies
(arrays, rings, trees, multisets) whereas our implementation of
BRAB for array based transition systems only applies for linear
topologies (and multisets) but scales for the Flash.

Abstraction: Abdulla et al. propose in [11], [22] versions
of backward reachability analysis with approximated transi-
tions. Other methods for parameterized verification are based
on abstraction: the method of indexed predicates [2828] automat-
ically infers quantified predicated from which the technique of

50 67

predicate abstraction is able to construct inductive invariants:
the tool UCLID which implements this technique is able to
verify the German protocol [2929] but not the FLASH, counter
abstraction [1616] whose idea is to keep track of the number
of processes that satisfy a given property, and environment
abstraction [1111] which combines predicate abstraction with
counter abstraction. In our case, we do not abstract the original
system, abstractions are performed on the fly.

VII. CONCLUSION AND PERSPECTIVES

We have presented a novel backward reachability algo-
rithm with approximations and backtracking to check safety
properties of parameterized systems. Given a correct backward
reachability algorithm, we have proved the correctness of our
extension. We believe that small instances of the original
problem already exhibit behaviors that constitute a valuable
source of knowledge. Our algorithm uses this information to
filter approximations which are then model checked altogether,
allowing a factoring of the proofs. It can be seen as a technique
for automatically inferring invariants. We provide an open
source implementation BRAB and have demonstrated the via-
bility of our approach on several examples from the literature
and FLASH, a near industrial cache coherence protocol.

An immediate line of future work is to experiment this
approach on real industrial protocols such as Intel’s LCP or
hierarchical cache coherence protocols. While satisfactory, we
think that the backtracking mechanism can be improved and
that other oracles can be used for the exploration of the finite
instance. Finally we would also like to explore the idea of
approximations guided by finite instances in other frameworks.

ACKNOWLEDGMENT

This work was partially supported by the French ANR
project ANR-12-INSE-0007 Cafein.

REFERENCES

[1] P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Regular
model checking without transducers. In TACAS. Springer, 2007.

[2] P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification
of infinite-state processes with global conditions. In CAV. Springer,
2007.

[3] P. A. Abdulla, F. Haziza, and L. Holı́k. All for the price of few. In
VMCAI, pages 476–495, 2013.

[4] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Automated
support for the design and validation of fault tolerant parameterized
systems: a case study. ECEASST, 35, 2010.

[5] K. R. Apt and D. C. Kozen. Limits for automatic verification of finite-
state concurrent systems. Inf. Process. Lett., 22(6):307–309, May 1986.

[6] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized
verification with automatically computed inductive assertions. In CAV,
pages 221–234. Springer, 2001.

[7] K. Baukus, Y. Lakhnech, and K. Stahl. Parameterized verification of
a cache coherence protocol: Safety and liveness. In VMCAI, pages
317–330. Springer, 2002.

[8] T. D. Chandra and S. Toueg. Time and message efficient reliable
broadcasts. In Distributed algorithms, pages 289–303. Springer, 1991.

[9] C.-T. Chou, P. K. Mannava, and S. Park. A simple method for
parameterized verification of cache coherence protocols. In FMCAD,
pages 382–398. Springer, 2004.

[10] E. Clarke, D. Long, and K. McMillan. Compositional model checking.
In LICS, pages 353–362. IEEE Press, 1989.

[11] E. Clarke, M. Talupur, and H. Veith. Environment abstraction for
parameterized verification. In VMCAI, pages 126–141. Springer, 2006.

[12] E. M. Clarke, O. Grumberg, and M. C. Browne. Reasoning about
networks with many identical finite-state processes. In PODC’86. ACM.

[13] A. Cohen and K. S. Namjoshi. Local proofs for global safety properties.
Form. Methods Syst. Des., 34(2):104–125, Apr. 2009.

[14] S. Conchon, A. Goel, S. Krstić, A. Mebsout, and F. Zaı̈di. Cubicle:
A Parallel SMT-based Model Checker for Parameterized Systems. In
CAV, pages 718–724. Springer, 2012.

[15] S. Das, D. L. Dill, and S. Park. Experience with predicate abstraction.
In CAV, pages 160–171. Springer, 1999.

[16] E. A. Emerson and K. S. Namjoshi. On model checking for non-
deterministic infinite-state systems. In LICS, pages 70–80. IEEE, 1998.

[17] M. Emmi, R. Majumdar, and R. Manevich. Parameterized verification
of transactional memories. In PLDI, pages 134–145. ACM, 2010.

[18] S. M. German and A. P. Sistla. Reasoning about systems with many
processes. J. ACM, 39(3):675–735, July 1992.

[19] S. Ghilardi and S. Ranise. Backward reachability of array-based systems
by SMT solving: Termination and invariant synthesis. LMCS, 6(4),
2010.

[20] S. Ghilardi and S. Ranise. MCMT: A model checker modulo theories.
In IJCAR, pages 22–29, 2010.

[21] O. Grinchtein, M. Leucker, and N. Piterman. Inferring network
invariants automatically. In IJCAR, pages 483–497. Springer, 2006.

[22] O. Grumberg and H. Veith, editors. 25 Years of Model Checking: His-
tory, Achievements, Perspectives. Springer-Verlag, Berlin, Heidelberg,
2008.

[23] N. B. Henda and A. Rezine. The PFS prototype model checker.
http://www.it.uu.se/research/docs/fm/apv/tools/pfs/http://www.it.uu.se/research/docs/fm/apv/tools/pfs/.

[24] G. J. Holzmann. Design and validation of computer protocols. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[25] A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in
parameterized concurrent programs. In CAV, pages 645–659, 2010.

[26] S. Krstić. Parametrized system verification with guard strengthening
and parameter abstraction. In AVIS, 2005.

[27] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, and J. Hennessy. The Stanford FLASH multiprocessor.
In ISCA, pages 302–313. IEEE, 1994.

[28] S. K. Lahiri and R. E. Bryant. Constructing quantified invariants via
predicate abstraction. In VMCAI, pages 267–281. Springer, 2004.

[29] S. K. Lahiri and R. E. Bryant. Indexed predicate discovery for
unbounded system verification. In CAV, pages 135–147, 2004.

[30] K. L. McMillan. Parameterized verification of the FLASH cache
coherence protocol by compositional model checking. In CHARME,
pages 179–195. Springer, 2001.

[31] K. L. McMillan. Quantified invariant generation using an interpolating
saturation prover. In TACAS, pages 413–427. Springer, 2008.

[32] K. S. Namjoshi. Symmetry and completeness in the analysis of
parameterized systems. In VMCAI, pages 299–313, 2007.

[33] J. W. O’Leary, M. Talupur, and M. R. Tuttle. Protocol verification using
flows: An industrial experience. In FMCAD. IEEE, 2009.

[34] S. Park and D. L. Dill. Protocol verification by aggregation of
distributed transactions. In CAV, pages 300–310. Springer, 1996.

[35] G. D. Penna, B. Intrigila, I. Melatti, E. Tronci, and M. V. Zilli.
Exploiting transition locality in automatic verification of finite-state
concurrent systems. STTT, 6(4):320–341, 2004.

[36] A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductive verification
with invisible invariants. In TACAS, pages 82–97. Springer, 2001.

[37] A. Rezine. UNDIP. http://www.it.uu.se/research/docs/fm/apv/tools/undiphttp://www.it.uu.se/research/docs/fm/apv/tools/undip.
[38] M. Talupur and M. R. Tuttle. Going with the flow: Parameterized

verification using message flows. In FMCAD, pages 1–8. IEEE, 2008.

5168

http://www.it.uu.se/research/docs/fm/apv/tools/pfs/
http://www.it.uu.se/research/docs/fm/apv/tools/undip

Exploring Interpolants
Philipp Rümmer, Pavle Subotić

Department of Information Technology, Uppsala University, Sweden

Abstract—Craig Interpolation is a standard method to con-
struct and refine abstractions in model checking. To obtain
abstractions that are suitable for the verification of software
programs or hardware designs, model checkers rely on theorem
provers to find the right interpolants, or interpolants containing
the right predicates, in a generally infinite lattice of interpolants
for any given interpolation problem. We present a semantic and
solver-independent framework for systematically exploring inter-
polant lattices, based on the notion of interpolation abstraction.
We discuss how interpolation abstractions can be constructed for
a variety of logics, and how they can be exploited in the context
of software model checking.

I. Introduction

Model checkers use abstractions to reduce the state space
of software programs or hardware designs, either to speed
up the verification process, or as a way of handling infinite
state space. One of the most common methods to construct
or refine abstractions is Craig interpolation [1], a logical tool
to extract concise explanations for the infeasibility (safety)
of specific paths in a program. To ensure rapid convergence,
model checkers rely on theorem provers to find suitable
interpolants, or interpolants containing the right predicates,
in a generally infinite lattice of interpolants for any given
interpolation problem. In the past, a number of techniques
have been proposed to guide theorem provers towards good
interpolants (see Sect. II for an overview); however, those
techniques either suffer from the fact that they require invasive
changes to the theorem prover, or from the fact that they
operate on a single proof of path infeasibility, and are therefore
limited in the range of interpolants that can be produced.

We present a semantic framework for systematically explor-
ing interpolant lattices, based on the notion of interpolation
abstraction. Our approach is solver-independent and works
by instrumenting the interpolation query, and therefore does
not require any changes to the theorem prover. Despite sim-
ple implementation, interpolation abstractions are extremely
flexible, and can incorporate domain-specific knowledge about
promising interpolants, for instance in the form of interpolant
templates used by the theorem prover. The framework can be
used for a variety of logics, including arithmetic domains or
programs operating on arrays or heap, and is also applicable
for quantified interpolants.

We have integrated interpolation abstraction into the model
checker Eldarica [2], which uses recursion-free Horn clauses
(a generalisation of Craig interpolation) to construct abstrac-
tions [3], [4]. Our experiments show that interpolation abstrac-
tion can prevent divergence of the model checker in cases that
are often considered challenging.

A. Introductory Example

We consider an example inspired by the program discussed
in the introduction of [5]. The example exhibits a situation that
is generally considered challenging for automatic verifiers:

i = 0; x = j;

while (i<50) {i++; x++;}

if (j == 0) assert (x >= 50);

To show that the assertion holds, a predicate abstraction-based
model checker would construct a set of inductive invariants
as Boolean combination of given predicates. If needed, Craig
interpolation is used to synthesise further predicates.

In the example, we might consider the path to the assertion
in which the loop terminates after one iteration. This path
could lead to an assertion violation if the conjunction of as-
signments and guards on the path (in SSA form) is satisfiable:

i0 � 0 ∧ x0 � j ∧ i0 < 50 ∧ i1 � i0+1 ∧ x1 � x0+1 (1)
∧ i1 ≥ 50 ∧ j � 0 ∧ x1 < 50 (2)

It is easy to see that the formula is unsatisfiable, and that
the path therefore cannot cause errors. To obtain predicates
that prevent the path from being considered again in the
model checking process, Craig interpolants are computed for
different partitionings of the conjuncts; we consider the case
(1)∧(2), corresponding to the point on the path where the loop
condition is checked for the second time. An interpolant is a
formula I that satisfies the implications (1)→ I and (2)→ ¬I,
and that only contains variables that occur in both (1) and (2);
a model checker will use I as a candidate loop invariant.

The interpolation problem (1) ∧ (2) has several solutions,
including I1 = (i1 ≤ 1) and I2 = (x1 ≥ i1 + j). What makes
the example challenging is the fact that a theorem prover is
likely to compute interpolants like I1, recognising the fact
that the loop cannot terminate after only one iteration as
obvious cause of infeasibility. I1 does not describe a property
that holds across loop iterations, however; after adding I1
as a predicate, a model checker would have to consider the
case that the loop terminates after two iterations, leading to
a similar formula i2 ≤ 2, and so on. Model checking will
only terminate after 50 loop unwindings; in similar situations
with unbounded loops, picking interpolants like I1 will lead
to divergence (non-termination) of a model checker.

In contrast, the interpolant I2 encodes a deeper explanation
for infeasibility, the dependency between i and x, and takes the
actual assertion to be verified into account. Since I2 represents
an inductive loop invariant, adding it as predicate will lead to
significantly faster convergence of a model checker.

This paper presents a methodology to systematically explore
solutions of interpolation problems, enabling a model checker

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 5269ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

to steer the theorem prover towards interpolants like I2.
This is done by modifying the query given to the theorem
prover, through the application of interpolation abstractions
that capture domain knowledge about useful interpolants. To
obtain I2, we over-approximate the interpolation query (1)∧(2)
in such a way that I1 no longer is a valid interpolant:(

i0 � 0 ∧ x0 � j′ ∧ i0 < 50 ∧

i′1 � i0+1 ∧ x′1 � x0+1 ∧ x′1 − i′1 � x1 − i1 ∧ j′ � j
)

∧
(

x1 − i1 � x′′1 − i′′1 ∧ j � j′′ ∧ i′′1 ≥ 50 ∧ j′′ � 0 ∧ x′′1 < 50
)

The rewriting consists of two parts: (i) the variables x1, i1, j
are renamed to x′1, i

′
1, j′ and x′′1 , i

′′
1 , j′′, respectively; (ii) limited

knowledge about the values of x1, i1, j is re-introduced, by
adding the grey parts of the interpolation query. Note that the
formula is still unsatisfiable. Intuitively, the theorem prover
“forgets” the precise value of x1, i1, ruling out interpolants
like I1; however, the prover retains knowledge about the
difference x1 − i1 (and the value of j), which is sufficient to
compute relational interpolants like I2.

The terms x1 − i1 and j have the role of templates, and
encode the domain knowledge that linear relationships be-
tween variables and the loop counter are promising building
blocks for invariants (the experiments Sect. VII illustrate the
generality of this simple kind of template). Template-generated
abstractions represent the most important class of interpolation
abstractions considered in this paper (but not the only one), and
are extremely flexible: it is possible to use both template terms
and template formulae, but also templates with quantifiers,
parameters, or infinite sets of templates.

Templates are in our approach interpreted semantically, not
syntactically, and it is up to the theorem prover to construct
interpolants from templates, Boolean connectives, or other
interpreted operations. To illustrate this, observe that the
templates {x1 − i1, i1} would generate the same interpolation
abstraction as {x1, i1}; this is because the values of x1 − i1, i1
uniquely determine the value of x1, i1, and vice versa.

B. Contributions and Organisation of this Paper

• The framework of interpolant abstractions (Sect. IV);
• A catalogue of interpolation abstractions, in particular

interpolation abstractions generated from template terms
and template predicates (Sect. V);

• Algorithms to explore lattices of interpolation abstrac-
tions, in order to compute a range of interpolants for a
given interpolation problem (Sect. VI);

• An experimental evaluation (Sect. VII).

II. RelatedWork

Syntactic restrictions of considered interpolants [5], [6],
for instance limiting the magnitude of literal constants in inter-
polants, can be used to enforce convergence and completeness
of model checkers. This method is theoretically appealing, and
has been the main inspiration for the work presented in this
paper. In practice, syntactic restrictions tend to be difficult
to implement, since they require deep modifications of an
interpolating theorem prover; in addition, completeness does

not guarantee convergence within an acceptable amount of
time. We present an approach that is semantic and more prag-
matic in nature; while not providing any theoretic convergence
guarantees, the use of domain-specific knowledge can lead to
performance advantages in practice.

It has been proposed to use term abstraction to improve the
quality of interpolants [7], [8]: intuitively, the occurrence of
individual symbols in an interpolant can be prevented through
renaming. Our approach is highly related to this technique,
but is more general since it enables fine-grained control
over symbol occurrences in an interpolant. For instance, in
Sect. I-A arbitrary occurrence of the variable i1 is forbidden,
but occurrence in the context x1 − i1 is allowed.

The strength of interpolants can be controlled by choosing
different interpolation calculi [9], [10], applied to the same
propositional resolution proof. To the best of our knowledge,
no conclusive results are available relating interpolant strength
with model checking performance. In addition, the extraction
of different interpolants from the same proof is less flexible
than imposing conditions already on the level of proof con-
struction; if a proof does not leverage the right arguments
why a program path is infeasible, it is unlikely that good
interpolants can be extracted using any method.

In a similar fashion, proofs and interpolants can be min-
imised by means of proof transformations [11], [12]. The same
comments as in the previous paragraph apply.

Divergence of model checkers can be prevented by combin-
ing interpolation with acceleration, which computes precise
loop summaries for restricted classes of programs [13], [14],
[15]. Again, our approach is more pragmatic, can incorporate
domain knowledge, but is not restricted to any particular
class of programs. Our experiments show that our method is
similarly effective as acceleration for preventing divergence
when verifying error-free programs. However, in contrast to
acceleration, our method does not support the construction of
long counterexamples spanning many loop iterations.

Templates have been used to synthesise program invariants
in various contexts, for instance [16], [17], [18], and typically
search for invariants within a rigidly defined set of constraints
(e.g., with predefined Boolean or quantifier structure). Our
approach can be used similarly, with complex building blocks
for invariants specified by the user, but leaves the construction
of interpolants from templates entirely to the theorem prover.

III. Preliminaries
1) Craig interpolation: We assume familiarity with stan-

dard classical logic, including notions like terms, formu-
lae, Boolean connectives, quantifiers, satisfiability, structures,
models. For an overview, see, e.g., [19]. The main logics con-
sidered in this paper are classical first-order logic with equality
(FOL) and Presburger arithmetic (PA), but our method is not
restricted to FOL or PA. In the context of SMT, the quantifier-
free fragment of FOL, with equality � as only predicate, is
usually denoted by EUF.

Given any logic, we distinguish between logical symbols,
which include Boolean connectives, equality �, interpreted
functions, etc., and non-logical symbols, among others vari-
ables and uninterpreted functions. If s̄ = 〈s1, . . . , sn〉 is a list

5370

of non-logical symbols, we write φ[s̄] (resp., t[s̄]) for a formula
(resp., term) containing no non-logical symbols other than s̄.
We write s̄′ = 〈s′1, . . . , s

′
n〉 (and similarly s̄′′, etc.) for a list

of primed symbols; φ[s̄′] (t[s̄′]) is the variant of φ[s̄] (t[s̄]) in
which s̄ has been replaced with s̄′.

An interpolation problem is a conjunction A[s̄A, s̄]∧B[s̄, s̄B]
over disjoint lists s̄A, s̄, s̄B of symbols. An interpolant is a
formula I[s̄] such that A[s̄A, s̄] ⇒ I[s̄] and B[s̄, s̄B] ⇒ ¬I[s̄];
the existence of an interpolant implies that A[s̄A, s̄] ∧ B[s̄, s̄B]
is unsatisfiable. We say that a logic has the interpolation
property if also the opposite holds: whenever A[s̄A, s̄]∧B[s̄, s̄B]
is unsatisfiable, there is an interpolant I[s̄]. For sake of
presentation, we only consider logics with the interpolation
property; however, many of the results hold more generally.

We represent binary relations as formulae R[s̄1, s̄2] over two
lists s̄1, s̄2 of symbols, and relations over a vocabulary s̄ as
R[s̄, s̄′]. The identity relation over s̄ is denoted by Id[s̄, s̄′].

With slight abuse of notation, if φ[x1, . . . , xn] is a formula
containing the free variables x1, . . . , xn, and t1, . . . , tn are
ground terms, then we write φ[t1, . . . , tn] for the formula
obtained by substituting t1, . . . , tn for x1, . . . , xn.

2) Statelessness: Some of the results presented in this paper
require an additional assumption about a logic:

Definition 1 A logic is called stateless if conjunctions A[s̄]∧
B[t̄] of satisfiable formulae A[s̄], B[t̄] over disjoint lists s̄, t̄ of
non-logical symbols are satisfiable.

Intuitively, formulae in a stateless logic interact only through
non-logical symbols, not via any notion of global state,
structure, etc. Many logics that are relevant in the context
of verification are stateless (in particular quantifier-free FOL,
PA, logics based on the theory of arrays, etc); other logics,
for instance full FOL, modal logics, or separation logic can
be made stateless by enriching its vocabulary. Statelessness is
important in this paper, since we use the concept of renaming
of symbols to ensure independence of formulae.

3) Lattices: A poset is a set D equipped with a partial
ordering v. A poset 〈D,v〉 is bounded if it has a least element
⊥ and a greatest element >. We denote the least upper bound
and the greatest lower bound of a set X ⊆ D by

⊔
X and

�
X,

respectively, provided that they exist. Given elements a, b ∈ D,
we say b is a successor of a if a v b but a , b, and immediate
successor if in addition there is no c ∈ D\{a, b} with a v c v b.
Elements a, b ∈ D with a @ b and b @ a are incomparable.
An element a ∈ X ⊆ D is a maximal element (resp., minimal
element) of X if a v b (resp., b v a) and b ∈ X imply a = b.

A lattice L = 〈D,v〉 is a poset 〈D,v〉 such that
⊔
{a, b} and�

{a, b} exist for all a, b ∈ D. L is a complete lattice if all non-
empty subsets X ⊆ D have a least upper bound and greatest
lower bound. A complete lattice is bounded by definition. A
non-empty subset M ⊆ D forms a sub-lattice if

⊔
{a, b} ∈ M

and
�
{a, b} ∈ M for all a, b ∈ M.

A function f : D1 → D2, where 〈D1,v1〉 and 〈D2,v2〉 are
posets, is monotonic if x v1 y implies f (x) v2 f (y).

IV. Interpolation Abstractions
This section defines the general concept of interpolation

abstractions, and derives basic properties:

A[s]
B[s]

A[s'] /\

RA[s', s]

RB[s, s''] /\
B[s'']

Fig. 1. Illustration of interpolation abstraction, assuming that only common
non-logical symbols exist. Both concrete and abstract problem are solvable.

Definition 2 (Interpolation abstraction) Suppose A[s̄A, s̄]
and B[s̄, s̄B] are formulae over disjoint lists s̄A, s̄, s̄B of
non-logical symbols, and s̄′ and s̄′′ fresh copies of s̄. An
interpolation abstraction is a pair (RA[s̄′, s̄],RB[s̄, s̄′′]) of
formulae with the property that RA[s̄, s̄] and RB[s̄, s̄] are valid
(i.e., Id[s̄′, s̄] ⇒ RA[s̄′, s̄] and Id[s̄, s̄′′] ⇒ RB[s̄, s̄′′]). We call
A[s̄A, s̄] ∧ B[s̄, s̄B] the concrete interpolation problem, and(

A[s̄A, s̄′] ∧ RA[s̄′, s̄]
)
∧

(
RB[s̄, s̄′′] ∧ B[s̄′′, s̄B]

)
the abstract interpolation problem for A[s̄A, s̄], B[s̄, s̄B] and
(RA[s̄′, s̄],RB[s̄, s̄′′]).

Assuming that the concrete interpolation problem is solvable,
we call an interpolation abstraction feasible if also the abstract
interpolation problem is solvable, and infeasible otherwise.

The common symbols of the interpolation problem in
Sect. I-A are s̄ = 〈x1, i1, j〉, and the interpolation abstraction
is defined by RA = (x′1 − i′1 � x1 − i1 ∧ j′ � j) and
RB = (x1 − i1 � x′′1 − i′′1 ∧ j � j′′). A further illustration
is given in Fig. 1. The concrete interpolation problem is
solvable since the solution sets A[s̄] and B[s̄] are disjoint, i.e.,
A[s̄] ∧ B[s̄] is unsatisfiable. An interpolant is a formula I[s̄]
that represents a superset of A[s̄], but that is disjoint with
B[s̄]. Since RA[s̄, s̄] and RB[s̄, s̄] are valid, the solution set of
A[s̄A, s̄′]∧ RA[s̄′, s̄] represents an over-approximation of A[s̄];
similarly for B[s̄] and RB[s̄, s̄′′]. This ensures the soundness
of computed abstract interpolants. In Fig. 1, despite over-
approximation, the abstract interpolation problem is solvable,
which means that the interpolation abstraction is feasible.

Lemma 3 (Soundness) Every interpolant of the abstract in-
terpolation problem is also an interpolant of the concrete
interpolation problem (but in general not vice versa).

Interpolation abstractions can be used to guide interpola-
tion engines, by restricting the space Inter(A[s̄A, s̄], B[s̄, s̄B])
of interpolants satisfying an interpolation problem. For
this, recall that the set Inter(A[s̄A, s̄], B[s̄, s̄B])/≡ of inter-
polant classes (modulo logical equivalence) is closed un-
der conjunctions (meet) and disjunctions (join), so that
(Inter(A[s̄A, s̄], B[s̄, s̄B])/≡, ⇒) is a lattice. Fig. 2 shows the

54 71

x1 � j + 1 ∧ i1 � 1

j 6� 0 ∨ i1 ≤ 49 ∨ x1 ≥ 50

i1 � 1

i1 ≤ 1

i1 ≤ 2

i1 ≤ 49

x1 � i1 + j

x1 ≥ i1 + j

j 6� 0 ∨ x1 ≥ i1

...

...

I1

I2

I⊥

I>

Fig. 2. Parts of the interpolant lattice for the example in Sect. I-A (up to
equivalence). The dashed boxes represent the sub-lattices for the abstraction
induced by the template terms {i1} (left) and {x1 − i1, j} (right).

interpolant lattice for the example in Sect. I-A; this lattice
has a strongest concrete interpolant I⊥ and a weakest concrete
interpolant I>. In general, the interpolant lattice might be
incomplete and not contain such elements.

For a feasible abstraction, the lattice of abstract interpolants

(Inter(A[s̄A, s̄′] ∧ RA[s̄′, s̄], RB[s̄, s̄′′] ∧ B[s̄′′, s̄B])/≡, ⇒)

is a sub-lattice of the concrete interpolant lattice. The sub-
lattice is convex, because if I1 and I3 are abstract interpolants
and I2 is a concrete interpolant with I1 ⇒ I2 ⇒ I3, then also
I2 is an abstract interpolant. The choice of the relation RA in
an interpolation abstraction constrains the lattice of abstract
interpolants from below, the relation RB from above.

We illustrate two disjoint sub-lattices in Fig. 2: the left box
is the sub-lattice for the abstraction (i′1 � i1, i1 � i′′1), while the
right box represents the interpolation abstraction

(x′1 − i′1 � x1 − i1 ∧ j′ � j, x1 − i1 � x′′1 − i′′1 ∧ j � j′′)

used in Sect. I-A to derive interpolant I2.

As the following lemma shows, there are no principal
restrictions how fine-grained the guidance enforced by an
interpolation abstraction can be; however, since abstraction
is a semantic notion, we can only impose constraints up to
equivalence of interpolants:

Lemma 4 (Completeness) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an
interpolation problem with interpolant I[s̄] in a stateless logic,
such that both A[s̄A, s̄] and B[s̄, s̄B] are satisfiable (the problem
is not degenerate). Then there is a feasible interpolation ab-
straction (definable in the same logic) such that every abstract
interpolant is equivalent to I[s̄].

V. A Catalogue of Interpolation Abstractions

This section introduces a range of practically relevant inter-
polation abstractions, mainly defined in terms of templates as
illustrated in Sect. I-A. For any interpolation abstraction, it is
interesting to consider the following questions:

(i) provided the concrete interpolation problem is solvable,
characterise the cases in which also the abstract problem
can be solved (how coarse the abstraction is);

(ii) provided the abstract interpolation problem is solvable,
characterise the space of abstract interpolants.

The first point touches the question to which degree an
interpolation abstraction limits the set of proofs that a theorem
prover can find. We hypothesise (and explain in Sect. I-A)
that it is less important to generate interpolants with a specific
syntactic shape, than to force a theorem prover to use the right
argument for showing that a path in a program is safe.

We remark that interpolation abstractions can also be
combined, for instance to create abstractions that include
both template terms and template predicates. In general, the
component-wise conjunction of two interpolation abstractions
is again a well-formed abstraction, as is the disjunction.

A. Finite Term Interpolation Abstractions

The first family of interpolation abstractions is defined with
the help of finite sets T of template terms, and formalises the
abstraction used in Sect. I-A. Intuitively, abstract interpolants
for a term abstraction induced by T are formulae that only
use elements of T , in combination with logical symbols, as
building blocks (a precise characterisation is given in Lem. 7
below). For the case of interpolation in EUF (quantifier-free
FOL without uninterpreted predicates), this means that abstract
interpolants are Boolean combinations of equations between T
terms. In linear arithmetic, abstract interpolants may contain
equations and inequalities over linear combinations of T terms.

The relations defining a term interpolation abstraction fol-
low the example given in Sect. I-A, and assert that primed
and unprimed versions of T terms have the same value. As a
consequence, nothing is known about the value of unprimed
terms that are not mentioned in T .

Definition 5 (Term interpolation abstraction) Suppose that
A[s̄A, s̄] ∧ B[s̄, s̄B] is an interpolation problem, and T =

{t1[s̄], . . . , tn[s̄]} a finite set of ground terms. The interpolation
abstraction (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) defined by

RT
A[s̄′, s̄] =

n∧
i=1

ti[s̄′] � ti[s̄], RT
B[s̄, s̄′′] =

n∧
i=1

ti[s̄] � ti[s̄′′]

is called term interpolation abstraction over T .

Term abstractions are feasible if and only if a concrete
interpolant exists that can be expressed purely using T terms:

Lemma 6 (Solvability) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an in-
terpolation problem, and T = {t1[s̄], . . . , tn[s̄]} a finite set
of ground terms. The abstract interpolation problem for
(RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) is solvable if and only if there is a

formula I[x1, . . . , xn] over n variables x1, . . . , xn (and no further
non-logical symbols) such that I[t1[s̄], . . . , tn[s̄]] is an inter-
polant of A[s̄A, s̄] ∧ B[s̄, s̄B].

Example 1 Consider the interpolation abstraction used in
Sect. I-A, which is created by the set T = {x1 − i1, j} of terms.
The abstract interpolation problem is solvable with interpolant

5572

x1 ≥ i1 + j, which can be represented as (x1 − i1) ≥ (j) as a
combination of the template terms in T .

It would be tempting to assume that all interpolants gen-
erated by term interpolation abstractions are as specified in
Lem. 6, i.e., constructed only from T terms and logical
symbols. In fact, since our framework restricts the space of
interpolants in a semantic way, only weaker guarantees can
be provided about the range of possible interpolants; this is
related to the earlier observation (Sect. IV) that interpolation
can only be restricted up to logical equivalence:

Lemma 7 (Interpolant space) Suppose the abstract interpo-
lation problem for (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) is solvable, and the

underlying logic is EUF or PA. Then there is a strongest
abstract interpolant I⊥[t1[s̄], . . . , tn[s̄]], and a weakest abstract
interpolant I>[t1[s̄], . . . , tn[s̄]], each constructed only from T
terms and logical symbols. A formula J[s̄] is an abstract
interpolant iff the implications I⊥[t1[s̄], . . . , tn[s̄]] ⇒ J[s̄] ⇒
I>[t1[s̄], . . . , tn[s̄]] hold.

Example 2 Again, consider Sect. I-A, and the interpolant
lattice as shown in Fig. 2. The strongest abstract interpolant
for the interpolation abstraction induced by T = {x1 − i1, j} is
x1 � i1 + j, the weakest one j 6� 0 ∨ x1 ≥ i1.

B. Finite Predicate Interpolation Abstractions

In a similar way as sets of terms, also finite sets of formulae
induce interpolation abstractions. Template formulae can be
relevant to steer an interpolating theorem prover towards
(possibly user-specified or quantified) interpolants that might
be hard to find for the prover alone. The approach bears
some similarities to the concept of predicate abstraction in
model checking [20], [21], but still leaves the use of templates
entirely to the theorem prover.

Definition 8 (Predicate interpolation abstraction)
Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an interpolation problem,
and Pred = {φ1[s̄], . . . , φn[s̄]} is a finite set of formulae.
(RPred

A [s̄′, s̄],RPred
B [s̄, s̄′′]) defined by

RPred
A [s̄′, s̄] =

n∧
i=1

(
φi[s̄′]→ φi[s̄]

)
RPred

B [s̄, s̄′′] =

n∧
i=1

(
φi[s̄]→ φi[s̄′′]

)
is called predicate interpolation abstraction over Pred.

Intuitively, predicate interpolation abstractions restrict the
solutions of an interpolation problem to those interpolants
that can be represented as a positive Boolean combination of
the predicates in Pred. Note that it is possible to include the
negation of a predicate φ[s̄] in Pred if negative occurrences
of φ[s̄] are supposed to be allowed in an interpolant (or both
φ[s̄] and ¬φ[s̄] for both positive and negative occurrences).

Lemma 9 (Solvability) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an in-
terpolation problem, and Pred a finite set of predicates. If the
underlying logic is stateless, then the abstract interpolation
problem for (RPred

A [s̄′, s̄],RPred
B [s̄, s̄′′]) is solvable if and only

if A[s̄A, s̄] ∧ B[s̄, s̄B] has an interpolant I[s̄] that is a positive
Boolean combination of predicates in Pred.

We remark that the implication ⇐ holds in all cases,
whereas ⇒ needs the assumption that the logic is stateless.
As a counterexample for the stateful case, consider the in-
terpolation problem (∀x, y. x � y) ∧ (∃x, y. x 6� y) in full
FOL. The abstract interpolation problem is solvable even for
Pred = ∅ (with interpolant ∀x, y. x � y), but no positive
Boolean combination of Pred formulae is an interpolant.

The interpolant space can be characterised as for term
interpolation abstractions (Lem. 7):

Lemma 10 (Interpolant space) Suppose the abstract inter-
polation problem for (RPred

A [s̄′, s̄],RPred
B [s̄, s̄′′]) is solvable, and

the underlying logic is stateless. Then there is a strongest
abstract interpolant I⊥[s̄], and a weakest abstract inter-
polant I>[s̄], each being a positive Boolean combination of
predicates in Pred. A formula J[s̄] is an abstract interpolant
iff the implications I⊥[s̄]⇒ J[s̄]⇒ I>[s̄] hold.

C. Quantified Interpolation Abstractions

The previous sections showed how interpolation abstractions
are generated by finite sets of templates. A similar construction
can be performed for infinite sets of templates, expressed
schematically with the help of variables; in the verification
context, this is particularly relevant if arrays or heap are
encoded with the help of uninterpreted functions.

Example 3 Suppose the binary function H represents
heap contents, with heap accesses obj. field translated to
H(obj, field), and is used to state an interpolation problem:(

H(a, f) � c ∧ H(b, g) 6� null
)
∧(

b � c ∧ H(b, g) � null ∧ H(H(a, f), g) � null
)

An obvious interpolant is the formula I1 =
(
H(b, g) 6� null

)
.

Based on domain-specific knowledge, we might want to avoid
interpolants with direct heap accesses H(·, g), and instead
prefer the pattern H(H(·, f), g). To find alternative interpolants,
we can use the templates {H(H(x, f), g), a, b, c}, the first of
which contains a schematic variable x. The resulting abstrac-
tion excludes I1, but yields the interpolant
I2 =

(
b � c→ H(H(a, f), g) 6� null

)
.

Definition 11 (Schematic term abstraction) Suppose an in-
terpolation problem A[s̄A, s̄] ∧ B[s̄, s̄B], and a finite set T =

{t1[s̄, x̄1], . . . , tn[s̄, x̄1]} of terms with free variables x̄1, . . . , x̄n.
The interpolation abstraction (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) defined by

RT
A[s̄′, s̄] =

n∧
i=1

∀x̄i. ti[s̄′, x̄i] � ti[s̄, x̄i],

RT
B[s̄, s̄′′] =

n∧
i=1

∀x̄i. ti[s̄, x̄i] � ti[s̄′′, x̄i]

is called schematic term interpolation abstraction over T .

Note that schematic term interpolation abstractions reduce to
ordinary term interpolation abstractions (as in Def. 5) if none
of the template terms contains free variables.

56 73

Quantified abstractions are clearly less interesting for logics
that admit quantifier elimination, such as PA, but they are
relevant whenever uninterpreted functions (EUF) are involved.

Lemma 12 (Solvability in EUF) Suppose A[s̄A, s̄]∧ B[s̄, s̄B]
is an interpolation problem in EUF, T = {t1[s̄, x̄1], . . . , tn[s̄, x̄1]}
a finite set of schematic terms, and f = 〈 f1, . . . , fn〉 a vector
of fresh functions with arities |x̄1|, . . . , |x̄n|, respectively. The
abstract interpolation problem for (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) is solv-

able if and only if there is a formula I[f1, . . . , fn] (without non-
logical symbols other than f̄) such that I[t1[s̄, ·], . . . , tn[s̄, ·]] is
an interpolant of A[s̄A, s̄] ∧ B[s̄, s̄B].

The expression I[t1[s̄, ·], . . . , tn[s̄, ·]] denotes the formula
obtained by replacing each occurrence of a function fi in
I[f1, . . . , fn] with the template ti[s̄, x̄i], substituting the argu-
ments of fi for the schematic variables x̄i.

VI. Exploration of Interpolants

In practice, given an interpolation problem, we want to
compute a whole range of interpolants, or alternatively find
an interpolant that is optimal with respect to some objective.
For instance, in the example in Sect. I-A, we consider inter-
polant I2 constructed using templates {x1−i1, j} as “better” than
interpolant I1 for the template i1. To formalise this concept of
interpolant exploration we arrange families of interpolation
abstractions as abstraction lattices, and present search algo-
rithms on such lattices. Abstraction lattices are equipped with
a monotonic mapping µ to abstractions (RA,RB), ordered by
component-wise implication. The following paragraphs focus
on the case of finite abstraction lattices; the handling of infinite
(parametric) abstraction lattices is planned as future work.

Definition 13 (Abstraction lattice) Suppose an interpolation
problem A[s̄A, s̄] ∧ B[s̄, s̄B]. An abstraction lattice is a pair
(〈L,vL〉, µ) consisting of a complete lattice 〈L,vL〉 and a
monotonic mapping µ from elements of 〈L,vL〉 to interpo-
lation abstractions (RA[s̄′, s̄],RB[s̄, s̄′′]) with the property that
µ(⊥) = (Id[s̄′, s̄], Id[s̄, s̄′′]).

The elements of an abstraction lattice that map to feasible
interpolation abstractions form a downward closed set; an il-
lustration is given in Fig. 3, where feasible elements are shaded
in gray. Provided that the concrete interpolation problem is
solvable, the set of feasible elements in the lattice is non-
empty, due to the requirement that µ(⊥) = (Id[s̄′, s̄], Id[s̄, s̄′′]).

Particularly interesting are maximal feasible interpolation
abstractions, i.e., the maximal elements within the set of fea-
sible interpolation abstractions. Maximal feasible abstractions
restrict interpolants in the strongest possible way, and are
therefore most suitable for exploring interpolants; we refer to
the set of maximal feasible elements as abstraction frontier.

A. Construction of Abstraction Lattices

When working with interpolation abstractions generated by
templates, abstraction lattices can naturally by constructed as
the powerset lattice of some template base set (ordered by
the superset relation); this construction applies both to term
and predicate templates. Another useful construction is to

form the product of two lattices, defining the mapping µ as
the conjunction (or alternatively disjunction) of the individual
mappings µ1, µ2.

Example 4 An abstraction lattice for the example in Sect. I-A
is (〈℘(T),⊇〉, µ), with base templates T = {x1 − i1, i1, j} and µ
mapping each element to the abstraction in Def. 5. Note that
the bottom element of the lattice represents the full set T of
templates (the weakest abstraction), and the top element the
empty set ∅ (the strongest abstraction). Also, note that µ(T) is
the identity abstraction (Id[s̄′, s̄], Id[s̄, s̄′′]), since T is a basis
of the vector space of linear functions in x1, i1, j.

The lattice is presented in Fig. 3, with feasible elements in
light gray. The maximal feasible elements {i1} and {x1 − i1, j}
map to interpolation abstractions with the abstract interpolants
I1 and I2, respectively, as illustrated in Fig 2. Smaller feasible
elements (closer to ⊥) correspond to larger sub-lattices of
abstract interpolants, and therefore provide weaker guidance
for a theorem prover; for instance, element { j, i1} can produce
all abstract interpolants that {i1} generates, but can in addition
lead to interpolants like I3 = (j 6� 0 ∨ i1 ≤ 49).

∅

{x1 − i1}

{ j, i1}

{x1 − i1, i1, j}

{i1} { j}

{x1 − i1, i1} {x1 − i1, j}

Fig. 3. The abstraction lattice for the running example. The light gray shaded
elements are feasible, the dark gray ones maximal feasible.

B. Computation of Abstraction Frontiers

We present an algorithm to compute abstraction frontiers
of finite abstraction lattices. The search is described in Al-
gorithms 1 and 2. Algorithm 1 describes the top-level proce-
dure for finding minimal elements in an abstraction lattice.
Initially we check if the ⊥ element is infeasible (line 1).
If this is the case, then the concrete interpolation problem
is not solvable and we return an empty abstraction frontier.
Otherwise, we initialise the frontier with a maximal feasible
element (line 4), which is found by the maximise function
(described in Algorithm 2). Next, in line 5 we check whether
a feasible element can be found that is incomparable to all
frontier elements found so far; efficient methods for computing
such incomparable elements can be defined based on the shape
of the chosen abstraction lattice, and are not shown here. As
long as incomparable elements can be found, we compute
further maximal feasible elements and add them to the frontier.

In Algorithm 2 we describe the procedure for finding a max-
imal feasible element mfe with the property that elem v mfe. In
each iteration of the maximisation loop, it is checked whether

5774

Algorithm 1: Exploration algorithm
Input: Interpolation problem A[s̄A, s̄] ∧ B[s̄, s̄B],

abstraction lattice (〈L,vL〉, µ)
Result: Set of maximal feasible interpolation abstractions
if ⊥ is infeasible then1

return ∅;2

end3

Frontier ← {maximise(⊥)};4

while ∃ feasible elem ∈ L, incomparable with Frontier do5

Frontier ← Frontier ∪ {maximise(elem)};6

end7

return Frontier;8

Algorithm 2: Maximisation algorithm
Input: Feasible element: elem
Result: Maximal feasible element
while ∃ feasible successor fs of elem do1

pick element middle such that fs vL middle vL >;2

if middle is feasible then3

elem← middle;4

else5

elem← fs;6

end7

end8

return elem;9

elem has any feasible parents (line 1); if this is not the case,
elem has to be maximal feasible and is returned. Otherwise,
in the loop body the algorithm executes a binary search on
the set of elements in between elem and >. The algorithm
depends on the ability to efficiently compute (random) middle
elements between two elements a @ b of the lattice (line 2);
again, this functionality can best be implemented specifically
for an individual lattice, and is not shown here.

Lemma 14 (Correctness of exploration algorithm) When
applied to a finite abstraction lattice, Algorithm 1 terminates
and returns the set of maximal feasible elements.

A useful refinement of the exploration algorithm is to
canonise lattice elements during search. Elements a, b ∈ L
are considered equivalent if they are mapped to (logically)
equivalent abstraction relations by µ. Canonisation can select
a representative for every equivalence class of lattice elements,
and search be carried out only on such canonical elements.

C. Selection of Maximal Feasible Elements

Given the abstraction frontier, it is possible to compute a
range of interpolants solving the original interpolation prob-
lem. However, for large abstraction frontiers this may be
neither feasible nor necessary. It is more useful to define a
measure for the quality of interpolation abstractions, again
exploiting domain-specific knowledge, and only use the best
abstractions for interpolation.

To select good maximal feasible interpolation abstractions,
we define a function cost : L → N that maps elements of an

abstraction lattice (〈L,vL〉, µ) to a natural number, with lower
values indicating that an interpolation abstraction is considered
better. In the case of abstractions constructed using a powerset
lattice over templates (L = ℘(T)), it is natural to assign a cost
to every element in T (cost : T → N), and to define the cost
of a lattice element A ∈ L as cost(A) =

∑
t∈A cost(t).

Our abstraction lattice in Fig. 3 has two maximal feasible
elements, {i1} and {x1 − i1, j}, that result in computing the
interpolants I1 and I2, respectively. We can define a cost
function that assigns a high cost to {i1} and a low cost to
{x1 − i1, j}, expressing the fact that we prefer to not talk
about the loop counter i1 in absolute terms. More generally,
assigning a high cost to variables representing loop counters
is a reasonable strategy for obtaining general interpolants (a
similar observation is made in [7], and implemented with the
help of “term abstraction”).

VII. Integration into a SoftwareModel Checker

A. General Integration

Interpolation abstraction can be applied whenever inter-
polation is used by a model checker to eliminate spurious
counterexamples. To this end, it is necessary to select one
or multiple abstraction points in the constructed interpolation
problem (which might concern an inductive sequence of
interpolants, tree interpolants, etc.), and then to define an
abstraction lattice for each abstraction point. For instance,
when computing an inductive sequence I0, I1, . . . , I10 for the
conjunction P1∧ · · ·∧P10, we might select interpolants I3 and
I5 as abstraction points, choose a pair of abstraction lattices,
and add abstraction relations to the conjuncts P3, P4, P5, P6.

We then use Algorithm 1 to search for maximal feasible
interpolation abstractions in the Cartesian product of the
chosen abstraction lattices. With the help of cost functions,
the best maximal feasible abstractions can be determined, and
subsequently be used to compute abstract interpolants.

B. Abstraction in Eldarica

We have integrated our technique into the predicate
abstraction-based model checker Eldarica [2], which uses Horn
clauses to represent different kinds of verification problems
[3], and solves recursion-free Horn constraints to synthesise
new predicates for abstraction [4]. As abstraction points,
recurrent control locations in counterexamples are chosen
(corresponding to recurrent relation symbols of Horn clauses),
which represent loops in a program. Abstraction lattices are
powerset lattices over the template terms{

z | z a variable in the program
}

∪
{
x + y, x − y | x, y variables assigned in the loop body

}
In Table I we evaluate the performance of our approach

compared to Eldarica without interpolation abstraction, the
acceleration-based tool Flata [2], and the Horn engine of
Z3 [22] (v4.3.2). Benchmarks are taken from [15], and from a
recent collection of Horn problems in SMT-LIB format.1 They
tend to be small (10−750 Horn clauses each), but challenging

1https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/

58 75

Benchmark Eldarica Eldarica-ABS Flata Z3
N sec N sec sec sec

C programs from [15]
boustrophedon (C) * * 10 10.7 * 0.1
boustrophedon expansed (C) * * 11 7.7 * 0.1
halbwachs (C) * * 53 2.4 * 0.1
gopan (C) 17 22.2 62 57.0 0.4 349.5
rate limiter (C) 11 2.7 11 19.1 1.0 0.1
anubhav (C) 1 1.7 1 1.6 0.9 *
cousot (C) * * 3 7.7 0.7 *
bubblesort (E) 1 2.8 1 2.3 83.2 0.3
insdel (C) 1 0.9 1 0.9 0.7 0.0
insertsort (E) 1 1.8 1 1.7 1.3 0.1
listcounter (C) * * 8 2.0 0.2 *
listcounter (E) 1 0.9 1 0.9 0.2 0.0
listreversal (C) 1 1.9 1 1.9 4.9 *
mergesort (E) 1 2.9 1 2.6 1.1 0.2
selectionsort (E) 1 2.4 1 2.4 1.2 0.2
rotation vc.1 (C) 7 2.0 7 0.3 1.9 0.2
rotation vc.2 (C) 8 2.7 8 0.2 2.2 0.3
rotation vc.3 (C) 0 2.3 0 0.2 2.3 0.0
rotation.1 (E) 3 1.8 3 1.8 0.5 0.1
split vc.1 (C) 18 3.9 17 3.2 * 1.1
split vc.2 (C) * * 18 1.1 * 0.2
split vc.3 (C) 0 2.8 0 1.5 * 0.0
Recursive Horn SMT-LIB Benchmarks
addition (C) 1 0.7 1 0.8 0.4 0.0
bfprt (C) * * 5 8.3 - 0.0
binarysearch (C) 1 0.9 1 0.9 - 0.0
buildheap (C) * * * * - *
countZero (C) 2 2.0 2 2.0 - 0.0
disjunctive (C) 10 2.4 5 5.0 0.2 0.3
floodfill (C) * * * * 41.2 0.1
gcd (C) 4 1.2 4 2.0 - *
identity (C) 2 1.1 2 2.1 - 0.1
mccarthy91 (C) 4 1.4 3 2.4 0.2 0.0
mccarthy92 (C) 38 5.6 7 8.7 0.1 0.1
merge-leq (C) 3 1.1 7 7.0 15.7 0.1
merge (C) 3 1.1 4 4.5 14.7 0.1
mult (C) * * 15 52.8 - *
palidrome (C) 4 1.4 2 2.1 - 0.1
parity (C) 4 1.6 4 2.9 0.8 *
remainder (C) 2 1.1 3 1.6 - *
running (C) 2 0.9 2 1.7 0.2 0.1
triple (C) 4 2.0 4 5.1 - 0.1

TABLE I
Comparison of Eldarica without interpolation abstraction, Eldarica with
ABStraction, Flata, and Z3. The letter after the model name distinguishes
Correct benchmarks from benchmarks with a reachable Error state. For
Eldarica, we give the number of required CEGAR iterations (N), and the
runtime in seconds; for Flata and Z3, the runtime is given. Items with “*”
indicate a timeout (set to 10 minutes), while - indicates inability to run the
benchmark due to lack of support for some operators in the problems.

Experiments were done on an Intel Core i7 Duo 2.9 GHz with 8GB of RAM.

for model checkers. We focused on benchmarks on which
Eldarica without interpolation abstraction diverges; since in-
terpolation abstraction gives no advantages when constructing
long counterexamples, we mainly used correct benchmarks
(programs not containing errors). Lattice sizes in interpolation
abstraction are typically 215 − 2300; we used a timeout of 1s
for exploring abstraction lattices.

The results demonstrate the feasibility of our technique
and its ability to avoid divergence, in particular on problems
from [15]. Overall, interpolation abstraction only incurs a
reasonable runtime overhead. The biggest (relative) overhead
could be observed for the rate limiter example, where some
of the feasibility checks for abstraction take long time. Flata is
able to handle a number of the benchmarks on which Eldarica
times out, but can overall solve fewer problems than Eldarica.
Z3 is able to solve many of the benchmarks very quickly,

but overall times out on a larger number of benchmarks than
Eldarica with interpolation abstraction.

VIII. Conclusion
We have presented a semantic and solver-independent

framework for guiding theorem provers towards high-quality
interpolants. Our method is simple to implement, but can
improve the performance of model checkers significantly. Var-
ious directions of future work are planned: (i) develop further
forms of interpolation abstraction, in particular quantified and
parametric ones; (ii) application of the framework to programs
with arrays and heap; (iii) clearly, our approach is related to
the theory of abstract interpretation; we plan whether methods
from abstract interpretation can be carried over to our method.

Acknowledgements: We thank Hossein Hojjat and Viktor
Kuncak for discussions, and for assistance with the implemen-
tation in Eldarica. We are also grateful for helpful comments
from the referees. This work was supported by the EU FP7
STREP CERTAINTY and by the Swedish Research Council.

References
[1] W. Craig, “Linear reasoning. A new form of the Herbrand-Gentzen

theorem,” The Journal of Symbolic Logic, vol. 22, no. 3, 1957.
[2] H. Hojjat, F. Konecný, F. Garnier, R. Iosif, V. Kuncak, and P. Rümmer,

“A verification toolkit for numerical transition systems - tool paper,” in
FM, 2012, pp. 247–251.

[3] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,
“Synthesizing software verifiers from proof rules,” in PLDI, 2012.

[4] P. Rümmer, H. Hojjat, and V. Kuncak, “Disjunctive interpolants for
Horn-clause verification,” in Computer Aided Verification (CAV), ser.
LNCS, vol. 8044. Springer, 2013, pp. 347–363.

[5] R. Jhala and K. L. McMillan, “A practical and complete approach to
predicate refinement,” in TACAS, 2006, pp. 459–473.

[6] K. L. McMillan, “Quantified invariant generation using an interpolating
saturation prover,” in TACAS, 2008, pp. 413–427.

[7] F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina,
“Lazy abstraction with interpolants for arrays,” in LPAR, 2012.

[8] N. Totla and T. Wies, “Complete instantiation-based interpolation,” in
POPL, R. Giacobazzi and R. Cousot, Eds. ACM, 2013, pp. 537–548.

[9] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher, “Inter-
polant strength,” in VMCAI, 2010, pp. 129–145.

[10] S. F. Rollini, O. Sery, and N. Sharygina, “Leveraging interpolant strength
in model checking,” in CAV, 2012, pp. 193–209.

[11] S. Rollini, R. Bruttomesso, and N. Sharygina, “An efficient and flexible
approach to resolution proof reduction,” in HVC, 2010, pp. 182–196.

[12] K. Hoder, L. Kovács, and A. Voronkov, “Playing in the grey area of
proofs,” in POPL, 2012, pp. 259–272.

[13] N. Caniart, E. Fleury, J. Leroux, and M. Zeitoun, “Accelerating
interpolation-based model-checking,” in TACAS, 2008, pp. 428–442.

[14] M. N. Seghir, “A lightweight approach for loop summarization,” in
ATVA, 2011, pp. 351–365.

[15] H. Hojjat, R. Iosif, F. Konecný, V. Kuncak, and P. Rümmer, “Acceler-
ating interpolants,” in ATVA, 2012, pp. 187–202.

[16] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant for
ESC/Java,” in FME, 2001, pp. 500–517.

[17] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko, “Invariant
synthesis for combined theories,” in VMCAI. Springer, 2007.

[18] S. Srivastava and S. Gulwani, “Program verification using templates over
predicate abstraction,” in PLDI, 2009, pp. 223–234.

[19] J. Harrison, Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press, 2009.

[20] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,”
in CAV, 1997, pp. 72–83.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan, “Abstrac-
tions from proofs,” in 31st POPL, 2004.

[22] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in SAT, 2012, pp. 157–171.

[23] A. Brillout, D. Kroening, P. Rümmer, and T. Wahl, “Beyond quantifier-
free interpolation in extensions of Presburger arithmetic,” in VMCAI,
ser. LNCS. Springer, 2011.

5976

Synthesizing Multiple Boolean Functions using
Interpolation on a Single Proof

Georg Hofferek1 Ashutosh Gupta2 Bettina Könighofer1 Jie-Hong Roland Jiang3 Roderick Bloem1

1Graz University of Technology, Austria 2IST Austria 3National Taiwan University

Abstract—It is often difficult to correctly implement a Boolean
controller for a complex system, especially when concurrency is
involved. Yet, it may be easy to formally specify a controller. For
instance, for a pipelined processor it suffices to state that the visi-
ble behavior of the pipelined system should be identical to a non-
pipelined reference system (Burch-Dill paradigm). We present a
novel procedure to efficiently synthesize multiple Boolean control
signals from a specification given as a quantified first-order
formula (with a specific quantifier structure). Our approach
uses uninterpreted functions to abstract details of the design.
We construct an unsatisfiable SMT formula from the given
specification. Then, from just one proof of unsatisfiability, we use
a variant of Craig interpolation to compute multiple coordinated
interpolants that implement the Boolean control signals. Our
method avoids iterative learning and back-substitution of the
control functions. We applied our approach to synthesize a
controller for a simple two-stage pipelined processor, and present
first experimental results.

I. INTRODUCTION

Some program parts are easier to write than others. Freedom
of deadlocks, for instance, is trivial to specify but not to
implement. These parts lend themselves to synthesis, in which
a difficult part of the program is written automatically. This
approach has been followed in program sketching [20], [22],
[21], in lock synthesis [25], and in synthesis using templates
[9], [23], [24].

In this paper, we consider systems that have multiple
unimplemented Boolean control signals. The systems that we
will consider may not be entirely Boolean. We will consider
systems with uninterpreted functions, but our method extends
to systems with linear arithmetic. For example, consider a
microprocessor. Following Burch and Dill [5], we assume
that a reference implementation of the datapath is available.
Constructing a pipelined processor is not trivial, as it involves
implementing control logic signals that control the hazards
arising from concurrency in the pipeline. Correctness of the
pipelined processor is stated as equivalence with the reference
implementation. In this setting, we can avoid the complexity of
the datapath (which is the same in the two implementations)
by abstracting it away using uninterpreted functions. Where
Burch and Dill verify that the implementation of the control
signals is correct, we construct a correct implementation auto-
matically. This problem was previously addressed in [12]. We
improve over that paper by directly encoding the problem into

This research was supported by the European Commission through project
DIAMOND (FP7-2009-IST-4-248613), the Austrian Science Fund (FWF)
through projects RiSE (S11406-N23) and QUAINT (I774-N23), and ERC
Advanced Grant QUAREM (Quantitative Reactive Modeling).

SMT, thus avoiding BDDs, and by avoiding backsubstitution
in case multiple functions are synthesized.

Our approach is also applicable to synthesis of conditions in
(loop-free) programs. As noted in [9], synthesizing loop-free
programs can be a building block of full program synthesis.
Prior work [20] presented various techniques to deal with finite
loops. Those techniques are also applicable in our framework.

To synthesize a single missing signal, we can introduce
a fresh uninitialized Boolean variable c. We can express the
specification as a logical formula ∀I∃c∀O.Φ(I, c, O), which
states that, for each input I , there exists a value of c such
that each output O of the function is correct. Here, I and O
can come from non-Boolean domains. If an implementation is
possible, the formula is valid and a witness function for c is
an implementation of the missing signal.

Following [14], we can generate a witness using in-
terpolation. In this paper, we generalize this approach by
allowing n ≥ 1 missing components to be synthesized
simultaneously. This leads us to a formula of the form
∀I∃c1 . . . cn∀O.Φ(I, c1 . . . cn, O). We use an SMT solver to
prove a related formula unsatisfiable and use interpolation [18]
to obtain the desired witness functions. The first contribution
of this paper is to extend prior work [14] beyond the propo-
sitional level, and consider formulas expressed in the theory
of uninterpreted functions and equality. As a second contri-
bution, we propose a new technique, called n-interpolation,
which corresponds to simultaneously computing n coordinated
interpolants from just one proof of unsatisfiability. Like the
interpolation procedures of [11], [15], we need a “colorable”
proof, which we produce by transforming a standard proof
from an SMT solver.

Our algorithm avoids the iterative interpolant computation
described in [14], where interpolants are iteratively substituted
into the formula. As the iterative approach needs one SMT
solver call per witness function, and interpolants may grow
dramatically over the iterations, this computation may be
costly and may yield large interpolants. A similar back-
substitution method is also used in [2] for GR(1) synthesis and
in [16] for functional synthesis. Our new method requires the
expansion of the the (Boolean) existential quantifier, increasing
the size of the formula exponentially (w.r.t. the number of
control signals). Note, however, that previous approaches [14]
have the same limitation.

II. ILLUSTRATION

In this Section we illustrate our approach using a simple
controller synthesis problem. Figure 1 shows an incomplete

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 6077ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

hardware design. There are two input bit-vectors i1 and i2,
carrying non-zero signed integers, and also two output bit-
vectors o1 and o2 carrying signed integers. The block neg
flips the sign of its input. The outputs are controlled by two
bits, c1 and c2. The controller of c1 and c2 is not implemented.
Suppose the specification of the incomplete design states that
the signs of the two outputs must be different. Formally, the
specification is

∀i1, i2.∃c1, c2.∀o1, o2.((c1 ∧ o1 = i1 ∨ ¬c1 ∧ o1 = neg(i1))∧
(c2∧o2 = i2∨¬c2∧o2 = neg(i2)))→ (pos(o1)↔ ¬pos(o2)),

where the predicate pos returns T iff its parameter is pos-
itive. We can compute witness functions for c1 and c2 us-
ing n-interpolation.1 Our method returns witness functions
c1 = pos(i1) and c2 = ¬pos(i2). (Other functions are also
possible.)

1
0neg
o1

i1
c1

1
0neg

o2
i2

c2
??

Fig. 1. Example of controller
synthesis.

Note that computing two in-
terpolants independently may not
work. For instance, we may choose
c1 = T or we can take c2 = T, but
we cannot choose c1 = c2 = T.
This problem is normally solved
by substituting one solution be-
fore the next is computed, but our
method computes both interpolants
simultaneously and in a coordi-
nated way.

III. PRELIMINARIES

A. Uninterpreted Functions and Arrays

We consider the Theory of Uninterpreted Functions and
Equality TU . We have variables x ∈ X from an uninterpreted
domain, Boolean variables b ∈ B, uninterpreted function
symbols f ∈ F , and uninterpreted predicate symbols P ∈ P .
The following grammar defines the syntax of the formulas in
Tu.

terms 3 t ::= x | f(t, . . . , t),

atoms 3 a ::= b | P (t, . . . , t) | t = t,

formulas 3 φ ::= a | ¬φ | φ ∨ φ.

Let φ1∧φ2 be short for ¬(¬φ1∨¬φ2). Let a 6= b be short for
¬(a = b). Let T = φ ∨ ¬φ, let F = ¬T, and let B = {T, F}.

A literal is an atom or its negation. Let l be a literal. If l =
¬a then let ¬l = a. A clause is a set of literals, interpreted as
the disjunction. The empty clause ∅ denotes F. A conjunctive
formula is the negation of a clause. A CNF formula is a set
of clauses. A CNF formula is interpreted as the conjunction
of its clauses. Since any formula can be converted into a CNF
formula, we will assume that all the formulas in this paper are
CNF formulas. Let φ and ψ be CNF formulas/clauses/literals.
Let Symb(φ) be the set of variables, functions, and predicates
occurring in φ. Let φ � ψ iff Symb(φ) ⊆ Symb(ψ). Let
Lits(φ) = {a,¬a | a is an atom in φ}. For a clause C, let
C|φ = {s ∈ C | s � φ}.

1We must add the axiom (pos(i1) ⊕ pos(neg(i1))) ∧ (pos(i2) ⊕
pos(neg(i2))).

HYP
C

C ∈ φ, φ ∈ CNF AXI
C
`TU

C

RES
a ∨ C ¬a ∨D

C ∨D
Fig. 2. Sound and complete proof rules for the theory TU .

Arrays are useful for modeling memory whose size is not
known a priori. We will use a decidable fragment, known
as the Array Property Fragment with uninterpreted indices
to create specifications from which we synthesize controllers.
Bradley et al. [4] present an algorithm to reduce formulas with
array properties to equisatisfiable formulas over the theory of
uninterpreted functions. Hofferek and Bloem [12] show that
this algorithm generalizes to the quantified formulas that occur
in controller synthesis problems. For the rest of this paper,
we assume that specifications and formulas containing array
properties have been reduced to formulas over the theory of
uninterpreted functions.

B. Proofs of Unsatisfiability
We consider the usual semantics of formulas in Tu. The

problem of proving unsatisfiability of formulas is decidable.
Many Satisfiability Modulo Theories (SMT) Solvers exist that
can decide the satisfiability of CNF-TU formulas, and, in case
the formula is not satisfiable, produce a proof of unsatisfiabil-
ity.

A (named) proof rule is a template for a logic entailment
between a (possibly empty) list of premises and a conclusion.
Templates for premises are written above a horizontal line,
templates for conclusions below. Possible conditions for the
application of the proof rule are written on the right-hand side
of the line.

The proofs we consider will be based on the rules given
in Fig. 2. They form a sound and complete proof system for
proving unsatisfiability of a CNF-TU formula φ. The HYP
rule is used to introduce clauses from φ into the proof. The
AXI rule is used to introduce theory-tautology clauses. In their
simplest form, these clauses represent concrete instances of
theory axioms (reflexivity, symmetry, transitivity and congru-
ence). However, as our proof transformation algorithms will
produce theory tautologies that are based on several axioms,
we use the following, less restrictive, definition.

Definition 1 (Theory-Tautology Clause). A theory-tautology
clause is a clause of the form (¬a1 ∨ ¬a2 ∨ . . . ∨ ¬ak ∨ b)
that is tautologically true within the theory TU . The literals
¬ai, for 0 < i ≤ k, are called the implying literals and the
(positive) literal b is called the implied literal.

The RES rule is the standard resolution rule to combine
clauses that contain one literal in opposite polarity respec-
tively. We will call this literal the resolving literal or the pivot.

Definition 2 (Unsatisfiability Proof). An unsatisfiability proof
for a CNF-TU formula φ is a directed, acyclic graph (DAG)
(N,E), where N = {r} ∪ NI ∪ NL is the set of nodes
(partitioned into the root node r, the set of internal nodes
NI , and the set of leaf nodes NL), and E ⊆ N ×N is the set
of (directed) edges. Every n ∈ N is labeled with the name of
a proof rule rule(n) and a clause clause(n). The graph has
to fulfill the following properties:

6178

(1) clause(r) = ∅.
(2) For all n ∈ NL, clause(n) is either a clause from φ

(if rule(n) = HYP) or a theory-tautology clause (if
rule(n) = AXI).

(3) The nodes in NL whose clauses are theory-tautology
clauses can be ordered in such a way that for each such
node each implying literal either occurs in φ, or is an
implied literals of the tautology clause of a a preceding
node (according to the order).2

(4) The root has no incoming edges, the leaves have no
outgoing edges, and all nodes in n ∈ N \ NL have
exactly 2 outgoing edges, pointing to nodes n1, n2, with
n1 6= n2. Using clause(n1) and clause(n2) as premises
and clause(n) as conclusion must yield a valid instance
of proof rule rule(n).

We used the VERIT SMT solver [3], which provides proofs
that conform to these requirements.

C. Transitivity-Congruence Chains

Given a set A of atoms, we can use the well-known
congruence-closure algorithm to construct a congruence graph
[8] according to the following definition.

Definition 3 (Congruence Graph). A congruence graph over a
set A of atoms is a graph which has terms as its nodes. Each
edge is labeled either with an equality justification, which is
an equality atom from A that equates the terms connected
by the edge, or with a congruence justification. A congruence
justification can only be used when the terms connected by the
edge are both instances f (a1, . . . , ak) and f (b1, . . . , bk) of the
same uninterpreted function f . In this case, the congruence
justification is a set of k paths in the graph connecting the ai
and bi respectively, not using the edge which they label.

Definition 4 (Transitivity-Congruence Chain). A transitivity-
congruence chain π = (a b) is a path in a congruence
graph that connects terms a and b. Let Lits(π) be the set of
literals of the path, which is defined as the union of the literals
of all edges on the path. The literal of an edge labeled with
an equality justification p is the set {p}. The set of literals of
an edge labeled with a congruence justification with paths πi
is recursively defined as

⋃
i Lits(πi).

Theorem 1. The conjunction of the literals in a transitivity-
congruence chain (a b) implies a = b within TU . I.e.,
(
∨
l∈Lits(a b) ¬l) ∨ (a = b) is a theory-tautology clause.

D. Craig Interpolation

Let φ and ψ be CNF formulas such that φ ∧ ψ is unsat-
isfiable. The algorithm presented in [18] for computing an
interpolant between φ and ψ needs a proof of unsatisfiability of
φ∧ψ. By annotating this proof with the partial interpolants, the
algorithm computes the interpolant. In this paper, we present
slightly different annotation rules to compute interpolants,
which are results of mixing ideas from [15], [19].

2This means that every (new) literal is defined only in terms of previously
known literals. The order corresponds to the order in which the solver
introduced the new literals.

IHYP-φ
C[F]

C ∈ φ IHYP-ψ
C[T]

C ∈ ψ

IAXI-φ
C[F]

C � φ,`TU
C IAXI-ψ

C[T]
C � ψ,`TU

C

IRES
a ∨ C[IC] ¬a ∨D[ID]

C ∨D[(a ∨ IC) ∧ (¬a ∨ ID)]
a � φ, a � ψ

IRES-φ
a ∨ C[IC] ¬a ∨D[ID]

C ∨D[IC ∨ ID]
a � φ, a � ψ

IRES-ψ
a ∨ C[IC] ¬a ∨D[ID]

C ∨D[IC ∧ ID]
a � φ, a � ψ

Fig. 3. Interpolating proof rules

Definition 5 (Partial interpolant). Let C be a clause such that
φ∧ψ → C. A formula I is a partial interpolant for C between
φ and ψ if φ → C|φ ∨ I , and ψ → C|ψ ∨ ¬I , and I �
φ, and I � ψ. If I is a partial interpolant for C = ∅ between
φ and ψ, then I is an interpolant between φ and ψ.

In Figure 3, we present interpolating proof rules. In an
unsatisfiability proof of φ∧ψ, these rules annotate (in square
brackets) each conclusion with a partial interpolant for the
conclusion. Rules IHYP-φ and IHYP-ψ are used at leaf nodes
that have clauses from φ and ψ respectively. Rules IAXI-φ
and IAXI-ψ are used for leaves with theory-tautology clauses,
whose symbols are a subset of the symbols in φ and ψ respec-
tively. Note that these rules assume that the unsatisfiability
proof of φ ∧ ψ is colorable.

Definition 6 (Colorable Proof). A proof of unsatisfiability
of φ ∧ ψ is colorable if for every leaf nL of the proof
Symb(clause(nL)) ⊆ Symb(φ) or Symb(clause(nL)) ⊆
Symb(ψ).

In Section V, we will present an algorithm that transforms
a proof into a colorable proof. Due to this assumption we
can easily find corresponding partial interpolants for theory-
tautology clauses, which are either T or F. For internal proof
nodes, we follow Pudlák’s interpolation system [19]. The
annotation of the root node (with the empty clause) is the
interpolant between φ and ψ. See [7] for a proof of correctness
of the annotating proof rules.

IV. CONTROLLER SYNTHESIS

A. Overview

Following [12], we assume that synthesis problems are
given as formulas of the form

∀ī ∃c̄ ∀ō. Φ(̄i, c̄, ō), (1)

where c̄ is a vector of Boolean variables and Φ is a formula
over theory TU . Let c̄ = (c1, . . . , cn). Each ci represents a
missing if-condition in a program or a one-bit control signal
in a hardware design. Witness functions for the existentially
quantified variables in Eq. (1) are implementations of the miss-
ing components. Therefore, the synthesis problem is equivalent
to finding such witness functions. I.e., find (f1(̄i), . . . , fn(̄i))
such that ∀ī ∀ō. Φ(̄i, (f1(̄i), . . . , fn(̄i)), ō) holds true.

We compute the witness functions through the following
steps:

(1) Expand the existential quantifier and negate the formula
Φ to obtain an unsatisfiable formula φ (Sec. IV-B).

62 79

(2) Obtain a proof of unsatisfiability from an SMT solver.
(3) Transform the proof into a colorable, local-first proof

(Sec. V).
(4) Perform n-interpolation on the transformed proof. The

elements of the n-interpolant correspond to the witness
functions (Sec. IV-B).

We will first introduce the notion of n-interpolation and
show how it is used to find witness functions in Section IV-B.
Subsequently, we will show how to transform a proof of
unsatisfiability so that it is suitable for n-interpolation in
Section V.

B. Finding Witness Functions through Interpolation

Jiang et al. [14] show how to compute a witness function
in Eq. (1) using interpolation if c̄ contains a single Boolean
c. In this case, Eq. (1) reduces to ∀ī ∃c ∀ō. Φ(̄i, c, ō).
After expanding the existential quantifier by instantiating the
above formula for both Boolean values of c and renaming
ō in each instantiation, we obtain the equivalent formula
∀ī ∀ōF, ōT. Φ(̄i, F, ōF) ∨ Φ(̄i, T, ōT). Since all the quantifiers
are universal, the disjunction is valid. Therefore, its negation
¬Φ(̄i, F, ōF)∧¬Φ(̄i, T, ōT) is unsatisfiable. The interpolant be-
tween the two conjuncts is the witness function for variable c.

Theorem 2. The interpolant between ¬Φ(̄i, F, ōF) and
¬Φ(̄i, T, ōT) is the witness function for c. (For a proof, see
[13].)

We now extend this idea to compute witness functions when
c̄ is a vector of Booleans (c1, . . . , cn). Let Bn denote the
set of vectors of length n containing Fs and Ts. For vector
w ∈ Bn, let wj be the Boolean value in w at index j.
Since c̄ is a Boolean vector, we can expand the existential
quantifier for c̄ in Eq. (1) by enumerating the finitely many
possible values of c̄ to obtain ∀ī

∨
w∈Bn ∀ō . Φ(̄i, w, ō). By

dropping the quantifiers and renaming ō accordingly, we obtain∨
w∈Bn Φ(̄i, w, ōw). It is valid iff Eq. (1) is valid. Let φ denote

its negation
∧
w∈Bn ¬Φ(̄i, w, ōw), which is unsatisfiable. Let

φw denote ¬Φ(̄i, w, ōw). We will call the φws the 2n partitions
of φ. We will learn a vector of coordinated interpolants from
an unsatisfiability proof of φ. These interpolant formulas will
be witness functions for c̄. Since φws are obtained by only
renaming variables, the shared symbols between any two
partitions are equal.

Definition 7 (Global and Local Symbols). Symbols in the set
G =

⋂
w∈Bn Symb(φw) are called global symbols. All other

symbols are called local (w.r.t. the one partition in which they
occur).

Let I be a vector of formulas (I1, . . . , In). Let ⊕ be the
exclusive-or (xor) operator. For a word w ∈ Bn, let I

′
=

I ⊕ w if for each j ∈ 1..n, I ′j = Ij ⊕ wj . Let
∨
I be short

for I1 ∨ · · · ∨ In. Let C|w = C|φw . The following definition
generalizes the notion of interpolant and partial interpolant
from two formulas to 2n formulas.

Definition 8 (n-Partial Interpolant). Let C be a clause such
that (

∧
w∈Bn φw)→ C. An n-partial interpolant I for C w.r.t.

the φws is a vector of formulas with length n such that ∀w ∈

MHYP
C[w]

C ∈ φw MAXI
C[w]

C � φw

MRES
a ∨ C[w] ¬a ∨D[w]

C ∨D[w]
w ∈ Bn, a ∨ C ∨D � φw

MRES-G
a ∨ C[I

C
] ¬a ∨D[I

D
]

C ∨D [((a ∨ IC1) ∧ (¬a ∨ ID1),
. . . ,

(a ∨ ICn) ∧ (¬a ∨ IDn))]

a � G

Fig. 4. n-Interpolating proof rules for an unsatisfiable φ =
∧

w∈Bn φw .
These rules can only annotate proofs that are colorable and local-first.

Bn. φw → (C|w ∨
∨

(I ⊕w)) and I � G. If C = ∅ then I is
an n-interpolant w.r.t. the φws.

Theorem 3. An n-interpolant w.r.t. the φws constitutes witness
functions for the variables in c̄. (For a proof see [13].)

C. Computing n-interpolants

In Figure 4, we present the proof rules for n-interpolants.
These rules annotate each conclusion of a proof step with an
n-partial interpolant for the conclusion w.r.t. the φws. These
annotation rules require two properties of the proof. First, it
needs to be colorable.3 Second, it needs to be local-first.

Definition 9 (Local-first Proof). A proof of unsatisfiability is
local-first, if for every resolution node with a local pivot both
its premises are derived from the same partition.

The rule MHYP annotates the derived clause C with w if
C appears in partition φw. Similarly, the rule MAXI anno-
tates theory-tautology clause C with w if C � φw. Rules
MRES and MRES-G annotate resolution steps. MRES-G is
only applicable if the pivot is global and follows Pudlák’s
interpolation system n times. MRES is only applicable if both
premises are annotated with the same n-partial interpolant and
this n-partial interpolant is an element of Bn. Due to the local-
first assumption on proofs, these rules will always be able to
annotate a proof.

Theorem 4. Annotations in the rules in Figure 4 are n-partial
interpolants for the respective conclusions w.r.t. the φws. (For
a proof see [13].)

Since the n-interpolant is always quantifier free, we can
easily convert it into an implementation. To create a circuit
for one element of the n-interpolant, we create, for every
resolution node with a global pivot, a multiplexer that has
the pivot at its selector input. The other inputs connect to the
outputs of the multiplexers corresponding to the child nodes.
For leaf nodes and resolution nodes with local pivots, we
use the constants T, F, depending on which partition the node
belongs to. The output of the multiplexer corresponding to
the root node is the final witness function. Note that, unless
we apply logical simplifications, the circuits for all witness
functions all have the same multiplexer tree and differ only in
the constants at the leaves of this tree.

Also note that due to the local-first property, all nodes
that are derived from a single partition are annotated with
the same n-partial interpolant. Thus, we can disregard such

3We extend Def. 6 from two formulas to 2n partitions in the obvious way.

6380

local sub-trees, by iteratively converting nodes that have only
descendants from one partition into leaves. This does not affect
the outcome of the interpolation procedure.

The local-first property is actually needed to correctly com-
pute witness functions using Pudlák’s interpolation system. In
[13], we illustrate this observation with an example. Also note
that McMillan’s interpolation [18] system does not produce
correct witness functions even with the local-first property.

V. ALGORITHMS FOR PROOF TRANSFORMATION

Our interpolation procedure requires proofs to be colorable
and local-first. These properties are not guaranteed by efficient
modern SMT solvers. In this section we will show how to
transform a proof conforming to Def. 2 into one that is
colorable and local-first. Our proof transformation works in
three steps. First, we will remove any non-colorable literals
from the proof. Second, we will split any non-colorable theory-
tautology clauses. This gives us a colorable proof. In the
third step, we will reorder resolution steps to obtain the local-
first property [7]. For ease of presentation, we will assume that
the proof is a tree (instead of a DAG). The method extends to
proofs in DAG form.

A. Removing Non-Colorable Literals

Definition 10 (Colorable and Non-Colorable Literals). A lit-
eral a is colorable with respect to a partition φw (w-colorable)
iff a � φw. A literal that is not w-colorable for any partition
w is called non-colorable.

Note that global literals are w-colorable for every w. By def-
inition, the formula φ is free of non-colorable literals (equal-
ities and predicate instances). Thus, the only way through
which non-colorable literals can be introduced into the proof
are theory-tautology clauses.

We search the proof for a theory-tautology clause that
introduces a non-colorable literal a and has only colorable
literals as implying literals. We call this proof node the defining
node nd. At least one such leaf must exist. We remove this
non-colorable literal from the proof as follows. Starting from
nd, we traverse the proof towards the root, until we find a
node, which we call resolving node nr, whose clause does
not contain the literal a any more. Since the root node does
not contain any literals, such a node always exists. Let na
and n¬a be the premises of nr, respectively, depending on
which phase of literal a their clause contains. From n¬a,
we traverse the proof towards the leaves along nodes that
contain the literal ¬a. Note that any leaf that we reach in
this way must be labeled with a theory-tautology clause, as
clauses from φ cannot contain the non-colorable literal ¬a.
Note that ¬a is among the implying literals of such a leaf
node’s clause. I.e., such nodes use the literal to imply another
one. We will therefore call such a node a using node nu. We
update clause(nu), by removing ¬a and adding the implying
literals of clause(nd) instead.

It is easy to see that this does not affect clause(nu)’s prop-
erty of being a theory-tautology clause. Suppose clause(nd)
is (¬x1∨ . . .∨¬xk ∨a). Then

∧k
i=1 xi → a. By reversing the

implication we obtain ¬a →
∨k
i=1 ¬xi. Therefore, replacing

¬a with the disjunction of the implying literals of clause(nd)
in clause(nu) is sound.

To keep the proof internally consistent, we have to do the
same replacement on all the nodes on the path between nu and
nr. The node nr itself is not changed, as clause(nr) does not
contain the non-colorable literal (¬)a any more. I.e., the last
node that is updated is the node n¬a.

Now we have to distinguish two cases. The first case is
that node na still contains all of the implying literals of nd.
In this case, clause(nr) = clause(n′¬a), where n′

¬a is the
updated node n¬a. Thus, we use n′

¬a instead of nr in nr’s
parent node. In the second case, some of the implying literals
of clause(nd) have already been resolved on the path from
nd to nr. In that case clause(n′¬a) contains literals that do
not occur in clause(nr). Let xl be one such literal. We search
the path from nd to nr for the node that uses xl as a pivot.
Its premise that is not on the path from nd to nr contains
¬xl. We use this node and the node n′

¬a as premises for a
new resolution node with xl as pivot. Note that this resolution
may introduce more literals that do not appear in clause(nr)
any more. However, just as with xl, any such literal must
have been resolved somewhere on the path between nd and
nr. Thus, we repeat this procedure, replicating the resolution
steps that took place between nd and nr, until we get a node
whose clause is identical to clause(nr). This node can then
be used instead of nr in nr’s parent node. Finally, we remove
all nodes that are now unreachable from the proof.

Example 1. An illustrative example of this procedure is shown
in Figure 5.

We repeat this procedure for all leaves with a non-colorable
implied literal and (all) colorable implying literals. Note that
one application of this procedure may convert a node where
a non-colorable literal was implied by at least one other non-
colorable literal into a node where the implied non-colorable
literal is now implied only by colorable literals. Nevertheless
this procedure terminates, as the number of leaves with non-
colorable implied literals decreases with every iteration. Each
iteration removes (at least) one such leaf from the proof and
no new leaves are introduced.

Theorem 5. Upon termination of this procedure, the proof
does not contain any non-colorable literals.

B. Splitting Non-Colorable Theory-Tautology Clauses

After removing all non-colorable literals, the proof may still
contain non-colorable theory-tautology clauses, i.e., theory-
tautology clauses that contain local literals from more than
one partition. We split such leaves into several new theory-
tautology clauses, each containing only w-colorable literals,
and, via resolution, obtain a (now internal) node with the
same clause as the original non-colorable theory-tautology
clause. Note that internal nodes with non-colorable clauses
are not a problem for our interpolation procedure, but leaves
with non-colorable clauses are. We will show how to split a
non-colorable theory-tautology clause with an implied equality

64 81

RES

RES
n1 : (l1 = zg ∨ xg = yg) nd : (l1 6= zg ∨ zg 6= l2 ∨ l1 = l2)

na : (xg = yg ∨ zg 6= l2 ∨ l1 = l2)
RES

nu : (l1 6= l2 ∨ f(l1) = f(l2)) n3 : (f(l1) 6= f(l2) ∨ ug 6= vg)

n¬a : (l1 6= l2 ∨ ug 6= vg)

nr : (xg = yg ∨ zg 6= l2 ∨ ug 6= vg)

(a) Proof before removing non-colorable literal l1 = l2.

RES

n1 : (l1 = zg ∨ xg = yg) RES
n3 : (f(l1) 6= f(l2) ∨ ug 6= vg) n

′
u : (l1 6= zg ∨ zg 6= l2 ∨ f(l1) = f(l2))

n
′
¬a : (l1 6= zg ∨ zg 6= l2 ∨ ug 6= vg)

n
′′
¬a : (xg = yg ∨ zg 6= l2 ∨ ug 6= vg)

(b) Proof after removing non-colorable literal l1 = l2.

Fig. 5. Removing a non-colorable literal. Assume that term indices indicate the number of the partition the term belongs to. Index g is used for global terms.
This example shows how the non-colorable literal l1 = l2, introduced in node nd, is removed from the proof by replacing its negative occurrences with the
(colorable) defining literals (l1 6= zg ∨ zg 6= l2). Note that in the original proof l1 6= zg is already resolved on the path from nd to nr using node n1. This
resolution step is replicated in the transformed proof by making a resolution step with nodes n′

¬a and n1. Since the literal xg = yg introduced into n′′
¬a

also occurs in the original nr , and also the second defining literal zg 6= l2 occurs in nr , no further resolution steps are necessary. The conclusions of nd

and n′′
¬a are identical and n′′

¬a can be used instead of nr in nr’s parent.

𝑓(𝑙1) 𝑓(𝑙2)

𝑙1 𝑙2 𝑔 𝑙1 = 𝑔 𝑔 = 𝑙2

(a) Non-Colorable Transitivity-Congruence
Chain for (f(l1) f(l2))

𝑓(𝑙1) 𝑓(𝑙2)

𝑙1 𝑔 𝑙1 = 𝑔

𝑓(𝑔)

𝑔 𝑙2 𝑔 = 𝑙2

(b) Colorable Transitivity-Congruence Chain for
(f(l1) f(l2))

Fig. 6. Splitting a non-colorable transitivity-congruence chain by introducing
global intermediate terms.

literal. This procedure can be trivially extended to implied
literals that are uninterpreted predicate instances.

Using the implying literals of the theory-tautology clause
(converted to their positive phase), we create a congruence
graph (cf. Def. 3). Since the implying literals and the implied
literal form a theory tautology, this congruence graph is
guaranteed to contain a path between the the two terms equated
by the implied literal. We use breadth-first search to find
the shortest such transitivity-congruence chain (Def. 4).4 The
chain will be the basis for splitting the non-colorable theory
tautology. First, we need to make all edges in the chain
colorable. A colorable edge is an edge for which there is a
w such that all the edge’s literals are w-colorable. Edges with
an equality justification already are colorable, as we assumed
that no non-colorable literals occur in the theory-tautology
clause. Edges with congruence justifications, however, may
still be non-colorable. I.e., the two terms they connect might
belong to different partitions, and/or some of the paths that
prove equality for the function parameters might span over
more than one partition. Fuchs et al. [8] have shown how to
recursively make all edges in a chain colorable by introducing
global intermediate terms for non-colorable edges. We will
illustrate this procedure with a simple example, and refer to
[8] for details.

Example 2. Suppose we have the two local terms f(l1)
and f(l2), where l1, l2 are from two different partitions, and
a global term g. (See Fig. 6.) A possible (non-colorable)

4Note that these graphs are usually relatively small.

congruence justification for f(l1) = f(l2) could be given as
(l1 = g, g = l2). The edge between f(l1) and f(l2) is now
split into two (colorable) parts: f(l1) = f(g), with justification
l1 = g, and f(g) = f(l2), with justification g = l2. Note
that f(g) is a new term that (possibly) did not appear in the
congruence graph before. Since we assumed that there are no
non-colorable equality justifications in our graph, such a global
intermediate term must always exist. It should be clear how
to extend this procedure to n-ary functions.

Note that in a colorable chain, every edge either connects
two terms of the same partition, or a global term and a
local term. In other words, terms from different partitions are
separated by at least one global term between them. We now
divide the whole chain into (overlapping) segments, so that
each segment uses only w-colorable symbols. The global terms
that separate symbols with different colors are part of both
segments.5 Let’s assume for the moment that the chain starts
and ends with a global term. We will show how to deal with
local terms at the beginning/end of the chain later. For ease
of presentation, also assume that the chain consists of only
two segments. An extension to chains with more segments
can be done by recursion. We take the first segment of the
chain (from start to the global term that is at the border to
the next segment), plus a new “shortcut” literal that states
equality between the last term of the first segment and the
last term of the entire chain, and use them as implying literals
for a new theory-tautology clause. The implied literal of this
tautology will be an equality between the first and the last
term of the entire chain. Next, we create a theory tautology
with the literals of the second segment of the chain. Note
that the implied literal of this theory-tautology clause (which
occurs in positive phase) is the same as the shortcut literal
used in the theory-tautology clause corresponding to the first
segment. There, however, it occurred in negative phase. Thus,
we can use this literal for resolution between the two clauses.
We obtain a node that has all the literals of the entire chain
as implying literals, and an equality between start term and
end term of the chain as the implied literal. I.e., this new
internal node has the same conclusion as the non-colorable
theory-tautology clause from which we started.

In case the start/end of the chain is not a local term, we

5If there is more than one consecutive global term, we arbitrarily choose
the last one.

6582

RES

RES
n1 : [cg 6= d2 ∨ d2 6= e2 ∨ e2 6= fg ∨ fg 6= kg ∨ cg = kg] n2 : [fg 6= h3 ∨ h3 6= kg ∨ fg = kg]

n3 : [cg 6= d2 ∨ d2 6= e2 ∨ e2 6= fg ∨ fg 6= h3 ∨ h3 6= kg ∨ cg = kg]
n4 : [a1 6= b1 ∨ b1 6= cg ∨ cg 6= kg ∨ kg 6= l1 ∨ a1 = l1]

n5 : [a1 6= b1 ∨ b1 6= cg ∨ cg 6= d2 ∨ d2 6= e2 ∨ e2 6= fg ∨ fg 6= h3 ∨ h3 6= kg ∨ kg 6= l1 ∨ a1 = l1]

Fig. 7. Splitting theory tautology clauses. Suppose we have created the transitivity-congruence chain (a1 b1 cg d2 e2 fg h3 kg l1)
from a theory-tautology clause, where all the edges are colorable. The number in the index indicates the partition of the respective term, with g being used
for global terms. First, we consider only the part from the first to the last global term (cg and kg , respectively). We “split” this sub-chain into the chains
(cg d2 e2 fg kg) and (fg h3 kg) and convert them into (colorable) theory tautology clauses (nodes n1 and n2, respectively). By
resolution we obtain n3. Now, we create the tautology in node n4, which corresponds to all links of the original chain which we have not dealt with already,
and a “shortcut” over the part we have already considered: (a1 b1 cg kg l1). Note that this is also a colorable theory-tautology clause. By
resolution over n3 and n4 we obtain n5, whose clause is identical to the theory-tautology clause from which we started.

first deal with the sub-chain from the first to the last global
term, as described above. Note that if both start and end of
the chain are local terms, they have to belong to the same
partition, because otherwise the implied literal would be non-
colorable. We create a theory-tautology clause with the local
literals from the start/end of the chain, and one shortcut literal
that equates the first and last global term. This literal can be
used for resolution with the implied literal of the node obtained
in the previous step.

In summary, this procedure replaces all leaves that have non-
colorable theory-tautology clauses with subtrees whose leaves
are all colorable theory-tautology clauses, and whose root is
labeled with the same clause as the original non-colorable leaf.

Example 3. Fig. 7 shows how to split the non-colorable
theory-tautology clause (a1 6= b1 ∨ b1 6= cg ∨ cg 6= d2 ∨
d2 6= e2 ∨ e2 6= fg ∨ fg 6= h3 ∨ h3 6= kg ∨ kg 6= l1 ∨ a1 = l1).

Theorem 6. After applying the above procedure to all leaves
with non-colorable theory-tautology clauses, the proof is col-
orable.

C. Obtaining a local-first proof

To obtain a local-first proof, we traverse the proof in
topological order. Each time we encounter a resolution step
that has a global pivot and we have seen local pivots among
its ancestors then we apply one of the two transformation
rules presented in Figure 8 depending on the matching pat-
tern. These two transformation rules are the standard pivot
reordering rules from [7]. Note that these rules assume that
the proof is redundancy free, which can be achieved by the
algorithms presented in [10]. After repeated application of
these transformation rules, we can move the resolutions with
local pivots towards the leaves of the proof until we don’t have
any global pivot among its descendants.

Theorem 7. After exhaustive application of this transforma-
tion, we obtain a colorable, local-first proof.

VI. EXPERIMENTAL RESULTS

We have implemented a prototype to evaluate our
interpolation-based synthesis approach. We read the formula Φ
corresponding to our synthesis problem (Eq. 1) from a file in
SMT-LIB format [1]. As a first step, our tool performs several
transformations on the input formula (reduction of arrays
to uninterpreted functions [4], expansion of the existential
quantifier to obtain the partitions, renaming of ō-variables in
each partition, negation to obtain φ), before giving it to the
VERIT solver. Second, we apply the proof transformations

MEM

op-b-of

op-a-of

0 1

inst-of

0

0
=

0 1

0

addr-of 0

1

is-BEQZ

incrPC

c2

ALU

0
1

c1

Fig. 9. A simple microprocessor with a 2-stage pipeline.

described in Section V to the proof we obtain from VERIT.
Third, we compute the witness functions as the n-interpolants
w.r.t. the partitions of φ.

We have checked all results using Z3 [6], by showing that
¬Φ(̄i, (f1(̄i), . . . , fn(̄i)), ō) is unsatisfiable.

We used our tool on several small examples and also tried
one non-trivial example which we explain in more detail. In
Fig. 9 we show a simple (fictitious) microprocessor with a 2-
stage pipeline. MEM represents the main memory. We assume
that the value at address 0 is hardwired to 0. I.e., reading
from address 0 always yields value 0. The blocks inst-of, op-
a-of, op-b-of, and addr-of represent combinational functions
that decode a memory word. The block incr increments the
program counter (PC). The block is-BEQZ is a predicate that
checks whether an instruction is a branch instruction. The
design has two pipeline-related control signals for which we
would like to synthesize an implementation. Signal c1 causes
a value in the pipeline to be forwarded and signal c2 squashes
the instruction that is currently decoded and executed in the
first pipeline stage. This might be necessary due to speculative
execution based on a “branch-not-taken assumption”. The
implementation of these control signals is not as simple as it
might seem at first glance. For example, the seemingly trivial
solution of setting c1 = T whenever PC equals the address
register is not correct. For example, if PC = 0, forwarding

66 83

RES
g ∨ l ∨D ¬g ∨ E

RES
l ∨D ∨ E ¬l ∨ C

C ∨D ∨ E

RES
g ∨ l ∨D ¬l ∨ C

RES
g ∨ C ∨D ¬g ∨ E

C ∨D ∨ E

RES
g ∨ l ∨D ¬g ∨ l ∨ E

RES
l ∨D ∨ E ¬l ∨ C

C ∨D ∨ E

RES
g ∨ l ∨D ¬l ∨ C

g ∨ C ∨D RES
¬g ∨ l ∨ E ¬l ∨ C

¬g ∨ C ∨ E
RES

C ∨D ∨ E
Fig. 8. If a local pivot l occurs after a global pivot g in a proof then we can rewrite the proof using one of the above transformation rules. After the
transformation, the proof first resolves l then g.

TABLE I
Experimental results. Columns: (1) Name; (2) Number of control signals;

(3) Total synthesis time including checking the results; (4) Number of
leaves with theory-tautology clauses that define a new non-colorable literal
(Number of such leaves at the start of the cleaning procedure + Number of

leaves introduced (and subsequently removed) by the procedure); (5)
Number of leaves to be split because they contain literals from more than

one partition. (Number after “/” is total number of leaves in proof at
beginning of split procedure; (6) Time to reorder the proof to be local-first;
(7) Number of nodes in proof from VERIT / Size of the transformed proof

for interpolation (local sub-trees have been converted to leaves).

Name Ctrl time [s] # leaves
to clean

leaves
to split

Reorder-
Time [ms]

Proof size

const 2 0.6 0 0 / 6 42 19 / 1
illu02 2 1.1 1 1 / 65 83 205 / 12
illu03 3 5.0 8 8 / 138 487 467 / 22
illu04 4 8.0 3 3 / 242 532 951 / 75
illu05 5 12.8 10 10 / 413 589 1588 / 78
illu06 6 237.0 9 9 / 1093 1820 4691 / 370
illu07 7 150.0 14 14 / 1443 2860 6824 / 555
illu08 8 1270.0 20 20 / 3450 4980 17524 / 1023
pipe 1 1.6 6 + 6 3 / 70 129 285 / 22
proc 2 28.1 3 + 3 61 / 1014 1770 5221 / 1042

should not be done.6 By taking out the blue parts in Fig. 9 we
obtain the non-pipelined reference implementation which we
used to formulate a Burch-Dill-style equivalence criterion [5].
The resulting formula was used as a specification for synthesis.

Table I summarizes our experimental results. The bench-
mark “const” is a simple example with 2 control signals that
allows for constants as valid solutions. “illu02” is the example
presented in Section II; “illu03” to “illu08” are scaled-up
versions of “illu02”, with increased numbers of inputs and
control signals. “pipe” is the simple pipeline example that was
used in [12]. “proc” is the pipelined processor shown in Fig. 9
and described above. All experiments were performed on an
Intel Nehalem CPU with 3.4 GHz.

Note that using our new method we have reduced the
synthesis time of “pipe” from 14 hours [12] to 1.6 seconds.
As a second comparison, we tried to reduce the (quantified)
input formula of “proc” to a QBF problem (using the transfor-
mations outlined in [12]) and run DEPQBF [17] on it. After
approximately one hour, DEPQBF exhausted all 192 GB of
main memory and terminated without a result.

VII. CONCLUSION

Hofferek and Bloem [12] have shown that uninterpreted
functions are an efficient way to abstract away unnecessary
details in controller synthesis problems. By using interpola-
tion in TU , we avoid the costly reduction to propositional
logic, thus unleashing the full potential of the approach
presented in [12]. Furthermore, by introducing the concept
of n-interpolation, we also avoid the iterative construction

6We actually made this mistake while trying to create and model-check a
manual implementation for the control signals, and it took some time to locate
and understand the problem.

which requires several calls to the SMT solver and back-
substitution. The n-interpolation approach improves synthesis
times by several orders of magnitude, compared to previous
methods [12], rendering it applicable to real-world problems,
such as pipelined microprocessors. We have also shown that
a naive transformation to QBF is not a feasible option.

REFERENCES

[1] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. In Workshop on Satisfiability Modulo Theories, 2010.

[2] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Automatic hardware synthesis from specifications: a
case study. In DATE, 2007.

[3] T. Bouton, D. C. B. de Oliveira, D. Déharbe, and P. Fontaine. veriT:
An open, trustable and efficient SMT-solver. In CADE, 2009.

[4] A. Bradley and Z. Manna. The Calculus of Computation. Springer,
2007.

[5] J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessor control. In CAV. Springer, 1994. LNCS 818.

[6] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
2008.

[7] V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Inter-
polant strength. In VMCAI, 2010.

[8] A. Fuchs, A. Goel, J. Grundy, S. Krstic, and C. Tinelli. Ground
interpolation for the theory of equality. Logical Methods in Computer
Science, 8(1), 2012.

[9] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free
programs. In PLDI. ACM, 2011.

[10] A. Gupta. Improved single pass algorithms for resolution proof reduc-
tion. In ATVA. Springer, 2012.

[11] K. Hoder, L. Kovács, and A. Voronkov. Playing in the grey area of
proofs. In POPL. ACM, 2012.

[12] G. Hofferek and R. Bloem. Controller synthesis for pipelined circuits
using uninterpreted functions. In MemoCODE. IEEE, 2011.

[13] G. Hofferek, A. Gupta, B. Könighofer, J.-H. R. Jiang, and R. Bloem.
Synthesizing multiple boolean functions using interpolation on a
single proof, 2013. Full version with appendix available at
arXiv.org:1308.4767.

[14] J.-H. R. Jiang, H.-P. Lin, and W.-L. Hung. Interpolating functions from
large Boolean relations. In ICCAD, 2009.

[15] L. Kovács and A. Voronkov. Interpolation and symbol elimination. In
CADE. Springer, 2009.

[16] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional
synthesis. In PLDI. ACM, 2010.

[17] F. Lonsing and A. Biere. Integrating dependency schemes in search-
based QBF solvers. In SAT 2010, 2010.

[18] K. L. McMillan. An interpolating theorem prover. TCS, 345(1), 2005.
[19] P. Pudlák. Lower bounds for resolution and cutting plane proofs and

monotone computations. Journal of Symbolic Logic, 1997.
[20] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodı́k, V. A. Saraswat, and

S. A. Seshia. Sketching stencils. In PLDI. ACM, 2007.
[21] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu. Program-

ming by sketching for bit-streaming programs. In PLDI. ACM, 2005.
[22] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat.

Combinatorial sketching for finite programs. In ASPLOS. ACM, 2006.
[23] S. Srivastava, S. Gulwani, S. Chaudhuri, and J. S. Foster. Path-based

inductive synthesis for program inversion. In PLDI. ACM, 2011.
[24] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification

to program synthesis. In POPL. ACM, 2010.
[25] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of

synchronization. In POPL, 2010.

6784

Quantifier Elimination via Clause Redundancy

Eugene Goldberg and Panagiotis Manolios
Northeastern University, USA, {eigold,pete}@ccs.neu.edu

Abstract—We consider the problem of existential quantifier
elimination for Boolean formulas in conjunctive normal form.
Recently we presented a new method for solving this problem
based on the machinery of Dependency sequents (D-sequents).
The essence of this method is to add to the quantified formula
implied clauses until all the clauses with quantified variables
become redundant. A D-sequent is a record of the fact that a
set of quantified variables is redundant in some subspace. In this
paper, we introduce a quantifier elimination algorithm based on
a new type of D-sequents called clause D-sequents that express
redundancy of clauses rather than variables. Clause D-sequents
significantly extend our ability to introduce and algorithmically
exploit redundancy, as our experimental results show.

I. INTRODUCTION

In this paper, we consider elimination of quantifiers from
formulas of the form ∃X[F] where F is a Boolean formula in
conjunctive normal form (CNF). We will refer to such formulas
as ∃CNF. The Quantifier Elimination (QE) problem, is to
find a quantifier-free CNF formula G such that G ≡ ∃X[F].
The equivalence ’≡’ is semantic. That is for every complete
assignment s to the non-quantified variables of F , the logical
value of Gs is equal to that of ∃X[Fs]. Here Fs and Gs are
formulas F and G under assignment s.

The motivation for studying the QE problem is twofold.
First, a QE algorithm can be used for solving many verification
problems e.g. computing reachable states [5], [17]. Second,
the methods developed for QE may come handy for other
problems. For example, the machinery of Dependency sequents
(D-sequents) [9], [10] that we continue developing in this
paper can be used for SAT-solving [8].

In [9], [10], we developed a QE algorithm called
DDS (Derivation of D-Sequents) based on the following two
ideas. The first idea is that adding resolvent clauses to formula
F eventually makes the clauses containing a variable of X (we
will call them X-clauses) redundant. Let H denote formula
F ∧G where G is the set of added resolvent clauses. For the
sake of convenience, since a CNF formula can be considered
as a set of clauses, we will use logical and set-based notation
interchangeably. For example, formula F ∧ G can also be
written as F ∪ G. The redundancy of X-clauses in ∃X[H]
means that ∃X[H] ≡ ∃X[H \HX] where HX is the set
of X-clauses of H . Since H \ HX does not depend on
X , the quantifiers can be dropped. So the set of clauses
H \HX is a quantifier-free formula equivalent to ∃X[H] and
so to ∃X[F]. The second idea is to use a divide-and-conquer
strategy. DDS proves redundancy of X-clauses in subspaces
and then merges the results of different branches.

A successful implementation of DDS became possible only
due to development of the machinery of D-sequents that was
the main contribution of [9], [10]. A D-sequent is a record
of the form (∃X[F], q) → Z where q is a partial assignment

to variables of F and Z ⊆ X . This D-sequent says that the
variables of Z are redundant in ∃X[F] in subspace q. The
redundancy of variables of Z means redundancy of all X-
clauses containing a variable of Z. For the sake of brevity, in
the following exposition we use the same symbol F to denote
the initial and the current CNF formula consisting of the initial
clauses and resolvents. So symbol F used in the D-sequent
above is the current CNF formula.

DDS keeps adding resolvent clauses to formula F until D-
sequent (∃X[F], ∅) → X is derived stating that the variables
of X are redundant in formula ∃X[F] globally. (This means
that F \ FX is a solution to the QE problem.) The derivation
of such D-sequent is achieved by generation of atomic D-
sequents and using a resolution-like operation join. An atomic
D-sequent is derived when redundancy of a variable of X in a
subspace can be trivially proved. Operation join is applied to
D-sequents (∃X[F], q′) → Z and (∃X[F], q′′) → Z where
q′ and q′′ contain opposite assignments to a variable v of F .
The result of join is a new D-sequent (∃X[F], q) → Z where
q consists of all assignments of q′,q′′ but those to variable v.

The main contribution of this paper is the development
of the machinery of a new type of D-sequents called clause
D-sequents. A clause D-sequent is a record of the form
(∃X[F], q) → R where R ⊆ FX . It states that the X-clauses
of R are redundant in ∃X[F] in subspace q. Clause D-sequents
can be used to express redundancy of any subset of X-clauses
while D-sequents of [9] can do this only for some subsets of
X-clauses. Namely, a D-sequent of [9] can express redundancy
of a set R ⊆ FX only if R is the set of all X-clauses
containing variables from a set Z. (To distinguish new and
old D-sequents we will refer to the latter as D-sequents based
on variable redundancy.) For instance, a D-sequent based on
variable redundancy cannot express the fact that a single X-
clause C is redundant in ∃X[F] in subspace q. Similarly
to D-sequents based on variable redundancy, the machinery
of clause D-sequents is based on a) derivation of atomic
clause D-sequents, b) a resolution-like operation join and c)
removing redundant X-clauses from the formula to guarantee
the composability of D-sequents. The latter means that proving
redundancy of sets of clauses R′ and R′′ independently implies
that the set R′ ∪R′′ is also redundant.

To show the advantages of clause D-sequents we describe
a new QE algorithm called DCDS (Derivation of Clause D-
Sequents). Development of DCDS is another contribution of
this paper. DCDS can be viewed as an adaptation of DDS to
clause D-sequents. However, this adaptation is far from being
trivial because clause D-sequents have new features that D-
sequents based on variable redundancy do not. Using clause D-
sequents is beneficial for at least two reasons. First, DCDS has
much more flexibility than DDS in proving redundancy of X-
clauses. Proving that a variable v ∈ X is redundant in ∃X[F]

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 6885ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

in subspace q by DDS requires proving redundancy of all
clauses of F with variable v at the same time. DCDS has
no such restriction. Some clauses with variable v may be
proved redundant much later than the others. Second, the size
of clause D-sequents is in general smaller than that of D-
sequents based on variable redundancy. (The size of D-sequent
(∃X[F], q) → R is the number of variables assigned in q.)
The reason is that proving redundancy of a clause is easier than
that of a variable. This facilitates pruning the search space like
derivation of shorter clauses does in SAT-solving.

This paper is structured as follows. In Section II, we
give basic definitions. Simple cases of clause redundancy are
discussed in Section III. Clause D-sequents are introduced in
Section IV. Section V describes a new QE algorithm called
DCDS. In Section VI, we explain DCDS by a simple example.
Experimental results are given in Section VII. Background is
discussed in Section VIII, and conclusions are presented in
Section IX.

II. BASIC DEFINITIONS

Definition 1: An ∃CNF formula is a quantified CNF
formula of the form ∃X[F] where F is a CNF formula, and
X is a set of Boolean variables. If we do not explicitly specify
whether we are referring to CNF or ∃CNF formulas, when we
write “formula” we mean either a CNF or ∃CNF formula. Let
q be an assignment, F be a CNF formula, and C be a clause.
Vars(q) denotes the variables assigned in q; Vars(F) denotes
the set of variables of F ; Vars(C) denotes the variables of C;
and Vars(∃X[F]) = Vars(F) \X .

We consider true and false as a special kind of clauses. A
non-empty clause C becomes true when it is satisfied by an
assignment q i.e. when a literal of C is set to true by q. A
clause C becomes false when it is falsified by q i.e. when all
the literals of C are set to false by q.

Definition 2: Let C be a clause, H be a formula, and q be
an assignment such that Vars(q) ⊆ Vars(H). Denote by Cq

the clause equal to true if C is satisfied by q; otherwise Cq is
the clause obtained from C by removing all literals falsified
by q. Hq denotes the formula obtained from H by replacing
every clause C of H with Cq . In the context of this paper, it
is convenient to assume that clause Cq equal to true remains
in Hq rather than being removed from Hq . We treat such a
clause as redundant in Hq (see Proposition 1).

Definition 3: Let G,H be formulas. We say that G,H are
equivalent, written G ≡ H , if for all assignments, y, such that
Vars(y) ⊇ (Vars(G)∪Vars(H)), we have Gy = Hy (notice
that Gy and Hy have no free variables, so by Gy = Hy

we mean semantic equivalence). Observe that if Vars(q) ⊆
Vars(∃X[F]), then (∃X[F])q ≡ ∃X[Fq].

Definition 4: The Quantifier Elimination (QE) problem
for ∃CNF formula ∃X[F] consists of finding a CNF formula
G such that G ≡ ∃X[F].

Definition 5: Let Z be a set of variables. A clause C of
F is called a Z-clause if Vars(C) ∩ Z 6= ∅. We denote by
FZ the set of all Z-clauses of F .

Definition 6: Let X be a set of Boolean variables, F be
a CNF formula and R be a subset of X-clauses of F . The

clauses of R are redundant in CNF formula F if F ≡ (F \R).
The clauses of R are redundant in ∃CNF formula ∃X[F]
if ∃X[F] ≡ ∃X[F \ R]. Note that F ≡ (F \ R) implies
∃X[F] ≡ ∃X[F \R] but the opposite is not true.

III. SIMPLE CASES OF CLAUSE REDUNDANCY

In this section, we describe three situations where clause
redundancy can be trivially proved (Propositions 1, 2, 3).

Proposition 1: Let ∃X[F] be an ∃CNF formula and q be
an assignment to Vars(F) satisfying an X-clause C of F .
Then Cq is redundant in ∃X[Fq].

Due to lack of space we omit proofs. Note that proofs
of non-trivial propositions of this paper are similar to those
of [10] given for D-sequents based on variable redundancy.

Proposition 2: Let ∃X[F] be an ∃CNF formula and q be
an assignment to Vars(F). Let C,C ′ be two clauses of F .
Let C be falsified by q and C ′ be an X-clause. Then C ′q is
redundant in ∃X[Fq].

To formulate Proposition 3 below, we need to introduce a
few definitions.

Definition 7: Let C ′ and C ′′ be clauses having opposite
literals of exactly one variable v ∈ Vars(C ′) ∩ Vars(C ′′).
The clause C consisting of all literals of C ′ and C ′′ but those
of v is called the resolvent of C ′,C ′′ on v. Clause C is said
to be obtained by resolution on v. Clauses C ′,C ′′ are called
resolvable on v.

Definition 8: A clause C of a CNF formula F is called
blocked at variable v, if no clause of F is resolvable with C
on v. The notion of blocked clauses was introduced in [15].

Proposition 3: Let ∃X[F] be an ∃CNF formula and q be
an assignment to Vars(F). Let C be an X-clause of F not
satisfied by q and v ∈ X be a variable of C such that v 6∈
Vars(q). Let clause Cq be blocked at v in Fq . Then Cq is
redundant in ∃X[Fq].

IV. DEPENDENCY SEQUENTS BASED ON CLAUSE
REDUNDANCY

In this section, we define a new kind of dependency
sequents (D-sequents) called clause D-sequents. In contrast to
D-sequents of [9], clause D-sequents are based on the notion
of clause redundancy. We describe operation join producing
a new clause D-sequent from existing ones and introduce the
notion of composable clause D-sequents.

A. Definition of D-sequents

Definition 9: Let ∃X[F] be an ∃CNF formula. Let q be
an assignment to Vars(F) and R be a subset of X-clauses of
F . A clause dependency sequent (clause D-sequent) has the
form (∃X[F], q) → R. It states that the clauses of Rq are
redundant in ∃X[Fq].

From now on we will refer to clause D-sequents as just
D-sequents unless we want to contrast clause D-sequents with
those based on variable redundancy.

Example 1: Consider an ∃CNF formula ∃X[F] where
F = C1∧C2, C1 = x∨y1 and C2 = x∨y2 and X = {x}. Let

6986

q={(y1 = 1)}. Then clause C1 is satisfied by q and according
to Proposition 1, the D-sequent (∃x[F], q) → {C1} holds.
Since Fq={true, C2}, clause C2 is blocked at variable x. So
according to Proposition 3, the D-sequent (∃x[F], q) → {C2}
holds.

According to Definition 9, a D-sequent holds with respect
to a particular ∃CNF formula ∃X[F]. Proposition 4 below
shows that this D-sequent also holds after adding to F any set
of resolvent clauses.

Proposition 4: Let ∃X[F] be an ∃CNF formula. Let
q be an assignment to Vars(F). Let G be a CNF for-
mula such that F ⇒ G. Then if (∃X[F], q) → R holds,
(∃X[F ∧G], q) → R does too.

B. Join Operation for D-sequents

In this subsection, we introduce the operation of joining
D-sequents (Definition 11).

Definition 10: Let q′ and q′′ be assignments in which
exactly one variable v ∈ Vars(q′) ∩ Vars(q′′) is assigned
different values. The assignment q consisting of all the as-
signments of q′ and q′′ but those to v is called the resolvent
of q′,q′′ on v. Assignments q′,q′′ are called resolvable on v.

Proposition 5: Let ∃X[F] be an ∃CNF formula. Let D-
sequents (∃X[F], q′) → R and (∃X[F], q′′) → R hold. Let
q′, q′′ be resolvable on v ∈ Vars(F) and q be the resolvent
of q′ and q′′. Then, D-sequent (∃X[F], q) → R holds too.

Definition 11: We will say that the D-sequent
(∃X[F], q) → R of Proposition 5 is produced by joining
D-sequents (∃X[F], q′) → R and (∃X[F], q′′) → R at v.

C. Composable D-sequents

In general, the fact that D-sequents (∃X[F], q) → R′

and (∃X[F], q) → R′′ hold does not imply that
(∃X[F], q) → R′ ∪R′′ holds. The reason is that redundancy
of R′ may be true only when clauses of R′′ are in F and
vice versa. So, derivation of (∃X[F], q) → R′ ∪R′′ requires
recursive reasoning. Proposition 6 below shows how to avoid
recursive reasoning.

Let q and s be assignments to a set of variables Z. Since q
and s are sets of value assignments to individual variables of
Z, one can apply set operations to them. For instance, s ⊆ q
means that q contains the value assignments of s. Assignment
q ∪ s consists of the value assignments that are in q or s.

Proposition 6: Let s and q be assignments to variables
of F where s ⊆ q. Let D-sequents (∃X[F], s) → R′

and (∃X[F \R′], q) → R′′ hold. Then D-sequent
(∃X[F], q) → R′ ∪R′′ holds.

Definition 12: Let q′ and q′′ be assignments to a set of
variables Z. We will say that q′ and q′′ are compatible if
every variable of Vars(q′) ∩ Vars(q′′) is assigned the same
value in q′ and q′′.

Definition 13: Let D-sequent S′ be equal to
(∃X[F], q′) → R′ and S′′ be equal to (∃X[F], q′′) → R′′

where q′ and q′′ are compatible assignments to
Vars(F). We will call S′ and S′′ composable if
D-sequent S equal to (∃X[F], q′ ∪ q′′) → R′ ∪R′′

// q is an assignment to Vars(F)
// Ω denotes a set of active D-sequents
// Φ denotes ∃X[F]
// If DCDS returns clause nil (respectively a non-nil clause),
// Fq is satisfiable (respectively unsatisfiable)

DCDS (Φ,q,Ω){
1 if (∃ clause C ∈ F falsif. by q) {
2 Ω := atomic Dseqs1 (Ω, q, C);
3 return(Φ,Ω, C);}
4 Ω := atomic Dseqs2 (Φ, q,Ω);
5 if (all X clauses redund(Φ,Ω)) return(Φ,Ω,nil);

- - - - - - - - - - - -
6 v := pick variable(F, q,Ω);
7 (Φ,Ω, C0) :=DCDS (Φ,q ∪ (v = 0),Ω);
8 if (C0 6= nil) Ω := add atomic Dseqs(Ω, q, C0);
9 Ωasym := Dseqs to be inactive(F,Ω, v);
10 if (Ωasym = ∅) return(Φ,Ω, C0);
11 Ω := Ω \ Ωasym ;
12 (Φ,Ω, C1) :=DCDS (Φ,q ∪ (v = 1),Ω);

- - - - - - - - - - - - -
13 if ((C0 6= nil) and (C1 6= nil)){
14 C := resolve clauses(C0, C1, v);
15 F := F ∧ C;
16 Ω := atomic Dseqs1 (Ω, q, C);
17 return(Φ,Ω, C);}
18 Ω := merge(Φ, q, v,Ωasym ,Ω, C0, C1);
19 return(Φ,Ω,nil);}

Fig. 1. DCDS procedure

holds. From Proposition 6 it follows that S′, S′′ are
composable if D-sequent (∃X[F \R′], q′ ∪ q′′) → R′′ or
(∃X[F \R′′], q′ ∪ q′′) → R′ hold.

Although the QE algorithm of [9] derives composable D-
sequents we did not explicitly use the notion of composability
of D-sequents there. In this paper, we make this important
notion more conspicuous.

V. ALGORITHM DESCRIPTION

In this section, we describe a QE algorithm called DCDS
(Derivation of Clause D-Sequents). DCDS derives D-sequents
(∃X[F], q) → {C} stating the redundancy of X-clause Cq

of Fq . From now on, we will use a short notation of D-
sequents writing s → {C} instead of (∃X[F], s) → {C}. We
will assume that the parameter ∃X[F] missing in s → {C} is
the current ∃CNF formula (with all resolvents added to F).

One can omit ∃X[F] from D-sequents because from Propo-
sition 4 it follows that (∃X[F], s) → {C} holds no matter
how many resolvent clauses are added to F . We will call D-
sequent s → {C} active in subspace q if s ⊆ q. If s → {C}
is active in subspace q, clause Cq is redundant in ∃X[Fq].

A description of DCDS is given in Figure 1.
DCDS accepts an ∃CNF formula ∃X[F] (denoted as Φ), an
assignment q to Vars(F) and a set Ω of D-sequents active in
subspace q stating redundancy of some X-clauses in ∃X[Fq].
To simplify description of DCDS, by X-clauses of Fq we also
mean the X-clauses of F satisfied by q. On the contrary, an
X-clause of F falsified by q is not considered as an X-clause
of Fq . DCDS returns a formula ∃X[F] modified by resolvent
clauses added to F (if any), a set Ω of D-sequents active in
subspace q that state redundancy of all X-clauses in ∃X[Fq]

70 87

and a clause C. If Fq is unsatisfiable then C is a clause of F
falsified by q. Otherwise, C is equal to nil meaning that no
clause implied by F is falsified by q.

The active D-sequents derived by DCDS are com-
posable. That is if s1 → {C1}, . . . , sk → {Ck} are the
active D-sequents of subspace q, then the D-sequent
s∗ → {C1, . . . , Ck} holds where s∗ = s1 ∪ . . . ∪ sk and
s∗ ⊆ q. DCDS achieves composability of D-sequents as
follows. As soon as an X-clause Cq is proved redundant,
it is marked and ignored by DCDS , which is equivalent to
removing Cq from Fq . So DCDS guarantees that for every
path of the search tree leading to a leaf, X-clauses are proved
redundant in a particular order. (This order may be different
for different paths.) This allows to avoid recursive reasoning
where a clause C ′q is used to prove redundancy of clause C ′′q
and vice versa. In turn, avoiding recursive reasoning guarantees
composability of D-sequents.

A solution to the QE problem in subspace q is obtained by
discarding all X-clauses from the CNF formula Fq of ∃X[Fq]
returned by DCDS . To build a quantifier-free CNF formula
equivalent to Φ, one needs to call DCDS with q = ∅, Ω = ∅.

A. The Big Picture

DCDS consists of three parts separated in Figure 1 by
dotted lines. In the first part (lines 1-5), DCDS builds atomic
D-sequents i.e. D-sequents for X-clauses whose redundancy
can be trivially proved. If all X-clauses are proved redundant
in ∃X[Fq], DCDS terminates.

If some X-clauses are not proved redundant yet,
DCDS enters the second part of the code (lines 6-12). First,
DCDS picks a branching variable v (line 6). Then it extends
q by assignment to variable v and recursively calls itself (line
7) starting the left branch of v. For the sake of clarity, we
assume that DCDS first explores assignment v = 0. Once
the left branch is finished, DCDS extends q by (v = 1) and
explores the right branch (line 12).

In the third part, DCDS merges the left and right branches
(lines 13-19). The result of this merging is proving every X-
clause redundant in ∃X[Fq]. For every X-clause Cq proved
redundant in ∃X[Fq], the set Ω contains precisely one ac-
tive D-sequent s → {C} where s ⊆ q. As soon as Cq is
proved redundant, it is marked and ignored until DCDS enters
a subspace q′ where s 6⊆ q′ i.e. a subspace where D-
sequent s → {C} becomes inactive. Clause Cq′ is unmarked
in Fq′ signaling that DCDS needs to derive a new D-sequent
s′ → {C} where s′ ⊆ q′ stating the redundancy of Cq′ .

B. Building Atomic D-sequents

Procedures atomic Dseqs1 and atomic Dseqs2 are called
by DCDS to compute D-sequents for trivial cases of clause
redundancy listed in Section III. We refer to such D-sequents
as atomic. Procedure atomic Dseqs1 is called when formula
Fq contains an empty clause Cq which means that clause C
of F is falsified by q. For every X-clause C ′q of Fq that has
no active D-sequent yet, atomic Dseq1 generates a D-sequent
s → {C ′}. Here s is the shortest assignment falsifying C.

atomic Dseqs2 (Φ, q,Ω){
1 Ω := Ω ∪Dseqs(new satisf clauses(Φ, q,Ω));
2 Ω := Ω ∪Dseqs(new blocked clauses(Φ, q,Ω));
3 return(Ω);

Fig. 2. atomic Dseqs2 procedure

If Fq does not have an empty clause, procedure
atomic Dseqs2 shown in Figure 2 is called. It builds D-
sequents for X-clauses that became satisfied or blocked in Fq .
Let C be a clause satisfied by q. Then D-sequent s → {C}
is generated where s = (v = b), b ∈ {0, 1} is the assignment
to a variable v satisfying C.

Let Cq be blocked in Fq at variable v ∈ X that is not
assigned yet. A D-sequent s → {C} stating redundancy of C
is built as follows. The fact that Cq is blocked at v means that
every clause C ′ of F resolvable with C on v is either satisfied
by q or C ′q is proved redundant in Fq . The assignment s is
a subset of assignments of q guaranteeing that C ′ remains
satisfied by s or C ′s remains redundant in ∃X[Fs] and so Cs

is blocked at v in Fs. If C ′ is satisfied by q, then s contains
an assignment (v = b), b ∈ {0, 1} of q satisfying C ′. If C ′

is not satisfied but C ′q is proved redundant in ∃X[Fq], then s
contains all assignments of s′ where s′ ⊆ q and s′ → {C ′}
is the D-sequent of Ω stating redundancy of C ′q .

C. Selection of a Branching Variable

Let q be the assignment DCDS is called with. We will
say that a variable x of X is redundant in ∃X[Fq] if x is
not assigned in q and every {x}-clause is proved redundant
in ∃X[Fq]. Denote by Xred the variables proved redundant in
∃X[Fq]. Let Y = Vars(F)\X . DCDS branches on free (i.e.,
unassigned) variables of X and Y . Importantly, a free variable
x ∈ X \Vars(q) is picked for branching only if x 6∈ Xred i.e.
DCDS does not branch on variables proved redundant.

Although Boolean Constraint Propagation (BCP) is not
shown explicitly in Figure 1, it is included into the
pick variable procedure as follows: a) preference is given to
branching on variables of unit clauses of Fq (if any); b) if
v is a variable of a unit clause Cq of Fq and v is picked
for branching, then the value falsifying Cq is assigned first to
cause immediate termination of this branch.

To simplify merging results of the left and right branches,
DCDS first assigns values to variables of Y (more details
are given in Subsection V-E). This means that pick variable
never selects a variable x ∈ X for branching, if there is a free
variable of Y . In particular, BCP does not assign values to
variables of X if a variable of Y is still unassigned.

D. Switching from Left to Right Branch

DCDS prunes big chunks of the search space by not
branching on redundant variables of X . One more powerful
pruning technique of DCDS discussed in this subsection is
reducing the size of right branches.

Let s → {C} be a D-sequent of the set Ω computed by
DCDS in the left branch v = 0 (line 7 of Figure 1). We will
call this D-sequent symmetric in v, if v is not assigned in s.
Otherwise, this D-sequent is called asymmetric in v. Notice
that if s is symmetric in v, the D-sequent s → {C} is active
in the right branch and so Cq1 is redundant in ∃X[Fq1] where

7188

merge(Φ, q, v,Ωasym ,Ω, C0, C1){
1 Ω := join Dseqs of old clauses(v,Ωasym ,Ω);
2 Ω := update Dseqs of new clauses(v,Ω);
3 if (v 6∈ X) return(Ω);
4 if (C0 6= nil) Ω := Ω ∪ {Dseq(C0)};
5 if (C1 6= nil) Ω := Ω ∪ {Dseq(C1)};
6 return(Ω);}
Fig. 3. merge procedure

q1 = q ∪ {(v = 1)}. Denote by Ωasym the subset of active
D-sequents that are asymmetric in v. It is computed in line 9.
Before exploring the right branch (line 12), the X-clauses of F
whose redundancy is stated by D-sequents of Ωasym become
non-redundant again. So the set of X-clauses to be considered
in the right branch reduces to only those with D-sequents from
Ωasym . This allows to prune big parts of the search space. In
particular, if Ωasym is empty there is no need to explore the
right branch. In this case, DCDS just returns the results of the
left branch (line 10). Pruning the right branch when Ωasym is
empty is similar to non-chronological backtracking well known
in SAT-solving [16].

E. Branch Merging

Let q0 = q ∪ {(v = 0)} and q1 = q ∪ {(v = 1)}. The
goal of branch merging is to use solutions of the QE problem
in subspaces q0 and q1 to produce a solution to the QE
problem in subspace q. If both Fq0 and Fq1 are unsatisfiable,
this is done as described in lines 14-17 of Figure 1. In this
case, the empty clauses (C0)q0 and (C1)q1 where C0, C1 are
clauses returned in the left and right branches respectively
are solutions to the QE in subspaces q0 and q1. The empty
clause Cq where C is the resolvent of C0 and C1 added to
F (line 15) is a solution to the QE problem in subspace q.
If, say, v 6∈ Vars(C1) and so C1 cannot be resolved on v,
resolve clauses (line 14) returns C1 itself since C1 is falsified
by q. In this case, no new clause is added to F . After C is
added, atomic Dseqs1 completes Ω by generation of atomic
D-sequents built due to presence of a clause falsified by q.

Suppose that at least one of formulas Fq0 and Fq1 is
satisfiable. In this case, to finish solving the QE problem
in subspace q, one needs to make sure that every X-clause
is proved redundant in Fq . This means that every X-clause
should have a D-sequent active in subspace q and hence
symmetric in the branching variable v. This work is done by
procedure merge shown in Figure 3 that consists of three steps.
In the first step, merge takes care of D-sequents of “old” X-
clauses that is the clauses that were present in F at the time
the value of v was flipped from 0 to 1. For every such X-
clause, a D-sequent was derived in the left branch v = 0. In
the second step, merge processes new X-clauses that is X-
clauses generated in the right branch v = 1. No D-sequents
were derived for such clauses in the branch v = 0. In the third
step, if, say, clause C0 mentioned above is not equal to nil, a
D-sequent is generated for C0 if it is an X-clause.

In the first step, merge needs to update only D-sequents
of X-clauses that became non-redundant in the right branch
because their D-sequents got inactive there (such D-sequents
form set Ωasym , see Subsection V-D). Let us denote this
set of clauses as G. If a D-sequent of an X-clause C
from G returned in the right branch is asymmetric in v,
then join Dseqs of old clauses (line 1) replaces it with a
D-sequent symmetric in v as follows. Let S0 and S1 be

the D-sequents derived in the left and right branches re-
spectively that state the redundancy of Cq0 and Cq1 . Then
join Dseqs of old clauses joins S0 and S1 at v producing a
new D-sequent S. The latter states the redundancy of Cq and
is symmetric in v. D-sequent S1 is replaced in Ω with S.

Let S1 be symmetric in v. If Fq0 was unsatisfiable, then
S1 remains untouched. Otherwise, join Dseqs of old clauses
does the following. Let S1 be equal to s → {C}. First, the
right branch assignment v = 1 is added to s, which makes S1

asymmetric in v. Then S1 is joined with S0 at v to produce
a new D-sequent S that is symmetric in v. S replaces S1 in
Ω. The reason one cannot simply keep S1 in Ω untouched is
as follows. As we mentioned above, the composability of D-
sequents built by DCDS is based on the assumption that for
every path of the search tree, X-clauses are proved redundant
in a particular order. It can be shown that using D-sequent S1

in subspace q may violate this assumption and so break the
composability of D-sequents.

Let S be a D-sequent s → {C} derived in the right branch
v = 1 where C was generated in this branch i.e. C is a
new clause. Such D-sequents are processed in the second step
of merge by procedure update dseqs of new clauses (line 2).
If S is symmetric in v, it simply remains in Ω untouched.
Otherwise, S is updated by removing the assignment to v from
s. One can do this because the clause C is implied by F and
has never been used in the left branch. So it can be considered
as proved redundant in the left branch.

Finally, merge performs the third step (lines 3-5). Notice
that if v is not in X , then C0 or C1 is not an X-clause. This is
because DCDS assigns non-quantified variables before those
of X (see Subsection V-C). So the last variable assigned in an
X-clause is always a variable of X . Let us assume that v ∈ X
and C0 6= nil . (In the case C1 6= nil , merge works similarly.)
Clause (C0)q is equal to the unit clause v. Notice that Fq does
not contain a clause with literal v because this would mean
that both Fq0 and Fq1 were unsatisfiable. So, (C0)q is blocked
in Fq at variable v. Then an atomic D-sequent is built for C0

as described in Subsection V-B.

F. Correctness of DCDS

Let DCDS be called on formula Φ = ∃X[F] with
q = ∅ and Ω = ∅. Here is an informal explanation of why
DCDS produces the correct result. First, new clauses of F are
produced by resolution and so are correct in the sense they are
implied by F . In particular, if F is unsatisfiable, DCDS returns
an empty clause that is a correct solution to the QE problem.
Second, the atomic D-sequents built by DCDS are correct.
Third, new D-sequents produced by operation join are correct.
Fourth, the D-sequents of individual clauses are composable.
So when DCDS returns to the root node of the search tree, it
derives the correct D-sequent (∃X[F], ∅) → FX . Hence, by
removing X-clauses from F , one obtains a CNF formula that
is a correct solution to the QE problem.

Proposition 7: DCDS is sound and complete.

VI. A RUN OF DCDS ON A SIMPLE FORMULA

Let ∃X[F] be an ∃CNF formula where F = C1 ∧ C2,
C1 = y1∨x, C2 = y2∨x and X = {x}. To identify a particular

72 89

DCDS call we will use the corresponding assignment q.
For example, DCDS (y1=1,y2=0) means that the assignments
y1 = 1 and y2 = 0 were made at recursion depths 0 and 1
respectively. Originally, assignment q is empty, so the initial
call is DCDS (∅). Figures 4, 5 show the work of DCDS . We
use them to explain the algorithm of DCDS . For the sake of
simplicity, in this example, we say that clause Ci, i = 1, 2 is
blocked/redundant in Fq meaning that it is clause (Ci)q that
is blocked/redundant in Fq .

Fig. 4. Search tree built by
DCDS

Branching variables.
Figure 4 shows the search
tree built by DCDS . Recall that
DCDS branches on variables of
Vars(F) \ X = {y1, y2} before
those of X (see Subsection V-C).

Leaves. The search tree of Fig-
ure 4 has four leaf nodes shown
in dotted ovals. In each leaf node,
either the X-clauses C1, C2 are
proved redundant or one of them
is falsified. For example, C1 is
satisfied and C2 is blocked, and

hence C1, C2 are redundant, in leaf (y1 = 0) and clause C1 is
falsified in leaf (y1 = 1, y2 = 0, x = 1).

Generation of new clauses. DCDS (y1=1,y2=0) generates
a new clause after branching on x. DCDS (y1=1,y2=0,x=1)

returns C1 since it is falsified in F(y1=1,y2=0,x=1). Simi-
larly, DCDS (y1=1,y2=0,x=0) returns C2 since it is falsified in
F(y1=1,y2=0,x=0). As described in Subsection V-E, in this case,
DCDS resolves clauses C1 and C2 on the branching variable
x. The resolvent C3 = y1 ∨ y2 is added to F .

Fig. 5. Derivation of D-sequents

Generation of atomic D-
sequents. Figure 5 describes
derivation of D-sequents. The
atomic D-sequents are shown
in dotted ovals. (Dotted boxes
show D-sequents obtained by
operation join.) For instance,
C1 is satisfied by assign-
ment (y1 = 0) and C2 is
blocked in F(y1=0). So pro-
cedure atomic Dseqs2 called
by DCDS (y1=0) generates
atomic D-sequents S1 and S2

equal to (y1 = 0) → {C1}
and (y1 =0)→ {C2} respec-
tively. The atomic D-sequents
S3, S4 are derived by pro-

cedure atomic Dseqs1 called by DCDS (y1=1,y2=0). As we
mentioned above, DCDS (y1=1,y2=0) adds clause C3 = y1∨y2
to F . This clause is empty in F(y1=1,y2=0) and so D-sequents
S3, S4 equal to s → {C1}, s → {C2} respectively are gen-
erated. Here s = (y1 =1, y2 =0) is the shortest assignment
falsifying C3.

Switching from left to right branch. Let us consider switch-
ing between branches by DCDS (∅) where y1 is picked for
branching. The left branch of Ω(∅) returns D-sequents S1, S2

equal to (y1 =0)→ {C1} and (y1 =0)→ {C2} respectively.

Before starting the right branch y1 = 1, DCDS (∅) com-

putes the set Ωasym
(∅) of D-sequents asymmetric in y1. Since

S1 and S2 contain an assignment to y1, Ωasym
(∅) =Ω(∅) and

DCDS (∅) removes S1, S2 from Ω. So, before DCDS (y1=1)

is called, both C1 and C2 become non-redundant again.

Branch merging. Consider how branch merging is per-
formed by DCDS (y1=1). In the left branch y2=0, D-sequents
S3, S4 are derived that are asymmetric in y2. In the right
branch y2=1, D-sequents S5, S6, also asymmetric in y2, are
produced. By joining S3 and S6 at y2, D-sequent S7 equal
to (y1=1)→ {C1} is derived. By joining S4 and S5 at y2,
D-sequent S8 equal to (y1=1)→{C2} is derived. D-sequents
S7, S8 state redundancy of C1, C2 in ∃X[F(y1=1)].

Termination. When DCDS (∅) terminates, F = C1∧C2∧C3

where C3 = y1 ∨ y2 and composable D-sequents ∅ → {C1}
and ∅ → {C2} are derived. By dropping the X-clauses C1, C2

one obtains C3 ≡ ∃X[C1 ∧ C2].

Concluding remarks. Due to small size of F , some features
of DCDS are not exposed. For instance, the clause C3 gen-
erated by DCDS is not an X-clause. In general, DCDS may
produce new X-clauses whose redundancy one needs to prove
along with the original X-clauses. Another consequence of
using a small example is that D-sequents derived in every node
has the form s′ → {C1} and s′′ → {C2} where s′ = s′′. For
larger formulas, assignments s of active D-sequents s → {C}
may be vastly different for different clauses C.

VII. EXPERIMENTAL RESULTS

The objective of experiments was to compare the perfor-
mance of DDS and DCDS on realistic examples and to give
some comparison of D-sequent and BDD based algorithms.
(A comparison of DDS with SAT-based QE algorithms is
given in [9].) Importantly, in the current implementations of
DDS and DCDS , D-sequents are not re-used. A D-sequent is
discarded as soon as it is employed in a join operation.

We believe that reusing D-sequents will drastically boost
the performance of both DDS and DCDS like conflict clause
re-using speeds up SAT-algorithms. Re-using learned clauses
in SAT-solving is beneficial because their involvement in BCP
leads to new forced assignments. Re-using D-sequents gives
the power of making “asymmetric” decision assignments. If,
say, assignment v = 0 makes a lot of learned D-sequents
active, then this branch may be much easier to finish than
branch v = 1. Note that a forced assignment can be viewed as
a special case of an asymmetric decision assignment where
one of the two branches terminates immediately. Making
asymmetric decision assignments leads to smaller search trees
and so re-using D-sequents provides new exciting possibilities.
However, tapping this power needs extra research. For that
reason, we report experimental results for the algorithms
without D-sequent re-using.

TABLE I. Results on examples solved by MC-DDS or MC-DCDS . The
time limit is 2,000s

model checker MC-BDD MC-DDS MC-DCDS
#solved 193 247 258
#timeouts 66 12 1
time for solved by all three (s.) 9,080 11,293 1,698

We applied DDS and DCDS to backward model check-
ing. Our implementation was straightforward: DDS and

7390

DCDS were used to compute backward images until an initial
state or a fixed point were reached. We will refer to these model
checkers as MC-DDS and MC-DCDS. In experiments, we also
used the BDD-based model checker incorporated into the latest
version of a tool called PdTrav [22] (courtesy of Gianpiero
Cabodi). We ran PdTrav in the backward model checking mode
with ternary simulation turned off (as a non-BDD optimiza-
tion). The other non-BDD optimizations, e.g. computation of
the cone of influence, remained active because there was no
way to switch them off. Since DDS and DCDS maintain
a single search tree, we also forced PdTrav to represent the
transition relation by a monolithic BDD. (A D-sequent based
QE algorithm does not have to build a single search tree e.g.
it can employ restarts. However, using restarts requires storing
and re-using D-sequents.) We will refer to PdTrav with the
options above as MC-BDD.

In the experiments, we ran MC-DDS , MC-DCDS and MC-
BDD on 758 benchmarks of the HWMCC-10 competition [23]
with the time limit of 2,000 seconds. MC-BDD solved 374
benchmarks while MC-DDS and MC-DCDS solved 247 and
258 benchmarks respectively. This is not surprising taking
into account the maturity of current BDD algorithms and
their re-using of learned information via subgraph hashing.
An important fact however is that MC-DCDS and even MC-
DDS solved many problems that MC-BDD could not. So,
in a sense, MC-DDS with MC-DCDS and MC-BDD favored
different subsets of benchmarks.

Fig. 6. Performance of model checkers on
259 examples solved by MC-DDS or MC-
DCDS

Table I shows the
results of the three
model checkers on
the 259 benchmarks
solved by MC-DDS or
MC-DCDS (i.e.
favored by the two
QE algorithms based
on D-sequents). The
second line of this
table gives the number
of benchmarks solved
under 2,000s. The
third line shows how
many examples out of
259 were not solved

in the time limit. The last line gives the total time in seconds
for the benchmarks solved by all three model checkers.
Table I shows that MC-DCDS significantly outperformed
MC-DDS. Besides, a large number of problems solved by
MC-DCDS were hard for MC-BDD . Figure 6 gives the
performance of the three model checkers on the benchmarks
solved by MC-DDS or MC-DCDS in terms of the number of
problems finished in a given amount of time. MC-DCDS (the
right line) consistently outperforms MC-DDS (the center
line). Besides, on this set of benchmarks, both MC-DDS and
MC-DCDS outperform MC-BDD (the left line).

Results of all three model checkers on some concrete
benchmarks from the 259 benchmark set are given in Table II.
Symbol ’∗’ marks benchmarks that were not solved in 2,000 s.
The column iterations show the number of backward images
computed by the algorithms before finding a bug or reaching
a fixed point.

TABLE II. Some concrete examples. The time limit is 2,000s.

benchmark #lat- #gates #ite- bug MC- MC- MC-

ches rati- BDD DDS DCDS

ons (s.) (s.) (s.)
bj08amba4g5 36 13,637 4 no ∗ 113 16
pdtvisbakery3 48 7,514 2 yes 1.3 12 5.1
texasifetch1p5 57 663 21 yes 1.5 368 96
visprodcellp01 78 2,885 5 no 19 7.9 2.3
texasparsesysp1 312 12,173 10 yes 0.7 231 41
bobmiterbm1or 381 3,720 1 yes 0.7 0.1 0.1
pj2003 1175 15,384 3 no ∗ ∗ 252
bobsynthand 3015 15,397 2 no 1.2 0.6 0.6
mentorbm1and 4344 31,684 2 no ∗ 1.8 1.4

Table III sheds light on why DCDS performs better
than DDS. It shows results of applying both QE-algorithms
to computing all bad states for some benchmarks (the first
step of backward model checking). For either algorithm, we
give the average size of atomic D-sequents and runtime. By
the size of a D-sequent s → {C} we mean the number
of variables assigned in s. To make a fair comparison we
excluded the atomic D-sequents of length 1 generated when X-
clauses got satisfied. Such D-sequents are not built by DDS .

TABLE III. Relation between average size
of atomic D-sequents and runtime

benchmark DDS DCDS
D-seq
size

time
(s.)

D-seq
size

time
(s.)

bc57sensorsp1 19 6.3 13 0.7
boblivea 19 44 10 0.7
bobsmi2c 7.4 96 2.0 9.4
cmugigamax 20 3.6 9.4 3.2
csmacdp2 53 8.1 28 1.5
eijks344 6.0 7.5 2.5 1.6
pdtvissoap2 8.4 82 3.9 3.9
pj2006 7.3 47 1.1 0.4

The results
indicate that the
size of atomic D-
sequents derived
by DCDS was
smaller. The
reason is as
follows. When
an X-clause is
blocked at a
variable v ∈ X ,
DCDS generates

a D-sequent s → {C} where s depends only on clauses that
can be resolved with C on a variable v. On the contrary, when
a variable v ∈ X is blocked, DDS generates a D-sequent
s → {v} where s depends on all clauses that can be resolved
on variable v. Such a D-sequent is, in general, much longer
than s → {C}.

VIII. BACKGROUND

The first practical QE algorithms were based on BDDs
[3], [4]. Since we focus on SAT-based QE methods we do not
discuss these algorithms here. The rest of QE algorithms can
be roughly partitioned into two categories. The members of the
first category employ various techniques to eliminate quantified
variables of the formula one by one in some order [21], [1],
[14], [7]. All these solvers face the same problem: there may
not exist a good single order for variable elimination. This
may lead to exponential growth of the size of intermediate
formulas.

The solvers of the second category are based on enumera-
tion of satisfying assignments [18], [12], [20], [13]. Since such
assignments are, in general, “global” objects, it is hard for
such solvers to follow the fine structure of the formula, e.g.,
such solvers are not compositional [9]. That is they cannot
make use of the fact that formula ∃X1, X2[F1 ∧ F2] where
Vars(F1) ∩ Vars(F2) = ∅ and Xi ⊆ Vars(Fi), i = 1, 2 is
equivalent to ∃X1[F1] ∧ ∃X2[F2].

In [9], we presented a QE algorithm called DDS that
employs the machinery of D-sequents based on redundancy

74 91

of variables. In a sense, DDS tries to take the best of both
worlds. It branches and so can use different variable orders
in different branches as the solvers of the second category.
At the same time, in every branch, DDS eliminates quantified
variables individually as the solvers of the first category, which
makes it easier to follow the formula structure. In particular,
DDS is compositional (as is DCDS).

Identification and removal of redundant clauses is used
in preprocessing procedures of QBF-algorithms and SAT-
solvers [6], [2]. Redundant clauses are also identified in the in-
ner loop of SAT-solving (inprocessing) [19]. These procedures
identify unconditional clause redundancies by recognizing the
situations where such redundancies can be easily proved.

Notice that any X-clause C of a CNF formula F can be
made redundant in ∃X[F] as follows. Let v ∈ Vars(C) ∩X .
Then ∃X[F] ≡ ∃X[F \ {C} ∪G] where G is the set of all
clauses obtained by resolving C with clauses of F on v.
In the context of SAT-solving, this fact has been established
in [11], [19]. So to make C redundant in ∃X[F], one needs
to add all the resolvents of C with clauses of F on a variable
of Vars(C) ∩ X . Hence, one can potentially solve QE by
gradually eliminating X-clauses (including the new X-clauses
produced by resolution) in some order. Unfortunately, this
approach has two fundamental problems. The first problem
is similar to that of variable elimination. There may not
exist a single good order for elimination of X-clauses. The
second problem is that global elimination of X-clauses one
by one may lead to looping even for small formulas. That
is after elimination of a number of clauses one can return
to a formula seen earlier e.g. to the original formula. This is
because elimination of a clause is accompanied by adding new
clauses and so removed clauses may reappear again.

DCDS does not have the problems above. It is not limited
by one global order because in different branches of the
search tree redundancy of clauses is proved in different orders.
DCDS does not have the problem of looping because the
branches of a search tree are ordered and the algorithm cannot
visit the same state twice.

IX. CONCLUSIONS

We continue to develop a calculus for solving propositional
formulas with quantifiers based on the notion of dependency
sequents (D-sequents). Previously, we introduced D-sequents
recording redundancy of quantified variables. In this paper, we
present a new type of D-sequents expressing redundancy of
clauses containing quantified variables. The clause D-sequents
are much more powerful that D-sequents based on variable
redundancy. We use clause D-sequents to formulate a new
algorithm of quantifier elimination called Derivation of Clause
Dependency Sequents (DCDS).

We experimentally compared DCDS with a QE algorithm
employing D-sequents based on variable redundancy in the
context of model checking. The experiments showed that
DCDS significantly outperformed its counterpart. We also
compared a model checker based on DCDS with a BDD-
based model checker. We found that there was a noticeable
number of benchmarks where DCDS outperformed its BDD-
based counterpart. These results are very promising taking into

account that the current version of DCDS can be drastically
improved e.g. by implementing D-sequent re-using.

ACKNOWLEDGMENT

This work was funded in part by NSF grant CCF-1117184.
It was also supported in part by C-FAR, one of six centers
of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

REFERENCES

[1] P. Abdulla, P. Bjesse, and N. Een. Symbolic reachability analysis based
on sat-solvers. TACAS-00, pages 411–425, 2000.

[2] A.Biere, F.Lonsing, and M.Seidl. Blocked clause elimination for qbf.
CADE-11, pages 101–115, 2011.

[3] R. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, August 1986.

[4] P. Chauhan, E. M. Clarke, S. Jha, J.H. Kukula, H. Veith, and D. Wang.
Using combinatorial optimization methods for quantification schedul-
ing. CHARME-01, pages 293–309, 2001.

[5] E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press,
Cambridge, MA, USA, 1999.

[6] N. Eén and A. Biere. Effective preprocessing in sat through variable
and clause elimination. In SAT, pages 61–75, 2005.

[7] E.Goldberg and P. Manolios. Sat-solving based on boundary point
elimination. HVC-10, pages 93–111, 2010.

[8] E.Goldberg and P.Manolios. Checking satisfifiability by dependency
sequents. Technical Report arXiv:1207.5014 [cs.LO], 2012.

[9] E.Goldberg and P.Manolios. Quantifier elimination by dependency
sequents. In FMCAD-12, pages 34–44, 2012.

[10] E.Goldberg and P.Manolios. Quantifier elimination by dependency
sequents. Technical Report arXiv:1201.5653 [cs.LO], 2012.

[11] A. V. Gelder. Propositional search with k-clause introduction can be
polynomially simulated by resolution. In (Electronic) Proc. 5th Int’l
Symposium on Artificial Intelligence and Mathematics, 1998.

[12] H.Jin and F.Somenzi. Prime clauses for fast enumeration of satisfying
assignments to boolean circuits. DAC-05, pages 750–753, 2005.

[13] J.Brauer, A.King, and J.Kriener. Existential quantification as incremen-
tal sat. CAV-11, pages 191–207, 2011.

[14] J.R.Jiang. Quantifier elimination via functional composition. In
Proceedings of the 21st International Conference on Computer Aided
Verification, CAV-09, pages 383–397, 2009.

[15] O. Kullmann. New methods for 3-sat decision and worst-case analysis.
Theor. Comput. Sci., 223(1-2):1–72, 1999.

[16] J. Marques-Silva and K. Sakallah. Grasp – a new search algorithm for
satisfiability. In ICCAD-96, pages 220–227, 1996.

[17] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Norwell, MA, USA, 1993.

[18] K. McMillan. Applying sat methods in unbounded symbolic model
checking. In Proc. of CAV-02, pages 250–264. Springer-Verlag, 2002.

[19] M.Järvisalo, M.Heule, and A.Biere. Inprocessing rules. IJCAR-12,
pages 355–370, 2012.

[20] M.K.Ganai, A.Gupta, and P.Ashar. Efficient sat-based unbounded
symbolic model checking using circuit cofactoring. ICCAD-04, pages
510–517, 2004.

[21] P. Williams, A. Biere, E. Clarke, and A. Gupta. Combining decision
diagrams and sat procedures for efficient symbolic model checking.
CAV-00, pages 124–138, 2000.

[22] http://fmgroup.polito.it/index.php/download/.
[23] HWMCC-2010 benchmarks, http://fmv.jku.at/hwmcc10/benchmarks.html.

7592

Interpolation for Synthesis on Unbounded Domains
Viktor Kuncak and Régis Blanc

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
firstname.lastname@epfl.ch

Abstract—Synthesis procedures compile relational specifica-
tions into functions. In addition to bounded domains, synthesis
procedures are applicable to domains such as mathematical
integers, where the domain and range of relations and synthesized
code is unbounded. Previous work presented synthesis procedures
that generate self-contained code and do not require components
as inputs. The advantage of this approach is that it requires
only specifications as user input. On the other hand, in some
cases it can be desirable to require that the synthesized system
reuses existing components. This paper describes a technique
to automatically synthesize systems from components. It is also
applicable to repair scenarios where the desired sub-component
of the system should be replaced to satisfy the overall specifica-
tion. The technique is sound, and it is complete for constraints
for which an interpolation procedure exists, which includes e.g.
propositional logic, bitvectors, linear integer arithmetic, recursive
structures, finite sets, and extensions of the theory of arrays.

I. INTRODUCTION

Software synthesis is an active area of research [5], [13],
[14] and has a long tradition [1], [10], [12]. We here pursue
synthesis of functions from inputs to outputs that are guar-
anteed to satisfy a given input/output relation expressed in
a decidable logic. Such approach have been referred to as
complete functional synthesis [7], [8]. The appeal of this di-
rection is that it synthesizes functions over unbounded domains
whenever they exist, and that the produced code is guaranteed
to satisfy the specification for the entire unbounded range
of inputs. Synthesis procedures for propositional logic, linear
rational arithmetic, and Boolean Algebra with Presburger
Arithmetic and parametrized coefficients are presented in [6]–
[8]. Synthesis procedures for algebraic data types and arrays
are presented in [2].

The previous work demonstrated synthesis procedures that
generate self-contained code and do not require components as
inputs. This approach requires only the input/output specifica-
tion as the user input. This is in contrast to some of the existing
approaches that require components as inputs and enumerate
different combinations of the components, checking which
ones satisfy a specification. In general, however, synthesis
from components is not only a way to simplify the synthesis
task, but also a way to control the outcome of synthesis,
making the process more predictable. It can be desirable to
require synthesis procedures to reuse existing functionality,
even if there exists a method to synthesize the system from
scratch. For example, using existing components may have
expected cost metrics in terms of computational complexity,
or market availability. This paper presents techniques that
can be used to ensure that a synthesis procedure reuses a
given set of components in the synthesized code. The work in

reactive LTL synthesis from components [9] deals with stateful
reactive components but is limited to finite-state systems and
encounters a 2EXPTIME lower bound, whereas we work in
the stateless scenario but for infinite domains where we can
leverage modern SMT solvers.

Our inspiration comes from generalizing methods such
as resynthesis, which have proved useful for generation of
combinational circuits [4], [15]. These techniques perform
case analysis on boolean variables in the output, which makes
them specific to finite domains. We show, however, that such
complete technique can be devised for every decidable domain
for which interpolation and synthesis procedures exists. This
includes bitvector domains, potentially allowing synthesis of
circuits at a higher level, as well as the domain of structures
used in software, such as recursive algebraic data types, sets,
linear integer arithmetic, and arrays. For the approach to work
in practice, what is needed are well-behaved interpolation
procedures that prefer simpler and computationally shorter
interpolants, a requirement that is in any case desirable for
interpolation in predicate abstraction refinement [3].

II. BACKGROUND: SYNTHESIS AS RELATION
TRANSFORMATION

The starting point for our work is the framework for
functional synthesis, as presented most recently in [2], whose
notation we follow. For a high-level overview, please consult
[7]. A synthesis problem is a triple Jā 〈φ〉 x̄K, where ā is a
set of input variables, x̄ is a set of output variables and φ is a
formula whose free variables are a subset of ā∪x̄. A synthesis
problem denotes a binary relation {(ā, x̄) | φ} between
inputs and outputs. The goal of synthesis is to transform such
relations until they become executable programs. Programs
correspond to formulas of the form P ∧ (x̄ = T̄) where
vars(P) ∪ vars(T̄) ⊆ ā. We denote programs by 〈P | T̄ 〉.
We call the formula P a precondition and call the term T̄
a program term. We use ` to denote the transformation on
synthesis problems, so

Jā 〈φ〉 x̄K ` Jā 〈φ′〉 x̄K (1)

means that the problem Jā 〈φ〉 x̄K can be transformed into
the problem Jā 〈φ′〉 x̄K. The variables on the right-hand side
are always the same as on the left-hand side. Our goal is
to compute, given ā, one value of x̄ that satisfies φ. We
therefore define the soundness of (1) as a process that refines
the binary relation given by φ into a smaller relation given
by φ′, without reducing its domain. Expressed in terms of

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 7693ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

formulas, the conditions become the following:

φ′ |= φ refinement
∃x̄.φ |= ∃x̄.φ′ domain preservation

In other words, ` denotes domain-preserving refinements of
relations. Note that the dual entailment ∃x̄.φ′ |= ∃x̄.φ also
holds, but it follows from refinement. Note as well that `
is transitive. In most cases we will consider transformations
whose result is a program: Jā 〈φ〉 x̄K ` 〈P | T̄ 〉. The
correctness of such transformations reduces to

P |= φ[x̄ 7→ T̄] refinement
∃x̄.φ |= P domain preservation

A synthesis procedure for a theory T is given by a set of
inference rules and a strategy for applying them such that
every formula in the theory is transformed into a program.

III. INTERPOLATION FOR SYNTHESIS FROM COMPONENTS

We next show how synthesis procedure, even for unbounded
domains, can leverage interpolation techniques to synthesize
a function as a combination of other functions. This enables
the user to control the synthesis process by requiring that the
desired function is realized as a combination of results of given
functions. The technique presented here is inspired by asking
whether the finite-state resynthesis techniques from [4], which
was experimentally shown to be useful in practice, could be
lifted from propositional to the level of first-order theories. The
key difficulty is that case analysis on the output, performed in
[4], is not possible for infinite-domain theories. We present
instead a more general formulation, which works in two
stages: 1) construct a quantifier-free input/output constraint
describing the implementation of the desired functionality
from components, using interpolation for the theory of interest;
and 2) synthesize the implementation from the input/output
constraint, using the appropriate synthesis procedure.

A. Synthesis from Components as a Two-Step Process

Figure 1 summarizes the rules for synthesis from compo-
nents. The general setup is given by the rule ’COMP’ in
Figure 1, which is a simple fact of first-order logic with
equality. Given a function f : A→ C, we encode the available
components as another function g : A→ B. Note that B can
be a cross-product of any number of simpler domains, so g can
encode any finite number of component functions. The goal
is to express f in terms of the result of g. In other words,
we seek a function h such that f(x) = h(g(x)). ’COMP’ rule
gives one way to find such function h:

1) construct a relational description I of the desired h; we
say I is a relational connector for obtaining f from g.

2) find h as a refinement of the relational connector I .

B. Correctness of Synthesis from a Relational Connector

To see why ’COMP’ is correct, let the two assumptions in
the rule hold, let x be arbitrary, define z by z = f(x) and
b by b = g(x). Then I(g(x), z) by the first assumption, so
I(g(x), h(g(x))) by the second assumption. Using the first
assumption once again (with h(g(x)) as an instance of the

x:A

y:B

z:C

g

h

f

f : A→ C
g : A→ B h : B → C I ⊆ B × C

∀x, z. I(g(x), z)↔ z = f(x)
∀b. (∃z.I(b, z))→ I(b, h(b))

∀x.f(x) = h(g(x))
COMP

f(x1) = z1 ∧ g(x1) = y1 ∧ y1 = y2 |= I(y2, z1)
I(y2, z1) |= (g(x2) = y2 ∧ f(x2) = z2 → z1 = z2)

∀x, z. I(g(x), z)↔ z = f(x)
INT-UNIQ

vars(I) ⊆ {b, z}
∀x, z. I[b := g(x)]↔ z = f(x) Jb 〈I〉 zK ` 〈P | H〉

Jx 〈z = f(x)〉 zK ` 〈> | H[b := g(x)]〉
COMP-S

Fig. 1. Synthesis from Components

universally quantified z), we conclude h(g(x)) = f(x), as
desired.

C. Finding Relational Connector Using Interpolation

We next turn to the problem of finding the relational
connector I . The key insight is that a single call to a theorem
prover that can compute interpolants [11] is sufficient to find
I with the desired property, ∀x, z. I(g(x), z) ↔ z = f(x).
This is captured by the ’INT-UNIQ’ rule, which stands for
“interpolating uniqueness”.

To understand the rule, observe that it contains two en-
tailments (universally quantified implications), which, chained
together, can be represented as the following property of f
and g:

f(x1) = z1 ∧ g(x1) = y1 ∧ y1 = y2

g(x2) = y2 ∧ f(x2) = z2 → z1 = z2

By rearranging the order of assumptions, we can equivalently
write this condition as:

g(x1) = y1 g(x2) = y2 y1 = y2
f(x1) = z1 f(x2) = z2

z1 = z2 (2)

This condition states that if g computes the same result on two
arguments x1, x2, then so does f . Such condition is necessary
for the existence of a function h that would enable us to
compute f(x) as h(g(x)). Indeed, if g(x1) = g(x2) then

7794

h(g(x1)) = h(g(x2)), so we need to have also f(x1) = f(x2).
Therefore, whenever we can hope to find a function h, we
know that the above implication holds. Moreover, if the logic
in which f, g are described has the interpolation property,
we know that an interpolant I exists. For a decidable logic
with interpolation property, rule ’INT-UNIQ’ gives an effective
algorithm for computing I from f and g.

D. Why Interpolants Precisely Characterize Relational Con-
nectors

We have seen that an I can be found such that the as-
sumptions of the ’INT-UNIQ’ rule hold. This ensures that the
assumptions of ’INT-UNIQ’ rule can be satisfied in practice.
We next show the correctness of ’INT-UNIQ’: any I that is
found in such interpolation process satisfies the conclusion of
the ’INT-UNIQ’ rule, so it can be used in the ’COMP’ rule.
Consider the first assumption of ’INT-UNIQ’:

f(x1) = z1 ∧ g(x1) = y1 ∧ y1 = y2 |= I(y2, z1)

Using one-point rule we eliminate y1 and y2, replacing them
with g(x1). The result is

f(x1) = z1 |= I(g(x1), z1) (3)

Consider the second rule:

I(y2, z1) |= (g(x2) = y2 ∧ f(x2) = z2 → z1 = z2)

Using one-point rule we replace y2 with g(x2) and replace z2
with f(x2), obtaining

I(g(x2), z1) |= z1 = f(x2) (4)

By renaming the variables and conjoining (3) and (4), we
obtain the desired equivalence:

∀x, y. I(g(x), z)↔ z = f(x)

E. Informal Summary of the Idea

In summary, to express f(x) as h(g(x)), we state a nec-
essary condition (2) for f to depend only on the result of
g, writing it in a flat form. We then split conjuncts in such
a way to separate two uses if f, g between the two sides of
the interpolant. Such split leads to interpolants that precisely
specify the relationship between the variables y and z, which
is the relationship I that we wish to synthesize.

F. From Relation to Function Using Synthesis Procedures

The relational connector I is a relation, so we wish to find
a function that refines it. This is where the idea of synthesis
using interpolation connects to the framework of synthesis
procedures [2], [6]–[8]. The result is a syntactic variant of
the rule ’COMP’, which we denote ’COMP-S’ in Figure 1.
The relational connector I is now represented as a formula
I with free variables: b (ranging over the set B, the results
of g) and z (the desired result of the computation of f and
h). Application that was expressed in ’COMP’ as I(g(x), z)
therefore becomes the substitution I[b := g(x)]. Similarly, the
desired function h is expressed as a syntactic term H with the

free variable b. The condition f(x) = h(g(x)) then becomes a
synthesis step that transforms f(x) into the term H[b := g(x)]
that has x as the free variable.

The key step is Jb 〈I〉 zK ` 〈P | H〉, which takes the
relational connector and transforms it into a function given by
H . In the process, it generates the most general precondition,
P . In terms of the rule ’COMP’, the condition P corresponds
to the condition ∃z.I(b, z), because of the domain-preservation
requirement of the “`” operator.

Intuitively, because I is only applied to values g(x), the
precondition P contains the range of g, so it becomes trivially
satisfied in the overall function h(g(x)). This allows us to
synthesize a program H[b := g(x)] with a trivial, true,
precondition > in the conclusion of the rule.

IV. FURTHER GENERALIZATIONS

Note that our results apply to any theory for which we have
synthesis procedures. The discovery of a relational connector
does not even require a synthesis procedure, only interpolation.
In practice, we have demonstrated synthesis for many theories
and they typically have interpolation [2], [7], [8].

A. Tuples and Passing Inputs

Recall that in the original problem we synthesize h(y) such
that f(x) is h(g(x)). Note that adding the notion of n-tuples
does not change decidability in most cases, because tuple
variables can be replaced by individual variables. Thus, we
may assume, when convenient, that x is a vector and that g
returns a vector.

It can be useful to make some of the coordinates of x di-
rectly available to h. To describe this case, we let x = (x0, x1)
and let g(x0, x1) = (x0, g1(x1)). Applying the existing rules
in Figure 1 to such g we obtain f(x0, x1) = h(x0, g1(x1)), as
desired.

B. Partial Specifications

It may appear at first that the techniques presented here
only work when we are given a complete specification of a
problem as a function from inputs to outputs. We next show
that the framework also supports enforcing arbitrary partial
specifications (properties). Indeed, suppose we have a desired
specification relation r ⊆ A × B. We view it as a function
f ′ : A′ → C ′ where A′ is A × B and C ′ is {0, 1}. We then
define g to make appropriate transformations on the elements
of A, and, for example, pass the elements of B unchanged.
Then synthesis of h finds the combination of the outputs of g
that enforces the desired properties f ′, which is again special
case of synthesis in our framework.

C. Output Components and Synthesis in Arbitrary Context

So far we considered a problem where given components
(g) pre-process the input, which then feeds into the function h
that we need to synthesize. It is natural to consider a dual
question (see Figure 2): we are given components k that
will post-process the result, and we need to synthesize inputs
for such components. This problem turns out to be directly

78 95

f : A→ C h : A→ B k : B → C
∀x, y. I(x, y)↔ k(y) = f(x)
∀a. (∃y.I(a, y))→ I(a, h(a))

∀x.f(x) = k(h(x))

vars(F) ⊆ {x} vars(K) ⊆ {y}
Jx 〈K = F 〉 yK ` 〈P | H〉

Jx 〈z = F 〉 zK ` 〈P | K[y := H]〉
O-COMP-S

Fig. 2. When components apply before output, we need no interpolation

expressible using synthesis procedures framework, without
a quantified synthesis condition. Figure 2 summarizes this
case using the semantic rule and the corresponding syntactic
synthesis procedure counterpart. In general, the components
directly feed into the synthesis procedure invocation. Having
pre- and post- processing components simultaneously is there-
fore solved using the same technique as in the case of pre-
processing components alone.

D. Synthesis in Arbitrary Context and Repair

We have concluded that we can do synthesis of missing
components that are fed arbitrary inputs, and whose outputs
are processed in an arbitrary way. We can therefore solve for
h constraints of the form ∀x.k(h(g(x))) = f(x), where f can
either check the property or compute value of any other desired
type. Such generality enables us to use our framework to repair
a given function in two steps: identify the error component,
replace it with the unknown component h, then solve for h
to enforce the desired constraints. This formulation may help
generalize techniques used to solve the engineering change
order (ECO) problem [15] to unbounded domains.

E. Synthesizing Multiple Components

Both the argument and the result of h can be a tuple.
Therefore, we are able to solve synthesis problems of the form

∀x.k(h1(g′1(x), ..., g′n(x)), ..., hm(g′1(x), ..., g′n(x))) = f(x)

This means that we can solve for any number of unknown
components. However, note that the results of all components
of g are fed into each unknown component. It may be desirable
to restrict the inputs of hi to only a subset of the variables x,

A

C

k

h1
f

hm

g1 gm

...

...

Fig. 3. Our method also handles the more general case

solving instead the problem of the form, (for some different
component functions gj):

∀x.k(h1(g1(x)), ..., hm(gm(x))) = f(x)

To solve such problem we interpolate the following entailment,
which, as before, expresses that the result of f only depends
on the intermediate results returned by all of gj :

f(x1) = z1 ∧
∧m

j=1 gj(x1) = yj1 ∧
∧m

j=1 y
j
1 = yj2

f(x2) = z2 ∧
∧m

j=1 gj(x2) = yj2 → z1 = z2

The resulting interpolant is of the form I(y12 , ..., y
m
2 , z1); we

can easily show that it satisfies, for all x and z,

I(g1(x), ..., gm(x), z)↔ z = f(x)

using an entirely analogous proof as in Section III. From such
component described using a relation I we can, as before,
obtain a function using a synthesis procedure. We thus obtain
soundness and completeness for such synthesis of multiple
components that are fed distinct parts of the input (Figure 3).
In addition to the previous advantages, this generalization
enables the user to encode the intuition about independence
between variables into the synthesis problem.

Acknowledgements.

We thank Alan Mishchenko for pointing us to existing
related work, as well as for his encouraging discussions. We
also thank Philippe Suter, Barbara Jobsmtann, Paolo Ienne,
and Anna Petkovska for useful discussions.

REFERENCES

[1] Flener, P.: Logic Program Synthesis from Incomplete Information.
Kluwer Academic Publishers (1995)

[2] Jacobs, S., Kuncak, V., Suter, P.: Reductions for synthesis procedures.
In: VMCAI (2013)

[3] Jhala, R., McMillan, K.L.: A practical and complete approach to
predicate refinement. In: TACAS. pp. 459–473 (2006)

[4] Jiang, J.H.R., Lee, C.C., Mishchenko, A., Huang, C.Y.R.: To SAT
or not to SAT: Scalable exploration of functional dependency. IEEE
Transactions on Computers 59, 457–467 (2010)

[5] Jobstmann, B., Bloem, R.: Optimizations for ltl synthesis. In: FMCAD.
pp. 117–124 (2006)

[6] Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Functional synthesis for
linear arithmetic and sets. Software Tools for Technology Transfer
(STTT) (2012)

[7] Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Software synthesis proce-
dures. CACM 55(2), 103–111 (2012)

[8] Kuncak, V., Mayer, M., Piskac, R., Suter, P.: Complete functional
synthesis. In: PLDI. pp. 316–329 (2010)

[9] Lustig, Y., Vardi, M.Y.: Synthesis from component libraries. In: FOS-
SACS. pp. 395–409 (2009)

[10] Manna, Z., Waldinger, R.J.: Toward automatic program synthesis.
CACM 14(3), 151–165 (1971)

[11] McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci.
345(1), 101–121 (2005)

[12] Smith, D.R.: KIDS: A semiautomatic program development system. TSE
16(9), 1024–1043 (1990)

[13] Solar-Lezama, A., Tancau, L., Bodı́k, R., Seshia, S.A., Saraswat, V.A.:
Combinatorial sketching for finite programs. In: ASPLOS (2006)

[14] Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to
program synthesis. In: POPL. pp. 313–326 (2010)

[15] Wu, B.H., Yang, C.J., Huang, C.Y., Jiang, J.H.R.: A robust functional
ECO engine by SAT proof minimization and interpolation techniques.
In: ICCAD. pp. 729–734 (2010)

7996

Relational STE and Theorem Proving for
Formal Verification of Industrial Circuit Designs

John O’Leary and Roope Kaivola
Intel Corporation

{john.w.oleary, roope.k.kaivola}@intel.com

Tom Melham
University of Oxford

Tom.Melham@cs.ox.ac.uk

Abstract—Model checking by symbolic trajectory evaluation,
orchestrated in a flexible functional-programming framework,
is a well-established technology for correctness verification of
industrial-scale circuit designs. Most verifications in this domain
require decomposition into subproblems that symbolic trajectory
evaluation can handle, and deductive theorem proving has long
been proposed as a complement to symbolic trajectory evaluation
to enable such compositional reasoning. This paper describes an
approach to verification by symbolic simulation, called Relational
STE, that raises verification properties to the purely logical level
suitable for compositional reasoning in a theorem prover. We also
introduce a new deductive theorem prover, called Goaled, that
has been integrated into Intel’s Forte verification framework for
this purpose. We illustrate the effectiveness of this combination
of technologies by describing a general framework, accessible to
non-experts, that is widely used for verification and regression
validation of integer multipliers at Intel.

I. INTRODUCTION AND MOTIVATION

Forte [1] is a formal verification environment, based on sym-
bolic circuit simulation, that is well-established as an effective
solution to large-scale, datapath correctness verification at Intel
Corporation [2], [3], [4], [5], [6]. Two prominent successes
are the verification of the entire execution cluster of the Intel
Core 2 Duo [7] and Core i7 processors [8]. Some challenging
control-dominated designs have also been verified [9].

The foundation for verification of circuit properties in Forte
is symbolic trajectory evaluation [10]. Symbolic trajectory
evaluation (STE) is a model-checking method powered by
symbolic circuit simulation: it computes expressions for circuit
outputs in terms of variables that stand for inputs, and checks
that the circuit behaviours obtained satisfy temporal logic
formulas, computing the exact region of any disagreement.
These features give a seamless connection between simulation
and verification, as well as comprehensive feedback on failed
properties—two key elements of an effective methodology for
large-scale formal verification [1], [11].

To control complexity, STE adds a flexible mechanism for
partitioned abstraction [12], [13]. But, like any model checker,
STE still has limited capacity. Forte therefore complements
model checking with a higher-order logic theorem prover of
similar design to the HOL system [14]. Theorem proving
bridges the gap between big, industrially-important verifica-
tion tasks and tractable model checking problems. At Intel,
Forte is commonly used to provide assurance of functional
correctness—rather than ‘bug hunting’. (Other tools are used
for assertion-based verification.) The verifications tackled are

therefore large and highly complex, and almost always require
some form of problem decomposition into tractable model-
checking cases. A typical high-level correctness statement may
decompose in complex ways into tens or even hundreds of
individual STE properties. Theorem proving helps assure the
verification engineer that these do indeed join up to imply
the overall correctness result. Problem decompositions also
commonly spin out side conditions that can’t be checked by
STE itself, but which yield to validation by theorem proving.

The Forte approach is to integrate model checking and
theorem proving within the single framework of a functional
programming language and its runtime system. A highly
engineered implementation of STE is built into the core of the
language, with numerous entry points into the internals of the
model-checking algorithm provided as user-visible functions.
Classically, verification in Forte has been viewed as program-
ming activity, in which the functional language is used directly
by verification engineers to orchestrate proofs and customize
the tools to meet complex verification challenges [1].

More recently, however, the focus at Intel has been shifting
to a higher level approach, enabled by two key technical
developments: a new theorem prover called Goaled and a
higher level formulation of property verification by symbolic
simulation called Relational STE. Goaled is a complete re-
placement for Forte’s original theorem prover, ThmTac [1],
[15]. Goaled has a much more complete logical basis than
ThmTac and is fully integrated with reFLect [16], a principled
redesign and implementation of the system’s original func-
tional programming language. Relational STE liberates the
user from the low-level temporal logic of primitive STE. It
allows properties to be expressed in terms of purely logical
constraints, which are suitable for compositional reasoning
with the Goaled theorem prover.

In this paper, we give the first detailed account of Goaled
and Relational STE, and of the higher level approach to verifi-
cation enabled by these technical developments. We illustrate
the approach by describing a general framework for integer
multiplier verification that puts the power of Forte into the
hands of non-experts, and which is widely used for verification
and regression validation of multipliers at Intel.

Intel’s deployments of STE and Forte are among the most
substantial and sustained formal verification efforts in industry;
and, for some time, they were distinctive in general approach.
It is therefore encouraging to see the emergence of some

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 8097ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

impressive results obtained at Centaur Technology [17], [18]
using a framework, based around the ACL2 theorem prover,
that has many parallels with Forte—as well as some significant
differences. We discuss this work in some detail in Section V.

II. THE INTEGRATED GOALED THEOREM PROVER

Theorem proving as a complement to STE model-checking
has a long history. The combination was pioneered in the early
1990s in an academic predecessor of Forte called Voss [19];
this was followed by a series of systems that linked STE and
theorem proving, culminating in today’s mature integration
within Forte of the comparatively full-featured theorem prover
Goaled—an integrated combination that is seeing increasing
use in production verification projects.

HOL-Voss was a mathematically-principled hybrid of sym-
bolic trajectory evaluation and reasoning in the HOL theorem
prover [20], [21]. Formal definitions were made in HOL of
the mathematical entities of trajectory evaluation and some of
the functional programming constructs used in Voss to specify
data operations and circuit properties assertions. STE proofs
done by Voss could then generate HOL theorems framed in
this theory, and one could use HOL to construct higher-level
arguments from these. The circuit model remained external to
HOL and was represented by an uninterpreted logical constant.

At around the same time, Hazelhurst and Seger developed
a simple theorem prover within Voss itself for reasoning
in a sound and complete system of inference rules for the
temporal logic of STE [22]. The prover was augmented with
some ad-hoc ‘domain knowledge’, such as algebraic rules of
multiplication, and had some automatic proof heuristics. The
idea was to integrate—in a single framework this time—model
checking by symbolic simulation and deductive reasoning
about ‘deeply embedded’ assertions of the STE logic.

A step-change in integration came with the realisation that
one might unify the functional programming language for
scripting STE and the logical language within which reasoning
is done.1 Lifted-FL [15] was a deep embedding of the underly-
ing term structure of Voss’s functional programming language,
called ‘FL’, within itself. This term structure is essentially the
typed λ-calculus, the same as that of the higher-order logic in a
theorem prover, such as HOL, that uses Church’s formulation
of the logic [24]. The syntactic theorems of a theorem prover
implemented within Voss could now just be quoted fragments
of FL—i.e. functional program expressions, of Boolean type,
that are manipulated as data within the system. Moreover,
since logical formulas were now just program expressions,
FL’s native evaluator could (sometimes) be used to prove them.
This gave very fast proof by evaluation, as a complement to
more laborious deductive inference.

Two generations of a theorem prover called ThmTac [1],
[15] were built around this idea and used with STE to
verify several challenging industrial circuit designs for which
decomposition was essential [1], [25], [26]. This strongly

1This idea had long been predated, of course, by the pioneering ACL2
theorem prover [23], which uses Applicative Common Lisp for both the
implementation and the logical languages.

validated the general approach, but the system still had some
shortcomings. The logical and programming languages didn’t
completely align—the most notable gap being pattern match-
ing, which was compiled away in the process of parsing quoted
FL expressions. The correct logical treatment of type defi-
nitions and recursive function definitions was largely passed
over. The core of the theorem prover consisted of a collection
of ‘trusted tactics’, so the logical basis was ad-hoc. More
seriously, this meant that theorem proving was biased towards
interactive, goal-directed proof [27], limiting its appeal to
non-experts. Finally, reasoning was still focussed on circuit
properties expressed in the primitive temporal logical of STE.

The next step was an extensive ‘rational reconstruction’ of
the programming language, FL. This was aimed, among other
things, at making the connection between the programming
and logical language much more principled. It also enabled a
host of engineering improvements to the system. The result
was reFLect [16], the language at the heart of the version
of Voss—by now renamed Forte—used today in production
formal verification projects at Intel.

ReFLect was designed from the start with theorem proving in
mind. The aim was to have precisely the same λ-calculus at the
core of both the logic and the programming language, and for
the theorem prover and the reFLect interpreter to use identical
internal data structures. This allows flexible (but, for logical
soundness, still carefully regulated) intermixture of deduction
in the theorem prover and evaluation in the interpreter, includ-
ing proof by evaluation. To gain confidence in the soundness
of this integration, a rather intricate reduction semantics for
the language was designed, the rules of which could then be
made primitive inference rules of the theorem prover. One
innovation was the introduction of function definitions by
pattern matching over quoted code, and a major challenge was
formulating the right reduction rules for this.

Goaled is a full-featured, but still lightweight, higher order
logic theorem prover built in reFLect for reasoning about reFLect
programs. The system is heavily influenced by HOL and HOL
Light [28]; it can be seen as a reimplementation of these,
but with a radically extended λ-calculus. Following the LCF
paradigm, it is built on a trusted core of primitive inference
rules, expressed in terms of new formulations of the usual pre-
logic primitives of α-equivalence, term matching, substitution,
and so on. The core includes a full basis for ordinary higher-
order logic, full rules for term reduction—including pattern
matching over quoted terms—and certain reflection rules for
moving between logic and native evaluation.

Function definitions and type definitions in the logic, in-
cluding quotient types, originate as programming language
definitions made at the reFLect interpreter level. But, although
arbitrary definitions are permitted in the interpreter, definitions
are made visible in the logic only after surviving scrutiny.
This design choice is motivated by the reality of how reFLect
is used in practice. ReFLect is used for hardware specification
and proof scripting, where formal proof is valuable or even
essential—but also for tool implementation and general pur-
pose programming, where proof is optional, if it is possible

8198

at all. Quotient types are defined in reFLect by proposing an
equality-testing function, and are made visible in the logic
upon proof that the equality-testing function is an equivalence
relation. Functions that operate on quotient types are made
visible in the logic upon proof that they respect equality for
that type. Recursive function definitions that pass a syntactic
test for primitive recursion are admitted immediately, but
in general termination must be proved by exhibiting a well
founded relation R and supplying a proof that the arguments
to each recursive call decrease with respect to R.

Above this fundamental level, Goaled includes formalized
theories of Booleans, the option type, natural numbers, in-
tegers, rationals, functions, pairs, and lists. There are also
more hardware-oriented theories of fixed-width and variable-
length bitvector arithmetic. Proof automation, largely ported
from HOL, includes full-featured rewriting and simplification,
a meson first order solver, and a Fourier-Motzkin solver
for linear arithmetic over N, Z, and Q. Following common
practice in this domain, Goaled has sequent ‘tagging’ to enable
integration with external decision procedures.

All these capabilities were added to Goaled in response
to practical reasoning needs. In particular, they support the
features of reFLect commonly used in verification practice,
including overloading, records and quotient types. For the time
being, we have found this to be adequate for our domain and a
good characterization of ‘lightweight’ theorem proving in this
setting. We needed much more than originally envisaged when,
say, ThmTac was introduced. But it is still much less than
what mainstream theorem provers such as HOL, Coq [29], or
Isabelle/HOL [30] have. This is natural, because the activity
we support is more about reasoning about functional programs
than, say, doing proofs in algebraic mathematics or reasoning
about inductively-defined discrete structures.

III. RELATIONAL STE: FROM SIMULATION TO LOGIC

Symbolic trajectory evaluation (STE) is a model-checking
algorithm that proves properties of circuit behaviour using
ternary symbolic circuit simulation. The STE algorithm takes
as inputs a circuit and a pair of trajectory formulas, called
the antecedent and consequent, that together constitute the
property to be checked. Roughly speaking, the intuition is
that the antecedent determines certain bits in the initial state
and provides stimuli to selected circuit inputs at certain points
within a bounded period of time. The consequent specifies
the values expected to appear on selected circuit nodes as a
response, while the circuit model is simulated.

A successful run of STE establishes a trajectory assertion
saying that any execution of the circuit that conforms to the an-
tecedent also satisfies the consequent. In essence, STE checks
that circuit behaviour has simple stimulus-response properties,
framed within a finite window of time. In addition, there is
a mechanism for abstraction of circuit behaviour in which
circuit nodes can carry ‘unknown’ values. This is overlaid
by a symbolic representation for groups of properties that
allows relationships between values on different circuit nodes
to be expressed. Together, these provide a means by which

families of abstractions, each covering only part of the circuit’s
behaviour, can be checked simultaneously. This mechanism for
partitioned abstraction is called symbolic indexing [12] and can
sometimes achieve dramatic efficiency gains [13], [31].

In the classical formulation of STE, the antecedent and
consequent are written in a very simple linear-time temporal
logic. In Forte, these formulas are represented concretely by
lists of 5-tuples of the form

(guard ,node, value, start , end)

where guard and value are formulas of propositional logic
(usually BDDs, but a non-canonical representation aimed at
SAT is supported too), node is a node name (a string), and
start and end are non-negative integers. The meaning is that
if guard holds, then node has value from simulation cycle
start up to but excluding simulation cycle end .

ThmTac and earlier theorem provers for STE provided
a specialised deductive system for compositional reasoning
about the trajectory assertions in the form just introduced.
In essence, lists of 5-tuples constituted a ‘deep embedding’
of a syntax of trajectory assertions; and rules were added to
higher order logic that constituted an axiomatic theory of the
embedded STE simulation logic. Consequently, the deductive
system for circuit properties was not well integrated with the
ordinary higher order logic of these theorem provers.2

A. Circuit Execution Semantics and STE Formulas

Let us introduce some basic definitions. A circuit is a well-
formed interconnection of combinational gates and sequential
elements, such as flip-flops and latches. An execution is a
function of type (string × num) → bool that assigns to each
circuit node, named by the string, a Boolean value at each
point in time, represented by a natural number. The behaviour
of a circuit is a predicate on executions—or, equivalently, a
set of executions.

We shall assume the existence of a function

[[ckt]] :: ((string× num) → bool) → bool

that gives us the behaviour of a circuit, i.e. a predicate
determining whether a given execution e is consistent with
the circuit. Analogously, we also write [[ant]] for a predicate
specifying whether an execution e is consistent with the five-
tuple list ant. We are deliberately vague about how a circuit
is represented concretely, but note that if a representation is
chosen it is a relatively simple matter to define the function [[]]
mathematically. In essence, one would use the classical ‘rela-
tional’ approach that is well-known from hardware modelling
in higher-order logic [32].

B. Relational STE

STE has proven to be an extremely useful verification
engine in practice, and has been the key enabler for most
of Intel’s formal verification success stories. Nevertheless, the

2Some bridges between the two levels were, however, provided by certain
quantifier rules and axioms about ‘parametric’ encoding of assumptions.
See Section VII of [1] for details.

82 99

language of trajectory assertions severely limits the classes of
properties that can be expressed natively. In effect, trajectory
assertions require a specification to be functional: given inputs,
the specification dictates the values the outputs shall have,
potentially under some do-care conditions.

Many informal specifications occurring in practice do not
fall into this category, the simplest one being ‘nodes a and b
are mutually exclusive’. Such relational specifications become
especially important as the abstraction level of specifications
rises. For example, a natural specification of a scheduler might
say ‘an operation with its sources ready will be scheduled
for execution’, while intentionally leaving open the selection
between different ready operations. When verifying relational
specifications with STE, the established practice has been to
use STE as a symbolic simulation engine only, and to write ad
hoc FL code to compute the satisfaction of the specification
on the basis of simulation values queried from the STE trace.

Relational STE, or rSTE in short, has been crafted as a
systematic solution to the problem of expressing and verifying
general relational specifications, while retaining the use of STE
as the underlying symbolic simulation engine.

In what follows, we give an overview of the technical
underpinnings of rSTE. The notation we use is an idealization
of the Goaled higher order logic. As discussed in Section II,
phrases of this logic are simultaneously reFLect programs, so
we shall employ a mixture of functional programming and
logical notation. The reader is spared the concrete syntax of
the actual Forte implementation, which for historical reasons
is similar to that of the original ‘Edinburgh’ ML [33].

The basic building blocks for rSTE specifications are called
constraints. Conceptually, a constraint is simply a predicate
on circuit executions. Technically, a constraint c consists of
three parts: name, predicate and signature, denoted by name c,
pred c and sig c, respectively. The name is simply a string
that is used to identify the constraint for user convenience, e.g
for informational messages. The predicate is a function

pred c :: ((string× num) → bool) → bool

and the signature is a list of string× num pairs. The predicate
refers to a finite collection of individually specified circuit
nodes and points of time, conceptually querying their values in
a circuit execution given to the predicate as an argument, and
computes a Boolean function of these values. The signature
lists all the nodes referred to by the predicate, and the times
at which their value is accessed.

For example, the constraint shown below could be used to
express the informal property that ‘circuit nodes a and b are
mutually exclusive at time point 2’.

CONSTR “ab mutex”
(λe.¬((e(a, 2)) ∧ (e(b, 2))))
[(a, 2), (b, 2)]

We extend the predicate function pred to a constraint list
cl = [c1, . . . , cn], implicitly considered conjuncted, by:

predl cl e
def= (pred c1 e) ∧ . . . ∧ (pred cn e)

The user interface to rSTE is through a reFLect function

rSTE ckt antc antv cin cout opts

The first two arguments to rSTE, the circuit ckt and the
constant antecedent antc, describe the ‘static’ aspects of the
verification task. Here antc is a five-tuple list, exactly as used
in classical STE; but it is used in rSTE only to set constant
value assignments, e.g. clock patterns, testability signals, etc.,
that are shared by all verification tasks on the circuit. In
classical STE, the antecedent is also used to assign symbolic
variables to circuit nodes; in rSTE this aspect is separated out
as a distinct variable binding antecedent antv , which allows
the user only to bind positive instances of distinct symbolic
variables to circuit nodes. Every circuit node is mentioned in
antc or antv or is assigned an unknown ‘X’ value at the start
of the simulation, so this covers the full state-space. For more
discussion on symbolic variable bindings, see [34].

The main logical content of an rSTE verification task is
described with the input and output constraint lists cin and
cout . The meaning is that if the input constraints cin hold,
then circuit behaviour under simulation will satisfy the output
constraints cout . In theory, the constraints could be combined
into an implication cin ⇒ cout . In practice, however, verifi-
cation of each element in cout may be carried out separately
to alleviate complexity. Separating out the constraints cin
can also allow some them to be injected into the symbolic
simulation using parametric substitution [26], futher improving
efficiency.

Finally the options list opts gives the user fine-grained
control over how rSTE carries out the verification task. For
example, the computation may require use of a parametric
representation of boolean functions [26], a specific circuit
abstraction method, or certain simulation or constraint satisfac-
tion engines: e.g. BDD-based analysis vs SAT-based analysis.
The user specifies all such choices through the rSTE options.

Internally, the reFLect function rSTE uses the constant and
variable binding antecedents antv and antc as well the user-
given options opts to construct a classical STE antecedent.
It then carries out symbolic simulation with STE using this
antecedent as stimulus. Following the symbolic simulation,
an execution ê is available that ‘reads off’ symbolic values
on circuit nodes at any specified times. To establish truth or
falsehood of the rSTE assertion, the implication

(predl cin ê) =⇒ (predl cout ê)

is evaluated over ê, either using BDDs or a SAT solver,
depending on user options.

The relational formulation of symbolic trajectory evalua-
tion preserves the power of the underlying STE algorithm
while enabling much richer specifications—in particular ones
describing relations between nodes values rather than just
functions. Since its introduction, rSTE has been the workhorse
of datapath verification at Intel; many thousands of individual
operations, from the very simple to the very complex, have
been verified in several microprocessor families and over the
course of several generations.

83100

In the classical theory of STE, the ‘fundamental theorem’
relates a successful run of the symbolic simulator to the logical
property it establishes. For rSTE, the fundamental theorem has
a particularly elegant formulation:

∀ckt antc antv cin cout opts .
rSTE ckt antc antv cin cout opts =⇒
∀e. [[ckt]] e ∧ [[antc]] e =⇒

(predl cin e) =⇒
(predl cout e)

Most important for the purpose of this paper, the relational
formulation eliminates the need to use specialized STE infer-
ence rules and apparatus for temporal reasoning. The relational
formulation makes it ‘just’ higher order logic. Reasoning about
functional and temporal aspects of circuit behavior takes place
in a uniform framework: higher order logic. Indeed, rSTE
itself is a function that can be reasoned about in higher order
logic. In Section IV, we illustrate a practical application of
this: reasoning about automatically generated specifications
and automatically generated calls to rSTE.

Notice that the symbolic variables bound by antv do not
appear in the correctness property inferrable from a successful
run of rSTE. This is intentional: we use symbolic simulation
and computation only as a means to the end goal of verifying
universally quantified claims. The identity of the symbolic
variables and the precise bindings do not matter, as long as
distinct variables are bound to distinct circuit nodes and times,
which rSTE checks automatically.

IV. A FRAMEWORK FOR INTEGER MULTIPLICATION

Figure 1 shows a Booth multiplier. Its principles of opera-
tion are simple. First, one of the operands, S1 say, is Booth
encoded: N Booth coefficients BEi(S1) are computed such that

−2k < BEi(S1) < 2k.

for 0 ≤ i < N and k > 0. A given multiplicand S1 has many
valid Booth encodings, but the Booth coefficients are always
required to satisfy

S1 =
N−1∑
i=0

BEi(S1)× 2ki. (1)

The quantity 2k is called the radix.
Second, a set of N partial products is computed, one for

each Booth coefficient:

PPi = BEi(S1)× S2 (2)

for 0 ≤ i < N .
Finally, the N partial products are shifted and summed to

yield the product PROD:

PROD =
N−1∑
i=0

PPi × 2ki (3)

Automatic input-to-output verification of even a moderately-
sized multiplier is beyond the capacity of the BDD- and SAT-
based verification approaches commonly deployed in industry.

Partial Products

Generation

Booth

Encoder

Wallace Tree Adder

Network

S1 S2

PROD

BEi(S1)

PPi

Fig. 1. A Booth Multiplier.

But verification of Equations (1), (2), and (3) is tractable and
can be done automatically using rSTE. Once these are estab-
lished it will require only straightforward algebraic reasoning
to prove, on paper or in Goaled, that

PROD = S1× S2 (4)

Consider now the task of verifying an actual circuit im-
plementation of a Booth multiplier. Typically, a circuit ex-
pects to receive a valid clock pattern and the assertion of
some interface control signals requesting the execution of a
multiplication operation. In rSTE verification, we would fix a
constant reference time for the start of the operation, and code
the expected clock and control signal patterns by a constant
antecedent antc. The circuit will read source data values on
designated signals at some fixed delay after the start of the
operation. Then, Booth encodings and partial products will be
computed, and partial products summed together to produce a
final product on designated result signals at some later time.

To map the conceptual proof stages above to an actual
circuit implementation, we need to first identify the circuit
signals for both sources S1 and S2, the partial products and
the final product, with the appropriate timing relative to the
fixed start of the operation, and code these as string × num
lists s1, s2, ppi and prod, respectively. The function s2i
interprets the values on such lists, relative to a given circuit
execution, as integers using two’s complement encoding.

We construct an rSTE constraint to check correctness of the
Booth coefficients using Equation (1) as specification:

eqn1(x) def= x =
N−1∑
i=0

BEi(x)× 2ki

boothc
def= CONSTR “boothOK”

(λe. eqn1 (s2i e s1))
s1

As before, we use ordinary mathematical notation in defini-
tions; reFLect notation differs in style but not in substance.

84 101

We now use rSTE to verify that the constraint boothc
holds for all executions of the circuit. We will use the variable
binding antecedent antv to assign distinct symbolic variables
to all the source data signals at the time the circuit is expected
to read their values, and execute the rSTE call

rSTE ckt antc antv [] [boothc] opts.

Success of this call allows us to conclude, via the fundamental
theorem, that

∀e. [[ckt]] e ∧ [[antc]] e =⇒
(predl [] e) =⇒ (predl [boothc] e)

By expanding the definition of predl and employing a few
of Goaled’s standard theorems about lists, this simplifies to

∀e. [[ckt]] e ∧ [[antc]] e =⇒ pred boothc e

Expanding the definitions of boothc and pred plus a little
more rewriting yields

∀e. [[ckt]] e ∧ [[antc]] e =⇒ eqn1(s2i e s1).

Finally, expanding the definition of the auxiliary function eqn1
yields a theorem asserting that the Booth coefficients bear the
correct relationship to the circuit nodes s1.

∀e. [[ckt]] e ∧ [[antc]] e =⇒
s2i e s1 =

∑N−1
i=0 BEi(s2i e s1)× 2ki.

In similar fashion, we define constraints corresponding to
Equations (2) and (3):

eqn2i(wi, x, y) def= wi = BEi(x)× y

ppci
def= CONSTR “ppiOK”

(λe. eqn2 (s2i e ppi,
s2i e s1,
s2i e s2))

(s1 @ s2 @ ppi)

eqn3(z, w) def= z =
N−1∑
i=0

wi × 2ki

prodc
def= CONSTR “prodOK”

(λe. eqn3(s2i e prod,
map (s2i e) pp))

(prod @ flat pp)

With these definitions in hand we execute the remaining rSTE
runs. There are N + 2 in all, one for boothc, one instance
of ppci for each of the N partial products, and one final
run to check prodc. For all except the final run we use the
variable binding antecedent to assign variables to the source
data signals; in the final run we use it to assign distinct
symbolic variables to the partial product signals.

Using a BDD variable ordering that aligns the bits in partial
products according to their position in the summation, we can
handle verification of most Wallace tree adders occurring in
Intel designs, up to extended precision floating point multipli-
ers. For a minority of designs, a further cut-point in the middle

of the Wallace tree is needed to manage BDD complexity, and
Equation (3) is split into two obligations.

If all of these verification runs are successful, we can use
the fundamental theorem of rSTE and simple rewriting and
logical reasoning to conclude that

∀e. [[ckt]] e ∧ [[antc]] e =⇒
(s2i e s1 =

∑N−1
i=0 BEi(s2i e s1)× 2ki) ∧

(
∧N−1

i=0 s2i e ppi = BEi(s2i e s1)× s2i e s2) ∧
(s2i e prod =

∑N−1
i=0 (s2i e ppi)× 2ki)

From here, routine arithmetic reasoning yields a theorem
asserting the correctness of the multiplier implementation:

∀e. [[ckt]] e ∧ [[antc]] e =⇒
(s2i e prod) = (s2i e s1)× (s2i e s2)

Note that these results were obtained using only standard
logical reasoning, without the use of purpose-built inference
rules for STE. This is due to the direct representation of rSTE
constraints in the logic of Goaled, and our formulation of the
fundamental theorem of rSTE that directly exposes the logical
import of each successful rSTE run.

A. A General Framework for Multipliers

The method outlined above suffices to verify the correctness
of one multiplier. Wide deployment across a large corpora-
tion presents additional challenges. Surface details like signal
names and their timing vary from design to design, as do radix
and operand widths. Designs differ more fundamentally in how
they choose to encode Booth coefficients and partial products
and how they represent flags and exceptional conditions. Many
design-specific quirks are handled by customizing functions
like s2i that extract values from the circuit trace, allowing
us to view the circuit as if it was a vanilla design. If an
implementation feature cannot be ‘explained away’ like this,
the reference model is generalized to handle it. In addition,
each design organization has its own validation and regression
practices and software that supports them.

To address this diversity of designs and design environ-
ments, we have developed over the last decade a general
framework for multiplier verification. The notion of constraints
is generalized to allow predicates over arbitrary domains, with
the constraints over circuit executions described in Section
III being a special case. Abstraction mappings between con-
straints are used to separate the essence of the specifications
and proofs shown above from accidental details of particular
designs. The framework is designed to be configured and
used by non-experts, who are responsible for supplying design
details (signal names, representation of partial products, and so
on) and setting configuration parameters (for example, radix
and operand width). Behind the scenes, a sophisticated set of
reFLect scripts arranges for design-specific specifications to be
generated and orchestrates the necessary runs of rSTE.

Although the scripts are written with care, they are under
continual refinement—each new design and design environ-
ment introduces some wrinkle—making it impossible to prove
correctness of the scripts once and for all. There is a very real

85102

risk that script errors will result in generation of incorrect
specifications or an incomplete set of rSTE runs. To verify
correct operation of the scripts, we have integrated Goaled
with our multiplier verification framework. During nightly
RTL regression, Goaled analyzes the scripts at source level
to determine what specifications are generated and what rSTE
runs are executed. A proof is programatically constructed,
along the lines shown above, that these specs and rSTE
runs are sufficient to ensure correctness of the circuit. This
capability is currently deployed in a ‘live’ CPU design project.

Goaled also plays a more traditional role in our multiplier
verification framework. Several side conditions arise in our
compositional proofs that would be difficult or impossible to
prove using BDDs or SAT. For example, this assumption is
required in the proof of the Wallace tree adder:

min{S1S2, S1S2, S1S2, S1S2} ≤
N−1∑
i=0

PPi × 2ki

where x (x) denotes the largest (smallest) value of the bitvector
x. A Goaled proof is immediate from Equations (1) and (2).

V. RELATED WORK

Integration of model-checking and theorem proving was
proposed as early as the mid 1990s [35], and many experi-
ments in combining the techologies have been reported. One of
these, ACL2SIX [36], integrates the ACL2 theorem prover and
IBM’s SixthSense verification tool. The combination was used
to verify a pipelined 53×43 bit multiplier, by a decomposition
strategy similar to the example presented in Section IV. Some
more general verification frameworks that effectively combine
two technologies have also been designed, two prominent
examples being Prosper [37] and SAL [38].

The published research on applied formal verification most
closely related to Forte is work on a verification toolflow used
at Centaur Technology to help ensure correctness of their
X86-compatible microprocessors [17], [18]. Developed and
deployed by a team of engineers and scientists at Centaur
and UT Austin, the framework integrates several reasoning
tools and is based around the well-established ACL2 theorem
prover [23]. As with Forte at Intel, a prominent application
is the verification of floating-point and integer arithmetic
hardware. Of course ACL2 itself, and its predecessor the
Boyer-Moore theorem prover, have a long history of successful
application to hardware verification [39], [40].

A notable feature of the Centaur framework is that it is
built on top of publicly-available software tools: ACL2 itself
and special-purpose tools such as the ZZ framework [41] and
ABC [42]. The impressive verification results cited in [17],
[18] and [43] show that a robust and practical toolflow of
considerable capacity can be built in this way. By contrast,
Forte is an in-house tool, highly engineered and optimised
through years of use on challenging problems at Intel.

The two frameworks have many features in common, at
least at a general level: symbolic circuit simulation is a central
technology for generating circuit properties; individual proper-
ties of a proof are composed together in a theorem prover, to

build up more complete verifications; and both systems are
embedded in a general purpose programming language, so
they can be extended and customised. Both tools can read
and give semantics to large circuit models at either gate or
transistor levels. Proof regression is a common verification
activity carried out with both frameworks.

A significant difference between Forte and the Centaur
framework is the depth of integration of circuit simulation.
In Forte, the symbolic simulation algorithm is built in to
reFLect and not exposed to reasoning at the level of the Goaled
theorem prover. There are reFLect functions that can be used
to explore and manipulate the structure of the circuit model,
and access its state-transition semantics. But for efficiency the
simulator itself is hard-coded into the internals of reFLect.
Although the STE algorithm has been independently veri-
fied [44], there are no plans to verify the highly engineered
Forte internal simulator. In the Centaur system based on ACL2,
the symbolic circuit simulator is written in ACL2 itself. It is
hence available as a formal object about which proofs can be
done—and, indeed, has been verified correct [45].

The successful industrial deployment of two major verifi-
cation frameworks, Forte at Intel and the ACL2-based tools
at Centaur Technology, show that this idea has come of age
industrially. Moreover the parallels between the two systems,
each quite different from the other in numerous matters of
detail, strengthens the conclusion that this kind of architecture
represents a general solution in this important domain.

VI. SUMMARY AND PROSPECTS

This paper has described what we hope to be the basis
for a step-change in the exploitation of theorem proving as
a complement to symbolic simulation for compositional veri-
fication of circuit designs. Relational STE raises the level of
the properties obtained from symbolic trajectory evaluation to
pure logic. Compositional reasoning can then be done straight-
forwardly in higher-order logic, rather than with specialised
STE inference rules. A ‘lightweight’ theorem prover, Goaled,
has been designed for this purpose and tightly integrated
into Forte, the STE programming environment used at Intel.
The utility of this approach is exemplified by a general tool
for validation of integer multipliers that soundly automates
complex proof decompositions for non-expert users, entirely
‘hiding’ the theorem proving support for this.

Future work on Goaled includes development of a theory
of floating point operations at bit level. This is intended
for certification of conformance to IEEE Standard 754 of
‘reference models’ of floating point algorithms expressed as
reFLect programs. Valuable results of this kind been obtained
in the past using ThmTac [1]; it is hoped that a capability
for this in Goaled will aid in maintaining the certification of
reference algorithms as they become more complex over time.

Future work on Relational STE includes fully integrating
SAT-based symbolic trajectory evaluation into the framework,
alongside BDDs. This is largely a matter of engineering.
More challenging from a research perspective will be the
incorporation of symbolic indexing, a flexible and somewhat

86 103

subtle mechanism for abstraction in STE, into the Relational
STE flow. This may leverage past work on abstraction trans-
formations [46] and automatic symbolic indexing [13].

REFERENCES

[1] C.-J. H. Seger, R. B. Jones, J. W. O’Leary, T. Melham, M. D. Aagaard,
C. Barrett, and D. Syme, “An industrially effective environment for
formal hardware verification,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 24, no. 9, pp. 1381–
1405, Sept. 2005.

[2] J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying
IEEE compliance of floating-point hardware,” Intel Technical Journal,
First quarter, 1999.

[3] R. Kaivola and K. R. Kohatsu, “Proof engineering in the large: formal
verification of Pentium 4 floating-point divider,” Int. J. on Software Tools
for Technology Transfer, vol. 4, no. 3, pp. 323–334, 2003.

[4] R. Kaivola and N. Narasimhan, “Formal verification of the Pentium-4
multiplier,” in High-Level Design Validation and Test. IEEE, 2001, pp.
115–122.

[5] A. Slobodová and K. Nagalla, “Formal verification of floating point
multiply add on itanium processor,” in Fifth International Workshop on
Designing Correct Circuits: Barcelona. ETAPS 2004, Mar. 2004.

[6] A. Slobodová, “Formal verification of hardware support for advanced
encryption standard,” in 2008 Formal Methods in Computer Aided
Design. IEEE, 2008, pp. 1–4.

[7] A. Flaisher, A. Gluska, and E. Singerman, “Case study: Integrating FV
and DV in the verification of the Intel Core 2 Duo microprocessor,” in
Formal Methods in Computer Aided Design. IEEE, 2007, pp. 192–195.

[8] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore,
S. Pandav, A. Slobodova, C. Taylor, V. Frolov, E. Reeber, and A. Naik,
“Replacing testing with formal verification in Intel core i7 processor
execution engine validation,” in Computer Aided Verification, ser. LNCS.
Springer-Verlag, 2009, pp. 414–429.

[9] R. Kaivola, “Formal verification of pentium R© 4 components with
symbolic simulation and inductive invariants,” in Computer Aided Ver-
ification, ser. LNCS, K. Etessami and S. K. Rajamani, Eds., vol. 3576.
Springer-Verlag, 2005, pp. 170–184.

[10] C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories,” Formal Methods in System
Design, vol. 6, no. 2, pp. 147–189, Mar. 1995.

[11] R. B. Jones, J. W. O’Leary, C.-J. H. Seger, M. D. Aagaard, and T. F.
Melham, “Practical formal verification in microprocessor design,” IEEE
Design & Test of Computers, vol. 18, no. 4, pp. 16–25, 2001.

[12] R. E. Bryant, D. L. Beatty, and C.-J. H. Seger, “Formal hardware
verification by symbolic ternary trajectory evaluation,” in ACM/IEEE
Design Automation Conference. ACM Press, June 1991, pp. 397–402.

[13] S. Adams, M. Björk, T. Melham, and C.-J. Seger, “Automatic abstraction
in symbolic trajectory evaluation,” in FMCAD, 2007, pp. 127–135.

[14] M. J. C. Gordon and T. F. Melham, Eds., Introduction to HOL: A theorem
proving environment for higher order logic. Cambridge University
Press, 1993.

[15] M. D. Aagaard, R. B. Jones, and C.-J. H. Seger, “Lifted-FL: A pragmatic
implementation of combined model checking and theorem proving,”
in Theorem Proving in Higher Order Logics, ser. LNCS, vol. 1690.
Springer-Verlag, 1999, pp. 323–340.

[16] J. Grundy, T. Melham, and J. O’Leary, “A reflective functional language
for hardware design and theorem proving,” Journal of Functional
Programming, vol. 16, no. 2, pp. 157–196, Mar. 2006.

[17] W. A. Hunt, Jr., S. Swords, J. Davis, and A. Slobodova, Use of Formal
Verification at Centaur Technology. Springer-Verlag, 2010, pp. 65–88.

[18] A. Slobodová, J. Davis, S. Swords, and W. Hunt, “A flexible formal
verification framework for industrial scale validation,” in 9th IEEE/ACM
International Conference on Formal Methods and Models for Codesign.
IEEE, 2011, pp. 89–97.

[19] C.-J. H. Seger, “Voss — a formal hardware verification system: User’s
guide,” University of Brtish Columbia Department of Computer Science,
Tech. Rep. TR-93-45, Dec. 1993.

[20] J. Joyce and C.-J. Seger, “Linking BDD-based symbolic evaluation to
interactive theorem-proving,” in Design Automation Conference, 1993,
pp. 469–474.

[21] C.-J. Seger and J. Joyce, “A mathematically precise two-level formal
hardware verification methodology,” Department of Computer Science,
University of British Columbia, Report 92-34, Dec. 1992.

[22] S. Hazelhurst and C.-J. Seger, “A simple theorem prover based on
symbolic trajectory evaluation and BDD’s,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 14,
no. 4, pp. 413–422, 1995.

[23] M. Kaufmann and J. Moore, “An industrial strength theorem prover
for a logic based on common lisp,” IEEE Transactions on Software
Engineering, vol. 23, no. 4, pp. 203–213, 1997.

[24] A. Church, “A formulation of the simple theory of types,” The Journal
of Symbolic Logic, vol. 5, pp. 56–68, 1940.

[25] M. D. Aagaard, R. B. Jones, and C.-J. H. Seger, “Combining theorem
proving and trajectory evaluation in an industrial environment,” in
ACM/IEEE Design Automation Conference, 1998, pp. 538–541.

[26] ——, “Formal verification using parametric representations of boolean
constraints,” in ACM/IEEE Design Automation Conference, 1999, pp.
402–407.

[27] R. Milner, “The use of machines to assist in rigorous proof,” in Proc. of
a discussion meeting of the Royal Society of London on Mathematical
logic and programming languages. Prentice-Hall, 1985, pp. 77–88.

[28] J. Harrison, “HOL light: A tutorial introduction,” in Proc. Formal
Methods in Computer-Aided Design (FMCAD’96), ser. LNCS, M. Srivas
and A. Camilleri, Eds., vol. 1166. Springer-Verlag, 1996, pp. 265–269.

[29] Coq Development Team, The Coq Proof Assistant: Reference Manual,
V8.4. Inria, Aug. 2012.

[30] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, ser. LNCS. Springer-Verlag, 2002,
vol. 2283.

[31] M. Pandey, R. Raimi, R. E. Bryant, and M. S. Abadir, “Formal Ver-
ification of Content Addressable Memories using Symbolic Trajectory
Evaluation,” in Design Automation Conference. ACM Press, Jun. 1997,
pp. 167–172.

[32] T. Melham, Higher Order Logic and Hardware Verification, ser. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1993, vol. 31.

[33] Edinburgh LCF: A Mechanised Logic of Computation, ser. LNCS.
Springer-Verlag, 1979, vol. 78.

[34] Z. Khasidashvili, G. Gavrielov, and T. Melham, “Assume-guarantee
validation for STE properties within an SVA environment,” in Formal
Methods in Computer-Aided Design: FMCAD 2009. IEEE, 2009, pp.
108–115.

[35] S. Rajan, N. Shankar, and M. Srivas, “An integration of model-checking
with automated proof checking,” in Computer-Aided Verification, ser.
LNCS, vol. 939. Springer-Verlag, Jun. 1995, pp. 84–97.

[36] J. Sawada and E. Reeber, “ACL2SIX : A hint used to integrate a theorem
prover and an automated verification tool,” in Proceedings of Formal
Methods in Computer Aided Design: FMCAD 2006. IEEE Computer
Society, 2006, pp. 161–170.

[37] L. A. Dennis, G. Collins, M. Norrish, R. J. Boulton, K. Slind, and
T. F. Melham, “The PROSPER toolkit,” Int. J. on Software Tools for
Technology Transfer, vol. 4, no. 2, pp. 189–210, Feb. 2003.

[38] N. Shankar, “Symbolic analysis of transition systems,” in Abstract State
Machines: Theory and Applications, ser. LNCS, no. 1912. Springer-
Verlag, 2000, pp. 287–302.

[39] M. Kaufmann and J. S. Moore, ACL2 and Its Applications to Digital
System Verification. Springer-Verlag, 2010, pp. 1–21.

[40] W. A. Hunt, Jr., “Microprocessor design verification,” Journal of Auto-
mated Reasoning, vol. 5, no. 4, pp. 429–460, Dec. 1989.

[41] N. Een. ABC/ZZ. [Online]. Available:
https://bitbucket.org/niklaseen/abc-zz

[42] Berkeley Logic Synthesis and Verification Group. ABC: A system
for sequential synthesis and verification. [Online]. Available:
http://www.eecs.berkeley.edu/ alanmi/abc/

[43] W. A. Hunt, Jr. and S. Swords, “Centaur technology media unit verifi-
cation,” in Computer Aided Verification, ser. LNCS, A. Bouajjani and
O. Maler, Eds., vol. 5643. Springer, 2009, pp. 353–367.

[44] D. A. Jamsek, Symbolic Trajectory Evaluation, ch. 12, pp. 185–200.
[45] S. O. Swords, “A verified framework for symbolic execution in the

ACL2 theorem prover,” Ph.D. dissertation, University of Texas as
Austin, 2010. [Online]. Available: http://hdl.handle.net/2152/ETD-UT-
2010-12-2210

[46] T. F. Melham and R. B. Jones, “Abstraction by symbolic indexing
transformations,” in Formal Methods in Computer-Aided Design, ser.
LNCS, vol. 2517. Springer-Verlag, 2002, pp. 1–18.

87104

Satisfiability Modulo ODEs

Sicun Gao
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

Email: sicung@cs.cmu.edu

Soonho Kong
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

Email: soonhok@cs.cmu.edu

Edmund M. Clarke
Computer Science Department

Carnegie Mellon University
Pittsburgh, USA

Email: emc@cs.cmu.edu

Abstract—We study SMT problems over the reals containing
ordinary differential equations,. They are important for formal
verification of realistic hybrid systems and embedded software.
We develop δ-complete algorithms for SMT formulas that are
purely existentially quantified, as well as ∃∀-formulas whose
universal quantification is restricted to the time variables. We
demonstrate scalability of the algorithms, as implemented in
our open-source solver dReal, on SMT benchmarks with several
hundred nonlinear ODEs and variables.

I. INTRODUCTION

Hybrid systems tightly combine finite automata and con-
tinuous dynamics. In most cases, the continuous components
are specified by ordinary differential equations (ODEs). Thus,
formal verification of general hybrid systems requires reason-
ing about logic formulas over the reals that contain ODE con-
straints. This problem is considered very difficult and has not
been investigated in the context of decision procedures until
recently [7], [8], [16]. It is believed that current techniques
are not powerful enough to handle formulas that arise from
formal verification of realistic hybrid systems, which typically
contain many nonlinear ODEs and other constraints.

Since the first-order theory over the reals with trigono-
metric functions is already undecidable, solving formulas with
general ODEs seems inherently impossible. We have resolved
much of this theoretical difficulty by proposing the study of
δ-complete decision procedures for such formulas [10]. An
algorithm is δ-complete for a set of SMT formulas, where δ
is an arbitrary positive rational number, if it correctly decides
whether a formula is unsatisfiable or δ-satisfiable. Here, a for-
mula is δ-satisfiable if, under some δ-perturbations, a syntactic
variant of the original formula is satisfiable [9]. We have shown
that δ-complete decision procedures are suitable for various
formal verification tasks [9], [10]. We have also proved that
δ-complete decision procedures exist for SMT problems over
the reals with Lipschitz-continuous ODEs. Such results serve
as a theoretical foundation for developing practical decision
procedures for the SMT problem.

In this paper we study practical δ-complete algorithms for
SMT formulas over the reals with ODEs. We show that such
algorithms can be made powerful enough to scale to realistic
benchmark formulas with several hundred nonlinear ODEs.

We develop decision procedures for the problem following
a standard DPLL(ICP) framework, which relies on constraint
solving algorithms as studied in Interval Constraint Propa-
gation (ICP) [2]. In this framework, for any ODE system
we can consider its solution function ~xt = ~f(t, ~x0) as a

constraint between the initial variables ~x0, time variable t, and
the final state variables ~xt. We define pruning operators that
take interval assignments on ~x0, t, and ~xt as inputs, and output
refined interval assignments on these variables. We formally
prove that the proposed algorithms are δ-complete. Beyond
standard SMT problems where all variables are existentially
quantified, we also study ∃∀-formulas under the restriction that
the universal quantifications are limited to the time variables
(we call them ∃∀t-formulas). Such formulas have been an
obstacle in SMT-based verification of hybrid systems [4], [5].

In brief, this paper makes the following contributions:

• We formalize the SMT problem over the reals with general
Lipschitz-contiunous ODEs, and illustrate its expressiveness by
encoding various standard problems concerning ODEs: initial
and boundary value problems, parameter synthesis problems,
differential algebraic equations, and bounded model checking
of hybrid systems. In some cases, ∃∀t-formulas are needed.

• We propose algorithms for solving SMT with ODEs, using
ODE constraints to design pruning operators in a branch-and-
prune framework. We handle both standard SMT problems
with only existentially quantified variables, as well as ∃∀t-
formulas. We prove that the algorithms are δ-complete.

• We demonstrate the scalability of the algorithms, as im-
plemented in our open-source solver dReal [11], on realistic
benchmarks encoding formal verification problems for several
nonlinear hybrid systems.

Related Work. Solving real constraints with ODEs has a
wide range of applications, and much previous work exists
for classes with special structures in different paradigms [6],
[13], [18]. Recently [12] proposed a more general constraint
solving framework, focusing on the formulation of the problem
in the standard CP framework. On the SMT solving side,
several authors have considered logical combinations of ODE
constraints and proposed partial decision procedures [7], [8],
[16]. We aim to extend and formalize existing algorithms for a
general SMT theory with ODES, and formally prove that they
can be made δ-complete. In terms of practical performance, the
proposed algorithms are made scalable to various benchmarks
that contain hundreds of nonlinear ODEs and variables.

The paper is organized as follows. In Section II, we define
the SMT problem with ODEs and show how it can encode
various standard problems with ODEs. In Section III, we
propose algorithms in the DPLL(ICP) framework for solving
fully existentially quantified formulas as well as ∃∀t formulas.
In Section IV we show experimental results.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 88105ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

II. SMT OVER THE REALS WITH ODES

A. A First-Order Signature with Computable Real Functions

As studied in Computable Analysis [19], [17], we can
encode real numbers as infinite strings, and develop a com-
putability theory of real functions using Turing machines that
perform operations using oracles encoding real numbers. We
briefly review definitions and results of importance to us.
Throughout the paper we use || · || to denote the max norm
|| · ||∞ over Rn for various n. First, a name of a real number
is a sequence of rational numbers converging to it:

Definition 1 (Names). A name of a ∈ R is any function γa :
N → Q that satisfies: for any i ∈ N, |γa(i) − a| < 2−i. For
~a ∈ Rn, γ~a(i) = 〈γa1(i), ..., γan(i)〉. We write the set of all
possible names for ~a as Γ(~a).

Next, a real function f is computable if there is a Turing
machine that can use any argument x of f as an oracle, and
compute the value of f(x) up to an arbitrary precision 2−i,
where i ∈ N. Formally:

Definition 2 (Computable Functions). We say f :⊆ Rn → R is
computable if there exists an oracle Turing machineMf such
that for any ~x ∈ dom(f), any name γ~x of ~x, and any i ∈ N,
the machine uses γ~x as an oracle and i as an input to compute
a rational number Mγ~x

f (i) satisfying |Mγ~x
f (i)− f(~x)| < 2−i.

The definition requires that for any ~x ∈ dom(f), with
access to an arbitrary oracle encoding the name γ~x of ~x,
Mf outputs a 2−i-approximation of f(~x). In other words, the
sequence Mγ~x

f (1),Mγ~x
f (2), ... is a name of f(~x). Intuitively,

f is computable if an arbitrarily good approximation of f(~x)
can be obtained using any good enough approximation to
any ~x ∈ dom(f). Most common continuous real functions
are computable [19]. Addition, multiplication, absolute value,
min, max, exp, sin. Compositions of computable functions
are computable. In particular, solution functions of Lipschitz-
continuous ordinary differential equations are computable, as
we explain next.

B. Solution Functions of ODEs

We now show that the framework of computable functions
allows us to consider solution functions of ODE systems.

Notation 3. We use ~x = ~y between n-dimensional vectors to
denote the system of equations xi = yi for 1 ≤ i ≤ n.

Let D ⊆ Rn be compact and gi : D → R be n Lipschitz-
continuous functions, which means that for some constant ci ∈
R+ (1 ≤ i ≤ n), for all ~x1, ~x2 ∈ D,

|gi(~x1)− gi(~x2)| ≤ ci||~x1 − ~x2||.

Let t be a variable over R. We consider the first-order
autonomous ODE system

d~y

dt
= ~g(~y(t, ~x0)) and ~y(0, ~x0) = ~x0 (1)

where ~x0 ∈ D. Here, each

yi : R×D → R (2)

is called the i-th solution function of the ODE system (1).
A key result in computable analysis is that these solution
functions are computable, in the sense of Definition 2:

Proposition 4 ([17]). The solution functions ~y in the form of
(2) of the ODE system (1) are computable over R×D.

To see why this is true, recall that for any t ∈ R and
~x0 ∈ D, the value of the solution function follows the Picard-
Lindelöf form:

~y(t, ~x0) =

∫ t

0

~g(~y(s, ~x0))ds+ ~x0.

Approximations of the right-hand side of the equation can
be computed by finite sums, theoretically up to an arbitrary
precision.

C. SMT Problems and δ-Complete Decision Procedures

We now let F denote an arbitrary collection of computable
real functions, which can naturally contain solution functions
of ODE systems in the form of (2). Let LF denote the first-
order signature 〈F , <〉, where constants are seen as 0-ary
functions in F . Let RF be the structure 〈R,FR, <R〉 that
interprets LRF -formulas in the standard way. We focus on
formulas whose variables take values from bounded domains,
which can be defined using bounded quantifiers:

Definition 5 (Bounded Quantifiers). The bounded quantifiers
∃[u,v] and ∀[u,v] are defined as

∃[u,v]x.ϕ =df ∃x.(u ≤ x ∧ x ≤ v ∧ ϕ),

∀[u,v]x.ϕ =df ∀x.((u ≤ x ∧ x ≤ v)→ ϕ),

where u and v denote LRF terms, whose variables only contain
free variables in ϕ excluding x. It is easy to check that
∃[u,v]x.ϕ↔ ¬∀[u,v]x.¬ϕ.

The key definition in our framework is δ-variants of first-
order formulas:

Definition 6 (δ-Variants). Let δ ∈ Q+∪{0}, and ϕ a bounded
LRF -sentence of the standard form

ϕ : QI11 x1 · · ·QInn xn ψ[ti(~x) > 0; tj(~x) ≥ 0],

where i ∈ {1, ...k} and j ∈ {k+1, ...,m}. Note that negations
are represented by sign changes on the terms. The δ-weakening
ϕδ of ϕ is defined as the result of replacing each atom ti > 0
by ti > −δ and tj ≥ 0 by tj ≥ −δ. That is,

ϕ−δ : QI11 x1 · · ·QInn xn ψ[ti(~x) > −δ; tj(~x) ≥ −δ].

The SMT problem is standardly defined as deciding satisfi-
ability of quantifier-free formulas, which is equivalent to decid-
ing the truth value of fully existentially quantified sentences.
We will also consider formulas that are partially universally
quantified. Thus, we consider both Σ1 and Σ2 formulas here.

Definition 7 (Bounded Σ1- and Σ2-SMT Problems). A Σ1-
SMT problem is a formula of the form

∃I1x1 · · · ∃Inxn.ϕ(~x)

and a Σ2-SMT problem is of the form

∃I1x1 · · · ∃Inxn∀In+1xn+1 · · · ∀Imxm.ϕ(~x).

89106

In both cases ϕ(~x) is a quantifier-free LRF -formula.

Definition 8 (δ-Completeness [9]). Let S be a set of LRF
formulas, and δ ∈ Q+. We say a decision procedure A is δ-
complete for S, if for any ϕ ∈ S, A correctly returns one of
the following answers

• ϕ is false;

• ϕ−δ is true.

If the two cases overlap, either one is correct.

We have proved in [10] that δ-complete decision proce-
dures exists for arbitrary bounded LRF -sentences. In particular,
there exists δ-complete decision procedures for the bounded
Σ1 and Σ2 SMT problems. This serves as the theoretical foun-
dation as well as a correctness requirement for the practical
algorithms that we will develop in the following sections.

D. SMT Encoding of Standard Problems with ODEs

In this section, we list several standard problems related
to ODE systems and show that they can be easily encoded
and generalized through SMT formulas. They motivate the
development of decision procedures for the theory.

Remark 9. In all the following cases, solutions to the standard
problems are obtained from witnesses for the existentially
quantified variables in the SMT formulas.

Remark 10. In the definitions below, when the solution
functions ~y of ODE systems are written as part of a formula,
no analytic forms are needed. They are functions included in
the signature LRF .

Generalized Initial Value Problems. Given an ODE system,
the standard initial value problem asks for a solution of the
variables at certain time, given a complete assignment to the
initial conditions of the system. In the form of SMT formulas,
we easily allow the initial conditions to be constrained by
arbitrary quantifier-free LRF -formulas:

Definition 11 (Generalized IVP). Let X ⊆ Rn be a compact
domain, T ∈ R+, and ~y : [0, T]×X → X be the computable
solution functions of an ODE system. Let t ∈ [0, T] be an
arbitrary constant that represents a time point of interest. The
generalized IVP problem is defined by formulas of the form:

∃Xx0∃X~x. ϕ(~x0) ∧ ~x = ~y(t, ~x0),

where ϕ is a quantifier-free LRF -formula constraining the
initial states ~x0, and ~x is the needed value for time point t.

Generalized Boundary Value Problems. Given an ODE
system, the standard boundary value problem is concerned with
computing the computable solution function when part of the
variables are assigned values at the beginning of flow, and part
of the variables as assigned values at the end of the flow. A
generalized version as encoded by SMT formulas is:

Definition 12 (Generalized BVP). Let X ⊆ Rn be a compact
domain, T ∈ R+, and ~y : [0, T] × X → X be the solution
functions of an ODE system. Let t, t′ ∈ [0, T] be two time
points of interest. The generalized BVP problem is:

∃Xx0∃X~xt∃X~x.ϕ(~x0, ~xt, t)∧~xt = ~y(t, ~x0)∧~x = ~y(t′, ~x0)

where ϕ is a quantifier-free LRF -formula that specifies the
boundary conditions. Note that ~x is the value that we are
interested in solving in the chosen time point t′.

Data-Fitting and Parameter Synthesis. The data fitting
problem is the following. Suppose an ODE system has part
of its parameters unspecified. Given a sequence of data
(t1,~a1), ..., (tk,~ak), we need to find the values of the missing
parameters of the original ODE system. More formally:

Definition 13 (Data-Fitting Problems). Let X ⊆ Rn and P ⊆
Rm be compact domains, T ∈ R+, and ~y(~p) : [0, T]×X → X
be the solution functions of an ODE system, where ~p ∈ P be
a vector of parameters. Let (t1,~a1), ..., (tk,~ak) be a sequence
of pairs in [0, T]×X . The data-fitting problem is defined by:

∃P ~p∃Xx0. ϕ(~x0)∧~a1 = ~y(~p, t1, ~x0)∧ · · · ∧~ak = ~y(~p, tk, ~x0),

where a quantifier-free ϕ constraints the initial states ~x0.

Differential Algebraic Equations. DAE problems combine
ODEs and algebraic constraints:

d~y

dt
= ~g(~y(t, ~y0), ~z) (3)

0 = ~h(~y, ~z, t) (4)

where ~y, ~y0 ∈ Rn, ~z ∈ Rm. To express the problem in LRF ,
we need to use extra universal quantification to ensure that the
algebraic relations hold throughout the time duration. Again,
we can also generalize the equation in (4) to an arbitrary
quantifier-free LRF -formula. The problem is encoded as:

Definition 14 (DAE Problems). Let X ⊆ Rn be a compact
domain, T ∈ R+, and ~y : [0, T] × X × X → X be
the computable solution functions of the ODE system in (3)
parameterized by ~z. Let h be defined by (4). Let t ∈ [0, T]
be a time point of interest. A DAE problem is defined by the
following formula:

∃X~x0∃X~x∃Z~z∀[0,t]t′.

ϕ(~x0) ∧ ~x = ~y(t, ~x0, ~z) ∧ h(~y(~x0, t
′), ~z, t′) = 0

where a quantifier-free ϕ specifies the initial conditions for ~y,
and ~x is the needed value at time point t.

Bounded Model Checking of Hybrid Systems. Bounded
model checking problems for hybrid systems can be naturally
encoded as SMT formulas with ODEs [7], [8], [16], [4], [5].
We consider a simple hybrid system to show an example. Let
H be an n-dimensional 2-mode hybrid system. In mode 1,
the flow of the system follows an ODE system whose solution
function is ~y1(t, ~x0), and in mode 2, it follows another solution
function ~y2(t, ~x0). The jump condition from mode 1 to mode
2 is specified by jump(~x, ~x′). The invariants are specified by
invi(~x) and for mode i. Let unsafe(~x) denote an unsafe region.
Let the continuous variables be bounded in X and time be
bounded in [0, T]. Now, if H starts from mode 1 with initial
states satisfying init(~x), it can reach the unsafe region after
one discrete jump from mode 1 to mode 2, iff the following
formula is true:

∃X~x1∃X~xt1 ∃X~x2∃X~xt2 ∃[0,T]t1∃[0,T]t2 ∀[0,t1]t′1∀[0,t2]t′2.
init(~x1) ∧ ~xt1 = ~y1(t1, ~x1) ∧ inv1(~y1(t

′
1, ~x1)) ∧ jump(~xt1, ~x2)

∧ ~xt2 = ~y2(t2, ~x2) ∧ inv2(~y2(t
′
2, ~x2)) ∧ unsafe(~xt2).

90 107

The encoding can be explained as follows. For each mode, we
use two variable vectors ~xi and ~xti to represent the continous
flows. ~xi denote the starting values of a flow, and ~xti denotes
the final values. In mode 1, the flow starts with some values
in the initial states, specified by init(~x1). Then, we follow the
continuous dynamics in mode 1, so that ~xt1 denotes the final
value ~xt1 = ~y(t1, ~x1). Then the system follows the jumping
condition and resets the variables from ~xt1 to ~x2 as specified
by jump(~xt1, ~x2). After that, the system follows the flow in
mode 2. In the end, we check if the final state ~xt2 in mode 2
satisfies the unsafe predicate, unsafe(~x2).

III. ALGORITHMS

A. The ICP framework

The method of Interval Constraint Propagation (ICP) [2]
finds solutions of real constraints using a “branch-and-prune”
method that performs constraint propagation of interval as-
signments on real variables. The intervals are represented
by floating-point end-points. Only over-approximations of the
function values are used, which are defined by interval exten-
sions of real functions.

Definition 15 (Floating-Point Intervals and Hulls). Let F
denote the finite set of all floating point numbers with symbols
−∞ and +∞ under the conventional order <. Let

IF = {[a, b] ⊆ R : a, b ∈ F, a ≤ b} and BF =

∞⋃
n=1

IFn

denote the set of closed real intervals with floating-point end-
points, and the set of boxes with these intervals, respectively.
When S ⊆ Rn is a set of real numbers, the hull of S is:

Hull(S) =
⋂
{B ∈ BF : S ⊆ B}.

Definition 16 (Interval Extension [2]). Suppose f :⊆ Rn → R
is a real function. An interval extension operator](·) maps f
to a function]f :⊆ BF→ IF, such that for any B ∈ dom(]f),
it is always true that {f(~x) : ~x ∈ B} ⊆]f(B).

Algorithm 1 ICP(f1, ..., fm, B0 = I0
1 × · · · × I0

n, δ)

1: S ← B0

2: while S 6= ∅ do
3: B ← S.pop()
4: while ∃1 ≤ i ≤ m,B 6=δ Prune(B, fi) do
5: B ← Prune(B, fi)
6: end while
7: if B 6= ∅ then
8: if ∃1 ≤ i ≤ n, |]fi(B)| ≥ δ then
9: {B1, B2} ← Branch(B, i)

10: S.push({B1, B2})
11: else
12: return sat
13: end if
14: end if
15: end while
16: return unsat

ICP uses interval extensions of functions to “prune” out
sets of points that are not in the solution set, and “branch”

on intervals when such pruning can not be done, until a small
enough box that may contain a solution is found. A high-
level description of the decision version of ICP is given in
Algorithm 1. In Algorithm 1, Branch(B, i) is an operator that
returns two smaller boxes B′ = I1 × · · · × I ′i × · · · × In and
B′′ = I1 × · · · × I ′′i × · · · × In, where Ii ⊆ I ′i ∪ I ′′i . The key
component of the algorithm is the Prune(B, f) operation. Any
operation that contracts the intervals on variables can be seen
as pruning, but for correctness we need formal requirements
on the pruning operator in ICP. Basically, we need to require
that the interval extensions of the functions converge to the
true values of the functions, and that the pruning operations
are well-defined, as specified below.

Definition 17 (δ-Regular Interval Extensions). We say an
interval extension]f of f : Rn → R is δ-regular, if for some
constant c ∈ R, for any B ∈ Rn, |]f(B)| ≤ max(c||B||, δ).

Definition 18 (Well-defined Pruning Operators [9]). Let F be
a collection of real functions, and] be a δ-regular interval
extension operator on F . A well-defined (equality) pruning
operator with respect to] is a partial function Prune] :⊆
BF×F → BF, such that for any f ∈ F , B,B′ ∈ BF,

1) Prune](B, f) ⊆ B;
2) If Prune](B, f) 6= ∅, then 0 ∈]f(Prune](B, f));
3) B ∩ {~a ∈ Rn : f(~a) = 0} ⊆ Prune](B, f).

When] is clear, we simply write Prune. The rules can be
explained as follows. (W1) ensures that the algorithm always
makes progress. (W2) ensures that the result of a pruning is
always a reasonable box that may contain a zero, and otherwise
B is pruned out. (W3) ensures that the real solutions are never
discarded. We proved the following theorem in [9]:

Theorem 19. Algorithm 1 is δ-complete if the pruning oper-
ators are well-defined.

B. ODE Pruning in an ICP Framework

We now study the algorithms for SMT formulas with
ODEs. The key is to design the appropriate pruning operators
for the solution functions of ODE systems. The pruning
operations here strengthen and formalize the ones proposed
in [7], [8], [12], such that δ-completeness can be proved.

We recall some notations first. Let D ⊆ Rn be compact
and gi : D → D be n Lipschitz-continuous functions. Given
the first-order autonomous ODE system

d~y

dt
= ~g(~y(t, ~x0)) and ~y(0, ~x0) = ~x0 (5)

where ~x0 ∈ D, we write

yi : [0, T]×D → Di

to represent the i-th solution function of the ODE system. The
δ-regular interval extension of yi is an interval function

]yi : (IF ∩ [0, T])× (BF ∩D)→ IF

such that for a constant c ∈ R, for any time domain It ⊆
IF ∩ [0, T] and any box of initial values B~x0

⊆ BF ∩D, we
have

{xt ∈ R : xt = yi(t, ~x0), ~x0 ∈ B~x0
, t ∈ It} ⊆]yi(It, B~x0

)

91108

and
|]yi(It, B~x0

)| ≤ max(c · ||It ×B~x0
||, δ).

We will also need the notion of the reverse of the ODE
system (5), as defined by

d~y−
dt

= ~g−(~y−(t, ~xt)) and ~y(0, ~xt) = ~xt. (6)

Here, ~g− is defined as −~g, the vector of functions consisting
of the negation of each function in ~g, which is equivalent to
reversing time in the flow defined by the ODE system. That
is, for ~x0, ~xt ∈ D, t ∈ R, we always have

~xt = ~y(t, ~x0) iff ~x0 = ~y−(t, ~xt). (7)

Naturally, we write](y−)i to denote the δ-regular interval
extension of the i-th component of ~y−.

Algorithm 2 ODEPruning(]~y,B ~x0
, B ~xt

, It)

1: repeat
2: B′~xt

← Prunefwd(]~y,B ~x0
, B ~xt

, It)
3: I ′t ← Prunetime(]~y,B ~x0

, B′~xt
, It)

4: B′~x0
← Prunebwd(]~y,B ~x0

, B′~xt
, I ′t)

5: until B ~x0
= B′~x0

∧B ~xt
= B′~xt

∧ It = I ′t
6: return (B′~x0

, B′~xt
, I ′t)

The relation between the initial variables ~x0, the time
duration t, and the flow variables ~xt is specified by the
constraint ~xt = ~y(t, ~x0). Given the interval assignment on any
two of ~x0, ~xt, and t, we can use the constraint to obtain a
refined interval assignment to the third variable vector. Thus,
we can define three pruning operators as follows.

Remark 20. The precise definitions of the pruning operators
should map the interval assigments on all variables to new
assignments on all variables. For notational simplicity, in the
pruning operators below we only list the assignments that are
actually changed between inputs and outputs. For instance, the
forward pruning operator only changes the values on B~xt

.

Forward Pruning. Given interval assignments on ~x0 and t,
we compute a refinement of the interval assignments on ~xt.
Figure 1 depicts the forward pruning operation. Formally, we
define the following operator:

Definition 21 (Forward Pruning). Let ~y : [0, T]×D → D be
the solution functions of an ODE system. Let B~x0

, B~xt
, and

It be interval assignments on the variables ~x0, ~xt, and t. We
define the forward-pruning operator as:

Prunefwd(B~xt
, ~y) = Hull

(
B~xt
∩]~y(It, B~x0

)
)
.

Backward Pruning. Given interval assignments on ~xt and t,
we can compute a refinement of the interval assignments on
~x0 using the reverse of the solution function. Figure 2 depicts
backward pruning. Formally, we define the following operator:

Definition 22 (Backward Pruning). Let ~y : [0, T] × D → D
be the solution functions of an ODE system, and let ~y− be the
reverse of ~y. Let B~x0

, B~xt
, and It be interval assignments on

the variables ~x0, ~xt, and t. We define the backward-pruning

t

Xt
X 0

tX0

T

Fig. 1: Forward Pruning. X0, Xt, t represents the current
interval assignments, and X ′t is the refined interval assignment
on ~xt after pruning.

Algorithm 3 Prunefwd(]~y,B ~x0
, B ~xt

, It)

1: B′~xt
← φ

2: I∆t ← [I lt, I
l
t + ε]

3: while Iu∆t < Iut do
4: B′~xt

← Hull(B′~xt
∪]~y(I∆t, B ~x0

))
5: I∆t ← I∆t + ε
6: end while
7: return B ~xt

∩B′~xt

operator as:

Prunebwd(B~x0
, ~y) = Hull

(
B~x0
∩]~y−(It, B~xt

)
)
.

Time-Domain Pruning. Given interval assignments on ~x0

and ~xt, we can also refine the interval assignment on t by
pruning out the time intervals that do not contain any ~xt
that is consistent with the current interval assignments on ~xt.
Figure 3 depicts time-domain pruning. Formally, we define the
following operator:

Definition 23 (Time-Domain Pruning). Let ~y : [0, T]×D → D
be the solution functions of an ODE system. Let B~x0

, B~xt
, It

be interval assignments on the variables ~x0, ~xt, and t. We
define the time-domain pruning operator as:

Prunetime(It, ~y) = Hull
(
It ∩ {I :]~y(I,B~x0

) ∩B~xt
6= ∅}

)
.

t

T

Xt

X0

X 0
0

Fig. 2: Backward Pruning. X0, Xt, t represents the current
interval assignments, and X ′0 is the refined interval assignment
on ~x0 after pruning.

92 109

t

Xt

X0

T

T 0

Fig. 3: Time-Domain Pruning. X0, Xt, t represents the current
interval assignments, and T ′ is the refined interval assignment
on t after pruning.

Overall, the pruning algorithm on based on ODE con-
straints iteratively applies the three pruning operators until a
fixed point on the interval assignments is reached.

Algorithm 4 Prunebwd(]~y,B ~x0
, B ~xt

, It)

1: B′~x0
← φ

2: I∆t ← [I lt, I
l
t + ε]

3: while Iu∆t < Iut do
4: B′~x0

← Hull(B′~x0
∪]~y−(I∆t, B ~xt

))
5: I∆t ← I∆t + ε
6: end while
7: return B ~x0

∩B′~x0

We show the more detailed steps in the three pruning
operations in Algorithm 2, 3, 4, and 5.

Algorithm 5 Prunetime(]~y,B ~x0
, B ~xt

, It)

1: I ′t ← φ
2: I∆t ← [I lt, I

l
t + ε]

3: while Iu∆t < Iut do
4: B′~xt

←]~y(I∆t, B ~x0
)

5: if B′~xt
∩B ~xt

6= φ then
6: I ′t = Hull(I ′t ∪ I∆t)
7: else
8: I∆t ← I∆t + ε
9: end if

10: end while
11: return I ′t

Theorem 24. The three pruning operators are well-defined.

Proof: We prove that the forward pruning operator is
well-defined, and the proofs for the other two operators are
similar. Note that the definitions of well-defined pruning are
formulated for equality constraints compared to 0. Here we
use the function f = ~y(t, ~x0) − ~xt in the pruning operator.
(Strictly speaking f is a function vector that evaluates to ~0 on
points satisfying the ODE flow. Here for notational simplicity
we just write f as a single-valued function and compare with
the scalar 0.)

First, (W1) is satisfied because of the simple fact that for
any boxes B1, B2 ∈ BF, we have Hull(B1 ∩B2) ⊆ B1.

Next, suppose 0 6∈]f(Prunefwd(B~xt
, ~y)−B~xt

). Then there
does not exist any ~at ∈ Rn that satisfies both ~at ∈ B~xt

and
~at ∈ Prunefwd(B~xt

, ~y). Since at the same time

Prunefwd(B~xt
, ~y) = Hull

(
B~xt
∩]~y(It, B~x0

)
)
⊆ B~xt

,

this requires that Prunefwd(B~xt
, ~y) = ∅. Consequently (W2)

is satisfied.

Third, note that]~y(It, B~x0
) is an interval extension of ~y.

Thus, for any ~at ∈ Rn such that ~y(t, ~x0) for some t ∈ It and
~x0 ∈ B~x0

, we have ~at ∈]~y(It, B~x0
). Following the definition

of the pruning operator, we have ~at ∈ Prunefwd(B~xt
, ~y). Thus,

B~xt
∩ Zf ⊆ Prunefwd(B~xt

, f) and (W3) holds.

C. ∃∀t-Formulas and Low-Order Approximations

For ∃∀-formulas, if the universal quantification is only over
the time variables, we can follow the trajectory and prune away
the assignment on ~x0, ~xt, and t that violates the constraints
on the universally quantified time variable. In fact, although
the extra quantification complicates the problem, the universal
constraints improve the power of the pruning operations.

Here we focus on problems with one ODE system, which
can be easily generalized. Let ~y denote the solution functions
of an ODE system, we consider an ∃∀t-formula of the form

∃X~x0∃X~xt∃[0,T]t∀[0,t]t′. ~xt = ~y(t, ~x0) ∧ ϕ(~y(t′, ~x0)) (8)

Note that the problems encoded as Σ2-SMT formulas as listed
in Section II-D are all of this form.

We consider ϕ(~y(t′, ~x0)) as a special constraint on the ~x0

and t variables. Using this constraint, we can further refine the
three pruning operators as follows.

Definition 25 (Pruning Refined by ∀t-Constraints). Let ~y :
[0, T] × D → Rn be the solution functions of an ODE
system. Let B~x0

, B~xt
, and It be interval assignments on the

variables ~x0, ~xt, and t. Let ϕ(~y(t′, ~x0)) be a constraint on the
universally quantified time variable, as in (8). We first define

]ϕ(It, B~x0
) = Hull({~a ∈ Rn : ~a = ~y(t, ~x0), t ∈ It,

~x0 ∈ B~x0
, and ϕ(~a) is true.})

and define]ϕ− by replacing ~y with ~y− in the definition
above. The forward pruning operator with ϕ, written as
Pruneϕfwd(B~xt

, ~y), is defined as

Hull
(
B~xt
∩]~y(It, B~x0

) ∩]ϕ(It, B~x0
)
)

Backward pruning Pruneϕbwd(B~x0
, ~y) is defined as

Hull
(
B~x0
∩]~y−(It, B~xt

) ∩]ϕ−(It, B~xt
)
)
.

Time-domain pruning Pruneϕtime(It, ~y) is defined as

Hull
(
It ∩ {I :]~y(I,B~x0

) ∩B~xt
∩]ϕ(It, B~x0

) 6= ∅}
)
.

In general,]ϕ can be computed by a recursive call to
DPLL(ICP), by solving the Σ1-SMT problem ϕ(~x). In many
practical applications, ϕ is of some simple form such as
~a ≤ ~xt ≤ ~b, in which case simple pruning is shown in Figure 4.
Another useful heuristic in ODE pruning is to bound the range

93110

Invariant

t

Xt X 0
t

T

X0

Fig. 4: Pruning with ∀t-Constraints

First-order Taylor Approximation

t

Xt

X 0
t

X0

T

Fig. 5: Pruning with Low-Order Taylor Approximations

of the derivatives for a vector space specified by ~g. Suppose for
any time t ∈ [0, T], the derivatives ~g are bounded in [~lg, ~ug].
Then by the Picard-Lindelöf representation, we have

~xt =

∫ t

0

~g(~y(s, ~y0))ds+ ~y0 ∈ [0, T] · [~lg, ~ug] +B~x0

We can use this formula to perform preliminary pruning on
~xt, which is especially efficient when combined with ∀t-
constraints. Figure 5 illustrates this pruning method.

IV. EXPERIMENTS

Our tool dReal implements the procedures we studied
for solving SMT formulas with ODEs. It is built on several
existing packages, including opensmt [3] for the general
DPLL(T) framework, realpaver [14] for ICP, and CAPD [1]
for computing interval-enclosures of ODEs. The tool is open-
source at http://dreal.cs.cmu.edu. All benchmarks and data
shown here are also available on the tool website.

All experiments were conducted on a machine with a
3.4GHz octa-core Intel Core i7-2600 processor and 16GB
RAM, running 64-bit Ubuntu 12.04LTS. Table I is a summary
of the running time of the tool on various SMT formulas
generated from bounded model checking hybrid systems. The
formulas typically contain a large number of variables and
nonlinear ODEs.

The AF model as we show in Table I is obtained from [15].
It is a precise model of atrial fibrillation, a serious cardiac
disorder. The continuous dynamics in the model concerns four

P #M #D #O #V delta R Time(s) Trace
AF 4 3 20 44 0.001 S 43.10 90K
AF 8 7 40 88 0.001 S 698.86 20M
AF 8 23 120 246 0.001 S 4528.13 59M
AF 8 31 160 352 0.001 S 8485.99 78M
AF 8 47 240 528 0.001 S 15740.41 117M
AF 8 55 280 616 0.001 S 19989.59 137M
CT 2 2 15 36 0.005 S 345.84 3.1M
CT 2 2 15 36 0.002 S 362.84 3.1M
EO 3 2 18 42 0.01 S 52.93 998K
EO 3 2 18 42 0.001 S 57.67 847K
EO 3 11 72 168 0.01 U 7.75 –
BB 2 10 22 66 0.01 S 0.25 123K
BB 2 20 42 126 0.01 S 0.57 171K
BB 2 20 42 126 0.001 S 2.21 168K
BB 2 40 82 246 0.01 U 0.27 —-
BB 2 40 82 246 0.001 U 0.26 —-
D1 3 2 9 24 0.1 S 30.84 72K
DU 3 2 6 16 0.1 U 0.04 –

TABLE I: #M = Number of modes in the hybrid system, #D =
Unrolling depth, #O = Number of ODEs in the unrolled formula,
#V = Number of variables in the unrolled formula, R = Bounded
Model Checking Result (delta-SAT/UNSAT) Time = CPU time (s),
Trace = Size of the ODE trajectory, AF = Atrial Filbrillation, CT =
Cancer Treatment, EO = Electronic Oscillator, BB = Bouncing Ball
with Drag, D1,DU = Decay Model.

Fig. 6: Above: Witness for the AF model at depth 23 and 1500
time units. Below: Experimental simulation data.

state variables and the ODEs are highly nonlinear, such as:

du

dt
= e+ (u− θv)(uu − u)vgfi + wsgsi − gso(u)

ds

dt
=

gs2
(1 + e−2k(u−us))

− gs2s

dv

dt
= −g+v · v

dw

dt
= −g+w · w

The exponential term on the right-hand side of the ODE is the
sigmoid function, which often appears in modelling biological
switches. On this model, our tool is able to perform a depth-
55 unrolling, and solve the generated logic formula. Such a
formula contains 280 nonlinear ODEs of the type shown here,

94 111

http://dreal.cs.cmu.edu

with 616 variables. The computed trace from dReal suggests
a witness of the reachability property that can be confirmed
by experimental simulation. Figure 6 shows the comparison
between the trace computed from bounded model checking
and the actual experimental simulation trace.

Fig. 7: Above: Witness computed for the CT model at depth
3 and 500 time units. Below: Experimental simulation data.

The CT model represents a prostate cancer treatment model
that contains nonlinear ODEs such as following:

dx

dt
= (αx(k1 + (1− k1)

z

z + k2

−βx((1− k3)
z

z + k4
+ k3))−m1(1−

z

z0
))x+ c1x

dy

dt
= m1(1−

z

z0
)x+ (αy(1− d

z

z0
)− βy)y + c2y

dz

dt
=
−z
τ

+ c3z

dv

dt
= (αx(k1 + (1− k1)

z

z + k2
− βx(k3 + (1− k3)

z

z + k4
))

−m1(1−
z

z0
))x+ c1x+m1(1−

z

z0
)x

+(αy(1− d
z

z0
)− βy)y + c2y

The EO model represents an electronic oscillator model that
contains nonlinear ODEs such as the following:

dx

dt
= −ax · sin(ω1 · τ)

dy

dt
= −ay · sin((ω1 + c1) · τ) · sin(ω2) · 2

dz

dt
= −az · sin((ω2 + c2) · τ) · cos(ω1) · 2

ω1

dt
= −c3 · ω1

ω2

dt
= −c4 · ω2

dτ

dt
= 1

The other models are standard simple nonlinear models (for
instance, bouncing ball with nonlinear friction), on which our
tool has no difficulty in solving.

V. CONCLUSION

In this paper we have studied SMT problems over the real
numbers with ODE constraints. We have developed δ-complete
algorithms in the DPLL(ICP) framework, for both the standard
SMT formulas that are purely existentially quantified, as well

as ∃∀-formulas whose universal quantification is restricted to
the time variables. We have demonstrated the scalability of our
approach on nonlinear SMT benchmarks. We believe that the
proposed decision procedures can scale on nonlinear problems
and can serve as the underlying engine for formal verification
of realistic hybrid systems and embedded software.

Ackowledgements. We are grateful for many important sug-
gestions from Jeremy Avigad, Andreas Eggers, and Martin
Fränzle. In particular, we formulated the notion of δ-regular
interval extensions to avoid technical difficulties that Eggers
and Fränzle pointed out to us. We thank the anonymous
referees for various important comments.

REFERENCES

[1] CAPD: Computer assisted proofs in dynamical systems.
http://capd.ii.uj.edu.pl/index.php.

[2] F. Benhamou and L. Granvilliers. Continuous and interval constraints.
In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook of Constraint
Programming, chapter 16. Elsevier, 2006.

[3] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich. The opensmt
solver. In J. Esparza and R. Majumdar, editors, TACAS, volume 6015
of Lecture Notes in Computer Science, pages 150–153. Springer, 2010.

[4] A. Cimatti, S. Mover, and S. Tonetta. A quantifier-free SMT encoding
of non-linear hybrid automata. In FMCAD, pages 187–195, 2012.

[5] A. Cimatti, S. Mover, and S. Tonetta. SMT-based verification of hybrid
systems. In AAAI, 2012.

[6] J. Cruz and P. Barahona. Constraint satisfaction differential problems.
In CP, pages 259–273, 2003.

[7] A. Eggers, M. Fränzle, and C. Herde. SAT modulo ODE: A direct SAT
approach to hybrid systems. In ATVA, pages 171–185, 2008.

[8] A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle. Improving
SAT modulo ODE for hybrid systems analysis by combining different
enclosure methods. In G. Barthe, A. Pardo, and G. Schneider, editors,
SEFM, volume 7041 of Lecture Notes in Computer Science, pages 172–
187. Springer, 2011.

[9] S. Gao, J. Avigad, and E. M. Clarke. Delta-complete decision proce-
dures for satisfiability over the reals. In B. Gramlich, D. Miller, and
U. Sattler, editors, IJCAR, volume 7364 of Lecture Notes in Computer
Science, pages 286–300. Springer, 2012.

[10] S. Gao, J. Avigad, and E. M. Clarke. Delta-decidability over the reals.
In LICS, pages 305–314, 2012.

[11] S. Gao, S. Kong, and E. Clarke. dReal: An SMT solver for nonlinear
theories over the reals. CADE, 2013.

[12] A. Goldsztejn, O. Mullier, D. Eveillard, and H. Hosobe. Including
ordinary differential equations based constraints in the standard cp
framework. In D. Cohen, editor, CP, volume 6308 of Lecture Notes in
Computer Science, pages 221–235. Springer, 2010.

[13] L. Granvilliers. Parameter estimation using interval computations. SIAM
J. Sci. Comput., 26(2):591–612, Feb. 2005.

[14] L. Granvilliers and F. Benhamou. Algorithm 852: Realpaver: an interval
solver using constraint satisfaction techniques. ACM Trans. Math.
Softw., 32(1):138–156, 2006.

[15] R. Grosu, G. Batt, F. H. Fenton, J. Glimm, C. L. Guernic, S. A. Smolka,
and E. Bartocci. From cardiac cells to genetic regulatory networks. In
CAV, pages 396–411, 2011.

[16] D. Ishii, K. Ueda, and H. Hosobe. An interval-based sat modulo ode
solver for model checking nonlinear hybrid systems. STTT, 13(5):449–
461, 2011.

[17] K.-I. Ko. Complexity Theory of Real Functions. BirkHauser, 1991.
[18] Y. Lin and M. A. Stadtherr. Guaranteed state and parameter estimation

for nonlinear continuous-time systems with bounded-error measure-
ments. Industrial and Engineering Chemistry Research, pages 7198–
7207, 2007.

[19] K. Weihrauch. Computable Analysis: An Introduction. 2000.

95112

Verifying Global Convergence for a Digital
Phase-Locked Loop

Jijie Wei Yan Peng Ge Yu Mark Greenstreet
University of British Columbia

Abstract—We present a verification of a digital phase-locked
loop (PLL) using the SpaceEx hybrid-systems tool. In particular,
we establish global convergence – from any initial state the PLL
eventually reaches a state of phase and frequency lock. Having
shown that the PLL converges to a small region, traditional
methods of circuit analysis based on linear-systems theory can be
used to characterize the response of the PLL when in lock. The
majority of the verification involves modeling each component of
the PLL with piece-wise linear differential inclusions. We show
how non-linear transfer functions, quantization error, and other
non-idealities can be included in such a model. A limitation of
piece-wise linear inclusions is that the linear coefficients for each
component must take on fixed values. For real designs, ranges
will be specified for these components. We show how a key step
of the verification can be generalized to handle interval values
for the linear coefficients by using an SMT solver.

Index Terms—analog/mixed-signal verification, digital PLL,
global stability, hybrid systems, linear differential inclusions, non-
linear systems, SMT.

I. INTRODUCTION

Phase-locked loops (PLLs) are ubiquitous in analog and
mixed-signal designs. Their uses include frequency multi-
plication to generate a high-frequency clock from a lower
frequency reference, for clock-acquisition in high-speed links,
and as modulators and demodulators for wireless commu-
nication. Recently, PLL design has shifted from traditional,
analog, charge-pump based designs to various “all-digital”
architectures. Several consequences of device scaling to s-
maller feature sizes have motivated this transition including:
greater device-to-device parameter variation impairs designs
that depend on matched circuits; lower power supply voltages
removes the “voltage headroom” needed for high-quality, on-
chip current sources; and the scaling of passive components
such as inductors and capacitors lags that for transistors. A
failed PLL can block further test of an entire chip or major
subsystem; thus, there is a high value in verifying correctness
of PLL designs. This paper presents the formal verification of
global convergence for the digital PLL published in [1].

Functional verification of analog blocks such as PLLs can
be divided into two parts: global convergence to an intended
operating point, and small-signal analysis at the operating
point. The key insight here is that nearly all analog blocks
are intended to have some kind of linear response when at or
near their intended operating point [2]. Existing analysis tech-
niques such as periodic AC analysis (PAC) [3] are available
in standard commercial CAD tools such as Spectre R© from
Cadence. These techniques allow designers to characterize key
performance properties of analog blocks such as the jitter,

power-supply sensitivity, and tracking bandwidth of a PLL. A
designer can have high confidence in the correct functioning
of their block assuming that it reaches its intended operating
point.

To show that an analog block will reach its intended
operating point from any initial state is the global convergence
problem. Here, the non-linearities of the circuit must be
taken into account. Simulation based methods are impractical
both because of the impossibility of covering all possible
inputs, initial states, and operating conditions, and because
individual simulations may need to cover thousands of cy-
cles of the PLL’s oscillator to show the locking behaviour.
To support power-management techniques such as dynamic
voltage-frequency scaling and power down modes, PLLs may
need to start-up or change lock frequency tens to hundreds of
times per second. If a PLL occasionally fails to lock, then the
chip is useless. Tracking down such bugs on real silicon can
be extremely difficult. Thus, proving global convergence is of
great value for real designs.

In this paper, a digital PLL is modeled as a piecewise-linear
hybrid-automaton, and global convergence of the automaton
is shown. The first step of this approach is to formulate
hybrid-automaton models for each component of the PLL.
We note that the basic components of oscillators, dividers,
phase comparators, and integrators are common to all PLL
designs; thus, we expect this work to be re-usable for verifying
other PLL structures. We use the SpaceEx [4] tool to show
that all initial states converge to a small region around the
intended operating point. To obtain practical verification times,
we found it necessary to identify “phases” that the PLL passes
through when converging to its operating point. By structuring
our hybrid automaton model to reflect these phases, we avoid
SpaceEx needing to perform costly fix point computations.

A limitation of the SpaceEx based approach is that the
model parameters of the piece-wise linear inclusions are fixed.
This requires giving specific values to some analog quantitities
that a designer can only guarantee to be in some range. We
show that for the PLL from [1], a global Lyapunov function
(i.e. progress function) can be constructed using basic methods
from linear systems theory. We then use the Z3 SMT solver [5]
to show global convergence for a simplified model of the
DPLL.

The key contributions of this paper are:
• We verify global convergence for a digital PLL. Another

approach to digital PLL verification that was developed
independently was recently reported in [6]. We believe

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 96113ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

that these are the first such verifications for digital PLLs.
• We show how each component of the digital PLL can be

modeled as a hybrid automaton. Our models account for
non-linearities of the components, quantization, and other
non-idealities.

• We demonstrate how convergence can be shown by reach-
ability analysis (using SpaceEx) and by solving systems
on non-linear inequalities (using Z3).

II. RELATED WORK

There have been several previously published reports of PLL
verification using formal methods. The earliest verification that
we know of was by [7, chap. 6]. Dhingra’s design uses a fixed-
frequency oscillator that is intended to operate at N times
the frequency of a reference. The PLL adaptively chooses
edges of its internal oscillator to approximate the edges of
the lower frequency reference. The time resolution is limited
by the period of the internal oscillator. While this may be
useful for low frequency applications such as audio frequency
modems, we are not aware of any such PLLs in use for the
more standard PLL applications of clock generation, clock-
data-recovery, and wireless communication. Dhingra verified
the tracking behaviour of his design using the HOL theorem
prover.

More recently, Dong et al. [8], [9] proposed using property
checking for AMS verification, including PLLs. They used
“symbolic recurrence equations” as a property specification
language, and show how this can be used to automatically
construct a monitor to check simulation runs to see if a PLL
locks in the required time for that run. This does not address
the problems of long-simulation times to show that a PLL
locks or the incompleteness of simulation based approaches
to show convergence.

Shortly after the work by Dong et al., Jesser and
Hedrich [10] described a model-checking result for an analog
PLL with an XOR-gate phase detector. They performed sym-
bolic model checking using MTBDDs to represent both the
discrete and analog parts. They state that the four-dimensional
analog state space is partitioned into 211 hyperboxes, and that
next-box relations are determined by random simulation. It is
not clear how they guarantee the complete coverage with this
approach.

Two years ago, Althoff et al. [11] presented the verification
of a charge-pump PLL using an approach that they refer to
as “continuization.” They use a purely linear model for the
components of their PLL, and their focus is on the switching
activities of the phase-frequency detector, in particular, uncer-
tainties in switching delays. Their approach also verifies the
PLL for ranges of component parameters. We present an SMT-
based technique for handling interval parameters in Section V.
Althoff et al. is the only other work that we are aware of that
accounts for such variation.

More recently, Lin et al. [6] independently developed an
approach for verifying a digital PLL using SMT techniques.
To the best of our knowledge, they are the first to claim
formal verification of a digital PLL. Similar to the approach

LPF VCO

Phase comparator

vco

ref
θ∆

φref
φvco

vctrl

Fig. 1. A Simple PLL

presented in this paper, they consider a purely linear, analog
model and then reason about the discrepancies between this
idealized model and a digital implementation. They use the
KRR SMT solver to verify bounds on this discrepancy. They
verify bounds on the lock time of a digitally intensive PLL
assuming that most of the digital variables are initialized to
fixed values, and that only the oscillator phase is unknown.
Our work shows initialization for a different PLL design over
the complete state space.

III. THE DIGITAL PLL

A. A PLL Primer

The function of a phase-locked loop (PLL) is to adjust the
PLL’s oscillator so that it tracks the frequency and phase of a
reference signal. Figure 1 shows a simple PLL. The PLL sets
the control voltage, vctrl of the VCO according to the phase
difference between the VCO and the reference and the integral
of this difference to match the VCO’s frequency to that of the
reference and align their phases. Simply, if the PLL’s oscillator
lags the reference, then vctrl increases; and the VCO frequency
increases so that the VCO will catch up with the reference.
Conversely, if the PLL’s oscillator is ahead of the reference,
then vctrl will decrease causing the PLL’s oscillator frequency
to decrease.

In more detail, the voltage-controlled oscillator (VCO) can
be understood as a voltage-to-frequency converter. Phase is
the integral of frequency; so we can express the phase of
the VCO output as θvco = (

∫
vctrldt) mod [−π,+π). Phase

is modular, and we write θ mod [−π,+π) to indicate the
value in [−π,+π) that is congruent with θ modulo 2π

radians. The phase comparator generates an output voltage
that is proportional to the phase difference of its inputs:
θ∆ = (θvco − θref) mod [−π,+π]. The reference is assumed
to have a constant frequency, ωref ; thus θref = ωref t, where
t is time. The low pass filter implements the integral and
proportional correction terms with vctrl = a0θ∆ + a1

∫
θ∆dt.

Combining these equations and differentiating twice, we get:

θvco = a0

∫
θ∆dt +a1

∫ ∫
θ∆dt dt (1)

In the simple case where a0 = 0 and a1 = 0, the PLL becomes
a simple harmonic oscillator. The frequency of the PLL
oscillates with mean value of ωref but never converges. If both
a0 and a1 are negative, then there is a unique solution where
the PLL’s oscillator converges to the frequency and phase of
the reference. Note that if all of the components are linear,
then simple algebraic techniques suffice to show (or refute)
global convergence.

97114

Frequency

Σ

Fref

Σ

Fref

DAC

Cdecap

−
+

Fref FDCO

FDCO

0:3

4:7

∆Σ

Bang−Bang
Frequency

Control

Linear
Phase

Control

BBPFD

0:23

0:14

15:23
LPF

0:7

DCO

PFD
+

− dn
up

∆θ

c
v

Coarse

Control

−
(

Center
code

)

÷N

Fig. 2. The digital PLL from [1]

For real designs, the components are not perfectly linear.
The component may very closely match their linear idealiza-
tions when the PLL has locked to the reference, but significant
non-linearities may occur when out of lock. Furthermore,
the analog components of the simple PLL are difficult to
implement in advanced fabrication technologies. For example,
large capacitors are needed to implement the integrator part
of the low pass filter. For these and other reasons, designers
are making more and more extensive use of digital and mixed
signal designs for PLLs.

B. The Digital PLL

Figure 2 shows the digital PLL architecture from [1]. While
this real-world PLL has many more components than the
simple PLL from Fig. 1, its operation is similar. The digitally
controlled oscillator (DCO) performs the role of the VCO
from the simple PLL. The divider, ÷N is added to make the
lock-point for the DCO a multiple of the reference frequency.
The phase comparator of the simple PLL is replaced by two
phase-frequency detectors – a linear PFD that reports the phase
difference of the reference and the frequency divided DCO,
and a ”bang-bang” PFD that only reports the sign of this phase
difference. The remaining components implement the low-pass
filter of the simple PLL with the accumulators functioning as
integrators.

The three control paths of the PLL (linear phase, bang-
bang frequency, and coarse frequency) work together to set the
frequency, fdco, of the digitally controlled oscillator (DCO) to
N times the reference frequency, fref , and to align the phase of
the DCO and the reference (i.e., rising edges of the reference
clock should coincide with rising edges of the DCO).

The digitally-controlled oscillator in [1] is a three-stage
ring-oscillator with three control inputs: v, c, and θ∆. The v
input sets the operating voltage of the DCO. First-order transis-
tor models suggest that fdco should be roughly proportional to
v. Figure 3(a) shows the results of Spectre R© simulations of a
ring-oscillator in a 65nm CMOS process with a 1.2V nominal
Vdd . For an operating voltage v with 0.5≤ v≤ 1.2, a linear fit
provides a good approximation of the DCO frequency.

The c input controls switches that add capacitors to increase
the load for each stage of the ring oscillator. As seen in

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

operating voltage, v (volts)

D
C

O
 fr

eq
ue

nc
y,

 f D
C

O
 (G

H
z)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

simulation data
linear fit

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

load capacitance, c (pF)

D
C

O
 fr

eq
ue

nc
y,

 f D
C

O
 (G

H
z)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

simulation data
linear fit for 1/fDCO

(a) frequency vs.
operating voltage

(b) frequency vs.
load capacitance

Fig. 3. Ring-oscillator response

Fig. 3(b), the oscillator period (inverse frequency) is very
accurately modeled as a linear function of load capacitance. In
addition to the four, binary weighted, values from c, a fifth bit
with weight equal to the least significant bit, is provided from
the Delta-Sigma modulator. This provides a period averaging
to improve the frequency resolution of the bang-bang control
path.

Note that the DCO frequency, fdco is proportional to a linear
function of v and inversely proportional to a linear function
of c. We can write this as

fdco =
1+αv
1+βc

f0 (2)

where f0 is the frequency of the DCO (extrapolated) to where
v and c are at zero, and α and β are the sensitivities to v and
c respectively. Most importantly, when modeling the response
to both v and c, either their ranges must be quite small, or the
model is inherently non-linear. To show global convergence,
the non-linearity of the DCO must be included in the model.

The θ∆ input controls a linear phase path. Each stage of the
ring-oscillator consists of an inverter in parallel with two tri-
state inverters. One of the tri-state inverters is enabled when
up is asserted, and the other is disabled when dn is asserted.
This causes the oscillator to run faster when up is asserted
without dn, and slower when dn is asserted without up. This
produces a phase shift advance (resp. delay) to the length of
time that the oscillator is in its fast (resp. slow) mode.

The frequency divider, labeled ÷N in figure 2 is a modulo-N
counter. Its output has a period N times that of the DCO.

98 115

DCO/N

00

1001

DCO/N

11

ref

DCO/Nref

State Diagram

D Q

R
DQ

R

dnup

Circuit

ref

Fig. 4. The PFD

The two phase-frequency detectors (PFD and BBPFD) in
the diagram determine if the DCO should increase or decrease
its frequency. Figure 4 shows a typical circuit for the linear
phase-frequency detector, labeled PFD in Fig. 2, and its state
transition diagram. Each state is labeled with the value of
the up and dn (down) outputs of the PFD – for example,
in state 01 the up signal is low and the dn signal is high.
The PFD is reset to state 00 after it has received rising
edges from both the reference clock, ref, and the frequency
divided DCO, DCO/N. If the next event is a rising edge
from the divided DCO, this indicates that the DCO is ahead
of the reference in phase or running at a higher frequency.
Accordingly, the PFD enters state 01 (asserting dn) indicating
that the DCO should decrease in frequency (equivalently, drop
back in phase). Likewise, if the first event after resetting is a
rising edge of the reference, then up is asserted. Note that the
duration of asserting dn without up (or vice-versa) indicates
the phase difference between the reference and DCO. This is
the principle behind the linear-phase control path of the PLL.

The BBPFD is a so-called “bang-bang” phase frequency
detector. It simply detects whether the linear PFD asserts
up before dn or dn before up and then outputs +1 or −1
respectively. The output of the BBPFD indicates the direction
that the DCO should move, but does not contain the magnitude
information of the linear PFD.

The accumulators implement integrators. The integrator in
the bang-bang path directly controls the c input of the DCO.
The Delta-Sigma modulator provides an averaging: if the
lower four bits of the accumulator for c encode a value of k,
then the output of the Delta-Sigma modulator will be asserted
for k out of 16 cycles of the DCO. The integrator in the coarse
frequency control path is designed to have low-bandwidth to
ensure low jitter (cycle-to-cycle variation of the DCO period).
The output of the integrator is converted to a voltage with the
digital-to-analog converter (DAC). To suppress the coupling
of power-supply noise into the DCO, an additional low-pass
filter and linear regulator are included in the loop.

To understand the operation of the digital PLL when
1
N fdco 6= fref , the difference will be noted by the PFD and
the BBPFD. The BBPFD will output a value to drive c
in the direction to correct for the frequency difference. For
small frequency differences, this bang-bang loop provides fast
tracking. For larger differences, the accumulator for c will
saturate at its minimum or maximum value. Any of these

v

c

region 3region 2region 1

v
=

v m
ax

c = cmax

c = cmin

v
=

v m
in

Fig. 5. Operation with saturating integrators based on linear model from
Eq. 3, but not to scale.

situations lead to c being different from the center code. This
drives the coarse frequency loop to change v in the direction
needed to bring 1

N fdco to fref and to return c to the center code
value. Because the DCO has only a fixed set of oscillation
frequencies, for most values of fref there is no choice of c
and v that causes 1

N fdco to be exactly fref . This leads to limit-
cycle oscillations. The linear phase control path suppresses
these oscillations.

IV. VERIFYING CONVERGENCE WITH SPACEEX

We divided our verification effort into two main tasks:
designer and verifier. One of us (the “designer”) wrote Matlab
models of the components (such as the DCO, phase-frequency
detectors, etc.) and used these for simulations. The other per-
son was the “verifier” who translated these models into hybrid
automata and used SpaceEx to verify global convergence. We
found it very helpful to start with a simple, completely linear
model that reflected the structure of digital PLL and gradually
refine it and add details to faithfully model the actual PLL.

A. Modeling the digital PLL

A simple linear model. Let

fdco = αv−βc
d
dt θ∆ = 1

N fdco− fref −gθ θ∆

d
dt c = −g1θ∆

d
dt v = g2(c− ccenter)

(3)

where α , β , N, and θ∆ are as described in Section III; gθ is
the “time gain’ for the linear phase path; g1 is the integrator
gain for c; g2 is the integrator gain of the v path. Because the
model is linear, global convergence can be shown (or refuted)
by simple, analytical methods. If gθ > 0, g1 < 0, and g2 < 0,
then this linear PLL converges globally.
Modeling the accumulators. The accumulators of the digital
PLL approximate the integrators of the linear model by
computing a Reimann sum on rounded values of the integrand.
The accumulators add perturbations due to quantization and
saturation. Saturation of the accumulators is modeled by pro-
viding bounds for c and v: cmin≤ c≤ cmax and vmin≤ v≤ vmax.
The model is based on Eq. 3 with the change that if c reaches
cmin and ċ < 0 by Eq. 3, then ċ = 0 in this “saturating” model.
Likewise for the cases when c = cmax or when v reaches one
of its bounds.

99116

Simulations of the Matlab model with saturating integrators
showed the behaviour depicted in Fig. 5. The colored path
shows a typical trajectory, and the red arrows show an artifact
that is can be caused by the internal delays of the PFD that
will be discussed later in this section. In region 1, v is too low
to achieve 1

N fdco = fref . In this case, c reaches its saturation
value of cmin (the blue curved path), and then v increases
(the blue and magenta arrow)until 1

N fdco ≈ fref . At this point
ċ > 0 and the trajectory enters region 2. Trajectories in region
2 asymptotically approach the equilibrium point (the curved
green path) without further saturation of c or v. In region
3, v is too high, and c saturates at cmin until the trajectory
enters region 2. The corresponding hybrid automaton has seven
modes: four for saturated values of c or v, and one for each of
the regions described above. Again, SpaceEx readily showed
global convergence.

The observation that the phase locked loop first saturates c,
then gets v close to its final value, and the converges in both
c and v applies to the actual PLL as well as to this simplified
model. This observation allowed us to describe the PLL in a
way where SpaceEx shows the convergence of one variable at
a time. In the course of verifying the PLL, cycles in the mode-
transition graph would cause time-outs while SpaceEx tried to
compute fix points. The “one variable at a time” approach
eliminated the most egregious of these cycles from the model
and achieved very practical execution times.

The SpaceEx model approximates the values of the accu-
mulators of the digital PLL with integrators. Thus, the error
analysis is basically that for a Riemann sum approximation
of an integral, but in this case the integral is approximating
the sum rather than the other way around. Let f : R+ → R
be an integrable function such that for all t ≥ 0. | f (t)| ≤ F
and

∣∣ d
dt f (t)

∣∣≤ D for some F,D ∈ R+. Let round(x,γ) denote
the rounding of x to the nearest integer multiple of γ , for any
γ ≥ 0. Then for ∆T > 0

∆T
N−1

∑
k=0

round(f (k∆T),γ) =
∫ N∆T

0
f (u)+µ(u)du+ρ(t) (4)

for some µ,ρ : R+→ R with |µ(t)| ≤ γ

2 +D∆T and |ρ(t)| ≤
F∆T + γ

2 for all t ≥ 0. Equation 4 provides error bounds for
approximating the values output by the digital accumulators
with continuous integrators. For the digital PLL design, the
integrand for the c-integrator is either +1 or −1, and its
discretization is exact. Furthermore, the discretization for the
values of c and v are accounted for by the ρ terms of their
integrators. Hence, we can simplify Equation 4 and let µ = 0
for the digital PLL model. SpaceEx supports linear differential
inclusions, so, the ρ functions are easily added to the model for
computing c and v. Once again, SpaceEx quickly establishes
global convergence.
Non-linearities of the DCO. As described in Section III, the
DCO is fundamentally non-linear in its response to its control
inputs, c and v. For our model, we considered c in a range of
0.9 to 1.1 and v in a range of 0.1 to 2.5 (arbitrary units). The
range of c matches what we could infer from [1]. The range

θ̇ = fdco− fref
I : θ∆ ∈ ±(2π−δreset)

θ∆ =−2π +δreset
→ θ∆ := θ∆ +2π

θ∆ = 2π−δreset
→ θ∆ := θ∆−2π

Fig. 6. A hybrid automaton for the linear PFD

of v is definitely wide; we chose it to show the flexibility of
our approach. We divided v into seven overlapping intervals:
when a trajectory leaves one region it arrives in the center
of next interval – this prevents chattering mode-transitions
that would cause SpaceEx to time out. For each interval, we
computed a linear approximation for fdco as a function of c
and v, bounded the error, and incorporated the error terms into
the linear differential inclusions for ċ.
The bang-bang PFD. First, consider the linear PFD. It can
detect phase differences of up to nearly a full clock period
in either direction. For example, if the up signal goes high
nearly a clock period before the dn signal, that indicates that
the DCO is nearly 2π radians behind the reference. At the
other extreme, the dn signal goes high nearly a clock period
before the up signal to indicate that the DCO is nearly 2π

radians ahead. Figure 6 shows a hybrid automaton model for
the linear PFD.

Note that during the time that the reset signals are asserted
(see Fig. 4), the PFD may fail to acquire an edge of one of
the clocks.

A simple model of the digital PLL could be obtained by
creating the product automaton from each of the component
automata described above. To verify global convergence, it
suffices to show that this product automaton converges to cor-
rect phase and frequency lock from all initial states. However,
this results in a huge number of mode transitions. The key
issue is that while the output of the PFD could have a mode
transition for nearly every cycle, the value of v changes quite
slowly. Thus, SpaceEx would need to analyse a large number
of mode changes before v settles; in practice, this results in
a time out. Furthermore, SpaceEx adds an error-term in all
directions to the reachable space with each mode transition.
Because v changes very little between mode transitions of the
PFD, these error-terms overwhelm the convergence of v. To
avoid these limitations, we created a model for the digital PLL
that consisted of three sub-models according to how “far” the
PLL is from its lock state.

Model 1: (the blue path segment in Fig. 5). This model is for
the region where v is much lower than the equilibrium value.
We construct a model that has c and θ∆ as state variable and
models v as a static interval. A complication to this argument
is that due to delays in the reset loop of the PFD, the PFD
may occasionally report that the DCO leads the reference,
causing c to temporarily increase – these anomalous flows
are depicted by the red arrows in Fig. 5. These anomalies are
captured by our model, and SpaceEx shows that c moves to
a small, invariant interval containing cmin. Because c < ccenter,
v̇ > 0, from which we conclude that v increases, and the entry
conditions for model 2 will eventually be satisfied. We use

100 117

an equivalent construction when v is much greater than the
equilibrium value. Note that v must be analysed separately
from c and θ∆ to avoid the issues with different time scales
for v and θ∆.

Model 2: (the magenta path segment in Fig. 5). For v in
these bounds, the linear phase path bounds θ∆ and ensures
that there are no anomalies like those described for Model
1. Here we use the product-automata construction described
earlier; c, v, and θ∆ are all included as state variables. SpaceEx
shows that v continues to progress towards its equilibrium
value, and in so doing verifies our choice of bounds for v.
In other words, our manual calculation was helpful to obtain
a successful verification, but the soundness of the verification
does not depend on the correctness of these calculations.

Model 3: (the green path segment in Fig. 5). Here, 1
N fdco =

fref , and c and v follow a zig-zag path to settle at their
equilibrium values. Along this path, θ∆ frequently changes
sign, causing a large number of mode transitions that would
obscure the progress of v in the SpaceEx analysis. Our
linearized model for the DCO frequency is

fdco ∈ avv+acc⊕Err (5)

where ⊕ denotes Minkowski sum1, and Err is an error-bound
interval for the linear approximation.

w =
avv+acc

N
− fref (6)

and construct a model whose state variables are w and θ∆.
SpaceEx readily shows that w and θ∆ both converge to
intervals around 0.

Now, note that if |w| is small, then given v, we can derive
tight bounds for c. This allows us to construct a model, using
a small interval for w, that shows that v (and therefore c)
converges to its equilibrium value.

Together, these results from SpaceEx show that all trajecto-
ries that start in the valid region for model 1 eventually enter
the valid region for model 2. All trajectories that start in the
valid region for model 2, eventually enter the valid region for
model 3. All trajectories that start in the valid region for model
3, converge to the desired equilibrium point. Because the union
of the valid regions for models 1, 2, and 3 covers the entire
state space for c, v, and θ∆, global convergence of the digital
PLL is verified. As an example of the process, Figure 7 shows
how v converges to its equilibrium value in models 2 and 3.

B. Limitations of the model

Our verification is relative to the model, and the model
makes several simplifications relative to the real circuit. This
section summarizes the most important of these simplification-
s.

1 The Minkowski sum of two sets, A and B is the set of elements that can
be obtained as the sum of an element from A and an element from B:

A⊕B = {z | ∃a ∈ A. ∃b ∈ B. z = a+b}

v vs. t in Model 2 v vs. t in Model 3
Fig. 7. SpaceEx plots showing convergence of v for Models 2 and 3

Our model omits the Delta-Sigma modulator, the direct
phase control path and the low-pass filter of the complete
design. Modeling the Delta-Sigma modulator should be
straightforward using the quantization model from Eq. 4.

The linear phase control path. We included a simple,
linear model of the “time gain” of the linear phase control
in our model. The phase shift of this path is applied once for
every cycle of the PFD. This means that the phase shift is
proportional to both the phase offset and the minimum of fref
and 1

N fdco. Our linear model is valid when the PLL is close
to lock, and we plan to model the non-linearity of this path in
future work.

The low-pass filter seemed like an obvious candidate to
include in our model for SpaceEx: we can model it as a
purely linear system with three state variables and no mode
transitions. When we included the filter in the PLL model,
SpaceEx failed to show convergence. We suspect that the
filter’s low cut-off frequency results in a stiff model. We hope
to explore this further and possibly along the lines of those
presented in [12] to model the PLL with the low-pass filter..
An interesting opportunity here is that if the cut-off frequency
of the low pass filter is close to that of the v-integrator, the
PLL will be unstable. We intend to use this as a test case to
show how our methods can identify a faulty design.

The PFD has a metastability issue that is hidden by
the abstraction that we used. Basically, there are situations
where the PFD must “decide” between reseting θ∆ to 0 or
continuing with a value that is close to ±2π . While the issue
of metastability occurs in any PLL design, we have not seen
it mentioned or addressed in the verification literature.

Finally, our model has fixed coefficients for the linear
differential inclusions that model the PLL components. A
real design will not exactly match any pre-specified value
for these parameters, and they will be specified as intervals
instead. SpaceEx only supports models where the coefficients
are fixed, real numbers. In the next section, we introduce an
approach that allows verifying global convergence under the
more general realistic condition of having interval bounds for
key model parameters.

101118

V. PARAMETERIZED VERIFICATION WITH Z3

Consider the problem of showing that all trajectories in
an invariant region Q0 eventually reach a target region QT
with QT ⊆ Q0. This can be proven by exhibiting a Lyapunov
function, Φ, that satisfies the two conditions below:

1) ∀x ∈ Q0−QT . Φ(x)> 0; and
2) ∀x ∈ Q0−QT . d

dt Φ(x)< 0.
Because Q0 is invariant, all trajectories that start in Q0 will
remain in Q0 forever. Furthermore, if the trajectory has not
entered QT , Φ(x) strictly decreases with time along any
trajectory outside of QT . Therefore, Φ(x) must eventually be
less than or equal to zero. Because Φ(x) is strictly positive
outside of QT , the trajectory must eventually enter QT .

The soundness of the Lyapunov argument does not depend
on how Φ was obtained; it only requires that Φ satisfy the
Lyapunov conditions. In this section, we borrow an approach
from linear systems theory to construct a Lyapunov function,
and use the Z3 SMT solver to show that the Lyapunov
conditions stated above hold for this function when used
with the non-linear model for the digital PLL. By using this
approach with interval bounds for key model parameters, we
show that the verification holds for any digital PLL whose
components implement the model within the given bounds.
We observed that a direct application of this method produced
a system of non-linear relations where the SMT solver did
not terminate in a practical amount of time. However, we can
modify the original function to produce a new function that Z3
can show satisfies the Lyapunov conditions above. This verifies
global convergence for any implementation of the PLL whose
parameters are within the interval bounds.

As a preliminary experiment, we considered showing con-
vergece from states where 1

N fdco is much different than fref .
In this case, the PFD acts like a frequency comparator, and
we considered a simplification of Eq. 3 without θ and where
ċ = g1(fref − 1

N fdco). Here, we use a non-linear DCO from
Eq. 2.

To construct Φ, first consider a linear system, ẋ = Ax. Let
P be the solution of

AT P+PA = −I (7)

By construction, P is symmetric. If P is positive definite, then
the system ẋ = Ax globally converges to x = 0 [13, p. 154]. To
prove this, observe that Φ(x) = xT Px satisfies the Lyapunov
conditions.

Next, consider the PLL model with a non-linear DCO
model and saturating accumulators as described in the previous
section. Let h be the time-derivative function for this model,
in other words, ẋ = h(x) where x = [c v]T . Let x0 be the
desired operating point of the PLL; in particular h(x0) = 0. To
show global convergence, let A = Jac(h,x0) be the Jacobian
of h when evaluated at x0; let P be defined as in Eq. 7;
and let Φ(x) = xT Px. The PLL globally converges to x0 if
P is positive definite and for all initial points x ∈ Q0−{x0},
d
dt Φ(x) < 0. Positive-definiteness can be tested by adding a
conjunct with that constraint to the solver and showing that

a suitable P exists. The second part is equivalent to showing
∀x ∈Q0−{x0}. h(x)T Px < 0. Z3 solves this problem in a few
seconds, including the multiple cases in the definition of h to
account for saturation of the accumulators.

We attempted to repeat this analysis using interval bounds
for the parameters α , β , and f0 for the DCO from Eq. 2,
allowing each parameter to vary ±20% from its nominal value.
With our initial attempt, Z3’s solver failed to complete. While
modern SMT solvers can handle non-linear relations, the
computational cost grows extremely rapidly with the number
of non-linear terms. Accordingly, we sought to simplify our
Lyapunov function. Using the Jacobian based approach defined
above:

A0 = f0

[
g1 fref β

1+βccenter
− g1α

1+βccenter

g2 0

]
(8)

As described above, one can propose any matrix for A, and
if function obtained by solving for P satisfies the Lyapunov
conditions, global convergence is established. Thus, we looked
for ways to “simplify” A0 to obtain a system of inequalities
that would show convergence and be tractable in Z3. Noting
that the nominal values for α and β are both one, we factored
them out from the numerators in the elements for the first row
of A0 to get

A1 = f0

[
g1 fref

1+βccenter
− g1

1+βccenter

g2 0

]
(9)

With this change, Z3 verified the Lyapunov conditions, again
in just a few seconds.

Now, consider adding error terms as described in Section IV
to the derivatives to obtain an inclusion. These error terms
perturbed the effective values of c and v in the calculation of
the derivative. Let Err denote these error terms, and assume
that Err is symmetric about 0: if η ∈ Err then −η ∈ Err as
well. We now want to show:

∀X ∈ Q0−QT . ∀η ∈ Err. h(x+η)T Px < 0

From the symmetry of Err, this is equivalent to showing

∀X ∈ (Q0−QT)⊕Err. ∀η ∈ Err.
(x+η ∈ Q0−QT)⇒ (h(x)T P(x+η)< 0) (10)

The last form is easier for the SMT solver because it moves
the η term out of the non-linear function, h. With the earlier
models, Z3 showed convergence to the point x0. With this
model, Z3 shows convergence into a small rectangle that
contains x0. This rectangle is larger than x0⊕E because the
disturbance can be time-varying.

Finally, we combined using interval bounds for the model
parameters and including error terms in the derivative function.
Again, Z3’s solver failed to converge. This time we noted that
the denominator of the elements in the first row of A0, 1+
βccenter is always positive. Thus, we can multiply the second
inequality of the Lyapunov conditions by 1+βccenter to obtain
the equivalent condition:

∀x ∈ (Q0−QT)⊕Err. ∀η ∈ Err. (x+η ∈ Q0−QT)
⇒ ((1+βccenter)h(x)T P(x+η)< 0) (11)

102 119

Using this formulation, Z3 quickly verified global convergence
with interval bounds for model parameters and error terms in
the derivative function.

VI. CONCLUSIONS AND FUTURE WORK

We have shown global convergence for a digital phase
locked loop (PLL). We modeled the components of the PLL
using piecewise linear differential inclusions, and then showed
that all initial states converge to a small region near the
intended operating point. These component models included
non-linearities in the digitally controlled oscillator, saturation
and quantization effects in the accumulators, and modeling
of both a linear and a bang-bang phase-frequency detectors.
Using a simplified model, we showed how the convergence
results can be extended to the case where the specifications
for components are given as interval bounds rather than exact
values.

We chose to use SpaceEx [4] for the reachability compu-
tations because it was designed from the outset to handle
large linear hybrid automaton models. The piecewise linear
inclusions model the PLL components quite well. On the other
hand, we encountered problems with long compute times and
large over approximations when SpaceEx computed non-trivial
fix points for cycles of modes. The solution we found was to
organize the modes of the automaton according to the typical
behaviour of the PLL during lock to avoid cycles of modes.
With thise changes SpaceEx could verify global convergence
in a few minutes.

SpaceEx requires fixed values for the model coefficients.
We also showed the convergence can be established using
Lyapunov functions, and the correctness of these functions can
be shown with an SMT solver. For the work reported here, we
used Z3 [5]. Here too, we encountered issues of time-outs: the
solver would either complete in a second or two, or they would
go on for hours without terminating. In this case, the solution
was to manually simplify the function. This works particularly
well with the Lyapunov approach; there’s no way to introduce
an error by simplifying a proposed Lyapunov function. If an
inappropriate change is made, the proposed function will be
refuted. Our SMT-based method is at a relatively preliminary
stage and we are interested in seeing if we can apply it to
a model that is as detailed as the one that we used with the
hybrid-automata appproach.

There are many areas for future work. We would like to
provide bounds on lock time (excluding metastability). Then
we plan to complete models for the low-pass filter and the
Delta-Sigma modulator. We plan to examine other digital
PLL architectures to assess how much of the effort from this
verification can be re-used for other designs. We expect that
the re-use will be large, but we do not expect full automation
given the need to guide the tools away from problems of time-
outs and over approximations.

A very promising follow-on is to formalize the connection
between the models used here and those used in other phases
of the analog and mixed-signal design process. For example,
we used “designer” provided models of the main components

of the PLL. How do we know that these handwritten models
correspond to the actual circuit? Thus, we want to connect this
work with component validation.

Acknowledgments

We appreciate feedback from designers who have given us
feedback on PLL design and verification, especially Elad Alon,
Brian Casper, Frankie Liu, Frank O’Mahony, and Suwen Yang.
This work has been supported by grants from Intel and from
NSERC Canada.

REFERENCES

[1] J. Crossley, E. Naviasky, and E. Alon, “An energy-efficient ring-
oscillator digital PLL,” in Proceedings of the Custom Integrated
Circuits Conference (CICC’2010), Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1109/CICC.2010.5617417

[2] J. Kim, M. Jeeradit, B. Lim, and M. A. Horowitz, “Leveraging
designer’s intent: a path toward simpler analog CAD tools,”
in Proceedings of the Custom Integrated Circuits Conference
(CICC’2009), Sep. 2009, pp. 613–620. [Online]. Available: http:
//dx.doi.org/10.1109/CICC.2009.5280741

[3] K. S. Kundert, “Introduction to RF simulation and its application,”
IEEE Journal of Solid-State Circuits, vol. 34, no. 9, pp. 1298–1319,
1999. [Online]. Available: http://dx.doi.org/10.1109/4.782091

[4] G. Frehse, C. L. Guernic et al., “SpaceEx: Scalable verification of
hybrid systems,” in Proceedings of the 23rd Conference on Computer
Aided Verification, 2011. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-22110-1 30

[5] L. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and
Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, C. Ramakrishnan and J. Rehof, Eds.,
vol. 4963. Springer Berlin Heidelberg, 2008, pp. 337–340. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-78800-3 24

[6] H. Lin, P. Li, and C. J. Myers, “Verification of digitally-intensive analog
circuits via kernel ridge regression and hybrid reachability analysis,” in
Proceedings of the 50th Annual Design Automation Conference, ser.
DAC ’13. New York, NY, USA: ACM, 2013, pp. 66:1–66:6. [Online].
Available: http://doi.acm.org/10.1145/2463209.2488814

[7] I.-S. Dhingra, “Formalising an integrated circuit design style in higher
order logic,” Ph.D. dissertation, Computer Laboratory, Cambridge
University, Nov. 1988. [Online]. Available: http://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-151.html

[8] Z. J. Dong, M. H. Zaki, G. Al-Sammane, S. Tahar, and G. Bois,
“Checking properties of PLL designs using run-time verification,”
in International Conference on Microelectronics (ICM’2007), 2007,
pp. 125–128. [Online]. Available: http://dx.doi.org/10.1109/ICM.2007.
4497676

[9] Z. Wang, N. Abbasi, R. Narayanan, M. Zaki, G. Al-Sammane, and
S. Tahar, “Verification of analog and mixed signal designs using online
monitoring,” in Mixed-Signals, Sensors, and Systems Test Workshop,
2009. IMS3TW ’09. IEEE 15th International, 2009, pp. 1–8. [Online].
Available: http://dx.doi.org/10.1109/IMS3TW.2009.5158695

[10] A. Jesser and L. Hedrich, “A symbolic approach for mixed-signal
model checking,” in Proceedings of the 2008 Asia and South Pacific
design automation conference (ASPDAC’08). Los Alamitos, CA, USA:
IEEE Computer Society Press, 2008, pp. 404–409. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1356802.1356903

[11] M. Althoff, A. Rajhans et al., “Formal verification of phase-locked loops
using reachability analysis and continuization,” in Proceedings of the
2011 International Conference on Computer Aided Design, Nov. 2011,
pp. 659–666.

[12] C. Yan, M. R. Greenstreet, and J. Eisinger, “Formal verification of an
arbiter circuit,” in Proceedings of the 16th International Symposium
on Asynchronous Circuits and Systems, 2010, pp. 165–175. [Online].
Available: http://dx.doi.org/10.1109/ASYNC.2010.25

[13] P. J. Antsaklis and A. N. Michel, A Linear Systems Primer, 1st ed.
Birkhauser Basel, 2007. [Online]. Available: http://dx.doi.org/10.1109/
MCS.2009.932913

103120

http://dx.doi.org/10.1109/CICC.2010.5617417
http://dx.doi.org/10.1109/CICC.2009.5280741
http://dx.doi.org/10.1109/CICC.2009.5280741
http://dx.doi.org/10.1109/4.782091
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://doi.acm.org/10.1145/2463209.2488814
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-151.html
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-151.html
http://dx.doi.org/10.1109/ICM.2007.4497676
http://dx.doi.org/10.1109/ICM.2007.4497676
http://dx.doi.org/10.1109/IMS3TW.2009.5158695
http://dl.acm.org/citation.cfm?id=1356802.1356903
http://dx.doi.org/10.1109/ASYNC.2010.25
http://dx.doi.org/10.1109/MCS.2009.932913
http://dx.doi.org/10.1109/MCS.2009.932913

Formal Co-Validation of Low-Level
Hardware/Software Interfaces

Alex Horn∗, Michael Tautschnig∗, Celina Val†, Lihao Liang∗,
Tom Melham∗, Jim Grundy‡, Daniel Kroening∗

∗University of Oxford †University of British Columbia ‡Intel Corporation

Abstract—Today’s microelectronics industry is increasingly
confronted with the challenge of developing and validating
software that closely interacts with hardware. These interactions
make it difficult to design and validate the hardware and
software separately; instead, a verifiable co-design is required
that takes them into account. This paper demonstrates a new
approach to co-validation of hardware/software interfaces by
formal, symbolic co-execution of an executable hardware model
combined with the software that interacts with it. We illustrate
and evaluate our technique on three realistic benchmarks in
which software I/O is subject to hardware-specific protocol rules:
a real-time clock, a temperature sensor on an I2C bus, and an
Ethernet MAC. We provide experimental results that show our
approach is both feasible as a bug-finding technique and scales
to handle a significant degree of concurrency in the combined
hardware/software model.

I. INTRODUCTION

A growing problem for today’s microelectronics industry is
co-design of hardware alongside embedded, low-level software
that closely interacts with it. In particular, semiconductor
designs are witnessing an increased use of on-chip micro-
controllers running firmware to implement functionality that
would formerly have been implemented in hardware. This trend
is driven by factors that include the following:
• Extracting the control of complex devices and implement-

ing it in firmware can cut development schedules while
adding flexibility and survivability.

• By making on-chip devices more capable, work can
be shifted away from the CPU, where performance is
increasingly hard-won. The richer control required for
more capable devices further drives the trend.

The sorts of devices that are typically integrated on-chip are
controllers for power management, hardware with sequestered
functionality for remote management or secure content, and
increasingly capable graphics processors.

Co-design and validation of such devices together with
their firmware, with the predictability needed to schedule
fabrication and hit market windows, has become an acute
challenge. Similar challenges arise in developing firmware for
systems on chip (SoCs) and general embedded systems [1].

Firmware is just hardware-specific software. One might
therefore expect that the problem can be addressed by some
combination of today’s separate techniques for design and
verification of hardware and software. But the results of

Supported by ERC project 280053 and EPSRC project EP/H017585/1.

this approach are disappointing. The problem is the complex
nature of the interactions at the hardware/software interfaces.
All large systems are structured into subsystems, but the
interfaces between hardware and software subsystems are more
problematic than those in a homogeneous system.

• In a homogeneous design, the documentation of interfaces
(say by header files) is both understandable by developers
and processable by tools. A compiler, for example, can
guarantee some consistency in how two modules view a
shared interface. But hardware and software are typically
described in different languages, processed by separate
tool chains. And the hardware and software design teams
have their own descriptions of the interfaces they share,
with little to ensure the two are consistent.

• The mechanisms for invoking functionality and sharing
data among modules in a homogeneous system, particu-
larly in software, are relatively few. In contrast, the means
of passing information between hardware and software
are varied and built up from nonstandard primitives that
may include interrupts, memory-mapped I/O, and special-
purpose registers. The situation is analogous to software
before procedure-calling conventions were standardized.

• The hardware/software interface also marks a boundary
between different threads of concurrent execution. Without
the shared understanding of synchronization that follows
from a common language and library, concurrency at the
hardware/software interface needs special treatment.

• Finally, a hardware/software interface almost always marks
a boundary between different teams, working in different
parts of a company and having different educational
backgrounds and skills. The scope for misunderstanding
is greater than usual.

The challenges faced by those implementing the two sides
of a hardware/software interface are high—but so is the need
to get it right. Building a system with a new interface and then
testing it to find and remove bugs is a perilous practice. When
designers move the control from a complex hardware device
into firmware, the stripped-down hardware can be difficult to
test without a means to run the firmware. Testing the hardware
and firmware together is difficult before silicon is fabricated:
simulators are slow, emulators expensive, and FPGAs limited
in capacity. Delaying extensive testing until silicon is available
is unacceptable as it serializes the development of hardware
and software to the point where it can be difficult to meet the

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 104121ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

project schedule. And, of course, any hardware bugs found at
this stage will be expensive to fix.

An increasingly common approach to designing embedded
software is to employ virtual prototyping, so that coding can
begin before silicon is available. A software model (in C
or SystemC) serves as a proxy for the hardware on which
the embedded firmware code can be developed and tested.
In our research, we leverage this trend and propose a new
approach to co-validation of hardware/software interfaces by
formal, symbolic co-execution of two combined pieces of code:
a software model of the hardware, and the real embedded
firmware that interacts with this hardware. When necessary, we
capture the parallelism between firmware and hardware with a
modelling approach that employs software concurrency in the
form of asynchronous threads.

We demonstrate our idea with three realistic benchmarks,
all publicly available on the web.1 These are constructed by
combining hardware models adapted from a virtual machine
emulator and software taken from a general-purpose OS
kernel. The interactions at the hardware/software interfaces
of these benchmarks are characteristic of devices of interest to
our industry partner—including low-level software, akin to a
driver, executing on a separate on-chip microcontroller. Our
experimental results show the approach both is feasible as a
bug-finding technique and scales to handle a significant degree
of hardware/software concurrency.

A further, methodological, contribution of our work is the
identification of the open-source QEMU [2] code base, together
with Linux device drivers [3], as a rich source of characteristic
examples to drive research in this domain. The correctness
properties we have devised also exemplify validation problems
that are typical of low-level hardware/software interfaces.
Co-validation poses distinctive challenges and has growing
industrial importance; it is our hope that this work will
encourage other formal verification researchers to engage with
this important problem in contemporary hardware design.

II. VALIDATION AIMS AND TECHNICAL APPROACH

We have designed and experimentally evaluated a method
for semi-automatically searching for bugs in the interactions
at hardware/software interfaces. Our aim is to find potential
violations of certain correctness properties as the hardware
interacts with the low-level software under scrutiny. Such
violations yield counterexample traces that can expose bugs
both in the low-level software and in the hardware model. Our
method targets early and relatively high-level software models
of hardware, which need not be cycle accurate.

For our work, the purpose of hardware models is to capture
the hardware side of interactions that occur at nonstandard
hardware/software interfaces. This includes modelling complex,
ah-hoc side-effects characteristic of low-level devices. For
example, when the software reads a hardware register, this
may cause other changes to the visible state at the interface.

1http://www.cprover.org/firmware

In general, these interactions are expected to conform to
a protocol that can be articulated in terms of pre- and post-
conditions, which we refer to as properties. We formalize
these as runtime assertions within the executable hardware
model itself. Specifications of interface protocols are usually
articulated separately, in logic. Our approach, however, is
designed to appeal to practicing engineers who use virtual
platforms to test their intuition through co-simulation, and so
we embed specifications within executable models—which
are given formal meaning through a bit-precise execution
semantics [4].

A. Modelling Approach and Concurrency

In the conventional approach to formal hardware verification,
hardware models are essentially state-transition systems: a
formal model is given that determines or constrains the next
state of registers/memory in relation to the current state and
inputs. In this work, we propose a different approach that need
not be cycle accurate and provides a higher-level, event-driven
software abstraction of the hardware, focussed on interactions
at its interface with low-level software.

In some hardware/software systems, the speed of the
hardware and low latency of the interaction mechanism,
relative to software execution, imply that we do not need to
model hardware/software concurrency. An example is the RTC
benchmark in Section IV. In these cases, our combined code,
comprising the firmware plus the hardware model, can simply
represent interaction by procedure calls into the hardware model
from the software. This simplification encodes an assumption
that hardware response is effectively instantaneous.

More interesting is our handling of hardware/software
concurrency in the cases where it matters. Here, we model
the hardware by asynchronous software threads invoked by
the low-level code that interacts with the hardware. When this
code engages in an interaction with the hardware—writing to
a register, say—a concurrent, asynchronous thread is spawned
whose sole purpose is to call a function in the hardware model
that initiates an execution to model the hardware’s response.
Once the function returns, the thread terminates. This event-
driven abstraction enables us to find concurrency bugs, as
illustrated by the Ethernet MAC benchmark in Section VI. It
also maps well onto the early-stage hardware modelling activity
that our validation method targets.

In the specific context of our benchmarks drawn from QEMU,
we are able justify making threads of the hardware model
atomic with respect to each other and the low-level software.
This reduces the complexity of our analysis. We recognize,
however, this will not always be possible.

The low-level software’s response to hardware interrupts
are also modelled by asynchronous threads, this time created
at run-time by the hardware model—and not atomic. This
allows us to capture concurrency bugs in interrupt handling, a
prominent potential source of errors in the industrial systems
we have in mind.

105122

http://www.cprover.org/firmware

B. Validation Technology and Concurrency Encoding

Our validation method is designed to leverage today’s
highly optimized SMT/SAT solvers. Where our combined
code is purely sequential, we can analyse it with any software
analysis tool that gives a bit-precise semantics to C and can
check our embedded run-time assertions. In Section VII, we
report experimental results using CBMC and, for comparison,
also using KLEE—a pathwise testing tool that achieves high
coverage through symbolic execution [5].

Our main approach, however, is to analyse our coalesced
code by symbolic execution with aggressive path-merging, as
exemplified by CBMC [6]. This yields a mathematical formula
that encodes multiple execution paths up to a certain depth,
which is then checked by a SAT/SMT solver. This approach
maximizes the exploitation of today’s optimised solvers and
avoids the potentially exponential number of execution paths
explored by path-wise enumeration [7], [5].

To handle concurrency, we exploit a recent encoding of
concurrent software execution in CBMC that uses partial orders
to constrain the relative timing of events that access shared
state [8]. Roughly speaking, it works as follows. Accesses to
shared state by separate concurrent threads are first decoupled
by being given distinct symbolic references. An integer clock
is introduced for each access to shared state, and a partial
order is given among the clocks that encompasses all feasible
interleavings of these accesses to shared state. Finally, order-
dependent equality relationships are established among the
values named by the decoupled references, making connections
between the state values ‘seen’ by the hardware model and
low-level software. All this is efficiently encoded in a quantifier-
free formula whose size is cubic in the maximum number of
shared state accesses. Any satisfying assignment found by a
SAT/SMT solver corresponds to a property violation.

Encoding concurrency by partial orders side-steps having to
deal explicitly with the complexity of interleavings, and pro-
duces a highly competitive analysis for concurrent software [8],
which we exploit in this work. It also allows the ordering of
accesses to be more loosely specified than in conventional
sequential consistency. The latter property is used in [8] to
capture the complex semantics of weak memory models in
modern multi-core architectures, but is not (yet) exploited in
our work on hardware/software co-validation.

III. HARDWARE MODELS FROM QEMU DEVICES

To evaluate our method, we extract hardware models from the
open-source QEMU virtual machine emulator [2] and combine
them with Linux device drivers [3]. Our idea is to leverage
the rich collection of hardware models that QEMU provides,
in combination with real OS driver code. This strengthens the
objectivity and realism of our experiments, since they retain
essential characteristics of production code. This includes a
specific division into hardware models and low-level software,
which moreover originate from separate developer communities.

QEMU was designed for hardware virtualization, not experi-
ments in formal co-validation, and extracting usable stand-
alone hardware models from QEMU code is not entirely

straightforward. To give an idea of what is involved, we briefly
sketch some aspects of the QEMU architecture, before going
on to present our benchmark experiments.

QEMU is written in C. Each QEMU virtual machine is
divided into boards, each of which consists of device and bus
models. Communication between device models can occur only
through bus models. This is the basis for a modular design,
implemented through a QEMU-specific factory and service
locator pattern known as QDev [9].

QDev organizes hardware models into a dynamic tree data
structure that relies on a QEMU-specific object model called
QOM [10]. In essence, QOM seeks to extend C with object-
oriented programming features. To achieve this, QOM stores
information about its internal C structures in glib trees and
hash tables. An instantiation of such a structure is called an
object. Function pointers serve as methods. QEMU’s physical
memory management architecture determines which object
methods of a device model are called when memory regions
are accessed by the guest operating system [11].

For our benchmarks, we extracted stand-alone C hardware
models by excluding all physical memory management code
and dependencies on QDev and QOM. This was done through
a somewhat laborious process of careful slicing and approxi-
mation of essential features.

By default, QEMU accelerates dynamic code translation
though just-in-time compilation [12]. For our purposes, this
can fortunately be bypassed through an undocumented feature
called QTest, a client-server architecture that facilitates testing
of hardware models. Few QEMU models currently take
advantage of this test harness, but the trend is towards more
testing. The benefit for our approach is that these tests can
give insight into hardware-specific verification properties, and
serve as starting points for symbolic co-execution.

IV. CO-VALIDATION OF A REAL-TIME CLOCK

Our first benchmark is the MC146818 real-time clock
(RTC), a low-power CMOS device that provides—among
other functionality—a time-of-day clock, a calendar, and
programmable timers for periodic interrupts and square-wave
generation [13]. One of the stated purposes of the MC146818,
which is quite an old device, is to ‘relieve the [micro-processor]
software of the timekeeping workload’. This motivation also
drives today’s proliferation of complex on-chip device con-
trollers, themselves running firmware.

The RTC is representative of hardware devices that firmware
interacts with through special-purpose registers, a common
low-level software/hardware interface idiom [14]. The speed of
the RTC device means we can represent interaction with it by
procedure calls in the firmware; in essence we can assume, in
this benchmark, that both a register write and the hardware’s
response to it are instantaneous.

In this first benchmark, we focus on only part of the RTC
interface: reading and writing the registers that hold the time,
date, and alarm data. As will be seen, this is not simply a
matter of the firmware executing a ‘read’ or ‘write’ instruction,
but requires some ancillary manipulation of bits in control

106 123

status registers. Our validation task is to check for violation
of the protocols that govern this mechanism.

A. Interface Properties

The MC146818 presents its interface as 64 bytes of RAM,
addressed 0x00 though 0x3F. The time, date, and alarm data
are held in the first 10 bytes, each of which is essentially a
‘register’ at a specific address [13]. For example, the byte at
0x09 is the register that holds the year. To access a register,
software must execute a sequence of two I/O instructions
that access two different memory-mapped hardware registers
at addresses 0x70 and 0x71. The first determines the data
register to be accessed, and the second holds the value of this
register. It is an error to read or write a data register value at
address 0x71 without first setting the register to be accessed:

? Each execution of outb 0x71 or inb 0x71 must be
preceded by a unique outb 0x70.

This property alone is insufficient to guarantee safe writes of
data. The firmware controlling this device must also correctly
manipulate two control bits in ‘Register B’, one of four other
RAM locations whose individual bits monitor and control a
diverse assortment of device operations. The two relevant bits
are the SET bit and the data mode (DM) bit.

? The SET bit of Register B must be enabled (have value 1)
when any of the time, date, or alarm registers are written.

Once SET is enabled, data can be safely written as either
binary or binary-coded decimal. The choice must be made
explicit by writing 1 or 0 to the DM bit. In addition, the
selected ‘data mode cannot be changed without re-initializing
the 10 data bytes’ [13]. A permissive interpretation of this
sentence in the data sheet yields the following two properties:

? The DM bit can be changed only when the SET bit is
already enabled, or as the SET bit is also being enabled
or disabled when Register B is written.

? If the DM bit has changed since the SET bit has been
or is being enabled, then every time, calendar and alarm
register must have been written at the moment when the
SET bit is disabled.

The final property we discuss here says there are no
concurrent hardware writes to any of the time, date, or alarm
registers while the SET bit is 1. Note that no such guarantee
exists once the SET bit is disabled.

? While the SET bit is 1, when data d is written to a time,
calendar or alarm register R, a subsequent read of R
returns d.

We have shown only informal statements of our properties
to make the exposition accessible. In our actual method, we
encode properties as runtime assertions in the RTC hardware
model. Several other properties, omitted here for brevity,
are included in our experiments. This yields an executable
specification, through which we expose a real bug (Section VII).

B. Technical Details of the RTC Benchmark

To illustrate the architecture shared by all our benchmarks
and explain how hardware models are extracted from QEMU,
we give here some technical details for the RTC benchmark.

The full RTC model in QEMU depends on a large amount
of code irrelevant to our properties, and is too complex
to analyse formally. We therefore manually removed these
dependencies, including the dependency on the i440fx PCI
host. We also manually sliced away some code not representing
actual hardware, such as QEMU timers. These simplifications,
which we would expect in future to mechanize, preserve the
core of the RTC model.

There are two loops in the RTC hardware model that are
hard for CMBC to handle, but the functions that contain them
are for RTC timer functionality that has nothing to do with our
interface properties. We could therefore safely remove these
function calls without affecting the validation results.

For the low-level software side, we used the dependency
tracking capabilities of CBMC to pull together sufficient Linux
driver code to exercise the hardware model. This was done in
a semi-automated way that produces a coalesced C program
containing the model together with a superset of the exact
Linux code needed to drive the hardware features covered. The
coalesced program has around 49k lines of C code.

Symbolic execution of the coalesced program has to proceed
from a main function that actually invokes the driver. For
this, we develop scenarios that invoke the driver in various
ways. These were specially written for the RTC benchmark,
but a merit of our approach in general is that we might
instead leverage test cases created by developers, as long as
these initialize the hardware model. Our code initializes the
RTC with a non-deterministic value representing the time.
After initialization, we call the Linux device driver function
get_rtc_time() to read the time from the RTC. Finally,
we call set_rtc_time() to write back the time just read.
These calls induce state transitions in the hardware model.

A similar approach can be taken to produce benchmarks
for stand-alone QEMU hardware models, in isolation from
their driver, simply by wrapping each QEMU model with
some C code that enacts driver I/O scenarios. In the RTC
benchmark, each such scenario includes an initialization step
that sets the time in the RTC to a non-deterministic value,
represented in binary-coded decimal and constrained to be in
the range given in the MC146818 datasheet [13]. For a sanity
check of the properties, we created a buggy test case for the
stand-alone hardware model that calls inb(0x71) before
outb(0x70,∗), where ∗ is a non-deterministic value.

V. CO-VALIDATION OF AN I2C TEMPERATURE SENSOR

The second benchmark features a temperature sensor [15],
called ‘TMP105’, that is controlled by software through the
I2C bus [16]. This allows us to experiment with properties that
go beyond fixed-sized register updates. Our hardware model
for the I2C benchmark incorporates the essential interaction
constraints for these updates, so the benchmark does not need
to include a model of the I2C bus controller.

107124

The temperature sensor has four registers: an 8-bit configura-
tion register, a 16-bit temperature register, and 16-bit lower and
upper temperature threshold registers for hysteresis. Reading
and, when applicable, writing of these registers is done over
the I2C serial bus. The registers have different sizes, so the
number of transmitted bytes varies.

Individual bits in registers must conform to rules similar
to those of the RTC. We show a few illustrative properties,
again stated informally here but in practice encoded as run-time
assertions in the hardware model.

The sensor can be shut down by writing a 1 to the least
significant bit of the configuration register. This turns off
continuous temperature measurements to save power. While
the sensor is in this ‘shutdown mode’ individual readings can
still be triggered by writing a 1 to the most significant bit of
the configuration register. This leads to the following property:

? Each read of the temperature register is preceded by a
write of a 1 to the most significant bit of the configuration
register if and only if the temperature sensor is in shutdown
mode.

Writing 1 to the most significant bit of the configuration
register merely triggers an individual temperature measurement;
the bit itself is immutable and not affected by the write.

? When the most significant bit of the configuration register
is read, it is zero regardless of any previous writes to it.

The next property concerns the configuration register.

? After writing byte c to the configuration register, the next
read gives a byte c′ where c′[i] = c[i] for 0 ≤ i < 7.

That is, all bits of the old and new configuration value are
pairwise equal, except perhaps the most significant bit.

Altogether, the bus and register properties amount to around
two dozen runtime assertions. It was straightforward to encode
these in the TMP105 hardware model extracted from QEMU:
the TMP105 internal state is stored in a C structure that
has fields to that implement its registers and store control
information related to communication through the I2C protocol.

VI. CO-VALIDATION OF AN ETHERNET MAC

Our final benchmark concerns interrupt-driven software
for an Ethernet MAC with a direct-memory access (DMA)
ring [17]. We concentrate on the functionality of receiving
Ethernet frames. Each incoming frame is called an RX frame.
The Ethernet MAC can be configured to generate a hardware
interrupt for each RX frame. We call this ‘interrupt mode’.
When interrupts are disabled but RX frames should still be
processed, the software polls for incoming data.

Hardware/software concurrency is therefore important to
model in the Ethernet MAC benchmark, because multiple
frames can arrive simultaneously and the software reacts to
interrupts generated by the hardware. These are handled using
the modelling approach discussed in Section II, and produce a
significant degree of concurrency in the coalesced model.

A noteworthy complication is that the software switches
between interrupts and polling to improve performance [18].

Similar techniques are used for block devices with high data
throughput, such as solid state drives. Switching between
polling and interrupt mode is known to be error-prone, so
this benchmark is a good exemplar for concurrency bugs due
to interrupts in a producer-consumer scenario. This section
explains one such bug and how the developers fixed it.

The OpenCores Ethernet MAC features 128 DMA buffer
descriptors [17], each of which determines the memory that
holds an Ethernet frame. Our benchmark code elides the details
of DMA address translation; instead, we focus on how the
software and hardware synchronize their updates to the DMA
buffer. In the case of RX frames, the software sets bit 15 in
a buffer descriptor to 1 when the associated DMA buffer can
be overwritten by the hardware. Such a buffer descriptor is
said to be ‘empty’. The hardware clears bit 15 to signal to
the software that the DMA buffer associated with a buffer
descriptor contains a new RX frame. Despite its simplicity,
this communication protocol is error-prone when interrupts are
being re-enabled, as illustrated next.

Suppose there is at least one empty RX buffer descriptor.
The software switches from polling to interrupt mode as soon
as it detects no new RX frames. To do this, it reads bit 15 of
the next available RX buffer descriptor. Suppose the current
buffer descriptor is empty and so this bit is still 1. In this case,
the version of the software with the bug continues by clearing
all RX interrupt sources before re-enabling all RX interrupts.

Unfortunately, this algorithm can result in RX frames being
delayed or even dropped. Figure 1 shows an example, in which
an RX frame arrives just after the check for new RX frames
but before the RX interrupt sources are cleared. This RX frame
will not trigger an interrupt until another one arrives. In fact,
if there are no other ones, the delayed RX frame is not even
promoted to the socket layer. This happens when the driver is
stopped, for example due to standby.

The following properties will expose this concurrency bug:

? When the software enables the MAC receiver, there exists
at least one empty RX buffer descriptor.

? The software must eventually process every RX frame. At
the very latest, when it is stopped, all RX frames must
have been processed.

The crux of these properties is that the driver must detect any
potentially lost frames. Figure 2 shows how the developer for
the ‘ethoc’ driver in the Linux 2.6.38 kernel release fixed the
bug, ensuring these properties are then satisfied.

These and several other properties were analysed using
CBMC and the partial order encoding for concurrency. The
scenarios we wrote to exercise these properties asynchronously
invoke the hardware model to trigger new RX frames or force
the MAC to become busy.

A few simplifications were made to enable analysis within
reasonable time and memory bounds. Because the solver has
no array logic built in, we had to reduce the maximum number
of DMA buffers to eight and shrink their sizes to at most two
bytes. For the same reason, the number of buffer descriptors
in the hardware model was reduced to eight. Finally, we

108 125

Driver Ethernet MAC Wire

New RX frame?

No

New RX frame!
Clear RX interrupt source!

Enable RX interrupt!

Fig. 1. Incorrect handling of an empty RX buffer descriptor causes potential
package loss.

Driver Ethernet MAC Wire

New RX frame?

No

New RX frame!
Clear RX interrupt source!

New RX frame?

Yes

Fig. 2. A second buffer descriptor check, after the RX interrupt sources have
been cleared, detects intermittent RX frame arrivals.

suppressed interrupts on changes of the interrupt mask because
this functionality appears to be QEMU-specific and not part
of the Ethernet MAC itself.

VII. EXPERIMENTAL RESULTS

Table I summarizes our experimental results. We performed
all experiments on a 64-bit machine running Linux 3.5.0 with
eight Intel Xeon 3.07 GHz cores and 48 GB of main memory.

For the RTC and I2C benchmarks, we employed sequential,
multi-path symbolic execution. Loops were unrolled a bounded
number of times. This type of symbolic execution generates a
Boolean formula that encodes the expected interface properties
and all calls to read and write procedures in the hardware
model invoked from the low-level software. The formula is
then checked with MiniSat 2.2. If the formula is satisfiable,
a violation of some property has been found. Otherwise, no
decisive conclusion about the validity of the property can be
reached.

As part of our RTC experiments, we found a real bug in
the QEMU hardware model2 that causes it to violate property
RTC.1 in Table I. The violation is exposed through a test that
first writes a time or calendar register and then writes to one
of the control registers of the device. For the combined RTC
benchmark with the hardware model and driver code, CBMC

2http://git.qemu.org/?p=qemu.git;a=commit;h=02c6ccc6dde90dcbf5975b1c

LOC #Unroll #Threads #Constraints #Clauses Sec.

RTC.1 47609 21 1 61314 25, 797, 536 122.5
RTC.1 (unfixed) 47609 21 1 61065 25, 771, 226 225.3
RTC.2 47609 21 1 61314 26, 430, 338 71.7
RTC.3 47609 21 1 60648 25, 769, 903 68.5
RTC.4 47609 21 1 60766 26, 422, 852 69.7
RTC.5 47609 21 1 60435 26, 425, 148 69.5
RTC.6 47609 21 1 60295 8, 208, 764 54.1
RTC.7 47609 21 1 60394 8, 759, 757 55.2
RTC.8 47609 21 1 60294 24, 491, 011 69.1
RTC.9 47609 21 1 60294 24, 468, 704 67.7
RTC.10 47609 21 1 60294 24, 781, 142 68.6
RTC.11 47609 21 1 60668 25, 231, 840 112.8

I2C.1 46609 16 1 159481 20, 020, 885 803.9
I2C.2 46609 16 1 158391 19, 997, 082 793.1
I2C.3 46609 16 1 158556 20, 006, 113 795.8
I2C.4 46609 16 1 158556 20, 023, 452 787.1
I2C.5 46609 16 1 158556 20, 024, 494 786.2
I2C.6 46609 16 1 158436 19, 998, 982 783.4
I2C.7 46609 16 1 158436 20, 007, 984 786.1
I2C.8 46609 16 1 158436 20, 001, 601 780.5
I2C.9 46609 16 1 163866 20, 118, 277 854.4
I2C.10 46609 16 1 164547 20, 074, 751 841.0
I2C.11 46609 16 1 162381 20, 388, 706 808.6
I2C.12 46609 16 1 158556 20, 160, 928 789.4
I2C.13 46609 16 1 158811 20, 009, 910 804.3
I2C.14 46609 16 1 160596 20, 294, 436 798.7
I2C.15 46609 16 1 160596 20, 295, 406 800.8
I2C.16 46609 16 1 158391 19, 997, 740 788.9
I2C.17 46609 16 1 167481 20, 064, 678 912.9

ETHOC.1+2 940 2 2 1036+57 336, 557 1.7
ETHOC.1+3 940 2 13 4633+1063 8, 109, 581 46.1
ETHOC.1+4 940 2 17 6073+1300 17, 192, 339 145.7
ETHOC.5 2097 1 19 16707+20991 250, 371, 908 1680.7
ETHOC.6 2097 1 19 16683+21034 252, 154, 414 335.5
ETHOC.7 2097 1 19 16635+20750 239, 259, 859 219.5
ETHOC.5-seq 2097 1 1 17710 73, 388, 552 426.8
ETHOC.6-seq 2097 1 1 17686 73, 324, 230 426.1
ETHOC.7-seq 2097 1 1 17648 71, 998, 722 435.3

TABLE I
EXPERIMENTAL RESULTS

reports the violation of property RTC.1 in 225.3 s, of which
177.4 s were spent in MiniSat. The violation of property RTC.1
in the standalone RTC hardware model is found in 50 s.

The temperature sensor benchmark also helped to expose a
real bug in the QEMU hardware model.3 The bug causes data
on the I2C bus to be lost because of an off-by-one error. In
the standalone I2C hardware model, CBMC found a violation
of property I2C.10 in 3.6 s and property I2C.18 in 3.4 s, of
which 1.4 s and 1.3 s, respectively, were spent in MiniSat.

We also tried to use CBMC to expose property violations
in the temperature sensor by analysing the combined driver
code and hardware model. The scenarios developed for this
analysis take a brute-force approach, in which we explore all
possible sequences, of a fixed length, of non-deterministically
chosen driver API function calls. The sequences are encoded
symbolically, in a single run of the analysis. The idea was to
simulate all possible fixed-length sequences of invocations of
the driver API, such as might arise in a typical interrupt-driven
setting. Our experiments with a bound of 15 driver API calls
in the test harness failed to expose a property violation. CBMC
timed out after 1800 s when the number of API function calls
was set to 20.

For the ETHOC device benchmark, our tool processes the
coalesced code and symbolically encodes concurrent memory
accesses as partial orderings, as discussed in Section II.
The resulting formula, sent to an SMT/SAT solver, captures
all possible execution schedules for the threads that enact

3http://git.qemu.org/?p=qemu.git;a=commit;h=cb5ef3fa1871522a08866270

109126

http://git.qemu.org/?p=qemu.git;a=commit;h=02c6ccc6dde90dcbf5975b1c
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L440
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L440
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L613
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L535
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L592
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L620
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/rtc/mc146818rtc.c#L763
https://github.com/ahorn/benchmarks/blob/master/qemu-hw/rtc/mc146818rtc.c#L813
https://github.com/ahorn/benchmarks/blob/master/qemu-hw/rtc/mc146818rtc.c#L444
https://github.com/ahorn/benchmarks/blob/master/qemu-hw/rtc/mc146818rtc.c#L459
https://github.com/ahorn/benchmarks/blob/master/qemu-hw/rtc/mc146818rtc.c#L481
https://github.com/ahorn/benchmarks/blob/master/qemu-hw/rtc/mc146818rtc.c#L495
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L40
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L45
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L214
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L229
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L253
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L279
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L286
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L294
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/tmp105_x86/modlib/hwmon/lm75.c#L222
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L177
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L54
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L69
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L73
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L220
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L242
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L171
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/tmp105/tmp105.c#L103
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth.c#L439
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth-test.c#L276
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth.c#L439
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth-test.c#L279
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth.c#L439
https://github.com/ahorn/benchmarks/blob/fmcad2013/qemu-hw/ethoc/opencores_eth-test.c#L282
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L1080
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L1093
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L453
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L1080
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L1093
https://github.com/ahorn/benchmarks/blob/fmcad2013/sw-hw/linux/ethoc/ethoc.c#L453
http://git.qemu.org/?p=qemu.git;a=commit;h=cb5ef3fa1871522a08866270

invocations of hardware functionality. Interrupts generated
by the hardware model also introduce concurrency that is
included in the encoding, because the software’s interrupt
handler executes asynchronously from the hardware’s point of
view.

This modelling approach generates a significant degree of
concurrency. Our scenarios result in up to 18 threads being
spawned, yet we can validate most of the concurrent scenarios,
explained in further detail below, in under 6 minutes (one
scenario requires up to 29 minutes). The partial-order based
encoding of [8] thus appears to be well suited for efficiently
checking our models of combined hardware/software systems.

First, we validated the QEMU hardware model in isolation.
In under 1 minute, despite 12 threads being spawned, we
showed that our hardware model correctly simulates interrupts
to be raised asynchronously. As our symbolic execution is
limited to bug-finding, we had added a runtime assertion to
state the converse; the counterexample we found constitutes
evidence that our interrupt properties are not vacuously true.

With a more than tenfold increase in the number of clauses
when analysing the combined hardware/software system, the
burden on the underlying decision procedure rises significantly.
We therefore experimented with both a purely sequential
composition of the systems, corresponding to an assumption
of instantaneous hardware operation, and a concurrent version,
capturing all behaviour. In just over 7 minutes, our experiments
confirm that the sequential version does not exhibit the erro-
neous behaviour described in Section VI. This failure to detect
the bug illustrates how developing software without a realistic
hardware model poses risks. The complete, concurrent system
spawns 18 threads to simulate all interactions of the software
with asynchronous hardware and interrupts. In 29 minutes we
were now able to detect a property violation that exposes the
presence of the bug in the combined hardware/software system.

Other Experiments using KLEE. We have also analysed all
three benchmarks using KLEE [5]. On the RTC benchmark
with the combined hardware model and driver software, KLEE
times out after 1800 s. It also times out on the standalone,
corrected RTC hardware model, but it can find the bug in
the original model in 1 s. The temperature sensor driver code
cannot be compiled into LLVM IR, but KLEE can check the
corrected hardware model in 1 s. When we analyse the original
temperature sensor hardware model, KLEE exposes the bug
in 1 s. In addition, we confirmed that KLEE cannot detect
the concurrency bug in the Ethernet MAC driver; with both
the corrected and buggy version of the driver, it explores 25
paths in less than 30 s and passes all seven ETHOC properties
(whether violated or not).

VIII. DISCUSSION AND FUTURE WORK

In this section, we indicate some of the limits of our work
and discuss some directions for further research.

The hardware models in all our benchmarks serve as an
executable specification of the hardware/software interface.
This is helpful to engineers, who test their intuition through

simulation. An executable hardware model also gives flexibility
in expressing properties. But, under symbolic analysis, this
can also give rise to a diverse range of logical formulas for
checking—making it hard to find an appropriate decision
procedure. The problem might be mitigated by adopting an
embedded contract language [19].

We found executable hardware models to be essential in
discovering key properties of the hardware and software, and
to exploring the interfaces between them. Our models are
event-driven and phrased at a high level—executable software
abstractions that strike a balance between modelling accuracy
and tractability. An obvious goal is to verify them formally
against a lower-level reference model. Our Ethernet MAC
benchmark could be used as a research case study for this, in
which executions of threads in the stand-alone QEMU model
are compared with the OpenCores RTL Verilog model [17].

Our Ethernet MAC benchmark exemplifies the subtleties of
interrupts by explaining a concurrency bug in a driver. For
the automatic analysis, we relied on symbolic encoding of
interactions between concurrently running model elements. But
we have not yet considered nested interrupts, which would
require extensions to both our models and the concurrency
encoding. In future, we would also like to address interrupt
priorities, such as FIQ interrupts on ARM. Our experiments
also expose opportunities for automatic slicing algorithms that
are aware of concurrency semantics.

Multi-threading in the Ethernet MAC benchmark frames
some of our current research on improvements to the partial
order concurrency encoding. Our experience suggests there is
potential to delegate some of the generation of constraints that
constitute the partial order on state accesses to the SMT solver
itself, where it could be done incrementally.

IX. RELATED WORK

Most research on verification of low-level software has
focused on operating systems and drivers, with some prominent
successes [20], [5], [21], [6], [7], [22]. There has also been
some work on formal analysis of assembly code [23] and even
binary drivers have been analysed [24]. There is, of course, a
large body of literature on design and verification of embedded
systems at a higher level [25]. In our work, we address
formal co-validation of complex interactions between low-level
software and on-chip hardware, using a novel technique that
combines symbolic execution and partial-order encodings [8],
bypassing the scalability limitations of partial-order reductions
in earlier work (e.g. [26]). Our work represents the first
demonstration of this approach to this important problem in
contemporary systems design.

There has been some research, with aims similar to ours,
using bounded model checking [27] and interval property
checking [28]. The emphasis of both these efforts is on
machine instructions and cycle-accurate hardware models,
while ours aims at early validation before a cycle-accurate
model is available. This is reflected in the fact that the work
of [28] targets Verilog code, while ours revolves around higher-
level models in C. Earlier work also analysed a more non-

110 127

deterministic C model through abstract interpretation [29],
but with less sophisticated support for concurrency. More
recently, an automata-theoretic co-verification technique has
been applied to PCI drivers [30].

Other related work has used symbolic simulation and SMT
to check equivalence between a software reference model
and a system containing (restricted) C code that invokes data
computations on reconfigurable streaming hardware modelled
in Java [31]. Hardware/software concurrency is not represented;
interaction is modelled by synchronous calls from the software
into an API that loads and runs the streaming hardware
designs. The aim is to establish correctness of the dataflow
computations in hardware/software co-designs. By contrast,
our work and modelling approach seek to uncover bugs in
hardware/software systems that interact through concurrent,
imperative modification of shared state.

X. CONCLUDING REMARKS

We have described a new approach to co-validation of hard-
ware and low-level software, based on formal co-verification
of an executable hardware model together with the software
that interacts with it. We articulate key correctness properties
that we expect interactions at the hardware/software interface
to exhibit, and check these by symbolic execution. As our
experiments show, the approach can be adapted to a range of
interaction mechanisms—and it can expose bugs.

Systematic experimental research into formal co-verification
of hardware and low-level software is hindered by the lack
of realistic benchmarks accessible to academic researchers.
Our work suggests a way to close this gap. We exploit the
availability of well-developed open source virtual machine
emulator code, from which one can extract a wide range of
typical hardware models. These models can be made to work
with Linux drivers, which serve as a proxy for typical firmware
code. A practical benefit is that this facilitates collaboration with
the systems community, whose insights helped us understand
the problem space and expose real bugs. We suggest that a
community effort to develop a benchmark suite, following our
approach, would produce an invaluable resource to drive further
academic research into firmware validation.

XI. ACKNOWLEDGEMENTS

This work is funded by a donation from Intel Corporation for
research on Effective Validation of Firmware. We are grateful
for illuminating discussions with our project partners: Alan
Hu (UBC), Luke Ong (Oxford), Moshe Vardi (Rice), and
Sharad Malik (Princeton). We thank Anthony Liguori (IBM),
Paolo Bonzini (Redhat), and Andreas Färber (SUSE) for their
comments on the QEMU mailing list.

REFERENCES

[1] J. Teich, “Hardware/software codesign: The past, the present, and
predicting the future,” Proceedings of the IEEE, vol. 100, pp. 1411–
1430, May 2012.

[2] A. Liguori, “QEMU emulator user documentation,” http://wiki.qemu.org/
download/qemu-doc.html, Jan. 2010.

[3] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers.
O’Reilly, 2005.

[4] G. Parthasarathy, M. K. Iyer, K.-T. Cheng, and L.-C. Wang, “An efficient
finite-domain constraint solver for circuits,” in Design Automation
Conference (DAC). ACM, 2004, pp. 212–217.

[5] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
OSDI. USENIX Assoc., 2008, pp. 209–224.

[6] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS. Springer, 2004, vol. 2988, pp. 168–176.

[7] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed automated
random testing,” SIGPLAN Notices, vol. 40, pp. 213–223, June 2005.

[8] J. Alglave, D. Kroening, and M. Tautschnig, “Partial orders for efficient
Bounded Model Checking of concurrent software,” in Computer-Aided
Verification (CAV), ser. LNCS, vol. 8044. Springer, 2013, pp. 141–157.

[9] P. Bonzini, “QEMU developer mailing list – qdev for programmers,” http:
//lists.nongnu.org/archive/html/qemu-devel/2011-07/msg00842.html, Jul.
2011.

[10] A. Liguori, “QEMU wiki – QOM,” http://wiki.qemu.org/Features/QOM,
Jul. 2011.

[11] A. Kivity, “QEMU developer documentation on memory API,” http:
//git.qemu.org/?p=qemu.git;a=blob;f=docs/memory.txt, Jul. 2011.

[12] F. Bellard, “QEMU, a fast and portable dynamic translator,” in ATEC.
USENIX Assoc., 2005, pp. 41–46.

[13] Freescale Semiconductor, MC146818 – Real-Time Clock Plus RAM
(RTC), http://www.freescale.com/files/microcontrollers/doc/data sheet/
MC146818.pdf, 1988.

[14] G. Stringham, Hardware/Firmware Interface Design: Best Practices for
Improving Embedded Systems Development. Elsevier, 2009.

[15] Texas Instruments, Digital Temperature Sensor with 2-Wire Interface,
http://www.nxp.com/documents/user manual/UM10204.pdf, Sep. 2011.

[16] NXP Semiconductors, UM10204 – I2C – bus specification and user
manual, http://www.nxp.com/documents/user manual/UM10204.pdf, Oct.
2012.

[17] I. Mohor, “Ethernet MAC 10/100 mbps,” http://opencores.org/project,
ethmac, Jul. 2011.

[18] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in
Proceedings of the 5th annual Linux Showcase & Conference, vol. 5.
USENIX Assoc., 2001, pp. 18–26.

[19] M. Fähndrich, M. Barnett, and F. Logozzo, “Embedded contract
languages,” in SAC. ACM, 2010, pp. 2103–2110.

[20] T. Ball, V. Levin, and S. K. Rajamani, “A decade of software model
checking with SLAM,” CACM, vol. 54, no. 7, pp. 68–76, Jul. 2011.

[21] C. Cadar and D. R. Engler, “Execution generated test cases: how to
make systems code crash itself,” in SPIN. Springer, 2005, pp. 2–23.

[22] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood, “seL4: formal verification of an operating-system
kernel,” CACM, vol. 53, no. 6, pp. 107–115, Jun. 2010.

[23] D. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and S. Rajan, “Em-
bedded software verification using symbolic execution and uninterpreted
functions,” Int. J. Parallel Program., vol. 34, no. 1, pp. 61–91, Feb. 2006.

[24] V. Kuznetsov, V. Chipounov, and G. Candea, “Testing closed-source
binary device drivers with DDT,” in USENIXATC. USENIX Assoc.,
2010, pp. 12–12.

[25] M. Loghi, T. Margaria, G. Pravadelli, and B. Steffen, “Dynamic and
formal verification of embedded systems: a comparative survey,” Int. J.
Parallel Program., vol. 33, no. 6, pp. 585–611, Dec. 2005.

[26] R. P. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenigün, “Combining
software and hardware verification techniques,” FMSD, vol. 21, no. 3,
pp. 251–280, Nov. 2002.

[27] D. Große, U. Kühne, and R. Drechsler, “HW/SW co-verification of
embedded systems using bounded model checking,” in GLSVLSI. ACM,
2006, pp. 43–48.

[28] M. D. Nguyen, M. Wedler, D. Stoffel, and W. Kunz, “Formal hard-
ware/software co-verification by interval property checking with ab-
straction,” in Design Automation Conference (DAC). ACM, 2011, pp.
510–515.

[29] D. Monniaux, “Verification of device drivers and intelligent controllers:
a case study,” in EMSOFT. ACM, 2007, pp. 30–36.

[30] J. Li, F. Xie, T. Ball, V. Levin, and C. McGarvey, “An automata-theoretic
approach to hardware/software co-verification,” in FASE. Springer, 2010,
pp. 248–262.

[31] T. Todman, P. Boehm, and W. Luk, “Verification of streaming hardware
and software codesigns,” in 2012 International Conference on Field-
Programmable Technology. IEEE, 2012, pp. 147–150.

111128

http://wiki.qemu.org/download/qemu-doc.html
http://wiki.qemu.org/download/qemu-doc.html
http://lists.nongnu.org/archive/html/qemu-devel/2011-07/msg00842.html
http://lists.nongnu.org/archive/html/qemu-devel/2011-07/msg00842.html
http://wiki.qemu.org/Features/QOM
http://git.qemu.org/?p=qemu.git;a=blob;f=docs/memory.txt
http://git.qemu.org/?p=qemu.git;a=blob;f=docs/memory.txt
http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC146818.pdf
http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC146818.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://opencores.org/project,ethmac
http://opencores.org/project,ethmac

An SMT Based Method for Optimizing Arithmetic
Computations in Embedded Software Code

Hassan Eldib and Chao Wang
Department of ECE, Virginia Tech, Blacksburg, VA 24061, USA

E-mail: {heldib,chaowang}@vt.edu

Abstract—We present a new method for optimizing the C/C++
code of embedded control software with the objective of mini-
mizing implementation errors in the linear fixed-point arithmetic
computations caused by overflow, underflow, and truncation.
Our method relies on the use of an SMT solver to search for
alternative implementations that are mathematically equivalent
but require a smaller bit-width, or implementations that use the
same bit-width but have a larger error-free dynamic range. Our
systematic search of the bounded implementation space is based
on an inductive synthesis procedure, which guarantees to find a
solution as long as such solution exists. Furthermore, the synthesis
procedure is applied incrementally to small code regions – one at
a time – as opposed to the entire program, which is crucial for
scaling the method to programs of realistic size and complexity.
We have implemented our method in a software tool based
on the Clang/LLVM compiler and the Yices SMT solver. Our
experiments, conducted on a set of representative benchmarks
from embedded control and DSP applications, show that the
method is both effective and efficient in optimizing fixed-point
arithmetic computations in embedded software code.

I. INTRODUCTION

Analyzing and optimizing the fixed-point arithmetic com-
putations in embedded control software is crucial to avoid
overflow and underflow errors and minimize truncation errors
within the designated input range. Implementation errors such
as overflow, underflow, and truncation can lead to degradation
of the computation results, which in turn may destabilize
the entire system. The conventional solution is to carefully
estimate the minimum bit-width required by the software code
to run in the error-free mode and then choose a microcontroller
that matches the minimum bit-width. However, this can be
expensive or even infeasible, e.g., when the microcontroller at
hand has 16 bits but the code requires 17 bits.
In many cases, it is possible for the developer to manually

reorder the arithmetic operations to avoid the overflow and
underflow errors and to minimize the truncation errors. How-
ever, the process is labor intensive and error prone. In this
paper, we present a new compiler assisted code transformation
method to automate the process. More specifically, we apply
inductive synthesis incrementally to optimize the arithmetic
computations so that the code can be safely executed on
microcontrollers with a smaller bit-width.
Consider the code in Fig. 1, where all input parameters

are assumed to be in the range [0, 9000]. A quick analysis
of this program shows that, to avoid overflow, the program
must be executed on a microcontroller with at least 32 bits.
If it were to run on a 16-bit microcontroller, many of the
arithmetic operations, e.g., the subtraction in Line 13, would
overflow. In this case, a naive solution is to scale down the bit-
widths of the overflowing operations by eliminating some of
their least significant bits (LSBs). However, it would decrease

the dynamic range, ultimately leading to a large accumulative
error in the output.
Our method, in contrast, can reduce the minimum bit-width

required to run this fixed-point arithmetic computation code
without loss in accuracy. It takes the original C code in
Fig. 1 and the user-specified ranges of its input parameters,
and returns the optimized C code in Fig. 2 as output. Our
method guarantees that the two programs are mathematically
equivalent but the one in Fig. 2 requires a smaller bit-
width. More specifically, the new code can run on a 16-bit
microcontroller. Furthermore, our method ensures that the new
code does not introduce additional truncation errors.
The optimization in our method is carried out by an

SMT solver based inductive synthesis procedure, which is
customized specifically for efficient handling of fixed-point
arithmetic computations. Recent years have seen a renewed
interest in applying inductive synthesis techniques to a wide
variety of applications (e.g., [1], [2], [3], [4], [5], [6], [7],
[8]). However, a naive application of inductive synthesis to
our problem would not work, due to the limited scalability and
large computational overhead of the synthesis procedure. For
example, our experience with the Sketch tool [1] shows that,
for synthesizing arbitrary fixed-point arithmetic computations,
it does not scale beyond programs with 3-4 lines of code.
Our main contribution in this paper is a new incremental

inductive synthesis algorithm, where the SMT solver based
analysis is carried out only on small code regions of bounded
size, one at a time, as opposed to the entire program. This
incremental optimization approach allows our method to scale
up to programs of practical size and complexity.
Our new method differs from existing methods for opti-

mizing arithmetic computations in embedded software. These
existing methods, including recent ones [9], [10], focus pri-
marily on computing the optimal (smallest) bit-widths for the
program variables. Instead, our method focuses on re-ordering
the arithmetic operations and re-structuring the code, which in
turn may lead to reduction in the minimum bit-width. In other
words, we are not merely finding the minimum bit-width, but
also reducing it through proper code transformation. Due to
the use of an SMT solver based exhaustive search, our method
can find the best implementation solution within a bounded
search space.
We have implemented our method in a software tool based

on the Clang/LLVM compiler framework [11] and the Yices
SMT solver [12]. We have evaluated its performance on a
representative set of public domain benchmarks collected from
embedded control and digital signal processing (DSP) applica-
tions. Our results show that the new method can significantly
reduce the minimum bit-width required by the program and,

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 112129ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

1: int comp(int A,int B,int H,int E,int D,int F,int K) {
2: int t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12;
3: t12 = 3 * A;
4: t10 = t12 + B;
5: t11 = H << 2;
6: t9 = t10 + t11;
7: t6 = t9 >> 3;
8: t8 = 3 * E;
9: t7 = t8 + D;
10: t5 = t7 - 16469;
11: t3 = t5 + t6;
12: t4 = 12 * F;
13: t2 = t3 - t4;
14: t1 = t2 >> 2;
15: t0 = t1 + K;
16: return t0;
17:}

Fig. 1. The original C program for implementing an embedded controller.

1: int comp(int A,int B,int H,int E,int D,int F,int K) {
2: int t0,t1,t3,t4,t5,t6,t8,t12;
3: int N1,N2,N3,N4,N5,N6,N7,N9,N10;
4: t12 = 3 * A;
5: N6 = H;
6: N10 = t12 - B;
7: N9 = N10 >> 1;
8: N7 = B + N9;
9: N5 = N7 >> 1;
10: N4 = N5 + N6;
11: t6 = N4 >> 1;
12: t8 = 3 * E;
13: N3 = t8 - 16469;
14: t5 = N3 + D;
15: t3 = t5 + t6;
16: t4 = 12 * F;
17: N2 = t4 >> 2;
18: N1 = t3 >> 2;
19: t1 = N1 - N2;
20: t0 = t1 + K;
21: return t0;
22:}

Fig. 2. Optimized C code for implementing the same embedded controller.

alternatively, increase the error-free dynamic range.

To sum up, this paper makes the following contributions:

• We propose the first method for incrementally optimizing
the linear fixed-point arithmetic computations in embed-
ded C/C++ code via inductive synthesis to reduce the
minimum bit-width and increase the dynamic range.

• We implement the new method in a software tool based
on Clang/LLVM and the Yices SMT solver, and demon-
strate its effectiveness and scalability on a set of repre-
sentative embedded control and DSP applications.

The remainder of this paper is organized as follows. In
Section II, we illustrate our new method by using an example.
We establish the notation in Section III, and then present the
overall algorithm in Section IV. We present our inductive syn-
thesis procedure in Section V. The implementation details and
experimental results are given in Section VI and Section VII,
respectively. We review related work in Section VIII, and
finally give our conclusions in Section IX.

II. MOTIVATING EXAMPLE

We illustrate the overall flow of our method using the
example in Fig. 1. The program is intended to be simple for
ease of presentation. In the actual evaluation benchmarks, the
programs have loops and variables that are assigned more than
once. Note that loops in these programs are all bounded, and
therefore can be handled by finite unrolling.

Our method takes the program in Fig. 1 and a configuration
file that defines the value ranges of all parameters as input, and
returns the program in Fig. 2 as output. It starts by parsing
the original program and constructing an abstract syntax tree
(AST). Each variable in Fig. 1 corresponds to a node in the
AST. The root node is the return value of the program. The
leaf nodes are the input parameters.
The AST is first traversed forwardly, from the parameters

to the return value, to compute the value ranges. Each value
range is a (min,max) pair for representing the minimum and
maximum values of the node, computed using a symbolic
range analysis [13]. Then, the AST is traversed backwardly,
from the return value to the parameters, to identify the list
of AST nodes that may overflow or underflow when using a
reduced bit-width. For example, the first overflowing node in
Fig. 1 is the subtraction in Line 13: although t3 and t4 can
be represented in 16 bits, the subtraction may produce a value
that requires more bits.
For each AST node that may overflow or underflow, we

carve out some neighboring nodes to form a region for
optimization. The region includes the node, its parent node,
its child nodes, and optionally, the transitive fan-in and fan-
out nodes up to a bounded depth. The region size is limited
by the capacity of the inductive synthesis procedure. For the
subtraction in Line 13, if we bound the region size to 2 AST
levels, the extracted region would include the right-shift in
Line 14, which is the parent node.
The region is then subjected to an inductive synthesis

procedure, which generates an equivalent region that does not
overflow or underflow. For Line 13 in Fig. 1, the extracted
region and the new region are shown side by side as follows:

t2 = t3 - t4; N2 = t4 >> 2;
t1 = t2 >> 2; --> N1 = t3 >> 2;
... t1 = N1 - N2;

That is, instead of applying right-shift to the operands after
subtraction, it applies right-shift first. Because of this, the new
region needs a smaller bit-width to avoid overflow.
However, the above new region is not always better because

it may introduce additional truncation errors. Consider t3 =

2, t4 = -2 as a test case. We have (t3 - t4) >> 2 = 1 and (t3

>> 2 - t4 >> 2) = 0, meaning that the new region may lose
precision if the two least significant bits (LSBs) of t3,t4 are
not zero. An integral part of our new synthesis method is to
make sure that the new region does not introduce additional
truncation errors. More specifically, we perform a truncation
error margin analysis to identify, for each AST node, the
number of LSBs that are immaterial in deciding the final
output. For Line 13, this analysis would reveal that the LSBs
of t3 and t4 do not affect the value of the final output.
Since the new region is strictly better, the original AST is

updated by replacing the extracted region with the new region.
After that, our method continues to identify the next node that
may overflow or underflow. The entire procedure terminates
when it is no longer possible to optimize any further.
In the remainder of this section, we provide a more detailed

description of the subsequent optimization steps.
After optimizing the subtraction in Line 13, the next AST

node that may overflow is in Line 10. The extracted region
and the new region are shown side by side as follows:

t7 = t8 + D; N3 = t8 - 16469;

113130

t5 = t7 - 16469; --> t5 = N3 + D;

Our analysis shows that variables t8, D and constant 16469

all have zero truncation error margins. The new region does
not introduce any additional truncation error. Therefore, the
original AST is updated with the new region.

The next AST node that may overflow is in Line 6. The
extracted region and the new region are shown as follows:

t9 = t10 + t11; N6 = t11 >> 2;
t6 = t9 >> 3; N5 = t10 >> 2;
... --> N4 = N5 + N6;
... t6 = N4 >> 1;

The truncation error margins are 2 for t10 and 2 for t11.
Therefore, the truncation error margin for t9 is 2, meaning
that the two LSBs may be ignored. Since the new region is
strictly more accurate, the original AST is again updated with
the new region.

The next AST node that may overflow is in Line 4. The
extracted region and the new region are shown as follows:

t10 = t12 + B; N10 = t12 - B;
N5 = t10 >>2; N9 = N10 >> 1;
... --> N7 = B + N9;
... N5 = N7 >> 1;

Notice that this extracted region consists of a node that is the
result of a previous optimization step. The truncation error
margins are 0 for t12 and 0 for B. The new code region does not
suffer from the same truncation error that would be introduced
by N5 = (B>>2 + t12>>2), because the truncation error is not
amplified while being propagated to the final result. Instead,
it is compensated by the addition of B.

The last node that may overflow is in Line 5 of Fig. 1. The
extracted region and the new region are shown as follows:

t11 = H << 2;
N6 = t11 >> 2; --> N6 = H;

By now, all arithmetic operations that may overflow are
optimized. The new program in Fig. 2 can run on a 16-
bit microcontroller while still maintaining the same accuracy
as the original program running on a 32-bit microcontroller.
Another way to look at it is that if the optimized code were
to be executed on the original 32-bit microcontroller, it would
have a significantly larger dynamic range.

III. PRELIMINARIES

A. Fixed-point Notations

We follow [14] to represent the fixed-point type by a tuple
〈s,N,m〉, where s indicates whether it is signed or unsigned
(1 for signed and 0 for unsigned),N is the total number of bits
or the bit-width, and m is the number of bits representing the
fractional part. The number of bits representing the integer
part is n = (N − m). Different variables and constants
in the original program are allowed to have different bit
representations, but all of them should have the same bit-width
N .

Signed numbers are represented in the standard two’s com-
plement form. For an N -bit number α, which is represented
by bit-vector xN−1 xN−1 ... x0, its value is defined as follows:

α =
1

2m
×

(

−2N−1xN−1 +

N−2∑

i=0

2ixi

)

,

where xi is the value of the i
th bit. The value of α lies in the

range [−2n, 2n−2−m]. If a number to be represented exceeds
the maximum value, there will be an overflow. If a number to
be represented is less than the minimum value, there will be
an underflow. If the number to be represented requires more
designated fractional bits than m, there will be a truncation
error. The maximum error caused by truncation is 2−m.
We define the step of a variable or a constant as the number

of consecutive LSBs that always have the value zero. For
example, the number 1024 has a step 9, meaning that nine
of the LSBs are zero. On the other hand, the number 3 has a
step 0. During the optimization process, they will be used to
compute the truncation error margin (the LSBs whose values
can be ignored). Our method will leverage the truncation error
margins to obtain the best possible optimization results.

B. Intermediate Representation

We use Clang/LLVM to construct an intermediate rep-
resentation (IR) for the input program. Since the standard
C language cannot explicitly represent fixed-point arithmetic
operations, we use a combination of the integer C program
representation and a separate configuration file, which defines
the fixed-point types of all program variables. More specifi-
cally, we scale each fixed-point constant (other than the ones
used in shift operations) to an integer by using the scaling
factor 2m. For example, a constant with the value of 2.5 will
be represented as 10, together with m = 2, since 2.5∗22 = 10.
After each multiplication, a shift-right is added to normalize

the result so as to match the fixed-point type for the result. For
example, x = c×z, where variables x and z and constant c all
have the fixed-point type 〈1, 8, 3〉, would be represented as x =
(c × z) >> 3. Our implementation currently supports linear
fixed-point arithmetic only; therefore, we do not consider the
multiplication of two variables.
Although there is no inherent difficulty in our method for

handling non-linear arithmetic, we focus on linear arithmetic
for two reasons. First, the benchmarks used in our experiments
are all linear. Second, we have not evaluated the efficiency
of SMT solvers in handling non-linear arithmetic operations.
Therefore, we leave the handling of nonlinear arithmetic for
future work.
For each multiplication, we also assign an accumulate flag,

which can be set by the user to indicate whether the micro-
controller has the capability of temporally storing the multipli-
cation result into two registers, which effectively doubles the
bit-width of the registers. Many real-world microcontrollers
have been designed in this way. Continuing with the same
example x = (c × z) >> 3, if the accumulate flag is set
to 1 by the user, the multiplication node will not be checked
for overflow and underflow. Only after the right-shift, will the
final result be checked for overflow and underflow.
For all the other operations (+, -, >>, <<), we do not rewrite

the default IR representation and do not allow the user to set
the accumulate flag, because most of the microcontrollers do
not have double sized registers to temporarily store the results
of these operations.

IV. THE OVERALL ALGORITHM

The overall flow of our method in shown in Algorithm 1.
The input includes the original program and the value ranges

114 131

of all the parameter variables. First, we invoke COMPUT-
ERANGES to compute the value ranges of all non-leaf AST
nodes. Then, we invoke COMPUTEIGNOREBITS to compute
the truncation error margins (LSBs whose values can be
ignored) for all AST nodes. Finally, we compute the bit-width
(bw1) required by the original program to run within the given
input range.

Algorithm 1 Optimizing the program within its input range.

1: OPTIMIZEPROGRAM (prog, p ranges) {
2: ranges← COMPUTERANGES(prog,p ranges);
3: ig bits← COMPUTEIGNOREBITS(prog);
4: bw1← COMPUTMINBITWIDTH(prog,ranges);
5: while (true) {
6: bw2← bw1− 1;
7: for each (Node n ∈ prog that may overflow or underflow) {
8: reg ← EXTRACTREGION(prog,n);
9: new reg ← SYNTHESIZE(reg,bw1, bw2, ranges, ig bits);
10: if (new reg does not exist) break;
11: REPLACEREGION(prog,reg, new reg);
12: }
13: bw1← bw2;
14: }
15: return prog;
16: }

After the bit-width of the original program (bw1) is de-
termined, we enter the while-loop to iteratively optimize the
program. In each iteration, we try to reduce the bit-width from
bw1 to bw2. The loop terminates as soon as a call to the
inductive synthesis procedure fails to return the new region.

Within each loop iteration, we search for all nodes that may
overflow or underflow when the new bit-width (bw2) is used.
We process these nodes in a breadth-first search (BFS) order,
i.e., from the return value of the program to the parameter
variables. For each node, we invoke EXTRACTREGION to
extract a neighboring region and then invoke the inductive
synthesis procedure. If successful, the inductive synthesis
procedure would return a new region, which is mathematically
equivalent to the extracted region but would not overflow
or underflow. It also ensures that the new region would not
introduce additional truncation error. After the new region is
found, we use it to replace the extracted region in the program.

A. Region for Optimization

The size of the extracted region affects both the effective-
ness and the computational overhead of the inductive synthesis
procedure. The minimum extracted region should include the
erroneous node and its parent node. Since we follow the BFS
order, the parent node must have no overflow or underflow
since it is already tested negative or optimized. Since in the
original program, the parent operation restores the overflowed
value created in the overflowing node back to the normal
operation range, when the parent node is included in the
region, it is more likely to find an alternative implementation
that is more accurate than the extracted region.

In general, a larger extracted region allows for more oppor-
tunity to find a suitable new region. The maximum extracted
region – if it were not for the limited capability of the SMT
solver – would be the entire input program. This is equivalent
to applying inductive synthesis tools such as Sketch [1], [2]
to the entire program, provided that the fixed-point arithmetic
optimization problem is modeled in the Sketch input language.

In practice, however, such a monolithic optimization approach
seldom works. Indeed, our experience with the Sketch tool
shows that it cannot scale beyond arbitrary fixed-point arith-
metic computation code of 2-3 lines.

Therefore, in addition to implementing our customized
inductive synthesis procedure, which can efficiently handle
fixed-point arithmetic computations, we also bound the size of
the extracted region so that inductive synthesis is applied only
in the context of incremental optimization. More specifically,
the extracted region is bounded to an AST with at most 5 node
levels, which represents up to 63 AST nodes.

B. Truncation Error Margin

We compute the step and the ignore bits for all AST nodes
recursively. First, we determine the step of each leaf node
based on the definition in Section III. In general, the step
may originate from a shift-left operation, a step in a parameter
variable, or a step in a constant. We compute the step of each
internal AST node as follows:

• step(x ∗ y) = step(x) + step(y);
• step(x+ y) = min(step(x), step(y));
• step(x− y) = min(step(x), step(y));
• step(x << c) = step(x) + c;
• step(x >> c) = max(step(x)− c, 0).

The ignore bits are those consecutive LSBs that can be
ignored during the optimization process. If these bits are
truncated in the new region, for example, no error will occur in
its output. By taking into account these bits in the optimization
process, we are able to synthesis more compact new regions.

To clarify this, consider the example in Fig. 3, where the
extracted region is shown inside the dotted box. We start by
analyzing the AST to determine the step of each node. For the
purpose of optimizing the extracted region, we need to know
the step of the region’s inputs, which are the nodes labeled as a
and b. Due to the shift-left operations, the step of a is 4, while
the step of b is 3. Considering these step values, we determine
that, when optimizing the extracted region, we have a “credit”
of 3 bits to ignore. In other words, we have the freedom to
truncate up to 3 consecutive LSBs of the two inputs (a and b)
without decreasing the accuracy of the result. Because of this,
we are able to synthesize the new region as shown in Fig. 4.

4 3x y

<< <<

+

>>

2
a b

Fig. 3. The extracted region.

4 3x y

<< <<

>>>>

2 2

+

a b

Fig. 4. The synthesized region.

Notice that, even if we do not consider the ignore bits,
our method can still synthesize a new region to remove the
overflowing node in the above example. However, in such
case, the extracted region would have to be larger. That is, the
extracted region would need to include all the AST nodes in
Fig. 3. The synthesized new region would include all the AST
nodes in Fig. 4. However, this would also lead to a significantly
longer synthesis time.

115132

V. THE INDUCTIVE SYNTHESIS PROCEDURE

At the high level, our inductive synthesis procedure consists
of two steps: (1) run a set of test cases on the extracted
region, and based on the results, generate a new region that
is equivalent to the extracted region at least for the set of test
cases; (2) check if the two regions are equivalent in the full
input range. If they are not equivalent, block this region (bad
solution) and try again.
Algorithm 2 shows the pseudo code of our synthesis pro-

cedure, which computes a new region (new reg) of bit-width
bw2, such that it is equivalent to the original region (reg) of
bit-width bw1, under the value ranges specified in ranges
while considering the truncation error margins specified in
ig bits. The procedure starts by initializing blockedRegions
and testSet to empty sets, where testSet consists of the test
cases used for inductively generating (guessing) a new region,
and blockedRegions consists of the previously explored regions
that fail the equivalence check. The procedure initializes the
size of the new region to 1, and then enters the while-loop to
iteratively search for a new region of increasingly larger size.
When size exceeds a predetermined bound, we have proved
that no solution exists in this search space.
Subroutine GENREGION uses an SMT solver to inductively

generate a new region, based on the test examples in testSet
and the already explored regions in blockedRegions. Sub-
routine COMPDIFF formally checks the equivalence of the
extracted region (reg) and the new region (new r), and returns
a concrete test if they are not equivalent.

Algorithm 2 Inductively synthesizing the new code region.

1: SYNTHESIZE (reg, bw1, bw2, ranges, ig bits) {
2: blockedRegions ← { };
3: testSet ← { };
4: size← 1;
5: while (size < MAX REGION SIZE) {
6: new r← GENREGION(reg,bw1, bw2, size,blockedRegions, testSet);
7: if (new r exists) {
8: test← COMPDIFF(reg,new r, bw1, bw2, ranges, ig bits);
9: if (test exists) {
10: blockedRegions ← blockedRegions ∪{new r};
11: testSet ← testSet ∪{test};
12: }
13: else
14: return new r;
15: }
16: else
17: size← size+ 1;
18: }
19: return no solution;
20: }

A. Constructing the New Region Skeleton

First, we generate a skeleton of the new region, which is a
generalized AST capable of representing any linear arithmetic
equation up to a bounded size. In this AST, each leaf node
is either a constant or any of the set of input variables
of the extracted region. Each internal node is any of the
linear arithmetic operations (*, +, -, >>, <<). The root node is
the result of the arithmetic computation and should compute
the same result as the output node in the extracted region.
Fig. 5 shows an example skeleton of 7 AST nodes. Here, Op
represents any binary arithmetic operator and V |C represents
a leaf node (either a variable or a constant).

Fig. 5. Skeleton of 7 AST nodes. Fig. 6. Synthesized new region.

For each AST node in the skeleton, we assign an auxiliary
variable called the selector, whose value determines the node
type. For example, a leaf node (LNode1), which may be variable
V1, variable V2, or constant C1, is represented as follows:

((LNode1 == V1) && (sel1 == 0) ||
(LNode1 == V2) && (sel1 == 1) ||
(LNode1 == C1) && (sel1 == 2))

where the integer value of selector variable sel1 ranges from
0 to 2. Similarly, a generalized internal node (INode3), which
may be an addition or a subtraction of LNode1 and LNode2, is
represented as follows:

((INode3 == LNode1+LNode2) && (sel2 == 0) ||
(INode3 == LNode1-LNode2) && (sel2 == 1))

where the integer value of selector variable sel2 ranges from
0 to 1. The actual node types in the skeleton are determined
later, when we encode the skeleton into an SMT formula, and
then call the SMT solver to find a set of suitable values for
all these selector variables.

B. Inductively Generating the New Region

To generate the new region, we need a representative set
of test cases for the extracted region. These are test values
for the input variables of the region, and should include
both the corner cases and the intermediate values. Since the
arithmetic computations are linear, we construct the corner
cases by including the minimum and maximum values of all
input variables as defined in ranges. Additional test values
are generated by taking semi-equidistant intermediate values
between values in the corner cases.
We create an SMT formula Φ such that Φ is satisfiable iff

the resulting new region – induced by a satisfying assignment
to all selector variables – is mathematically equivalent to the
extracted region, but does not overflow or underflow.

Φ = Φreg ∧ Φskel ∧ ΦsameI ∧ΦsameO ∧ Φtests ∧Φblocked,

where the subformulas are defined as follows:

• Extracted region (Φreg): It encodes the transition relation
of the extracted region by using bit-vector arithmetic,
where the bit-width is bw1.

• New region skeleton (Φskel): It encodes the transition
relation of the skeleton by using bit-vector arithmetic,
where the bit-width is bw2.

• Same input values (ΦsameI): It asserts that the input
variables of the two regions must share the same values.

• Same output value (ΦsameO): It asserts that the output
variables of the two regions must have the same value,
and there is no overflow or underflow.

116 133

• Test cases (Φtests): It asserts that the input variables must
adopt concrete values from the given test cases.

• Blocked solutions (Φblocked): It asserts that the selector
variables should not take values that represent any previ-
ously explored (bad) solution.

If Φ is unsatisfiable, no solution exists in the bounded search
space. In this case, we need to increase the size of the skeleton
and try again. If Φ is satisfiable, we have computed a candidate
new region. As an example, consider the first extracted region
in Section II. The new region generated from the skeleton in
Fig. 5 is shown in Fig. 6.

C. Checking the Equivalence of the Regions

The candidate new region is guaranteed to be equivalent to
the extracted region over the given set of test cases. However,
they may not be equivalent over the full input range. Therefore,
the next step is to formally verify their equivalence over
the full input range. Toward this end, we create another
SMT formula Ψ, which is satisfiable iff the two regions are
not equivalent; that is, if there exists a test case that can
differentiate them. Formula Ψ is defined as follows:

Ψ = Φreg ∧Φnew reg ∧ΦsameI ∧ΦdiffO∧Φranges∧Φig bits,

where the subformulas are defined as follows:

• New region (Φnew reg): It encodes the transition relation
of the candidate new region in bit-vector arithmetic,
where the bit-width is bw2.

• Different output values (ΦdiffO): It asserts that the output
variables of the two regions have different values.

• Value ranges (Φranges): It asserts that all input variables
should stay within their pre-computed value ranges. We
are not interested in checking the equivalence of the two
regions outside the designated value ranges.

• Ignore bits (Φig bits): It asserts that the LSBs as specified
in the ignore bits should all be set to zero. This allows
us to ignore the differences between the two regions for
LSBs within the truncation error margins.

If Ψ is unsatisfiable, it means that the two regions are
mathematically equivalent within the given input range and
under the consideration of the ignore bits.
If Ψ is satisfiable, the candidate new region is not correct.

In this case, we add it to the blockedRegions and try again.
The blocking of an incorrect solution follows the counter-
example guided inductive synthesis algorithm [1], [15], where
the blocked solutions are encoded as an additional constraint
in the SMT formula, by adding an extra pair of extracted
region and new region skeleton with the blocked assignment
to selector variables. It ensures that, when the SMT solver is
invoked again to find a candidate new region, the same solution
will not be returned.

VI. IMPLEMENTATION

We have implemented our new method in a software tool for
optimizing the C/C++ code of embedded control and DSP ap-
plications based on the Clang/LLVM compiler framework [11]
and the Yices SMT solver [12]. Our tool has two modes:
the whole-program optimization mode and the incremental
optimization mode. The two modes differ only in the size
bound imposed on the extracted region.

When the bound is set to an arbitrarily large number, our
tool runs in the whole-program optimization mode. This makes
it somewhat comparable to the popular inductive synthesis tool
called Sketch [1], [15], provided that our new region skeleton
is carefully modeled in the Sketch input language, with the
selector variables defining the “integer holes” for Sketch to fill.
Before implementing our own inductive synthesis procedure,
we have explored this approach. However, it turns out to be
not scalable: synthesizing a new region with a size bound of
more than 2 would cause Sketch to quickly run out of the 4
GB memory. We believe that there are two reasons for this.
First, the performance of Sketch is not optimized for handling
arbitrary combinations of linear fixed-point arithmetic compu-
tations. Second, inductive synthesis, in general, may not be
able to scale up to arbitrarily large arithmetic computation
programs.
Due to the scalability problem encountered by using Sketch,

we have implemented our own inductive synthesis procedure
directly using the Yices SMT solver, which is designed for
efficient handling of fixed-point arithmetic operations, e.g.,
by designing SMT encoding schemes for exploiting the AST
structures encountered in this type of applications. Our experi-
mental evaluation shows that the new procedure is significantly
more efficient than Sketch. Instead of a size bound of 2, it
now can routinely optimize the skeleton with a size bound
of 5 (representing up to 63 AST nodes). Nevertheless, this
improvement alone is not sufficient for supporting the whole-
program optimization.
Instead, we propose an incremental optimization method

that applies inductive synthesis only to individual regions of
a bounded size. More specifically, we have set the maximum
bound for shift-right and shift-left operations to 4, and the
maximum level of AST nodes in the new region skeleton to
5. By incrementally optimizing one extracted region at a time,
our method is able to avoid the scalability bottleneck imposed
by the SMT solver, and therefore can be applied to programs
of practical size and complexity.

VII. EVALUATION

We have evaluated our tool on a set of public domain
benchmark examples. The experiments are designed to answer
the following three questions:

• How much can our method reduce the minimum bit-width
required for the program to run in the given input range?

• How much can our method increase the dynamic range
of the program for the given bit-width?

• If both the original and the optimized programs are forced
to run with a reduced bit-width, what is the difference
between their fixed-point specific implementation errors?

A. Benchmarks

Our benchmark includes a set of public domain C programs
for embedded control and DSP applications. They come from
various sources including papers, textbooks, and the output of
code generation tools. The sizes of the programs range from 21
lines of code (LoC) to 131 lines, with an average LoC of 79.
The number of fixed-point arithmetic operations on average
is 58. For the kind of cyber-physical systems (CPS) software
targeted by our new method, these are programs of realistic
size and complexity.

117134

TABLE I
STATISTICS OF THE BENCHMARK C PROGRAMS.

Name of the Benchmark Line of Code Arithmetic Operations
Sobel Image filter (3x3) 42 28
Bicycle controller 37 27
Locomotive controller 42 38
IDCT (N=8) 131 114
Control. Impl. 21 8
Diff. image filter (5x5) 131 77
FFT (N=8) (no DC component) 112 82
IFFT (N=8) 112 90

Table I shows the statistics of our benchmarks. The first
test case, taken from [16], is a 3x3 Sobel digital filter that is
widely used in image processing applications. The second test
case, taken from [10], is a bicycle controller optimally syn-
thesized for a custom-designed microprocessor with double-
sized internal registers. The third test case is a locomotive
controller generated by using Fixed Point Advisor and Real
Time Workshop of the Matlab toolkit [17]. The fourth test
case, taken from [18], is an inverse discrete cosine transform
(IDCT), which is widely used in mobile communication and
image compression applications. The fifth test case is the fixed-
point version of a control rule implementation from [17].
The sixth test case is a 5x5 kernel sized difference image
filter [19]. The seventh test case is a fast Fourier transform
(FFT) implementation, where the floating-point version was
taken from [20] and then converted to fixed-point, by changing
all double variables into int variables without modifying or
reordering any of its instructions. The eighth test case is the
inverse fast Fourier transform (IFFT) for test case 7. None of
the benchmarks was modified from their original forms in any
way to give performance advantage to our method.

All experiments were conducted on a machine with a 3.4
GHz Intel i7-2600 CPU, 3.3GB of RAM, and 32-bit Linux.

B. Results

First, we show that there is a significant increase in the
input/output range from the original program to the optimized
program, when they both use the original bit-width. Table
II shows the results (data on the output range are similar,
and therefore are omitted for brevity). Column 1 shows the
name of the benchmark. Columns 2 and 3 show the input
(output) ranges of the original program and the optimized
program, respectively. Column 4 shows the percentage of the
range increase. The increase in input (output) range spans
from 0% to 1515%, with an average of 307% or a median
of 72%. The increase is due to the removal of the overflowing
and underflowing nodes in the original program. As a result,
the output range is also increased. Together, they lead to
a significant increase in the dynamic range of the entire
application.

Second, we show that there is a significant decrease in the
minimum bit-width required for the program to run without
overflow/underflow errors for the given input range. The
experimental results are shown in Table III. Column 1 is the
name of the benchmark. Column 2 is the minimum bit-width
of the original program to avoid overflow and underflow, and
Column 3 is the average bit-width for all program variables.
Column 4 is the minimum bit-width of the new program to
avoid overflow and underflow, and Column 5 is the average

TABLE II
INCREASE IN THE OVERFLOW/UNDERFLOW FREE INPUT RANGE.

benchmark bit original optimized %
Sobel Image 32 [0, 16320] [-65536, 49152] 602

Bicycle 32 [-3.4*108, 3.4*108] [-1.0*109, 1.0*109] 194

Locomotive 64 [-8.7*1018 , 8.7*1018] [-9.2*1018 , 9.2*1018] 5

IDCT 32 [0, 1.5*106] [0, 2.1*106] 40

Controller 32 In1 [0, 5.0*108] In1 [-0, 6.6*108] 32

In2 [-5.0*108, 0] In2 [-6.6*108, 0] 32

In3 [-5.0*108, 0] In3 [-6.6*108, 0] 32

Diff. Image 32 [0, 1.3*108] [0, 2.1*109] 1515
FFT (N=8) 32 [0, 32736] [0, 32736] 0

IFFT (N=8) 32 [0, 2.6*108] [0, 5.3*108] 103

TABLE III
INCREASE IN THE MINIMUM AND AVERAGE BIT-WIDTHS.

Name of Original (bit-width) Optimized (bit-width)
Benchmark Minimum Average Minimum Average
Sobel image filter (3x3) 17 10.26 15 6.67
Bicycle controller 18 14.47 16 14.16
Locomotive controller 33 29.41 32 29.32
IDCT (N=8) 20 16.29 19 16.38
Control. Impl. 17 15 16 14.67
Diff. image filter (5x5) 17 11.11 13 8.09
FFT (N=8) 18 7.32 16 6.95
IFFT (N=8) 17 7.11 16 7.26

bit-width for all program variables.

Our results show that the bit-width reduction spans from 1
bit to 4 bits. Consider the Sobel Image filter as an example.
The minimum bit-width required to run the original program
is 17 bits. After optimization, it is reduced to 15 bits. This is
significant, because now the code can be executed on a 16-bit
microcontroller instead of a 32-bit microcontroller, which is
often significantly cheaper.

To further illustrate the benefit of our new method, consider
the maximum error bound in a scaled-down version of the
original program in order to downgrade the hardware from
32-bit to 16-bit, or from 64-bit to 32-bit. Table IV shows the
comparison between the optimized program and a scaled-down
version of the original program. Column 1 is the name of the
benchmark. Column 2 is the scaling level. Columns 3 and 4
are the maximum relative errors of the original program and
the optimized program, respectively. Our results show that the
optimized programs have smaller errors in all test cases.

We also show, in Table V, the statistics of running our
optimization method. Column 1 is the name of the benchmark.
Column 2 is the number of lines optimized by the incremental
inductive synthesis procedure in the original program. Column
3 is the total execution time by our method. The data show
that, by using incremental synthesis, we have kept the overall
runtime down. In fact, it is no longer directly dependent on the

TABLE IV
DECREASE IN THE MAXIMUM RELATIVE ERROR.

Benchmark Scaling Error original Error optimized

Sobel Image filter (3x3) 32-b → 16-b 3.1 ∗ 10−2 0.0

Bicycle controller 32-b → 16-b 3.5 ∗ 10−4 2.0 ∗ 10−4

Locomotive controller 64-b → 32-b 2.9 ∗ 10−8 1.5 ∗ 10−9

IDCT (N=8) 32-b → 16-b 9.2 ∗ 10−3 1.8 ∗ 10−5

Control. Impl. 32-b → 16-b 5.2 ∗ 10−4 2.9 ∗ 10−4

Diff. image filter (5x5) 32-b → 16-b 1.2 ∗ 10−2 2.5 ∗ 10−3

FFT (N=8) 32-b → 16-b 8.1 ∗ 10−2 4.4 ∗ 10−3

IFFT (N=8) 32-b → 16-b 8.4 ∗ 10−2 3.2 ∗ 10−2

118 135

TABLE V
STATISTICS OF THE INCREMENTAL OPTIMIZATION PROCESS.

Name of the Benchmark Num. Optimized Lines Total Time
Sobel Image filter (3x3) 22 2s
Bicycle controller 2 5s
Locomotive controller 1 5m 41s
IDCT (N=8) 3 2.7s
Control. Impl. 1 46s
Diff. image filter (5x5) 23 10s
FFT (N=8) 14 1m9s
IFFT (N=8) 1 4s

program size, but more on the number of extracted regions and
the time spent on optimizing each region. For Locomotive, the
SMT solver took a longer time because of its larger original
bit-width (64-bit) – the other examples are all 32-bit.

VIII. RELATED WORK

Our new method incrementally optimizes the fixed-point
arithmetic computations in an embedded software program
with the objective of reducing the minimum bit-width through
code transformation, without changing the computational ac-
curacy. The core synthesis routine in our method follows
the same counter-example guided inductive program synthesis
paradigm pioneered by Sketch [1], [2]. However, our method
is significantly different in that it has an implementation
that is designed for more efficiently handle linear fixed-point
arithmetic computations. Furthermore, we apply inductive
synthesis incrementally to regions of a bounded size, one at a
time, as opposed to the entire program.

Gulwani et al. [5] propose a method for synthesizing bit-
vector programs from a linear reference code by leveraging a
set of user defined library functions. Their method does not use
incremental inductive synthesis, and the largest synthesized
code reported in their paper has 16 lines of code, for which
their tool takes over 45 minutes. Jha et al. [3] use the
same symbolic encoding as in [5] but replace the logical
specification of the desired program by an input-output oracle.

The SCIDUCTION tool implemented by Jha [9] can au-
tomatically synthesize a fixed-point arithmetic program from
the floating-point arithmetic code. However, the focus of this
tool is solely on finding the smallest possible bit-width and
choosing the best fixed-point representation for each program
variable. They have not attempted to change the code structure
or synthesize completely new code for the purpose of reducing
the minimum bit-width.

Another closely related work is the linear fixed-point op-
timization method proposed in [10], which relies on using a
Mixed Integer Linear Programming (MILP) solver to minimize
the error bound by changing the fixed-point representation of
the program. Again, their method can only optimize the bit-
vector representations of the program variables, but do not
change the structure of the original code or synthesize new
completely new code in order to reduce the bit-width.

Our method is also related to superoptimization in mod-
ern compilers [21], [22], [23], which perform exhaustive
search in the space of valid instruction sequences to optimize
performance-critical inner loops. However, they typically can-
not be used to increase the dynamic range, or minimize the
bit-width, of fixed-point arithmetic computations.

IX. CONCLUSIONS

We have presented a new method for incrementally opti-
mizing the linear fixed-point arithmetic computations of an
embedded software program via code transformation to reduce
the required bit-width and to increase the dynamic range.
Our method is based on judicious application of an SMT
solver based inductive synthesis procedure to code regions
of bounded size. We have implemented our method in a
software tool and evaluated it on a set of representative
embedded programs. Our results show that the new method
can significantly reduce the bit-width and handle programs of
realistic size and complexity.

X. ACKNOWLEDGMENTS

This work is supported in part by the NSF grant CNS-
1128903 and the ONR grant N00014-13-1-0527.

REFERENCES

[1] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu, “Pro-
gramming by sketching for bit-streaming programs,” in PLDI, 2005, pp.
281–294.

[2] A. Solar-Lezama, C. G. Jones, and R. Bodı́k, “Sketching concurrent data
structures,” in PLDI, 2008, pp. 136–148.

[3] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in ICSE, 2010, pp. 215–224.

[4] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, 2011, pp. 317–330.

[5] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-
free programs,” in PLDI, 2011, pp. 62–73.

[6] W. R. Harris and S. Gulwani, “Spreadsheet table transformations from
examples,” in PLDI, 2011, pp. 317–328.

[7] D. Perelman, S. Gulwani, T. Ball, and D. Grossman, “Type-directed
completion of partial expressions,” in PLDI, 2012, pp. 275–286.

[8] R. Singh and S. Gulwani, “Synthesizing number transformations from
input-output examples,” in International Conference on Computer Aided
Verification, 2012, pp. 634–651.

[9] S. K. Jha, “Towards automated system synthesis using sciduction,” Ph.D.
dissertation, UC Berkeley, Nov 2011.

[10] M. Rupak, I. Saha, and M. Zamani, “Synthesis of minimal-error control
software,” in ACM international conference on Embedded software,
2012, pp. 123–132.

[11] C. Lattner and V. Adve, “The LLVM Instruction Set and Compilation
Strategy,” CS Dept., Univ. of Illinois at Urbana-Champaign, Tech. Report
UIUCDCS-R-2002-2292, Aug 2002.

[12] B. Dutertre and L. de Moura, “A fast linear-arithmetic solver for
DPLL(T),” in International Conference on Computer Aided Verification.
Springer, 2006, pp. 81–94.

[13] R. Rugina and M. C. Rinard, “Symbolic bounds analysis of pointers,
array indices, and accessed memory regions,” in PLDI, 2000, pp. 182–
195.

[14] R. Yates, Fixed-point arithmetic: An introduction. Digital Signal Labs,
Technical Reference, 2013.

[15] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat,
“Combinatorial sketching for finite programs,” in ASPLOS, 2006, pp.
404–415.

[16] S. Qureshi, Embedded Image Processing on the TMS320C6000 DSP.
Springer, 2005.

[17] A. Martinez, R. Majumdar, I. Saha, and P. Tabuada, “Automatic ver-
ification of control system implementations,” in ACM international
conference on Embedded software, 2010, pp. 9–18.

[18] S. Kim, K.-I. Kum, and W. Sung, “Fixed-point optimization utility for
c and c++ based digital signal processing programs,” in IEEE Trans.
Circuits and Systems II, vol. 45, no. 11, 1998, pp. 1455–1464.

[19] W. Burger and M. Burge, Digital Image Processing. Springer, 2008.
[20] J. Xiong, J. R. Johnson, R. W. Johnson, and D. A. Padua, “Spl: A

language and compiler for dsp algorithms,” in PLDI, 2001, pp. 298–
308.

[21] R. Joshi, G. Nelson, and K. H. Randall, “Denali: A goal-directed
superoptimizer,” in PLDI, 2002, pp. 304–314.

[22] S. Bansal and A. Aiken, “Automatic generation of peephole superopti-
mizers,” in ASPLOS, 2006, pp. 394–403.

[23] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,”
in ASPLOS, 2013, pp. 305–316.

119136

Verifying Periodic Programs with Priority

Inheritance Locks

Sagar Chaki

Software Engineering Institute

Email: chaki@sei.cmu.edu

Arie Gurfinkel

Software Engineering Institute

Email: arie@cmu.edu

Ofer Strichman

Technion

Email: ofers@ie.technion.ac.il

Abstract—Periodic real-time programs are ubiquitous: they
control robots, radars, medical equipment, etc. They consist of
a set of tasks, each of which executes (in a separate thread) a
specific job, periodically. A common synchronization mechanism
for such programs is via Priority Inheritance Protocol (PIP) locks.
PIP locks have low programming overhead, but cause deadlocks
if used incorrectly. We address the problem of verifying safety
and deadlock freedom of such programs. Our approach is based
on sequentialization – converting the periodic program to an
equivalent (non-deterministic) sequential program, and verifying
it with a model checker. Our algorithm, called PIPVERIF,
is iterative and optimal – it terminates after sequentializing
with the smallest number of rounds required to either find a
counterexample, or prove the program safe and deadlock-free.
We implemented PIPVERIF and validated it on a number of
examples derived from a robot controller.

I. INTRODUCTION

Periodic programs are widely used to control safety-critical

systems. They consist of multiple tasks, each performing a

specific job (typically, by invoking a function) periodically.

Each task runs in its own thread of execution. Thus, peri-

odic programs are inherently concurrent. They have, how-

ever, unique characteristics. First, the arrival and maximum

processing times of jobs are known a priory. Second, each

thread has a unique and – other than the issue of locks

discussed below – fixed priority. Hence both the inherent

non-determinism of job arrival and the complexity of the

scheduling policy (e.g., one that depends on a job’s time in

the queue) that characterize general concurrent software, are

absent for periodic programs. Periodic programs are designed

to be correct only under these restrictions. Therefore, verifying

them against a completely non-deterministic scheduler (as

common with general concurrent software) is too imprecise.

To address this challenge, we developed [1][2] an approach

for time-bounded verification of periodic programs. Our ap-

proach leverages the restrictions on scheduling and job arrival

mentioned above. Given a periodic program C and a time

bound t, we verify that C does not violate a safety property ϕ

when executed for time t from an initial state I . We assume

that t, ϕ and I are user-specified. Our scheduler model is not

completely non-deterministic. It preserves relative ordering of

jobs and priorities, while abstracting away concrete time. It

is thus sound for properties that depend only event ordering,

and not the exact times at which events occur. Note that

restricting execution time (as opposed to, say, number of

context switches [3]) is more natural for a periodic program

since time maps directly to the program’s execution state. For

example, the software that deploys an airbag in a car completes

in a fixed amount of time, and therefore, during verification,

we are interested in bugs that occur within that time limit only.

Periodic programs use locks for synchronization. However,

such locks must prevent priority inversion [4], whereby a

thread is blocked by another with lower priority. A priority

inversion almost caused the failure of the 1997 PathFinder

mission [5]. To this end, several locking protocols have been

proposed in literature [4]. Real-time operating systems [6]

typically support two versions – the Priority Ceiling Protocol

(PCP) lock and the Priority Inheritance Protocol (PIP) lock.

Both types of locks prevent priority inversion. The PCP lock

eliminates deadlocks as well, but requires additional program-

ming effort. In contrast, the PIP lock is easier to use but

leads to deadlock if used incorrectly. In earlier work [1][2] we

explored the time-bounded verification of periodic programs

with PCP locks. In this paper, we deal with PIP locks.

We use the sequentialization paradigm proposed by Lal and

Reps [7], and build on our earlier work on sequentializing

periodic programs without PIP locks [2]. In [2], every ex-

ecution of the periodic program is partitioned logically into

rounds. During sequentialization, we first fix the total number

of rounds. Next, each job (i.e., the periodic execution of a

task) is scheduled, i.e., assigned a starting and an ending

round. Jobs are then executed in order of increasing priority

and starting time. Before executing each statement, a job

non-deterministically context switches, i.e., jumps to a higher

round, thereby modeling preemption. Finally, constraints are

used to ensure that jobs are appropriately scheduled (e.g., a job

never starts while another with higher priority is executing),

properly preempted (e.g., a job never preempts another with

higher priority), and that rounds are consistent (the value of

each shared variable at the end of a round equals its value at

the beginning of the next round).

In the context of periodic programs with PIP locks, existing

sequentialization approaches [7][2] are inadequate for several

reasons. First, the priority of a thread changes dynamically.

More importantly, due to priority inheritance, it is possible for

the priority of a thread to change even while the thread itself is

suspended. Second, an exact bound on the number of rounds

needed to account for all possible executions cannot be deter-

mined efficiently. Finally, periodic programs with PIP locks

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 120137ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

can deadlock. However, the existing sequentialization-based

deadlock detection algorithm for concurrent programs [8]

do not work with priorities, because it requires that every

deadlock have a wait-free counterexample. This is not true

when priorities are involved (see Sec. IV for more details).

Against this background, we make the following contributions.

First, we present an iterative algorithm, called PIPVERIF,

for verifying a time-bounded periodic program with PIP

locks. PIPVERIF maintains a number R of rounds, starting

with R = the total number of jobs. In each iteration, it

first checks for counterexamples to safety with R rounds. If

such a counterexample, is detected, PIPVERIF terminates with

UNSAFE. Otherwise, it checks for the presence of executions

with more than R rounds. If there are no such executions,

PIPVERIF terminates with SAFE. Otherwise, it increments R

and continues with the next iteration. PIPVERIF is optimal

– it terminates with the smallest R required to either find a

counterexample, or prove the program safe.

Second, we extend PIPVERIF to detect deadlocks. To this

end, the sequential program that we generate maintains the

transitive closure of the Task-Resource Graph (TRG) [9] in

an incremental manner. A node of the TRG represents either

a task or a PIP lock. An edge from a task t to a lock l means

that the currently executing job of t is blocked trying to acquire

l. Similarly, an edge from a lock l to a task t means that l is

held by the currently executing job of t. Detecting a deadlock

state is equivalent to detecting that the TRG is cyclic.

Finally, we implement PIPVERIF by extending REKH [2].

We validate our tool, called REKPIP, on a set of examples

derived from the controller of a LEGO Mindstorms robot.

In each case, REKPIP produces the correct result, either

proving the program SAFE, producing a counterexample for a

user-specified safety property, or detecting a deadlock. These

results indicate that our approach is feasible. Our tools and

benchmarks are available at http://www.andrew.cmu.edu/user/

arieg/Rek/start-rekpip.cde.tar.gz.

It is important to note that assuming a nondeterministic

scheduler, as done by virtually the entire literature on concur-

rent program verification, makes these verification methods

inherently incomplete even when the execution is bounded,

simply because in the real system the scheduler is not nonde-

terministic. The current line of work is therefore the first to

present, to the best of our knowledge, a sound and complete

– relative to the time-bound, and for properties that only

depend on the ordering of events – verification method for

a (particular type of) a concurrent program. It is also the

first empirically validated verification method for periodic

programs with PIP locks. Given the popularity of such systems

and their criticality, preventing deadlocks and guaranteeing

their safety properties is no doubt an important problem.

The rest of this paper is organized as follows. In Section II,

we present basic concepts and definitions. In Section III, we

present PIPVERIF in details. In Section IV, we survey related

work. Finally, we present our implementation, benchmarks,

and results in Section V, and conclude in Section VI.

II. PRELIMINARIES

A task τ is a tuple 〈I, T, P, C,A〉, where I is the priority, T

– a bounded procedure (i.e., no unbounded loops or recursion)

called the task body, P – the period, C – the worst case

execution time (WCET) of T , and A, called the release time, is

the time at which the task is first enabled1. A periodic program

(PP) is a set of tasks. In this paper, we consider a N -task

PP C = {τ0, . . . , τN−1}, where τi = 〈Ii, Ti, Pi, Ci, Ai〉. We

assume that: (i) for simplicity, Ii = i; (ii) execution times are

positive, i.e., Ci > 0; (iii) priorities are rate-monotonic [10]

and distinct – tasks with smaller period have higher priority;

and (iv) C is schedulable. Let RTi be the response time of τi
(i.e., the maximum time taken by any job of τi to complete)

computed via Rate Monotonic Schedulability [11] analysis.

Bounding Time and Jobs. We verify C assuming that it

executes for one “hyper-period” H [11], where H is the least

common multiple of {P0, . . . , PN−1}. We refer to the resulting

time-bounded program as CH. We also assume that the first

job of each task finishes before its period, i.e.,

∀0 ≤ i < N � Ai +RTi ≤ Pi . (1)

Under this restriction, the number of jobs of task τi that

executes in CH is:Ji = H

Pi

. The semantics of CH is the

asynchronous concurrent program:

‖N−1

i=0
ki :=0;while(ki < Ji∧WAIT(τi, ki)) (Ti ;ki :=ki+1) .

(2)

where ‖ is preemptive priority-sensitive interleaving (the CPU

is always given to the enabled task with the highest priority,

preempting the currently executing task if necessary), ki ∈ N

is a counter and WAIT(τi, ki) returns FALSE if the current time

is greater than Ai + ki × Pi, and otherwise blocks until time

Ai + ki × Pi and then returns TRUE. In the rest of the paper,

for simplicity and brevity, we write C to mean CH.

Synchronization. We assume that tasks synchronize via

priority inheritance protocol (PIP) locks [4]. Trying to acquire

a PIP lock l involves one of two possibilities. If l is available,

it is taken and execution proceeds normally. If the lock is

unavailable, the current thread (executing, e.g., task τ) is

blocked and the (suspended) thread holding l inherits τ ’s

priority and hence resumes execution. The resumed thread

drops back to its previous (i.e., prior to resumption) priority

as soon as it releases l, and goes back to being suspended.

Note that PIP locks cause blocking, and therefore deadlocks,

if used improperly.

Example 1: Consider the task set in Fig. 1(a). A partial

schedule (up to time 9) for these values is shown in Fig. 1(b).

At time 0, τ0 starts and acquires l1. At time 1, τ1 preempts τ0
and acquires l2. At time 2, τ2 preempts τ1. At time 3, τ2 tries to

acquire lock l2 and gets blocked. At this point, τ1 inherits τ2’s

priority (i.e., 2) and resumes execution. At time 4, τ1 tries to

acquire lock l1 and gets blocked. At this point, τ0 inherits τ1’s

priority (i.e., 2) and resumes execution. At time 5, τ0 releases

lock l1. The inherited priority of τ0 drops back to its previous

1We assume that time is given in some fixed unit (e.g., milliseconds).

121138

(a)

Task Ii Ai Ci Pi

τ2 2 2 2 10

τ1 1 1 4 20

τ0 0 0 3 40

(b)

0

1

lock(1)

lock(2)

2

lock(2) lock(1) unlock(1) unlock(2)

0 1 2 3 4 5 6 7 8 9

0

1

1 10 2

Fig. 1. (a) Three tasks from Example 1; (b) A schedule of the three tasks.

priority, viz., 0, and it is preempted by τ1 which grabs lock

l1. At time 6, τ1 releases lock l2. The inherited priority of τ1
drops to 1, and it is preempted by τ2 which grabs lock l2.

At time 7, τ2 releases lock l2 and terminates, and τ1 resumes

execution. At time 8, τ1 releases lock l1 and terminates, and

τ0 resumes execution. At time 9, τ0 terminates.

We write J(τ, k) to denote the k-th job (i.e., the job at the

k-th position) of task τ . Thus, the set of all jobs of C is:

J =
⋃

0≤i<N

{J(τi, k) | 0 ≤ k < Ji} . (3)

Job Ordering. Consider a job j = J(τi, ki). Recall that
Ai, Pi and RTi are, respectively, the release time, period,

and response time of τi. Then, the arrival time of j is A(j) =
Ai+ki×Pi, and the departure time of j isD(j) = A(j)+RTi.

Since we assume that RT > 0, we know that A(j) < D(j).
Let π(j) = i, i.e., the priority of τi. We define three ordering

relations (developed in our earlier work [2]) on jobs.

Definition 1: The relations ⊳, ↑ and ⊏ are defined as:

j1 ⊳ j2 ⇐⇒ (π(j1) ≤ π(j2) ∧D(j1) ≤ A(j2)) ∨

(π(j1) > π(j2) ∧A(j1) ≤ A(j2))

j1 ↑ j2 ⇐⇒ π(j1) < π(j2) ∧A(j1) < A(j2) < D(j1)

j1 ⊏ j2 ⇐⇒ (A(j1) < A(j2)) ∨

(A(j1) = A(j2) ∧ π(j1) > π(j2))

Note that j1 ⊏ j2 means that either j1 always completes

before j2, or it is possible for j1 to be preempted by j2. Also,

⊏ is a total strict ordering since it is a lexicographic ordering

by (arrival time, -priority).

Execution. Let x • y be the concatenation of x and y. An

execution ρ is a finite sequence of actions where an action is

either a job getting blocked (b), or an assertion being violated

(a). Note that, for any k ≥ 0, bk is the set of executions with

k blocks and bk • a is the set of executions that end with

assertion violations and have k blocks. The semantics of a

periodic program C, denoted by [[C]], is a set of executions.

Let ˚[[C]] be the prefix-closure of [[C]], i.e.,

˚[[C]] = {x | ∃y ∈ {b, a}∗ � x • y ∈ [[C]]}

We say that C is unsafe iff ∃k ≥ 0 � bk • a ∈ [[C]].

Algorithm 1 The overall verification algorithm. Function

VERIFROUNDS(C, R) returns UNSAFE if C has a counterexam-

ple (CEX) with R rounds, INCROUNDS if C has no R round

CEXs, but has legal executions with more than R rounds, and

SAFE otherwise, i.e., if C has no CEXs with R or more rounds.

1: function PIPVERIF(C)
2: R := |J|
3: loop

4: x:= VERIFROUNDS(C, R)

5: if x = INCROUNDS then R :=R+ 1
6: else return x

7: function VERIFROUNDS(C, R)

8: if [[Sa(C, R)]] 6= ∅ then return UNSAFE

9: if [[Sb(C, R)]] 6= ∅ then return INCROUNDS

10: else return SAFE

III. JOB-BOUNDED VERIFICATION

Our verification algorithm PIPVERIF uses the idea that any

execution ρ of C is partitioned into scheduling rounds as

follows: (a) ρ begins in round 0, and (b) a round ends and a

new one begins every time a job ends (i.e., the last instruction

of some task body is executed) or gets blocked when trying

to acquire a lock.

Example 2: The bounded execution in Fig. 1(b) is parti-

tioned into 5 rounds as follows: round 0 is the time interval

[0, 3] – when τ2 gets blocked trying to acquire lock l2, round 1

is [3, 4] – when τ1 gets blocked trying to acquire lock l1,

round 2 is [4, 7] – the end of the first job of τ2, round 3 is

[7, 8], and round 4 is [8, 9].
Since the number of rounds that an execution is partitioned

into depends on the number of times a job gets blocked,

different executions have different number of rounds. More

specifically, the execution bk or bk•a has exactly |J|+k rounds.

For soundness, PIPVERIF must therefore use a sufficiently

large number of rounds during sequentialization. To this end,

PIPVERIF starts with a small number of rounds (specifically,

|J|) and iteratively increases it till either a real error is detected,
or we prove that all executions have been accounted for.

Algorithm 1 shows the pseudo-code of PIPVERIF. Note that,

in each iteration, it invokes VERIFROUNDS(C, R) to check if:

1) C has a counterexample with R rounds – in this case

VERIFROUNDS(C, R) returns UNSAFE.

2) C has no counterexample with R rounds, but has legal

executions with more than R rounds – in this case

VERIFROUNDS(C, R) returns INCROUNDS.

3) C has no legal executions with more than R rounds – in

this case VERIFROUNDS(C, R) returns SAFE.

Correctness of PIPVERIF. PIPVERIF is correct because

it explores all legal executions of the program and only

terminates when a real counterexample is detected (i.e., if

VERIFROUNDS(C, R) returns UNSAFE) or when it proves

that no more legal executions remain to be explored (i.e., if

VERIFROUNDS(C, R) returns SAFE).

122 139

A. How VERIFROUNDS Works

Recall that VERIFROUNDS(C, R) must satisfy the following

specification:

• if bR−|J|•a ∈ [[C]] then VERIFROUNDS(C, R) = UNSAFE

• else if ∀k > R − |J| � {bk, bk • a} ∩ [[C]] = ∅ then

VERIFROUNDS(C, R) = SAFE

• else VERIFROUNDS(C, R) = INCROUNDS

Consider the pseudo-code of VERIFROUNDS (see Alg. 1).

First (line 8), it checks if bR−|J| • a ∈ [[C]]. To this end, it

constructs a sequential program Sa(C, R) such that:

[[Sa(C, R)]] = ∅ ⇐⇒ bR−|J| • a 6∈ [[C]] (4)

It then checks if [[Sa(C, R)]] = ∅ using a model checker for

sequential programs. Next, to prove that:

∀k > R− |J| � {bk, bk • a} ∩ [[C]] = ∅

it relies on the following observation:

∀k > R− |J| � {bk, bk • a} ∩ [[C]] = ∅ ⇐⇒ bR+1−|J| 6∈ ˚[[C]]

Therefore (line 9), it constructs a sequential program Sb(C, R)
such that:

[[Sb(C, R)]] = ∅ ⇐⇒ bR+1−|J| 6∈ ˚[[C]] (5)

and checks whether [[Sb(C, R)]] = ∅ via a model checker

for sequential programs. Finally, if both the previous checks

fail, it returns SAFE (line 10). In terms of complexity, the

construction of Sa(C, R) and Sb(C, R) are each polynomial

in the size of C. The complexity of the subsequent model

checking depends on the tool used (e.g., NP for CBMC).

B. Constructing Sa(C, R)

Sa(C, R) reduces the bounded concurrent execution of C
into a sequential execution with R rounds. Initially, jobs are

allocated (or scheduled) to rounds. Then, jobs are executed

sequentially, in the order ⊏ defined by Defn. 1. For each global

variable g, we guess the initial value of g at the beginning of

each round at the start of Sa(C, R). At the end of Sa(C, R),
we ensure that the guessed value of g at the beginning of

each round equals its final value at the end of the previous

round. In addition, Sa(C, R) encodes the inherited priority of

jobs and an exception mechanism to detect assertion violations

and deadlocks. We now describe these in more detail.

Inherited Priority. Every job j = J(τ, k) has a static

base priority πb(j), which is the priority of the corresponding

task τ . In addition, j also has an inherited priority πi(j),
which changes dynamically as locks are acquired and released.

Specifically, at any instant, πi(j) is the maximum of πb(j), and
the inherited priorities of all jobs that are blocked on a lock

held by j. Note that πi(j) is a global property – it depends

not only on the state of j but also on the states of other jobs.

The scheduler always executes the non-blocked job with the

highest (possibly inherited) priority. Thus, Sa(C, R) must keep

track of the inherited priorities of jobs to encode PIP locks.

Task-Resource Graph. To compute the inherited priorities

of jobs, Sa(C, R) encodes the transitive closure of the “task

resource graph” [9] (TRG) of the program. The TRG Γ is a

dynamic data structure. Its nodes are either tasks or PIP locks.

However, its edges depend on the program’s execution state.

Specifically, an edge from a task t to a lock l means that

the currently executing job of t is blocked trying to acquire l.

Similarly, an edge from a lock l to a task t means that l is held

by the currently executing job of t. Since a job can be blocked

on at most one lock at a time, and since a PIP lock can be held

by at most one job at a time, a periodic program falls under

the category of Single-Resource Model [9] system. For such

systems, it is known that Γ is a forest, unless the program’s

execution state has (two or more) deadlocked tasks [9].

The value of πi(j) is computed from Γ as follows. Let Γ∗

denote the transitive closure of Γ, i.e., (x, y) ∈ Γ∗ iff there is

a path from x to y in Γ. Then,

πi(j) = MAX({πb(j
′) | (j′, j) ∈ Γ∗}) .

Thus, if j = J(τ, k), then πi(j) is the maximum of the

priorities of all tasks that reach τ (including τ itself) in Γ∗.

Sa(C, R) uses this fact to maintain Γ∗ in an online manner

– updating it as soon as Γ changes – and compute πi(j)
on demand.

Detecting Assertion Violations. In order to model program

termination due to an assertion violation, Sa(C, R) uses an

exception mechanism. We use a distinguished global flag to

indicate the occurrence of an assertion violation. The flag

is initially set to FALSE. Whenever an assertion violation is

detected, the corresponding job sets a global flag and exits.

All jobs starting (or resuming) in the future check the flag,

find it to be set, and also exit. Finally, the flag is used to

ensure that Sa(C, R) only has a legal execution if C has an

execution with an assertion violation.

Detecting Deadlocks. A deadlock occurs in C iff its TRG

Γ becomes cyclic [9]. More specifically, the deadlocked tasks

are exactly the ones whose nodes belong to a cycle in Γ.
Therefore, Sa(C, R) looks for cycles in Γ whenever a job gets

blocked trying to acquire a lock. Since Sa(C, R) maintains Γ∗

in an online manner, a cycle created in Γ by the addition of

an edge is detected in constant time. If a cycle is detected,

Sa(C, R) uses the exception mechanism described above to

indicate an error and abort program execution.

C. Construction of Sa(C, R)

The structure of Sa(C, R) is given by the pseudo-code in

Alg. 2 and Alg. 3. Note that α(e) terminates all executions

where e evaluates to false. We first describe the global vari-

ables of Sa(C, R), followed by its functions.

Global Variables of Sa(C, R). Recall that Sa(C, R) exe-

cutes the jobs of C in the order ⊏ defined by Defn. 1. Each job

j is assigned a starting and an ending round during scheduling

– these are stored in start[j] and end[j], respectively. Variable
rnd stores the current round in which a job is executing.

Variable B[r] indicates whether a job running at round r is

allowed to block. Variable e[r] indicates if an exception has

been thrown in round r. Variable P[r] indicates the priority

at which the system is executing at round r – this equals the

123140

Algorithm 2 The structure of Sa(C, R). Notation: T = set of all tasks; L = set of all PIP locks; J = set of all jobs; G = set

of global variables of C; ig = initial value of g according to C; ‘∗’ = non-deterministic value; α() = assume().

var rnd, start[], end[], B[], e[], ve[], P[], vP[], S[][], vS[][], T[][][], vT[][][], L[][][], vL[][][] ∀g ∈ G � var g[], vg[]
1: function MAIN()

2: INITGLOBS(); HYPPER(); CHECKASSUMPS()

3: function INITGLOBS()

4: e[0] := 0; ∀l ∈ L � S[l][0] :=−1
5: ∀t1 ∈ T, t2 ∈ T � T[t1][t2][0] := 0
6: ∀t ∈ T, l ∈ L � L[t][l][0] := 0
7: ∀g ∈ G � g[0] := ig
8: ∀r ∈ [1, R) � e[r] := ve[r] := ∗; P[r] := vP[r] := ∗
9: ∀l ∈ L, r ∈ [1, R) � S[l][r] := vS[l][r] := ∗

10: ∀t1, t2 ∈ T, r ∈ [1, R) � T[t1][t2][r] := vT[t1][t2][r] := ∗
11: ∀t ∈ T, l ∈ L, r ∈ [1, R) � L[t][l][r] := vL[t][l][r] := ∗
12: ∀g ∈ G, r ∈ [1, R) � g[r] := vg[r] := ∗

13: function HYPPER()

14: SCHEDULEJOBS()

let j0 ⊏ j1 ⊏ . . . j|J|−1 be the job ordering from Defn. 1

15: RUNJOB(j0); . . . ; RUNJOB(j|J|−1)

16: function RUNJOB(Job j)

17: rnd := start[j]; o := P[rnd]; P[rnd] := πb(j)
18: if e[rnd] = 0 then T̂ (j)

19: CS(j); P[rnd] := o; α(rnd = end[j])

20: function T̂ (Job j)

let σ ≡ if e[rnd] = 1 then return

T̂ is obtained from Tt by replacing each ‘lock(l)’ with:

21: CS(j);σ; LOCK(l, j);σ
22: each ‘unlock(l)’ with: CS(j);σ; UNLOCK(l, j)

each ‘assert(x)’ with:

23: CS(j);σ; if ¬x then ABORT(j); return

and each statement ‘st’ with:

24: CS(j);σ; st[g ← g[rnd]]

25: function CHECKASSUMPS()

26: for r ∈ [0, R− 1) do //let r′ = r + 1
27: α(e[r] = e[r′]); α(P[r] = vP[r

′])
28: ∀l ∈ L � α(S[l][r] = vS[l][r

′])
29: ∀t1 ∈ T, t2 ∈ T � α(T[t1][t2][r] = vT[t1][t2][r

′])
30: ∀t ∈ T, l ∈ L � α(L[t][l][r] = vL[t][l][r

′])
31: ∀g ∈ G � α(g[r] = vg[r

′])

32: ∀r ∈ [0, R) � α(B[r] = 0);α(e[R − 1] = 1)

33: function ABORT(Job j = J(τ, k))
34: e[rnd] := 1
35: ∀l ∈ L � S[l][rnd] = τ =⇒ UNLOCK(l, j)

(possibly inherited) priority of the currently executing job. For

each global variable g of C, variable g[r] indicates its value in
round r. The prophecy variables ve[r], vP[r] and vg[r] indicate
the guessed initial values of e[r], P[r] and g[r], respectively.
The values of e[r], P[r] and g[r] are updated by the jobs

executing in round r only.

Arrays S, T and L encode the state of the PIP locks and the

transitive closure Γ∗ of the TRG. Specifically, S[l][r] is the

priority of the task holding lock l at round r. If l is free at

round r, then S[l][r] = −1. Since a task’s priority equals its id,

we use a task and its priority interchangably. For every pair of

tasks (t1, t2), T[t1][t2][r] = 1 iff (t1, t2) ∈ Γ∗ at round r. For

every task t and lock l, L[t][l][r] = 1 iff (t, l) ∈ Γ∗ at round r.

Prophecy variables vS[l][r], vT[t1][t2][r] and vL[t][l][r] record
the guessed initial values of S[l][r], T[t1][t2][r] and L[t][l][r],
respectively. The values of S[l][r], T[t1][t2][r] and L[t][l][r] are
updated by jobs executing in round r only.

Functions of Sa(C, R). The top-level function is MAIN (see

Alg. 2). It initializes all global variables by invoking INIT-

GLOBS (line 2), schedules and executes all jobs by invoking

HYPPER (line 2), and finally ensures that only legal executions

that terminate with an assertion violation or deadlock are

allowed by invoking CHECKASSUMPS (line 2).

INITGLOBS (see Alg. 2) initializes all global variables at

each round. In particular, for round 0, all globals are initialized

(lines 4–7) to their values at the start of the execution of C.
For the remaining rounds, they are initialized (lines 8–12) to

non-deterministic guessed values. The guessed values are also

recorded in the corresponding prophecy variables.

HYPPER (see Alg. 2) first creates a legal schedule for all

jobs by invoking SCHEDULEJOBS (line 14) and then executes

each job j (line 15) – in the order ⊏ defined by Defn. 1 – by

invoking RUNJOB(j).

In SCHEDULEJOBS (see Alg. 3), line 2 initializes B to allow

jobs to block in all rounds; line 2 also initializes start and end

to non-deterministic values; line 3 ensures that start[j] and
end[j] are sequential and within legal bounds; line 4 ensures

that jobs are properly separated; line 5 ensures that jobs are

well-nested – if j2 preempts j1, then it finishes before j1; and

line 6 disables job blocks in all rounds in which a job has

been scheduled to end.

RUNJOB(j) (see Alg. 2) sets rnd to the round at which j is

scheduled to start (line 17), saves the current system priority

and then updates it to the base priority of j (line 17), executes

a modified version of j but only if no exception has been

thrown (line 18), restores the system priority and ensures that

j terminates at the appropriate round (line 19).

T̂ (j) (see Alg. 2) is identical to the body of j’s task, except

that it invokes functions LOCK and UNLOCK (shown in Alg. 3)

to model the acquiring and releasing of PIP locks (lines 21–

22), models assertion violations by invoking ABORT (line 23),

and uses variable g[rnd] instead of g (line 24). In addition,

T̂ (j) increases the value of rnd non-deterministically (by

invoking function CS) to model preemption by higher priority

jobs prior to each statement. Finally, whenever the value of

rnd increases, T̂ (j) checks if an exception has been thrown

and terminates the job in this case (using the statement σ).

Note that rnd can increase only after a call to CS or LOCK.

CHECKASSUMPS (see Alg. 2) ensures that the final value

of each global variable at each round is equal to its prophesied

124 141

Algorithm 3 The structure of Sa(C, R) continued from Alg. 2.

1: function SCHEDULEJOBS()

2: ∀r ∈ [0, R) � B[r] := 1; ∀j ∈ J � start[j] = ∗; end[j] = ∗
// Jobs are sequential

3: ∀i ∈ [0, N) � ∀k ∈ [0, Ji) � α(0 ≤ start[J(i, k)] ≤ end[J(i, k)] < R)
// Jobs are well-separated

4: ∀j1 ⊳ j2� α(end[j1] < start[j2]); ∀j1 ↑ j2� α(start[j1] ≤ start[j2])
// Jobs are well-nested

5: ∀j1 ↑ j2� α(start[j2] ≤ end[j1]⇒ (start[j2] ≤ end[j2] < end[j1]))
6: ∀j ∈ J � B[end[j]] = 0

7: function UNLOCK(int l,Job J(τ, k))
8: S[l][rnd] :=−1; DELLOCKTASK(l, τ)

9: function ADDLOCKTASK(int l,Task τ)

10: ∀t ∈ T \ {τ} � T[t][τ][rnd] := (L[t][l][rnd] = 1) ? 1 : T[t][τ][rnd]

11: function DELLOCKTASK(int l,Task τ)

12: ∀t ∈ T \ {τ} � T[t][τ][rnd] := (L[t][l][rnd] = 1) ? 0 : T[t][τ][rnd]

13: function ADDTASKLOCK(int l,Task τ)

14: let c(t) ≡ (t = τ ∨ T[t][τ][rnd] = 1)
15: ∀t ∈ T � L[t][l][rnd] := c(t) ? 1 : L[t][l][rnd]
16: s := S[l][rnd]; ∀t ∈ T � T[t][s][rnd] := c(t) ? 1 : T[t][s][rnd]

17: function CS(Job j = J(τ, k))
18: if (∗) then return

19: o := rnd ; rnd := ∗; α(o < rnd ≤ end[j])
20: α(P[rnd] = INHERPRIO(τ))

21: function INHERPRIO(Task τ)

22: return

MAX({τ} ∪ {t | T[t][τ][rnd] = 1})

23: function UNBLOCK(int l,Job j)

24: α(B[rnd] = 1); B[rnd] := 0
25: o := rnd ; rnd := ∗
26: α(o < rnd ≤ end[j])
27: α(P[o] = P[rnd]); α(S[l][rnd] = −1)

28: function LOCK(int l,Job j = J(τ, k))
29: if S[l][rnd] = −1 then

30: S[l][rnd] = τ

31: ADDLOCKTASK(l, τ)
32: else

33: if T[S[l][rnd]][τ][rnd] then
34: ABORT(j); return

35: ADDTASKLOCK(l, τ)
36: UNBLOCK(l, j); DELTASKLOCK(l, τ)
37: if e[rnd] = 1 then return

38: S[l][rnd] = τ

39: ADDLOCKTASK(l, τ)

40: function DELTASKLOCK(int l,Task τ)

41: let c(t) ≡ (t = τ ∨ T[t][τ][rnd] = 1)

42:
∀t ∈ T � L[t][l][rnd]:=

c(t) ? 0 : L[t][l][rnd]

initial value at the next round (lines 26–31), all rounds have

been exhausted by either a job termination or a job block

(line 32), and an exception has been thrown (line 32). Line 32

is critical to ensure the property of Sa(C, R) given by (4).

ABORT(j) (see Alg. 2) sets the error flag (line 34) and

releases all locks held by j (line 35). To release a lock, it

invokes UNLOCK (see Alg. 3) which sets the owner of the

lock to -1 (line 8) and then removes the edge in the TRG

from the current task to the lock (line 8) via DELLOCKTASK.

DELLOCKTASK (see Alg. 3) updates Γ∗ by removing an

edge in Γ from a lock to a task. In contrast, ADDLOCKTASK

(see Alg. 3) updates Γ∗ by adding an edge in Γ from

a lock to a task. Similarly, functions ADDTASKLOCK and

DELTASKLOCK (see Alg. 3) update Γ∗ by, respectively, adding

and removing an edge from a task to a lock.

INHERPRIO(τ) (see Alg. 3) returns the inherited priority of

the current job task τ at round rnd. It is invoked by CS (see

Alg. 3) to ensure (line 20) that whenever a job is preempted,

it only resumes at a round where the system priority equals

its inherited priority. In addition, CS ensures (line 19) that a

job always resumes in a round permitted by the schedule.

LOCK (see Alg. 3) acquires a lock. If the lock is available

(line 29) it updates its owner to the current task (line 30) and

adds an edge in the TRG (line 31). However, if the lock is held

(line 32), it (i) checks for deadlock and aborts if necessary

(lines 33–34); (ii) adds an edge in the TRG from the task

to lock (line 35); (iii) preempts the task and resumes it in a

future round where the lock is available by invoking UNBLOCK

(line 36); (iv) deletes the TRG edge from the task to the lock

(line 36); (v) checks if an exception has been thrown and

aborts if necessary (line 37); (vi) updates the owner of the

lock to the current task (line 38); and (vii) adds a TRG edge

from the lock to the task (line 39).

UNBLOCK (see Alg. 3) resumes a blocked job in a future

round. It ensures that the current round is available for

blocking and makes it unavailable for blocking in the future

(line 24), and updates the round to a value that is allowed by

the schedule (lines 25–26), where the system priority is the

same as the current system priority (line 27), and where the

lock is available (line 27).

D. Construction of Sb(C, R)

Recall that Sb(C, R) must have the property defined by (5).

The structure of Sb(C, R) is similar to Sa(C, R). The only

difference is in T̂ (j) and LOCK, which are shown in Alg. 4.

Specifically, in Sb(C, R): (i) T̂ (j) assumes that assertions are

never violated (line 4), and (ii) LOCK assumes that whenever

a job blocks, then there is no deadlock (line 10), and aborts

if there are no available rounds for job blocking (line 11).

IV. RELATED WORK

Several projects use sequentialization [3][8][12] to verify

concurrent software. All these approaches assume a non-

deterministic scheduler, which is an over-approximation for

periodic programs. Of these, our sequentialization is closest

to that of Lal and Reps [7] – scheduling is implemented

125142

Algorithm 4 The structure of Sb(C, R). We only show func-

tions that are different from Sa(C, R).

1: function T̂ (Job j)

let σ be the statement if e[rnd] = 1 then return

T̂ is obtained from Tt by replacing each ‘lock(l)’ with:

2: CS(j);σ; LOCK(l, j);σ
3: each ‘unlock(l)’ with: CS(j);σ; UNLOCK(l, j)
4: each ‘assert(x)’ with: CS(j);σ;α(x)
5: and each statement ‘st’ with: CS(j);σ; st[g ← g[rnd]]

6: function LOCK(int l,Job j = J(τ, k))
7: if S[l][rnd] = −1 then

8: S[l][rnd] = τ ; ADDLOCKTASK(l, τ)
9: else

10: α(¬T[S[l][rnd]][τ][rnd])
11: if ∀r ∈ [0, R) � ¬B[r] then ABORT(j); return

12: ADDTASKLOCK(l, τ); UNBLOCK(l, j)
13: DELTASKLOCK(l, τ)
14: if e[rnd] = 1 then return

15: S[l][rnd] = τ ; ADDLOCKTASK(l, τ)

via prophecy variables instead of function calls. Furthermore,

our approach limits verification via execution time, instead of

context switches [3][8] or some other means.

Kidd et al. [13] also propose to verify real-time software

using sequentialization. They model preemptions using func-

tion calls, and do not present any tools or experimental results.

Their encoding, while useful for obtaining theoretical results,

is too imprecise from a practical verification perspective, since

it only uses priorities to limit possible preemptions. Indeed,

we have shown [2] that the use of job ordering relations (see

Defn. 1) eliminates false warnings compared to an approach

that uses priorities only. In contrast, we use prophecy variables,

following Lal and Reps [7], limit preemptions using job

orderings, and validate our approach empirically.

This paper also extends our earlier work on verifying

periodic programs [1][2] by handling PIP locks, executions

with blockings, and deadlock detection. This requires a more

sophisticated sequentialization (e.g., one that encodes the task

resource graph), as well as an iterative algorithm to minimize

the number of sequentialization rounds.

Lindstrom et al. [14] have used JavaPathfinder to model

check real-time Java programs. Their approach is based on

discrete event simulation, and does not: (a) rely on WCET,

and (b) consider all possible execution times in the range

[0,WCET]. Thus, it is not comparable directly to our approach.

Deadlock detection via sequentialization, explored by Rabi-

novitz and Grumberg [8], assumes that every deadlock has a

wait-free counterexample, i.e., an execution where no thread

blocks (except at the end where it deadlocks). This is true if

the scheduler is non-deterministic (their situation) but not for

periodic programs (this work) where priorities are involved.

Task resource graphs have been used for deadlock detection

via runtime analysis [15][16] of concurrent software. However,

these projects assume a non-deterministic scheduler, and do

File T J Rn Vars Cls SAT Result

nxt.bug1a.c 29 15 15 1.4M 4.3M 26 UNSAFE

nxt.bug1b.c 58 15 15 2.5M 7.5M 54 UNSAFE

nxt.bug1c.c 61 15 15 2.6M 8.1M 57 UNSAFE

nxt.ok1.c 746 15 17 2.9M 9.0M 714 SAFE

aso.bug1a.c 73 15 15 2.7M 8.3M 68 UNSAFE

aso.bug1b.c 64 15 15 2.6M 8.0M 59 UNSAFE

aso.bug1c.c 33 15 15 1.7M 5.1M 29 UNSAFE

aso.ok1.c 4148 15 19 3.5M 10.9M 4,088 SAFE

aso.bug2a.c 43 15 15 1.6M 4.9M 39 UNSAFE

aso.bug3a.c 48 15 15 1.7M 5.1M 45 UNSAFE

aso.bug3b.c 35 15 15 1.5M 4.6M 32 UNSAFE

aso.bug3c.c 55 15 15 1.6M 4.9M 52 UNSAFE

aso.ok3.c 879 15 16 1.8M 5.5M 866 SAFE

aso.bug4a.c 63 15 15 2.0M 6.1M 58 UNSAFE

aso.bug4b.c 908 15 16 2.1M 6.4M 898 UNSAFE

aso.ok4.c 3047 15 17 2.2M 6.7M 3,027 SAFE

TABLE I
EXPERIMENTAL RESULTS. T = TOTAL TIME (SEC); J = # OF JOBS; RN = #

OF ROUNDS AT COMPLETION; VARS = MAX # OF SAT VARIABLES (IN
MILLIONS) PRODUCED BY CBMC; CLS = MAX # OF SAT CLAUSES (IN
MILLIONS) PRODUCED BY CBMC; SAT = TOTAL TIME USED BY SAT

SOLVER.

not use sequentialization. In addition, some of them [16] over-

approximate the TRG and report false deadlocks.

V. EXPERIMENTS

Our implementation of PIPVERIF, called REKPIP, builds on

REKH [2] . The input to REKPIP is a C program containing

the task bodies, and annotations to specify priorities, periods,

and WCETs. REKPIP uses CIL [17] for sequentialization,

and CBMC [18] to verify the resulting C programs. As in

other work [7], REKPIP only allows preemption before access

of global variables, without losing soundness. We validated

REKPIP on several examples derived from the controller of a

LEGO Mindstorms robot2. All our experiments were done on a

Core-i7 machine with four cores (each running at 2.7GHz) and

8GB of RAM. We know of no tool that is comparable directly

with REKPIP. Hence, the main purpose of our experiments is

to evaluate the feasibility of our approach.

The Controller. The robot controller consists of three tasks

(τ0, τ1, τ2) with priorities (0, 1, 2), periods (48, 24, 4), and

WCETs (12, 12, 1), respectively. All tasks arrive at time zero.

The system is schedulable, the hyper-period H is 48, and there

are 15 jobs in C. The controller must guarantee that when

an obstacle is detected, the robot must move backward and

not turn, even if the human operator indicates otherwise. This

property, called NOCOLLISION, is expressed by an assertion

in the controller code. The assertion involves shared variables

accessed by multiple tasks. Hence, appropriate mutual exclu-

sion mechanisms must be used to ensure NOCOLLISION.

The Benchmark. The benchmark consists of a set of

examples derived from the controller described above. Exam-

ple nxt.ok1.c is derived from the original version of the

controller – τ2 balances and controls the motion (i.e., speed

and direction) of the robot, and receives user commands via

bluetooth, τ1 detects obstacles using a sonar sensor, and τ0
prints log messages. Task τ0 does not access shared variables

2See http://lejos-osek.sourceforge.net/nxtway gs.htm for more details.

126 143

related to NOCOLLISION, while τ1 and τ2 ensure NOCOL-

LISION by using a PIP lock to protect access to the shared

variables. The nxt.bug1* examples are buggy variations of

nxt.ok1.c that use the PIP lock inappropriately.

The aso.* examples are derived from a modified version

of the controller that we constructed by refactoring out the

functionality that receives bluetooth commands from τ2 to τ0.

Example aso.ok1.c uses a single PIP lock to protect the

shared variables and ensure NOCOLLISION. The aso.bug1*
series of examples are buggy variations of aso.ok1.c that

fail to use the PIP lock appropriately.

Example aso.bug2a.c tries to ensure NOCOLLISION

without requiring the highest priority τ2 to do any locking

or unlocking (thereby ensuring that τ2 never blocks). Unfor-

tunately, aso.bug2a.c is buggy. In contrast, aso.ok3.c

achieves this goal successfully by combining of a PIP lock

and a transaction-based protocol. The aso.bug3* series of

examples are buggy variations of aso.ok3.c that use either

the PIP lock, or the transaction-based protocol inappropriately.

Example aso.ok4.c improves on aso.ok4.c by us-

ing two PIP locks for more fine-grained locking. Examples

aso.bug4a.a and aso.bug4b.c are buggy variations of

aso.ok4.c. The former performs the fine-grained locking

incorrectly (one of the tasks releases a lock prematurely),

while the latter has a deadlock (tasks τ0 and τ1 attempt to

acquire the two PIP locks in opposite order).

Results. Table I summarizes our results. PIPVERIF pro-

duces the correct result for all examples. For nxt.bug1*.c,

columns Rnds and Jobs are always equal, i.e., counterex-

amples are detected in the first iteration of PIPVERIF. For

nxt.ok1.c, two extra rounds are required to prove safety

since there are executions with two blockings between (differ-

ent jobs of) τ1 and τ2 via the PIP lock.

For aso.bug1*.c, aso.bug2*.c and aso.bug3*.c,

counterexamples are also detected in the first iteration of

PIPVERIF. However, for aso.ok1.c and aso.ok3.c,

PIPVERIF goes through several iterations, and only proves

safety at rounds greater than the number of jobs. In particular,

aso.ok1.c requires four extra rounds, while aso.ok3.c

requires only one extra round.

For aso.bug4b.c, the deadlock is detected using one

extra round. This is because any execution leading to a

deadlock must have at least one job blocking. Suppose that

two PIP locks are L0 and L1, τ0 acquires them in the order

(L0, L1) and τ1 acquires them in the opposite order. Then

for a deadlock to occur, the following situation must occur

– τ0 gets L0, τ0 is preempted by τ1, τ1 gets L1, τ1 tries to

get L0 but is blocked, τ0 inherits τ1’s priority and resumes

execution, τ0 tries to get L1, and we have a deadlock.

In general, verifying an nxt.* example is faster than

verifying a aso.* example. We believe that this is due to

the factoring out of complex functionality into a separate task

(i.e., thread), which results in increased complexity and a

larger statespace. The success of REKPIP on these benchmarks

indicates that our approach is effective, and advances the state-

of-the-art in verifying periodic programs with PIP locks.

VI. CONCLUSION

We presented an iterative algorithm to verify safety and

deadlock freedom of periodic programs. Our algorithm is

based on sequentialization – reducing the verification of a

concurrent program to that of verifying an equivalent (non-

deterministic) sequential program. It extends earlier work in

this area by handling synchronization via Priority Inheritance

Protocol (PIP) locks, and being able to detect deadlocks.

It is also optimal in the sense that it terminates with the

minimum number of (sequentialization) rounds needed to

prove a periodic program safe, or find a counterexample.

Empirical validation of our algorithm indicates its feasibility.

ACKNOWLEDGMENT

Copyright 2013 Carnegie Mellon University and FMCAD, Inc. 3

REFERENCES

[1] S. Chaki, A. Gurfinkel, and O. Strichman, “Time-Bounded Analysis of
Real-Time Systems,” in FMCAD, 2011.

[2] S. Chaki, A. Gurfinkel, S. Kong, and O. Strichman, “Compositional
Sequentialization of Periodic Programs,” in VMCAI, 2013.

[3] S. Qadeer and D. Wu, “KISS: Keep It Simple and Sequential,” in PLDI,
2004.

[4] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE TC, vol. 39, no. 9,
1990.

[5] M. Jones, “What really happened on Mars?”
http://research.microsoft.com/ mbj/Mars Pathfinder.

[6] “RTEMS Real Time Operating System,” http://www.rtems.org.
[7] A. Lal and T. W. Reps, “Reducing Concurrent Analysis Under a Context

Bound to Sequential Analysis,” in CAV, 2008.
[8] I. Rabinovitz and O. Grumberg, “Bounded Model Checking of Concur-

rent Programs,” in CAV, 2005.
[9] C. Shih and J. A. Stankovic, “Survey of Deadlock Detection in Dis-

tributed Concurrent Programming Environments and Its Application to
Real-Time Systems and Ada,” University of Massachusetts, Technical
report UM-CS-1990-069, 1990.

[10] J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate Monotonic Scheduling
Algorithm: Exact Characterization and Average Case Behavior,” in
RTSS, 1989.

[11] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment,” JACM, vol. 20, no. 1,
1973.

[12] L. Cordeiro and B. Fischer, “Verifying multi-threaded software using
smt-based context-bounded model checking,” in ICSE, 2011.

[13] N. Kidd, S. Jagannathan, and J. Vitek, “One Stack to Run Them All
- Reducing Concurrent Analysis to Sequential Analysis under Priority
Scheduling,” in SPIN, 2010.

[14] G. Lindstrom, P. C. Mehlitz, and W. Visser, “Model Checking Real Time
Java Using Java PathFinder,” in Proc. of ATVA, 2005.

[15] K. Havelund, “Using Runtime Analysis to Guide Model Checking of
Java Programs,” in SPIN, 2000.

[16] R. Agarwal and S. D. Stoller, “Run-time detection of potential deadlocks
for programs with locks, semaphores, and condition variables,” in
PADTAD, 2006.

[17] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer, “CIL: Inter-
mediate Language and Tools for Analysis and Transformation of C
Programs,” in CC, 2002.

[18] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in TACAS, 2004.

3
This material is based upon work funded and supported by the Department of Defense under Contract No.

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center. NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND

SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN AS-IS BASIS. CARNEGIE MELLON

UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY

MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE

MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM

FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT. This material has been approved for public

release and unlimited distribution. DM-0000437

127144

Abstractions for Model Checking SDN Controllers
Divjyot Sethi, Srinivas Narayana, Sharad Malik

Princeton University

Abstract—Software defined networks (SDNs) are receiving
significant attention in the computer networking community, with
increasing adoption by the industry. The key feature of SDNs is
a centralized controller which programs the packet forwarding
behavior of a distributed underlying network. This centralized
view of control—which is absent in traditional networks—opens
up opportunities for full formal verification.

While there is recent research in formal verification of these
networks, model checking the controller behavior as it updates
the underlying network has only seen limited application. Ex-
isting approaches are limited to verifying the controller for a
small number of exchanged packets in the network. In this case
study, we extend the state of the art by presenting abstractions
for model checking controllers for an arbitrarily large number
of packets exchanged in the network. We validate the utility of
these abstractions through two applications: a learning switch
and a stateful firewall.

I. INTRODUCTION

Software defined networks (SDNs) (such as ones based

on Openflow [1]) have recently received significant atten-

tion in the computer networking community, with increasing

relevance to and adoption by industry, e.g., [2]. The key

feature of SDNs is a centralized controller (control plane)

which programs a distributed underlying network (data plane).

While providing a centralized view of control, any bugs in

the controller code can be an Achilles heel to the functioning

of the entire network [3]. In this case study, we explore

abstractions for proving the correctness of controllers using

model checking.

Fig. 1 shows an example topology of an SDN. The data

plane consists of three hosts HA, HB and HC which exchange

packets pkt1 and pkt2 with each other via the network

switches S1, S2 and S3
1. These switches consist of ports p0,

p1 and p2. Each location in the network (switch ports and

hosts) consists of an input and output buffer (referred to as

the data state). Each switch enqueues packets in its input port

buffers, and eventually forwards them to a set of output ports

(or drops them) based on the packet processing logic.

The packet processing logic is encoded into the switches in

the form of switch flow tables (also referred to as the network
state). Based on the flow table, the switch applies one of the

following 3 actions to an incoming packet: (1) it forwards the

packet to a set of output ports of that switch, (2) drops the

packet or (3) forwards it to the controller. The switch forwards

packets to the controller by reporting them as events. The

controller is a piece of software which updates switch flow

tables through a standard interface (e.g., Openflow [1]), either

in response to events forwarded by switches or spontaneously.

1Following the approach of Zhang et al. [4], all the network logic like
firewalls, routers etc. can be represented using switches.

����������	

�	
�	

	

��	 ��	

��	

��	

��	

��	 ��	 ��	��	

��	

��	

����	 ����	��	

Fig. 1: An example topology.

In this paper, we prove the correctness of the network

controller program for a given network topology, and an

arbitrarily large number of packets. We focus on per-packet
properties, which assert the correctness of packet processing

in the presence of updates from the controller. Note that these

updates may themselves occur in response to events reported

due to other packets, i.e., due to interference from other

packets. Examples of such properties include no forwarding
loop (i.e., a packet does not loop back to a switch which it

has already visited) and no invalid drop (i.e., a packet is not

dropped due to an invalid controller update to some switch).

Challenges in Verification: The key challenge in model

checking SDNs is the state space explosion resulting from

the following factors. (1) There can be a large number of

packets alive in the network, resulting in a large buffer state—

commodity switches can have of the order of ten megabytes of

packet buffering per switch (e.g., [5]). Further, these packets

create interference for each other by sending events to the

controller which then trigger updates to the network state. (2)

These packets and the corresponding events can have arbitrary

interleavings. (3) The switch flow tables store a mapping

from the packet header and the input port to the output port,

resulting in a large network state—modern switches can have

tens of thousands of flow table entries [6].

Related Work: Existing work in the verification of SDNs

exploits the fact that the time between updates to the network

state by the controller is much larger than the lifetime of

a packet through the network. Thus, the state evolution of

the network can be viewed as updates from one network

configuration to another via intermediate (transient) states, as

per the commands from the controller.

Static verification verifies a fixed configuration of the net-

work by using either symbolic simulation [7], by reduction to

SAT [4], [8] or, by model checking [9].

Incremental verification approaches extend the static ver-

ification approach and incrementally verify the network for

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 128145ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

all the network configurations [10], [11]. The property may

however be violated in the transient stage.

Safe update builds upon the incremental verification ap-

proach by guaranteeing that the property under check holds

during the transient stage by using specific update proto-

cols [12]. This work is specific to enforcing properties for

which the update protocols are designed—more complex prop-

erties may not be enforced with this approach.

Dynamic checking seeks to verify the properties on the net-

work in the presence of arbitrary updates from the controller,

even when no specific update protocol has been implemented

to ensure the property. This is the space of our work—the

other works we are aware of in this space are NICE [3] and

FlowLog [13]. They use a model checking based approach to

successfully find important bugs in controller code. However,

they check the controller for a bounded number of exchanged

packets. In this work we extend dynamic checking and scale
to an arbitrarily large number of packets.

Key Contribution: This work addresses the challenges

outlined above by first constructing a data state abstraction,

and then, a network state abstraction which builds upon the

data state abstraction to significantly reduce the model size.

The data state abstraction is based on the standard data type

reduction [14] and addresses challenges (1) and (2) by keeping

just one packet (concrete packet), (pktc), in the system and

replacing the effect of all the other packets on the network state

by non-deterministically injecting an arbitrarily large number

of environment packets (pkte). These packets have arbitrary

header values, unless constrained by user-added lemmas, and

can be injected at any port of any switch. When injected,

these environment packets may be forwarded as events to the

controller and trigger updates to the network state. Thus, these

packets simulate the updates to the network state triggered

by an arbitrarily large number of other packets. Further, the

environment packets need not traverse the links and occupy

data state as they are directly injected at arbitrary ports—this

enables abstracting away all the buffers.

Since there is only one alive packet (pktc) in the system

after the data state abstraction, the network state abstraction

exploits this to address challenge (3) by case splitting on the

source and destination hosts of this packet: the switch flow

table can then be abstracted to contain information specific to

only these hosts, which are fixed for a concrete packet2. This

significantly reduces the network state.

Mechanical Construction: The data state abstraction is

constructed by adding a special host for injecting environment

packets—this host is independent of the controller application

under verification. The network state abstraction adds a run-

time check to the flow table to only allow updates correspond-

ing to the selected source and destination hosts.

Experimental Setup: We model the controller code to closely

resemble the original (typically Python) code in the Murphi

language (CMurphi 5.4.6). To verify the controller for a spec-

ified topology and property, we use a Murphi model with (1)

the controller code, and (2) the switches and hosts connected

according to the specified topology with the property specified

2Packet rewrites are discussed at the end of §III.

on it. The abstractions are also implemented on this model.

We demonstrate the utility of the abstraction by verifying no
forwarding loop for a learning switch application (controller),

Pyswitch [15] and no invalid drop property for a stateful

firewall application. We were able to find bugs in the buggy

version of these applications and prove correctness for the

correct ones for an arbitrary number of packets.

Limitation: While our approach verifies topologies larger

than the state of the art for dynamic checking, it cannot scale to

realistically large sizes (e.g., data centers). However, in certain

cases it is possible to extend controllers proved on smaller

topologies to larger ones through topology abstractions [16].

II. MODELING NETWORK CONTROLLERS

The network consists of a controller, switches (switch Si

has an id i) with ports (port pi has an id i) and hosts (host

Hi has an id i). Packets traverse the network by hopping

from one location to another (unless they get dropped). Each

packet consists of a header and payload (data information).

The source and destination host id of a packet pkt are denoted

by pkt.src and pkt.dst, respectively.

When a packet arrives at a switch port, the switch processes

the packet in accordance with the flow table. For sake of

brevity, we assume that the flow table of a switch S (denoted

by S.ft) matches on the source, destination, and input port

(pi) of the incoming packet and applies a set of actions to

the packet—in general our approach extends to cases where

it matches other fields as well. Formally, a flow table is a

mapping S.ft : (pkt.src, pkt.dst, pi) → A, where A is a set

containing one or more actions from the following: (1) forward

the packet to a set of output ports Po of the switch (denoted

by Forward (Po)), (2) drop the packet (Drop), or (3) forward

it to the controller (SendToController). We denote the set

of the above three actions by A.

Controller-switch interaction: The controller switch inter-

action happens in accordance with the Openflow [1] spec-

ification: (1) switches report events to the controller which

are enqueued in a per-switch event buffer at the controller,

and (2) the controller sends commands to the switch which

are enqueued in a command buffer at the switch. Following

the approach of Foster et al. [17], the relevant events and

commands are described below.

Events: The event used in this paper is the

packet in(swID, portID, packet) event, which tells

the controller that packet has arrived at port with id portID
of switch with id swID.

Controller Commands: The controller can either react

to events reported by the switch through event handlers, or

spontaneously program the switch. The controller commands

can be one of the following: (1) install(swID, match,

actions): this command updates the flow table of switch

swID to apply actions (a subset of A) to all packets which

match the pattern specified by match. The string match is

of the form {src : H1, dst : H2, inport : pi}, i.e., match all

incoming packets with pkt.src = H1, pkt.dst = H2, and

ingress port pi at switch swID. (2) send(swID, packet,
action) sends the packet to switch swID where action is

129146

packet in (swID, inport, pkt):
1: mactable = ctrlState[swID]
2: mactable[pkt.src] = inport
3: if (mactable[pkt.dst] != null)
4: outport = mactable[pkt.dst]
5: if (outport != inport)
6: match = {src:pkt.src, dst:pkt.dst, inport:inport}
7: action = {Forward (outport)}
8: install (swID, match, action)
9: send (swID, pkt, action)

10: return
11: send (swID, pkt, F lood)
12: return

Fig. 2: The Pyswitch controller algorithm.

applied to it at the switch. Here action is one of {Forward,

Drop, Flood}, where Flood instructs the switch to forward

the packet on all its ports except the packet’s ingress port.

Property: We verify invariants of the form ∀pkt : φ(Bpkt),
where φ is a propositional logic formula and Bpkt is some

per-packet book-keeping state. For example, this state can log

the packet history, i.e., switches which the packet has visited,

in order to detect loops.

Running example (MAC learning switch): We use a layer

2 MAC address learning switch application, Pyswitch [15]

with topology as shown in Fig. 1, as a running example to

describe key concepts. The controller algorithm is shown in

Fig. 2. At a high level, for each switch swID, the controller

learns a mapping (denoted by ctrlState[swID]) from host

MAC addresses to ports. This allows the switch to forward

packets destined to these hosts. As an example, suppose the

packet pkt1, with source HA and destination HB , arrives at

port p0 of switch S2. In case no match exists for the packet,

it is matched to a default flow table entry which forwards

a packet in event to the controller. The packet in event

handler learns that the host HA is reachable through port p0
on switch S2 (line 2). In case the port leading to the destination

HB is unknown, the if condition on line 3 evaluates to false,

and the packet is flooded on all ports, except the incoming port

(line 11). However, if the destination is found in ctrlState,

the flow table is updated to forward all subsequent packets

with the same src, dst and inport to p1 (line 8).

Property: We verify the no forwarding loop property for the

Pyswitch controller. Due to flooding on a topology (Fig. 1)

with a loop, the property is violated. However, if the controller

only sends packets along a spanning tree (e.g., no packets

between port p2 of S2 and p1 of S3), the property holds.

III. ABSTRACTION

Data state abstraction: As discussed in §I, the data state

abstraction exploits the fact that the property under check is

a per-packet property: it checks the property on one con-

crete packet pktc, and abstracts away all the other packets.

Continuing on the Pyswitch example from §II, suppose

pkte is injected at port p2 of switch S2 in Fig. 1, such that

pkte.src = HA. This leads the switch to send a packet in
to the controller which updates ctrlState[S2][HA] to p2.

Next, suppose the concrete packet pktc with source HB and

destination HA arrives at port p1 of S2. The switch sends this

packet to the controller, and since ctrlState[S2][HA] = p2, the

controller commands the switch to forward the packet out port

p2 (line 9 of Fig. 2) to S3. If there are no matching entries for

pktc at S3 and S1 both in flow tables and ctrlState, the packet

gets flooded at both switches (line 11). Thus, pktc loops back

to S2, which is a violation of the forwarding loop property.

Refinement: Since the header of pkte can take arbitrary

values, the updates triggered by pkte are highly unconstrained.

This leads to both scalability bottlenecks as well as functional

incorrectness due to over-abstraction, i.e., the model exhibiting

more behaviors than are realistically expected. We follow

the approach of the CMP (CoMPositional) method [18]: the

model is iteratively model checked and refined by the user

by adding non-interference lemmas in order to constrain pkte.

The non-interference lemmas we used typically constrain the

model according to reachability in the topology. For example

a packet with source HA cannot be injected at port p1 of

S2, i.e., ((port = p1)&(switch = S2)) → (pkt.src �= HA).
(Since these lemmas are application-independent, they were

added pre-emptively to mechanically constrain the data state

abstraction.) As per the CMP method, these non-interference

lemmas do not over-constrain the environment packet pkte:

they are also model checked by validating them on pktc [18].

Network state abstraction: As discussed in §I, the network

state abstraction case splits on the source and destination of

pktc to abstract the flow tables. Suppose we assume that pktc

has source HA and destination HB . Then, for each switch

S, the flow table mapping S.ft can be abstracted to S.ftabs

where S.ftabs(pktc, p) = S.ft(pktc, p) for all ports p of the

switch, and S.ftabs(pkte, p) = {SendToController} for all

other packets (i.e., pkte). The Forward action is not applied

to pkte as it is non-deterministically injected at all ports.

Packet rewrites: In order to handle packet rewrites, the

network state abstraction can be refined by including flow rules

for rewritten header values as well. These rules are needed to

process the concrete packet when its header is rewritten.

IV. EXPERIMENTS

We verified two applications: Pyswitch and a stateful

firewall on a 2.40 GHz Intel Core 2 Quad processor, with

3.74 GB RAM. Murphi source code is available online [19].

MAC learning switch (Pyswitch): For the Pyswitch
application, we verified loop freedom for the star topology

shown in Fig. 1, with non-interference lemmas from §III

added pre-emptively for scalability. The loop was found in

0.1 sec with 159 states explored. Next, on constraining the

topology to forward packets only along the spanning tree, the

model checker proved correctness with an arbitrary number of

packets exchanged between HA and HB in 600s with 1.45M

states. We note that model checking did not finish in a day

without the abstractions. Finally, we ran a stress test with a

larger fat tree topology with 20 switches, 16 hosts and 48

links. While model checking did not finish for an arbitrarily

large number of packets, it finished in 68352s for the single

packet case with network state abstraction.

Stateful firewall: We consider a simple firewall policy

which may be used to prevent direct connections from the

Internet into an enterprise network, e.g., to implement Network

Address Translation (NAT). Fig. 3 shows an enterprise network

130 147

�	
�	
��	 ��	

��	 ��	 ��	��	

�������	
�	 ��������	�	�����	

�

Fig. 3: Two switches acting together as a stateful firewall.

1: packet in (swId, inport, pkt):
2: if swId = 1 and inport = 1:
3: match S1 = {src:pkt.src, dst:pkt.dst, inport:1}
4: action S1 = {Forward ({2})}
5: install (1,match S1,action S1)
6: match S2 = {src:pkt.dst, dst:pkt.src, inport:2}
7: action S2 = {Forward ({1})}
8: install (2,match S2,action S2)
9: else if swId = 2 and inport = 2:

10: match = {src:pkt.src, inport:2}
11: action = {Drop }
12: install (2,match,action)

Fig. 4: Firewall controller for the network shown in Fig. 3.

connected to the Internet via a firewall implemented on two

switches S1 and S2. The controller (not shown in Fig. 3

for brevity) initializes the default behavior of S1 and S2 as

follows: (1) S1 sends all incoming traffic at port p1 to the

controller, in addition to forwarding out of p2, (2) S1 forwards

incoming traffic at p2 directly to the enterprise host H1, (3) S2

sends all incoming traffic at p1 directly to the Internet, and (4)

S2 forwards incoming traffic at p2 to the controller. As packets

arrive, the controller dynamically updates the switch flow

tables to implement the following high-level policy (Fig. 4):

(a) All traffic originating from any enterprise host H1 and

destined to any Internet host H2 is allowed to pass freely.

In particular S1 forwards all traffic to port p2 bypassing the

controller after the first packet in (line 5). (b) Traffic from

an Internet host H2 destined to an enterprise host H1 is

only allowed if the communication was initiated by H1 first

(line 8). (c) If H2 attempts to communicate with H1 without

prior initiation by H1, then H2 is considered malicious and is

explicitly blacklisted (line 12).

Verification: We verify the no invalid drop property by

checking if traffic from Internet host H2 replying to a request

sent by enterprise host H1 does not get dropped. Due to a

race condition between the events reported by S1 and S2, the

controller erroneously blacklists host H2. This happens when

H1 sends a first request to H2. The request goes to S1 first

which forwards it via S2 to H2, and also forwards an event

e1 reporting the request to the controller. However, this event

gets delayed and in the meantime H2 replies, and S2 forwards

this to the controller as an event e2. Since e2 is processed by

the controller before e1, H2 is erroneously blacklisted. (Note

that events across switches can be processed out of order.) Our

approach found this race condition in 0.13 sec with 482 states,

without requiring any lemmas.

Fixing the violation: This bug can be fixed by requiring S1

to wait for the controller before forwarding requests from H1

to H2 via S2. Our approach was able to prove correctness for

an arbitrarily large number of packets in 0.19 sec with 613

states, without requiring any lemmas.

V. CONCLUSION AND ONGOING WORK

We have presented abstractions for model checking con-

trollers for software defined network applications. These ab-

stractions extend the state of the art by enabling correctness

proofs for SDN controllers for an arbitrarily large number of

packets and their ensuing controller state updates. As a next

step, we plan to explore abstractions to further scale model

checking for larger topologies. In particular, since properties

are typically violated along a particular path taken by packets

in the network, we plan to focus on validating properties

for packets taking fixed paths in the topology instead of all

possible paths.

Acknowledgment: We thank Jennifer Rexford and Muralid-

har Talupur for their helpful ideas and feedback. This work

was supported by NSF grant 1111520 and by C-FAR, one of

six centers of STARnet, a Semiconductor Research Corpora-

tion program sponsored by MARCO and DARPA.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., 2008.

[2] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined WAN,” in SIGCOMM, 2013.

[3] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford, “A NICE
way to test openflow applications,” in Symposium on Networked Systems
Design and Implementation (NSDI), 2012.

[4] S. Zhang, S. Malik, and R. McGeer, “Verification of computer switching
networks: an overview,” ser. ATVA’12. Springer-Verlag, 2012, pp. 1–16.

[5] Broadcom, 2012. [Online]. Available: http://www.broadcom.com/
collateral/etp/SBT-ETP100.pdf

[6] IBM G8264 switch, 2012. [Online]. Available: http://www.openflow.
org/wp/ibm-switch/

[7] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
static checking for networks,” in Symposium on Networked Systems
Design and Implementation (NSDI), 2012.

[8] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King, “Debugging the data plane with anteater,” in SIGCOMM, 2011.

[9] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and
verification of federated Openflow infrastructures,” in Proceedings of the
3rd ACM workshop on Assurable and usable security configuration, ser.
SafeConfig ’10, 2010.

[10] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in NSDI, 2013.

[11] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Symposium on
Networked Systems Design and Implementation (NSDI), 2012.

[12] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM, 2012.

[13] T. Nelson, A. Guha, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“A balance of power: Expressive, analyzable controller programming,”
in Hot topics in Software Defined Networks (HotSDN), 2013.

[14] K. L. McMillan, “Verification of infinite state systems by compositional
model checking,” in CHARME, 1999.

[15] “PySwitch NOX application,” http://nddi.googlecode.com/svn/nox/src/
nox/coreapps/examples/pyswitch.py.

[16] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Compos-
ing software-defined networks,” in Symposium on Networked Systems
Design and Implementation, 2013.

[17] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: a network programming language,”
in International Conference on Functional Programming (ICFP), 2011.

[18] C.-T. Chou, P. K. Mannava, and S. Park, “A simple method for param-
eterized verification of cache coherence protocols,” in Proc. FMCAD,
2004.

[19] Murphi source code, [Online] https://github.com/ngsrinivas/sdnverify.

131148

Efficient Modular SAT Solving for IC3
Sam Bayless∗, Celina G. Val∗, Thomas Ball†, Holger H. Hoos∗, Alan J. Hu∗

∗University of British Columbia, {sbayless, vcelina, hoos, ajh}@cs.ubc.ca
†Microsoft Research, tball@microsoft.com

Abstract—We describe an efficient way to compose SAT solvers
into chains, while still allowing unit propagation between those
solvers. We show how such a “SAT Modulo SAT” solver naturally
produces sequence interpolants as a side effect — there is no need
to generate a resolution proof and post-process it to extract an
interpolant. We have implemented a version of IC3 using this
SAT Modulo SAT solver, which solves both more SAT instances
and more UNSAT instances than PDR and IC3 on each of the
2008, 2010, and 2012 Hardware Model Checking Competition
benchmarks.

Index Terms—SAT, IC3, PDR, Interpolants

I. INTRODUCTION

SAT solvers play a central role in many hardware and
software model-checking techniques. In this paper, we intro-
duce three inter-dependent contributions, culminating in an
improved state-of-the-art model-checker. First, we describe a
way to compose multiple SAT solvers into chains and trees,
in order to efficiently solve problems that have an underlying
“modular” structure (for example, instances produced by un-
rolling a transition function). We show that this technique can
be thought of as a nested SAT Modulo Theory (SMT) solver,
and that we can apply techniques from lazy SMT solvers to
improve the performance of this “SAT Modulo SAT” solver.
Our nested SAT solver provides a general-purpose way to
take advantage of locality while solving a CNF with (known)
structure.

Secondly, we show that our SAT Modulo SAT solver pro-
duces sequence interpolants [5], [21], by extending previous
work by Chockler et al. [6]. These sequence interpolants are
produced without requiring explicit proof-traces.

Our third contribution is to demonstrate that our SAT
Modulo SAT solver can be useful in practice, by implement-
ing a variant of IC3 [4] using it (and, implicitly, the se-
quence interpolants we produce).1 We show that the resulting
model checker outperforms both IC3 and PDR [11] on the
2008, 2010, and 2012 Hardware Model Checking Competition
benchmarks.

II. MODULAR SAT SOLVERS

Given a partitioned CNF formula φ0, φ1, . . . φn, where each
φi is a set of clauses, the partitioned Boolean satisfiability
problem consists of determining the satisfiability of

⋃n
i=1 φi.

Here, we will consider only cases where the partitioning into

1Just to forestall a potential point of confusion: Though we apply some
techniques from lazy SMT solvers, we are not extending IC3 to handle theories
other than SAT. This has been done (see, e.g., [7]), but is orthogonal to our
contribution here. Our use of SMT techniques is instead to directly speed up
the core Boolean satisfiability reasoning of IC3.

clause sets is explicitly specified or can be observed directly
from the underlying problem. We will refer to the clause sets
φ0, φ1, . . . as modules, and to any SAT solver that is designed
to solve such a partitioned CNF, as a modular SAT solver.

Obviously, to solve a partitioned CNF one could simply
merge all the partitions and solve the resulting CNF using
a standard SAT algorithm, but doing so loses any structural
information that might have been present in the partitioned
CNF. Real-world problems often possess a high degree of
modular structure (e.g., formulas derived from real-world
circuits or software), so this structural information may be
useful. An approach that has been investigated widely in the
literature is to find the variables that are shared between
modules (we will refer to these as interface variables), and to
assign them first. Because the partitions φi are independent of
each other under any complete assignment to these variables,
each module can then be solved independently [17] (and in
parallel [15]). Unfortunately, this method requires a potentially
exponential number of assignments to the interface variables
to be tested. Alternatively, the interface variables can simply
be used to inform a static decision heuristic. Many strategies
for partitioning a CNF have been investigated for this latter
approach (e.g., [1], [9], [13]).

In this paper, we describe a new modular SAT algo-
rithm. This algorithm relies upon three existing capabilities
of typical incremental SAT solvers (such as MiniSat [10] and
PicoSat [2]), namely:

1) Incremental SAT solvers allow for a CNF to be solved
repeatedly as new clauses are added (maintaining heuris-
tic values and learned clauses between runs).

2) They allow for the temporary addition (and subsequent
removal) of unit clauses in the CNF. Equivalently, they
allow for the CNF to be solved repeatedly under the
temporary assumption of different partial assignments.

3) When the CNF is not satisfiable under such a partial
assignment, they can return a concise clause over just
the assumed unit clauses that ‘explains’ why those units
cannot be mutually true in the CNF. This clause will
include only variables that are common to both the
assumed unit clauses and to the CNF being solved under
the assumption.

A simple, recursive algorithm is shown in Alg. 1. To our
knowledge, we are the first to propose solving a general
partitioned CNF in this way; however, this algorithm is very
closely related to several other approaches, as we will discuss
below. Subsequently, we will build on this algorithm and arrive

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 132149ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

Algorithm 1 (Unoptimized) Modular SAT Solver

Input: Partial assignment αi, set of clauses φi.
Output: TRUE if

⋃i
j=0 φj is SAT under αi, else

a conflict-clause which is inconsistent with αi and
contains only variables common to αi and

⋃i
j=0 φj .

//The (initially empty) sets of conflict-clauses Lφi maintain
//the invariant

⋃i−1
j=0 φj ⇒ Lφi

.
function MODULARSOLVE(αi, φi)

loop
if φi ∪ Lφi

∪ αi is SAT then
αi−1 ← satisfying assignment to φi ∪ Lφi ∪ αi
if i = 0 then

return TRUE
else

c← MODULARSOLVE(αi−1, φi−1)
if c = TRUE then

return TRUE
else

Lφi
← Lφi

∪ {c}
else

c← conflict-clause for φi ∪ Lφi ∪ αi
return c

end loop

at a new, improved method: our SAT Modulo SAT solver,
described in Alg. 3.

Alg. 1 operates progressively over the modules, first at-
tempting to solve module φn, which will either be unsatis-
fiable, or will provide us with an assignment αn−1 (Figure 1).
It then recursively solves φn−1 under assignment αn−1. Note
that while αi−1 is a complete assignment to φi, it may be a
partial assignment to φn−1.

If a module φi cannot be satisfied under αi, the incremental
SAT interface produces a learned clause c over the variables
in αi. We will refer to such a clause as an interface clause.
We add this interface clause c into the set Lφi , which will be
conjoined with φi when solving it in all subsequent iterations.
With the addition of c, the conjunction φi ∧ Lφi

will now
either be unsatisfiable (in which case we are done), or force
the solver into a new solution with a different assignment to
the interface variables.

Correctness of Alg. 1 follows from straightforward induc-
tion on i; termination is guaranteed, because Lφi

is strength-
ened at every call (unless a satisfying assignment is found, in
which case the algorithm terminates and returns TRUE).

One feature of Alg. 1 is that it expects an ordering over
the modules. The specific ordering chosen is effectively a
heuristic, and in some cases a good choice may be obvious
from the problem context (e.g., bounded model checking); the
algorithm is correct even if the order is chosen arbitrarily
(though this would impact the meaning of the interpolants
produced by the algorithm, examined in the next section),
and is also correct if the ordering is changed dynamically
at runtime. Though we do not explore it here, one could
consider randomly permuting the order, or applying a dynamic
heuristic to adjust the order as the algorithm proceeds, rather

Modules are
solved top to
bottom, passing
temporary
assignments αi
down the chain
from φi+1 to
φi.

y

ϕ3 ∪ Lϕ3

ϕ2 ∪ Lϕ2

 α2

ϕ1 ∪ Lϕ1

 α1

ϕ0

 α0

x

When a mod-
ule φi is un-
satisfiable under
assignment αi,
a learned inter-
face clause c is
derived from φi
and added to
Lφi+1

.

Fig. 1: A chain of four SAT Modules.

than relying upon a static ordering. We also observe that Alg.
1 can be trivially extended to operate over a tree-ordering of
the modules: instead of MODULARSOLVE(αi, φi) recursively
calling just MODULARSOLVE(αi−1, φi−1), it would make a
recursive call for each of its children. Alg. 1 is related to
several recent algorithms. For example, in the case of exactly
two modules, Alg. 1 is equivalent to (the simplest case of) the
proofless interpolant computing algorithm introduced in [6],
and it also resembles typical all-SAT procedures [12] and
some 2QBF solvers [18]. We can also think of this algo-
rithm as forming a nested series of counter-example-guided
abstraction-refinement loops: each φi ∪ Li is an abstraction
of its conjunction with the modules below it, and the learned
interface clauses returned from later modules serve to refine
that abstraction by eliminating spurious counter-examples.

If we obtain the modules by unrolling a transition function
(with one module per time step), then Alg. 1 is roughly
equivalent to a simplified, slightly re-organized version of the
recursive cube-blocking procedure at the core of IC3 and PDR;
in Section III, we will examine this connection to IC3 in more
detail. However, the modular SAT solver we have described
here, and the proof above, is general to the case where the
partitions φi are not all copies of the same transition function.

A. SAT Modulo SAT

Alg. 1 has the benefit that it can be implemented directly
using the incremental interface exposed by typical SAT solvers
without any modifications. Unfortunately, in practice it per-
forms poorly, because unit propagation between modules is
delayed until each previous module is completely solved, and
many learned clauses must be passed up the chain to eliminate
parts of the search space that would normally have been pruned
by unit propagation alone (if we were solving the complete
conjunction of the modules). In the worst case, this can lead
to an exponential slow-down, as an exponential number of
solutions from φ1 might need to be produced before finding
one that satisfies φ2.

Lazy SAT Modulo Theory (SMT) solvers [19] face many of
the same challenges as our naïve modular SAT solver above,
and we can adopt the mechanisms they use to address these
challenges by observing that Boolean satisfiability is itself an
ideal candidate to be a theory in a lazy SMT solver. Instead
of first finding a complete satisfying assignment αi to φi

133150

and then solving φi−1 under it, we modify Alg. 1 to eagerly
perform unit propagation on φi−1 (and φi−2, etc.) as the partial
assignment to φi is being constructed, returning a conflicting
interface clause as soon as the partial assignment of φi would
lead to a conflict in φi−1 or a lower module.

In Alg. 2 and 3, we describe in detail the changes needed
to convert a typical incremental SAT solver into an efficient
modular SAT solver using this eager unit propagation across
modules. In the interest of space, we will assume the reader
is familiar with MiniSat [10] and describe the necessary
modifications in reference to that implementation.

To apply this eager unit propagation across modules effi-
ciently, we introduce a new method, PROPAGATEALL, which
first applies unit propagation locally on the current module
φi (by calling PROPAGATE) and then recursively propagates
any resulting assignments to the interface variables in the
next module, φi−1. If this leads to a conflict, then MiniSat’s
ANALYZEFINAL method returns a conflict clause over the
interface variables.

If unit propagation of the interface assignments is success-
fully applied to φi−1, then we check if that unit propagation
assigned any new literals on the interface between φi and φi−1.
If any such assignments were made, then we again propagate
those assignments locally, and continue in this way passing
assignments back and forth between adjacent modules until
we reach a fixed point or a conflict.

In order to accomplish this eager unit propagation effi-
ciently, we make one additional change. When a literal is
propagated, CDCL SAT solvers store a reference to the clause
that was unit, so that they can explore it later during conflict
analysis. If an assignment is made to the interface by φi−1 in
Alg. 2, then we would not actually have any such clause in the
SAT solver for φi to use as a reason for this assignment. We
can create such a clause on the interface variables by calling
MiniSat’s ANALYZEFINAL, but rather than call this eagerly
after each unit propagation from φi, we instead set the literal’s
“reason” to a temporary placeholder value.

MiniSat accesses these reason references only during con-
flict analysis, using a helper method, REASON. We modify
REASON to check for that placeholder value, and replace it
with a clause produced by calling ANALYZEFINAL on φi−1.
In this way we create the reason clauses for units propagated
from φi−1 to φi only if needed by conflict analysis (efficient
SMT solvers take a similar approach).

Finally, we modify the main CDCL loop (Alg. 3) in two
ways. First we alter it to call PROPAGATEALL instead of
PROPAGATE. Second, once φi is entirely assigned, we modify
it to recurse on φi−1.

Applying unit propagation eagerly allows the SAT solver
for each module to prune its search space early, while the
lazy reason construction reduces the number of trivial interface
clauses that would otherwise have to be learned gradually and
passed up through the chain of modules. Taken together, we
refer to the modular SAT solver using these SMT-inspired
optimizations in Algs. 2 and 3 as a “SAT Modulo SAT” solver.

Algorithm 2 PROPAGATEALL method applies intra-module
and inter-module unit propagation. Note that we rely upon a
list of assigned literals, trailφi

, maintained for each module
between calls.

function PROPAGATEALL(φi)
loop

// Call unit propagation on φi
c← PROPAGATE(φi)
if c is a clause then

return c // c is a learned clause
else if i=0 then

return TRUE

// Collect all new assignments to interface variables
if trailφi

\ trailφi−1
= ∅ then

return TRUE

// Propagate new assignments in φi−1

for all l ∈ (trailφi
\ trailφi−1

) do
ENQUEUEi−1(l)

if PROPAGATEALL(φi−1) 6= TRUE then
c = ANALYZEFINAL(trailφi

, φi−1)
Li ← Li ∪ {c}
ADDCLAUSE(c)
return c

else if (trailφi−1 \ trailφi) = ∅ then
return TRUE // No new interface assignments

else
// Propagate new assignments from φi−1 in φi
for all l ∈ (trailφi−1 \ trailφi) do

ENQUEUEi(l)
// Mark reason for lazy construction
reasons[var]← ‘LazyPlaceholderi−1’

end loop

function REASON(var)
if reasons[var] = ‘LazyPlaceholderi−1’ then

c← ANALYZEFINAL(var,φi−1)
Li ← Li ∪ {c}
ADDCLAUSE(c)
reasons[var]← c

return reasons[var]

B. Interpolants as Side Effects

Interpolants [16] form a core part of many recent SAT-
based model checkers, including IC3. Normally, interpolants
are constructed by analyzing a resolution proof-trace, which
must be generated by a SAT solver as it is solving an instance.
This introduces an overhead into the solving process (for this
reason, recent work ([6], [20]) has investigated alternative
methods that do not require constructing an (explicit) proof
trace).

We now show that the sets of learned interface clauses
Lφi

collected between each module in Alg. 1 form valid
interpolants. Taken together, these successive interpolants form
a sequence interpolant [21]. An alternative proof for the case
of exactly two modules can be found in [6]. For simplicity, we

134 151

Algorithm 3 The main CDCL loop of our SAT Modulo
SAT solver, using the PROPAGATEALL method. We integrate
the recursive call to the next solver directly into the search
loop. Other than the changes here and in the PROPAGATEALL
method, our implementation follows MiniSat 2.2 [10]. Alg. 3
is a direct replacement for Alg. 1.

function MODULARSOLVE(αi, φi)
loop

conflict← PROPAGATEALL(φi)
if conflict is a clause then

if DECISIONLEVEL() = 0 then
return conflict

c←ANALYZE(conflict)
BACKTRACK()
ADDCLAUSE(c)

else
if exists an unassigned lit ∈ αi then

l← lit
else

l← PICKBRANCHLIT()
if l = NULL then

// trailφi is a satisfying assignment to φi
if i = 0 then

c← TRUE
else

c← MODULARSOLVE(trailφi
, φi−1)

if c = TRUE then
return TRUE

else
// Learn clause c from φi−1

Li ← Li ∪ {c}
BACKTRACK()
ADDCLAUSE(c)

else
NEWDECISIONLEVEL()
ENQUEUEi(l)

end loop

describe our proof in terms of the unmodified Alg. 1, but it
holds equally well for the optimized SAT Modulo SAT solver.

Given a CNF partitioned into two parts, φA and φB , with
φA ∪ φB unsatisfiable, an interpolant between φA and φB is
any set of constraints I with the following three properties:

1) φA implies I .
2) I ∪ φB (i.e., the conjunction of the constraints) is

unsatisfiable.
3) I contains only variables common to φA and φB .
First, consider Alg. 1 with only two modules. On an

unsatisfiable instance, Alg. 1 terminates only when the top-
most module φ1, combined with the interface clauses Lφ1 it
has learned from module φ0, does not have any satisfying
solutions. So at termination (on an unsatisfiable instance),
φ1 ∪Lφ1

must be unsatisfiable. We also have that φ0 ⇒ Lφ1
,

because Lφ1
consists only of clauses implied by φ0. Finally,

the incremental SAT solver interface guarantees that each

clause in Lφ1
contains only variables that are common to φ1

and φ0. These three conditions together satisfy the definition
of an interpolant between φ1 and φ0.

Next, consider an unsatisfiable chain of three modules, φ2,
φ1, and φ0. There are two interpolants that are constructed by
Alg. 1: An interpolant Lφ2

between φ2 and (φ1 ∧φ0), and an
interpolant Lφ1 between (φ2 ∧ φ1) and φ0.

In this three module chain, the argument that Lφ1
forms an

interpolant is the same as above. The argument that Lφ2
forms

an interpolant is similar, except that the clauses collected in
Lφ2 are implied by the conjunction φ1 ∧ φ0, rather than by
φ0 alone. This is the case even though in Alg. 1 module φ2
is only ever passed interface clauses constructed by φ1 (and
never by φ0), because module φ1 may itself have been passed
interface clauses from module φ0, and may then have derived
new constraints based on those facts that are subsequently
passed to module φ2.

In general, at termination on an unsatisfiable instance, it
must either be the case that φn ∧ φn−1 ∧ . . . ∧ φi is by itself
already unsatisfiable (in which case Lφi

is the empty set, and
a trivial interpolant), or that φn ∧ φn−1 ∧ . . . ∧ φi ∧ Lφi is
unsatisfiable, in which case Lφi is a valid interpolant between
the conjunctions φn ∧ . . . ∧ φi and φi−1 ∧ . . . ∧ φ0.

III. IC3 USING SAT MODULO SAT

The modular SAT solver we have described here operates on
an ordered sequence of CNF modules; a natural use case would
be to apply it to bounded model checking [3] by constructing
one module per time step, and incrementally adding new
modules as time steps are added. Unfortunately, performance
is roughly competitive with, but not better than, an (unso-
phisticated) incremental bounded model checker. However,
simple bounded model checking does not take advantage of
the sequence interpolants that our solver naturally produces.

Sequence interpolants are not typically generated by them-
selves as an end goal. Instead, the primary place that sequence
interpolants are used is as a component of model checking
algorithms (e.g., [5], [21]), most prominently in the current
state-of-the-art SAT-based unbounded model checker, IC3 [4].
In IC3, sequence interpolants are created implicitly, through
an incremental refinement process that is closely related to the
unoptimized modular SAT solver from Alg. 1.

We now demonstrate that the SAT Modulo SAT solver we
presented above is useful in practice by creating a version of
IC3 based on it and the sequence interpolants it produces.

Our implementation closely follows the PDR [11] variant
of IC3, which we do not have space to recount in full. We
will assume the reader is familiar with PDR, and describe
only our changes here. Modifying PDR’s algorithms to use
the modular SAT solver will entail some non-trivial changes,
which we describe below. As well, while building our solver,
we developed some minor improvements to the general IC3
algorithm; we will show below that these minor changes are
indeed improvements, but that the most important performance
improvement is due to our SAT Modulo SAT solver.

135152

Algorithm 4 The cube-blocking procedure for the stack-
based variant of IC3, using a modular SAT solver. Notice
that the stack is actually completely eliminated; recursively
blocking the cube is directly handled by the modular SAT
solver (MODULARSOLVE calls either Alg. 1 or Alg. 3 above).
In contrast to IC3, all the newly generated blocking clauses
are collected and generalized at the end.

function MODULARBLOCKCUBE(TCube s0)
i← s0.frame−1
if MODULARSOLVE(s0.cube, φi) then

return FALSE // Counter-example found
else

COLLECTALLCLAUSES(i)
return TRUE

function COLLECTALLCLAUSES(t)
// Collect new interface clauses from the first t solvers
// We assume these are stored in vectors
// newInterfaceClausesi for each frame
for i← 1 . . . t− 1 do

for all Clause c ∈ newInterfaceClausesi do
MARKSOLVER(i) // Needs clause propagation
c← GENERALIZE(c)
// Attempt to propagate c forward until it fails
j ← EAGERPROPAGATECLAUSE(c, i)
F [j].ADD(c)

newInterfaceClausesi ← ∅

function EAGERPROPAGATECLAUSE(Clause c, from)
// Propagate clause c forward as far as we can
for i← from . . . F.size()−1 do

if not PROPAGATECLAUSE(c, i) then
return i

return i

The central part of IC3 is the cube-blocking procedure
(in PDR, “RECBLOCKCUBE”). There are two major variants
of this procedure. The simpler, ’stack-based’ version takes
an assignment to the flops (a cube) that is known to lead
to the negated property, and incrementally strengthens the
interpolants between each time frame until they are sufficient
to block that cube in the last time frame. In Alg. 4, we show
how we can use a modular SAT solver (either Alg. 1 or Alg.3)
to replace RECBLOCKCUBE . Intuitively, cube-blocking in
the stack-based variant of IC3 is performing almost the same
function as the simple recursive modular SAT solver of Alg.
1, with a few extra steps added. By re-arranging this code
to separate out the part that closely matches Alg. 1 we then
make it possible to replace it with the more complicated SAT
Modulo SAT solver in Alg. 3 as well.

The match is not exact. The most obvious difference is
that IC3 applies inductive generalization [4] to drop literals
from conflict clauses as they are added to the interpolants.
Unfortunately, the solvers for each time step are maintaining
state between calls in the modular SAT solver, which would
be overwritten during inductive generalization. One way to

Algorithm 5 The cube-blocking procedure for the priority-
queue based version of IC3 using a modular SAT solver. This
function is a replacement for the RECBLOCKCUBE procedure
of PDR. We show here the keepCubes option discussed below.
With keepCubes set, we keep the last time frame’s TCubes in
the priority queue for the next iteration rather than discarding
them (as PDR does).

function MODULARBLOCKCUBEPRIORITY(TCube s0)
Q.ADD(s0)
while Q.SIZE() > 0 &&

Q.PEEK().frame < F .SIZE() do
TCube s← Q.POPMIN()
if not ISBLOCKED(s) then

if not MODULARBLOCKCUBE(s) then
return FALSE // Counter-example found

else
Q.ADD(COLLECTALLCUBES(s.frame))
if keepCubes || s.frame < F .SIZE() -1 then

Q.ADD(TCube(s.cube , s.frame + 1))
else if keepCubes && s.frame < F .SIZE() -1 then

Q.ADD(TCube(s.cube , s.frame + 1))
return TRUE

function COLLECTALLCUBES(t)
// Collect all satisfying assignments to the flops
// found during MODULARSOLVE. We assume these
// were stored for frame i in vector flopAssignmentsi.
for i← 1 . . . t− 1 do

for each assignment a ∈ flopAssignmentsi do
Q.ADD(TCube(a, i+ 1))

flopAssignmentsi ← ∅

resolve this would be to keep an extra SAT solver, not part of
the SAT modulo SAT solver, and use that to apply inductive
generalization as conflict clauses are learned. This would allow
us to apply inductive generalization at the same point as IC3,
at the cost of extra memory usage. A second option, which
we take in Alg. 4, is to delay inductive generalization until
after the complete call to the modular SAT solver (during
which many interface clauses may have been learned), and
then subsequently apply inductive generalization to each new
clause. This allows us to re-use the solvers from our modular
SAT solver for generalization.2

Another difference is that one of the original selling points
of IC3 was that it does not require the transition function to
be unrolled; instead, a growing set of sequence interpolants
(with some special properties discussed below) are maintained
by re-using a single transition function between consecutive
interpolants in the sequence. By instantiating a separate copy

2Another subtlety is that when we apply inductive generalization to a clause
from module φi, we re-use the SAT solver for φi from our modular solver, but
call its normal, non-modular SOLVE method (which does not recursively solve
the other modules in the chain). An alternative option would be to use the
entire modular SAT solver chain during generalization, which would increase
the chance of dropping literals from the conflict clauses, but at the cost of
introducing an additional linear time factor (in the number of modules) into
generalization.

136 153

of the transition function for each module φi in our modular
SAT solver, we are giving up this near-constant memory usage.
However, recent versions of PDR have made the same time-
space trade-off, to avoid the cost of tracking which learned
clauses correspond to which time frame.

A more substantial difference between our SAT modulo SAT
solver and IC3 is that IC3 requires the interpolants for each
time frame in the sequence to be constructed from a subset
of the clauses that make up the interpolant for the previous
time frame. We cannot combine the trick IC3 usually applies
for this with Alg. 3, and must instead add a non-deterministic
self-loop to the transition function (by adding an extra input
to the circuit that, when true, forces the flops to their reset
state). This extra non-determinism might be expected to slow
down the SAT solver.3 However, because our solver (like IC3)
always solves its time frames in reverse order, the self-loop
will always be disabled by simple unit propagation before any
decisions must be made in a given time frame. This makes
such a self-loop in the transition function almost cost-free.

Having made these changes, we can directly use a modular
SAT solver (either the simple recursive Alg. 1 or the more
complex SAT Modulo SAT solver Alg.3) to implement the
stack-based cube-blocking procedure from IC3 (see Alg. 4).

Efficient versions of IC3, including PDR, maintain a priority
queue of cubes to block rather than a stack. In this variant,
when IC3 blocks a cube, it generates a new cube with the
same flop assignment, but at the next time frame. This allows
IC3 to discover counter-example traces that are longer than the
number of time frames currently being examined [4], while at
the same time improving the overall performance of IC3 [11].
In order to support this, we need to make our implementation
slightly more complicated (see Alg. 5), as well as change the
modular SAT solver slightly, so that it records each complete
satisfying assignment of the flops in each time frame. This is
a trivial one line change to the SAT modulo SAT solver. In
Alg. 5, we assume that the flop assignments found for time
frame i have been stored in the vector flopAssignmentsi.

The priority queue version of IC3 then proceeds by repeat-
edly popping the lowest TCube s off the queue (a TCube
is a tuple of a cube and the time frame it corresponds to),
solving φ0 under φ1 . . . under φs.frame under s.cube, and then
adding all the cubes that were found during that process into
the queue (see COLLECTALLCUBES). Effectively, this results
in a combination of the priority-queue with the modular SAT
solver’s natural stack-based order for exploring cubes. As we

3 IC3 enforces this property by ensuring that all clauses in each interpolant
hold at the reset state. In cases where it would learn such a clause that does
not hold at the reset state, it weakens the clause by appending a literal from
the reset state that does not already appear in the clause. Such a literal is
guaranteed to exist, because if no literals in the cube were opposite the polarity
of the reset state, then IC3 would have found a counter-example (and exited).
That literal can be used to weaken the conflict clause so that it is satisfiable
at the reset state, while still blocking the cube.

We cannot combine this trick with unit propagation across modules as
in Alg. 3, because such propagation may occur when an arbitrary partial
assignment has been made to the flops. This partial assignment might not
contain any literals opposite the reset state, in which case we would not be
able to weaken the clause as IC3 does while still blocking the assignment.

will show below, this re-ordering appears to have a negative
impact on performance, but one that is more than made up for
by the use of the modular SAT solver.

With these changes, and otherwise following PDR’s imple-
mentation (including applying ternary simulation, which we
apply to αi just before the loops in Alg. 1 and 3), we used our
modular solver to implement a competitive version of the PDR
variant of IC3. As we will show below, in addition to solving
as many or more instances as either PDR or IC3 on three
major benchmark sets, this procedure solves many different
instances that were not previously solved by either PDR or
IC3.

A. Additional Changes to IC3

We also introduce two additional alterations to IC3 to further
improve our solver. The first change is fairly minor. In the
priority queue variant of IC3, when a cube is blocked at time
frame i, it is re-enqueued at frame i + 1. However, if i is
the last currently expanded time frame, the cube is simply
discarded. Instead, we keep these cubes and enqueue them
into the priority queue at frame i + 1, and keep them in the
queue for the next iteration (at which point time frame i+ 1
will have been explored). This is shown in Alg. 5, when the
keepCubes flag is set. We only ever discard cubes from the
last time frame if they are syntactically blocked. We have also
explored keeping all such clauses even if they are blocked
syntactically in the last time frame, and it seems to lead to
only a slight decrease in performance to do so.

A more significant change addresses a drawback of IC3
(including the PDR variant). IC3 always attempts to propagate
clauses from the first to the last time frame at each iteration. As
a result, IC3 requires at least quadratic time in the number of
frames, and that by itself can lead to unacceptable slow-downs
on instances that require many iterations to be explored, even if
the instance is otherwise trivial. Just such an example has been
encountered in practice by users of the Z3 [8] implementation
of PDR.4

We observe that it is not typically necessary to try prop-
agating clauses all the way from the lowest time frame at
each iteration. Instead, we have found it sufficient in practice
to propagate only from the lowest strengthened time frame
to the last, at each iteration (see Alg. 6). This is a very
simple change that improves performance when an instance
is explored to a very deep time bound. Informal testing on
Z3’s PDR variant [14] has shown that this change improves
performance on the example referenced earlier.

In principle, failing to propagate clauses from the first time
frame may lead to a loss of IC3’s convergence guarantees.
If this were a concern, it would be sufficient to force clause
propagation to periodically start from the first time frame —
something we have tried and found not to lead to substantial
performance improvements in practice.

4See, e.g., http://stackoverflow.com/q/15946304

137154

http://stackoverflow.com/q/15946304

Algorithm 6 Faster clause propagation, by not attempting
to propagate clauses from time frames that did not require
strengthening in the current iteration.

function PROPAGATECLAUSES
lowest ← 0
for i← (F .size()-1) . . . 0 do

if not SolverIsMarked(i) then
lowest← i+ 1
break

clearSolverMark(i)
for k ← lowest . . . F.size()−1 do

for all clauses c ∈ F [k] do
if PROPAGATECLAUSE(c,k + 1) then

F [k].remove(c)
F [k + 1].add(c)

if F [k].size()=0 then
return ‘Invariant Found’

IV. EXPERIMENTAL RESULTS

Our implementations of both Alg. 1 and the SAT Modulo
SAT solver described in Section II-A are based on MiniSat
2.2 [10], a prominent incremental SAT solver that has served
as a basis for many successful SAT solvers. We implemented
IC3 using this solver as described above in Alg. 5.5

We compare to both the publicly released IC3, and also to
the current implementation of PDR in ABC (version 1.01).
This implementation of PDR is also part of the SUPERPROVE
model checker that won the Hardware Model Checking Com-
petition in 2010, 2011, and 2012.

Experiments on the 2008 instances were conducted on 32-
bit 3.2GHz Intel Xeon machines with 2 MB cache under open-
SUSE 11.1, using 15 minute timeouts and 1500 MB memory
limits. Experiments for the 2010 and 2012 instances were
conducted on 64-bit, 6-core, 2.6GHz Intel Xeon machines
with 12 MB cache running Red Hat Linux 5.5, using 15
minute timeouts and 7000 MB memory limits. These condi-
tions closely match those of the 2008 and 2012 competitions,
respectively. When testing each model checker (including PDR
and IC3), we first used ABC to apply DAG-aware rewriting
for preprocessing the circuit (using the ‘rewrite’ command).6

Using our PDR implementation with the SAT Modulo SAT
solver, but without the last two improvements to IC3 from
Section III-A, performance is comparable to both IC3 and
PDR (see the column, ‘SMS’, of Table I). If we substitute the
unoptimized Alg. 1 for the SAT Modulo SAT solver, perfor-
mance drops substantially on all benchmarks (see column ‘No
SMS’). This gives us confidence that our SAT Modulo SAT
solver is indeed a major improvement to Alg. 1, at least in this

5We have made the source code for the modular SAT solver available online,
at www.cs.ubc.ca/labs/isd/Projects/ModularSAT.

6Results for each competition’s virtual best solver is as reported in the
respective competitions.

No SMS SMS SMS-PDR PDR IC3 VBS
HWMCC’08 504 587 596 581 586 597
HWMCC’10 684 742 749 733 712 781
HWMCC’12 69 84 92 84 48 233

TABLE I: Total instances solved within 900 seconds from the
2008, 2010, and 2012 Hardware Model Checking Competi-
tions (single property track). Including all improvements, our
final implementation (‘SMS-PDR’) beats both IC3 and PDR
on each benchmark. Notice how for the 2008 benchmarks we
solve just 1 fewer instance than the virtual best solver (‘VBS’
— the virtual best solver counts all instances solved by any
solver in the competition).

SMS-PDR PDR IC3
SAT UNSAT SAT UNSAT SAT UNSAT

HWMCC’08 245 351 242 339 240 346
HWMCC’10 322 427 317 416 308 404
HWMCC’12 25 67 21 63 14 34

TABLE II: Breakdown of SAT and UNSAT instances from
Table I. SMS-PDR solves more SAT and more UNSAT
instances than both PDR and IC3 on all three benchmarks.

context.7 This model checker is also clearly competitive with
IC3 and PDR — especially on the 2010 instances. Moreover,
on closer inspection, we also observed that this version of our
model checker solved 17 new instances that were solved by
neither IC3 nor PDR from the 2012 benchmarks, and 13 and
9, respectively, from the 2010 and 2008 sets.

We can then ask whether we can improve our solver to solve
more of the instances that IC3 and PDR solve, without giving
up these new instances. We accomplish exactly this, by adding
the last two improvements discussed in Section III-A. These
improvements allow us to solve several additional instances
(all but 3 of which IC3 or PDR could already solve), without
giving up any of the newly solved instances of our initial
implementation (see column ‘SMS-PDR’ in Tables I and II).

From Table I, we note that on the 2008 instances, our
final model checker solves just one instance fewer than the
corresponding virtual best solver — the virtual best solver
counts any instance solved by any solver running in that
competition — under roughly the same conditions. In Table II,
we split the results for each model checker into SAT and
UNSAT instances, to show that for all three competitions, we
always solve more SAT and more UNSAT instances than both
IC3 and PDR. In contrast, notice that while PDR improved
hugely upon IC3’s performance on the 2012 instances, it
actually performed slightly worse on the 2008 instances.

The improvements introduced in Section III-A, as well
as the use of our SAT Modulo SAT solver, both increased

7At the same time, we can ask why it is the case that when using
Alg. 1 instead of Alg. 3, our performance is so much worse than IC3’s.
As discussed in Sec. III, there are effectively just a few differences between
PDR’s RECBLOCKCUBE and Alg. 5, if the unoptimized modular SAT solver
of Alg. 1 is used and if our last two changes to IC3 are not implemented.
The performance drop relative to IC3 in this case is likely either due to our
delaying inductive generalization until later in the process, or a consequence
of using a self-loop in the transition function (though we argue why this is
not likely in Sec. III).

138 155

www.cs.ubc.ca/labs/isd/Projects/ModularSAT

the total number of solved instances. However, the SAT
modulo SAT solver by itself contributes most of the newly
solved instances — that is, instances that we solved, but that
neither IC3 nor PDR could solve. Our model checker using
just the SAT modulo SAT solver solved 9, 13, and 17 new
instances in the 2008, 1010, and 2012 benchmarks, while
combining the SAT Modulo SAT solver with the changes from
Section III-A solved 9, 15, and 21 such instances. On this
basis, we argue that the SAT Modulo SAT solver is critical
to the overall performance improvement achieved by our final
model checker.8

We can also look at the respective memory usage of our
solvers. As we remarked earlier, like current versions of ABC’s
PDR, we instantiate a solver for each time step, which results
in roughly linear memory usage in the number of time steps.
This gives up one of the original advantages of IC3, which is
that it expands only one time frame at a time, which requires
roughly constant memory. Both of these bounds ignore the
theoretically exponential memory of the learned clauses and
interpolants.

We found that our solver ran out of memory on 13, 1, and
7 instances for the 2008, 2010, and 2012 benchmarks (recall
that the 2008 competition was limited to just 1.5 GB, vs 7 GB
for the others). In contrast, IC3 ran out of memory on just two
instances in our experiments, both from the 2012 benchmarks.
However, there was only one case in which our solver ran out
of memory on an instance that IC3 was able to solve - and
that particular instance, from the 2008 benchmark set, was one
that our solver was able to solve in the 2010 benchmark set
(which had a higher memory limit). So, as we would expect,
IC3’s near-constant memory usage is an advantage on some
instances.

V. CONCLUSION

We have introduced a novel approach for modular SAT
solving, which naturally computes sequence interpolants with-
out proofs. We have made this efficient through the use of
standard techniques borrowed from lazy SMT solvers, and we
have shown that this can form the basis of an efficient model
checker. We have also introduced additional improvements to
IC3 that should generalize to other implementations, including
PDR, whether or not they utilize our SAT Modulo SAT solver.
The resulting state-of-the-art model checker performs better
than both PDR and IC3, for both SAT and UNSAT instances,
on three competitive sets of benchmarks.

VI. ACKNOWLEDGMENTS

We thank Armin Biere for his insights about the connection
between other CNF partitioning solvers and modular solvers.
We thank Nikolaj Bjorner for pointing us to the loop example
cited in Section III, and for testing our faster clause propa-
gation in Z3. We also thank the anonymous reviewers of this

8We can also ask how the changes from Section III-A fare on their own.
Implementing them in the non-SMS version of our solver does not improve
performance at all, while implementing them in ABC’s PDR led to 2 and 3
additional instances solved on the 2008 and 2010 benchmarks, and 3 fewer
solved on the 2012 benchmarks.

paper, as well as of a previous manuscript which led to this
work.

This research has been supported by the use of computing
resources provided by WestGrid and Compute/Calcul Canada,
and by funding provided by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

REFERENCES

[1] F. Aloul, I. Markov, and K. Sakallah, “MINCE: A static global variable-
ordering heuristic for SAT search and BDD manipulation,” Journal of
Universal Computer Science, vol. 10, no. 12, pp. 1562–1596, 2004.

[2] A. Biere, “PicoSAT essentials,” Journal on Satisfiability, Boolean Mod-
eling and Computation (JSAT), vol. 4, no. 2-4, pp. 75–97, 2008.

[3] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic model checking
without BDDs. Springer, 1999.

[4] A. Bradley, “SAT-based model checking without unrolling,” in Verifica-
tion, Model Checking, and Abstract Interpretation. Springer, 2011, pp.
70–87.

[5] G. Cabodi, S. Nocco, and S. Quer, “Interpolation sequences revisited,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2011. IEEE, 2011, pp. 1–6.

[6] H. Chockler, A. Ivrii, and A. Matsliah, “Computing interpolants without
proofs,” in Proceedings of the Eighth Haifa Verification Conference,
2012.

[7] A. Cimatti and A. Griggio, “Software model checking via IC3,” in
Computer Aided Verification. Springer, 2012, pp. 277–293.

[8] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340.

[9] V. Durairaj and P. Kalla, “Guiding CNF-SAT search via efficient con-
straint partitioning,” in Proceedings of the 2004 IEEE/ACM International
Conference on Computer-Aided Design. IEEE Computer Society, 2004,
pp. 498–501.

[10] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing. Springer, 2004, pp. 333–336.

[11] N. Eén, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in Formal Methods in Computer-Aided
Design (FMCAD), 2011. IEEE, 2011, pp. 125–134.

[12] O. Grumberg, A. Schuster, and A. Yadgar, “Memory efficient all-
solutions SAT solver and its application for reachability analysis,” in
Formal Methods in Computer-Aided Design. Springer, 2004, pp. 275–
289.

[13] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik, “Partition-
based decision heuristics for image computation using SAT and BDDs,”
in Proceedings of the 2001 IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 2001, pp. 286–292.

[14] K. Hoder and N. Bjørner, “Generalized property directed reachability,”
in Theory and Applications of Satisfiability Testing–SAT 2012. Springer,
2012, pp. 157–171.

[15] A. Hyvärinen, T. Junttila, and I. Niemelä, “Partitioning SAT instances for
distributed solving,” in Logic for Programming, Artificial Intelligence,
and Reasoning. Springer, 2010, pp. 372–386.

[16] K. McMillan, “Interpolation and SAT-based model checking,” in Com-
puter Aided Verification. Springer, 2003, pp. 1–13.

[17] T. Park and A. Van Gelder, “Partitioning methods for satisfiability testing
on large formulas,” Automated Deduction âĂŤ CADE-13, pp. 748–762,
1996.

[18] D. Ranjan, D. Tang, and S. Malik, “A comparative study of 2QBF
algorithms,” in The Seventh International Conference on Theory and
Applications of Satisfiability Testing (SAT 2004), 2004, pp. 292–305.

[19] R. Sebastiani, “Lazy satisfiability modulo theories,” Journal on Satisfia-
bility, Boolean Modeling and Computation (JSAT), vol. 3, pp. 141–224,
2007.

[20] Y. Vizel, V. Ryvchin, and A. Nadel, “Efficient generation of small
interpolants in CNF,” in Computer Aided Verification, 2013, pp. 330
– 346.

[21] Y. Vizel and O. Grumberg, “Interpolation-sequence based model check-
ing,” in Formal Methods in Computer-Aided Design, 2009. FMCAD
2009. IEEE, 2009, pp. 1–8.

139156

Better Generalization in IC3
Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi

Dept. of Electrical, Computer, and Energy Engineering
University of Colorado at Boulder

Email: zyad.hassan@colorado.edu, bradleya@colorado.edu, fabio@colorado.edu

Abstract—An improved clause generalization procedure for
IC3 is presented. Whereas standard generalization extracts a
relatively inductive clause from a single state, called a coun-
terexample to induction (CTI), the new procedure also extracts
such clauses from other states, called counterexamples to gener-
alization (CTG), that interfere with the primary generalization
attempt. The motivation is to enable IC3 to explore states farther
from the error states than are CTIs while remaining property-
focused. CTGs are strong candidates for being farther but still
backward reachable. Significant reductions in the maximum
depth reached by IC3’s priority queue-directed explicit backward
search indicate that this intention is achieved in practice. The ef-
fectiveness of the new procedure is established in two independent
implementations of IC3, which demonstrate an increase of 17 and
27, respectively, in the number of solved HWMCC benchmarks.

I. INTRODUCTION

IC3 [1], [2] is an incremental, inductive model checking
algorithm for invariance properties. It operates in a demand-
driven manner, generating relatively inductive lemmas in re-
sponse to states that interfere with the inductiveness of the
property. Lemma generation proceeds incrementally until an
inductive strengthening is discovered or the lemmas guide the
backward search to a counterexample trace. IC3 is SAT-based
but, in contrast to other SAT-based approaches, poses relatively
easy but numerous SAT queries that arise from considering
single steps of a transition relation. This style of using a SAT
solver keeps its memory footprint small.

One of the key components of IC3 is inductive general-
ization. While IC3 has an element of explicit state model
checking in that it examines individual states, called counterex-
amples to induction (CTIs), inductive generalization makes
it symbolic, allowing it to handle huge state spaces. IC3’s
success on a model thus hinges on its ability to generalize
facts that it discovers from considering specific states.

The effectiveness of generalization depends on the con-
nectivity of a model’s state graph and its encoding. Some
encodings and some models, independent of encoding, coupled
with the overapproximate nature of inductive generalization,
require IC3 to examine more individual states. Consider the
state graph in Figure 1, where 000 is the initial state and 001
is the bad state. This model has two counterexamples to the
inductiveness of the property: 110 and 100, two good states
with a bad successor.

Suppose state 100 is the first CTI that IC3 finds. Since this
state does not have predecessors, its negation is inductive, so
that IC3 concludes it is unreachable. The unreachability of this

state is a specific fact that IC3 next tries to generalize in order
to prove that other states are unreachable as well. It does so
by attempting to drop as many literals as possible. However,
in this case no literals can be dropped. For example, if IC3
attempts to drop the third literal, the negation of the resulting
cube 10−, where − indicates a don’t care, is not inductive
because of the predecessor 011 to state 101. If there is a cube
whose negation is inductive and excludes both 100 and 101,
that cube must also include 101’s predecessor, 011. However,
the smallest cube that includes all three states is −−−, which
includes the initial state and whose negation is therefore not
inductive. Similar reasoning shows that IC3 also cannot drop
the first and second literals. Thus the strongest clause that can
be derived through generalization only blocks the CTI itself.
IC3 then has to prove that the other CTI (110) is unreachable
without having learned much from the first CTI.

A state that hinders a generalization attempt (011 in the
example) is called a counterexample to generalization (CTG):
it prevents dropping a literal (the third in the example), i.e.,
generalizing to a larger cube. Despite being itself unreachable,
state 011 causes the inclusion of an initial state into the
cube that covers both it and 10−, which in turn causes
generalization to fail. In this case, it is useful to focus some
effort on the CTG rather than only on the CTI. Since the
negation of the CTG is inductive, IC3 can block it. Then,
with its predecessor blocked, dropping the third literal of 101
succeeds. Indeed, the second literal can be dropped as well,
as all predecessors of the cube 1−− are blocked. This further
expansion takes care of state 110 as well, ending the analysis.

This example motivates the improved generalization proce-
dure described in this paper. The proposed procedure addresses
CTGs that appear during the generalization of some CTI-
derived relatively inductive clause. CTGs are often deep back-

000

010 011

101

111 110

001100

CTG

CTI

Fig. 1. Failure to generalize a clause.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 140157ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

ward reachable states. Addressing them reduces the depth of
the explicit backward search IC3 performs and allows stronger
inductive generalizations.

The proposed generalization procedure is evaluated within
the implementations of IC3 in the model checkers IImc [3] and
ABC [4]. Both show considerable improvement on Hardware
Model Checking Competition (HWMCC) benchmarks [5].

Preliminaries are in Section II. Section III describes the
proposed generalization procedure. Section IV presents the
results of improved generalization on the HWMCC 2010–2012
benchmark suites. The behavior of IC3 with the improved pro-
cedure is studied in detail in Section V. Section VI discusses
related work. Finally, conclusions are in Section VII.

II. PRELIMINARIES

A. Transition Systems and Induction

Following standard practice, a finite-state system is repre-
sented as a tuple S : (i, x, I(x), T (i, x, x′)) consisting of
primary inputs i, state variables x, a propositional formula
I(x) describing the initial configurations of the system, and
a propositional formula T (i, x, x′) describing the transition
relation. Primed state variables x′ represent the next state.

A state of the system is an assignment of Boolean values to
all variables x and is described by a cube over x, which is a
conjunction of literals, each literal a variable or its negation.
An assignment s to all variables of a formula F either satisfies
the formula, s |= F , or falsifies it, s 6|= F . If s is interpreted
as a state and s |= F , then s is called an F -state. A formula F
implies another formula G, written F ⇒ G, if every satisfying
assignment of F satisfies G. The (in)validity of F ⇒ G is
established by querying a SAT solver for the unsatisfiability
of F ∧ ¬G.

A clause is a disjunction of literals. A subclause d ⊆ c is a
clause d whose literals are a subset of c’s literals.

A run of S, s0, s1, s2, . . ., which may be finite or infinite in
length, is a sequence of states such that s0 |= I and for each
adjacent pair (sj , sj+1) in the sequence, ∃i.(i, sj , s′j+1) |= T .
That is, a run is the sequence of assignments in an execution
of the transition system. A state that appears in some run of
the system is reachable.

Checking a safety property of S is reducible to checking
an invariance property [6]. An invariance property P (x), a
propositional formula, asserts that only P -states are reachable.
P is invariant for the system S (that is, S-invariant) if indeed
only P -states are reachable. If P is not invariant, then there
exists a finite counterexample run s0, s1, . . . , sk such that sk 6|=
P . An invariance property P (x) is inductive if

1) (initiation) every initial state satisfies the property:
I(x)⇒ P (x); and

2) (consecution) every transition from a P -state leads to a
P -state: P (x) ∧ T (i, x, x′)⇒ P (x′).

While an inductive property P is invariant, the converse is
not necessarily true. In this case, it is customary to seek an
inductive strengthening of P , which is a formula F such that
F ∧ P is inductive.

An assertion F is inductive relative to another assertion G,
possibly containing primed variables, if

1) every initial state satisfies F : I(x)⇒ F (x); and
2) F satisfies consecution under assumption G:

G(x, x′) ∧ F (x) ∧ T (i, x, x′)⇒ F (x′).

B. An Overview of IC3

IC3 maintains a sequence of overapproximations Fi to sets
of states reachable within i steps, for 0 ≤ i ≤ k, where Fk is
the frontier. Each Fi is a conjunction of the property P with an
initially empty set of clauses. For each k > 0, IC3 refines the
Fi’s for i ≤ k as needed to prove inductiveness of P relative
to Fk. This refinement is property-driven: a counterexample to
the inductiveness (CTI) of the property, which is an Fk-state
with a ¬P -successor, triggers IC3 to derive a clause to block
it. If successful, it applies induction to generalize the clause
to block many more states than the CTI alone. It then adds
the generalized clause to Fi for all i ≤ k.

Otherwise, it explores (transitive) predecessors of the CTI
to derive supporting strengthening clauses until the original
CTI can itself be addressed relative to Fk. This exploration of
concrete predecessors is guided by a priority queue of pairs
of states and frame indices: (s, i) represents the obligation
that state s must be inductively excluded relative to Fi, i.e.,
proved unreachable for at least i + 1 steps. Obligations are
handled in lowest-index-first order, guaranteeing termination.
IC3 aggressively generalizes from states: once it addresses
(s, i) by finding a clause c ⊆ ¬s that is inductive relative
to some Fj , j ≥ i, IC3 adds obligation (s, j+1) to the queue
if j < k. This aggressive strategy not only facilitates early
discovery of mutually inductive clauses; it also allows IC3 to
find deep counterexamples even when k is small.

When no CTIs remain (for Fk), IC3 checks each clause
of each Fi to determine if it can be propagated forward, i.e.,
if it has become inductive relative to Fi since its creation
because of subsequent strengthening of Fi. In the process,
IC3 determines whether any Fi has become an inductive
strengthening of the property, in which case the property is
declared to hold. If not, it increments k and “bootstraps” the
new frontier Fk with all clauses that are inductive relative
to Fk−1. This process continues until IC3 finds an inductive
strengthening of the property or finds a counterexample by
following a sequence of CTIs back to an initial state.

IC3 generalizes a clause by using induction to guide the
dropping of literals. IC3’s generalization procedure is de-
scribed in Listing 1. Notice, when reading the pseudocode,
that cubes are passed by reference. The minimum-inductive
clause procedure (MIC) attempts to drop each literal in turn
from q, calling down to validate each potential strengthening
of the clause (and, as a side effect, to further strengthen the
clause). If down reports that the literal cannot be dropped, MIC
returns it to the clause.

Given a cube q, the down procedure seeks the maximal
inductive subclause of ¬q. It returns true if found and false if
no inductive subclause exists. The down procedure effectively
computes an overapproximation of states backward reachable

141158

Listing 1. IC3 generalization procedure.
1v o i d MIC (q : cube r e f , i : l e v e l) :
2foreach l i t e r a l l in q :
3q̂ := q \ l
4i f down (q̂ , i) :
5q := q̂
6
7b o o l down (q : cube r e f , i : l e v e l) :
8whi le t rue
9i f I 6⇒ ¬q :
10re turn f a l s e
11i f Fi ∧ ¬q ∧ T ⇒ ¬q′ :
12re turn true
13with (Fi ∧ ¬q)−s t a t e s :
14q := q t s

from a given state set. It limits the cost by maintaining sets
of states in the form of a single cube. If upon reaching a
fixpoint, the cube does not include any of the initial states,
the cube represents a set of states that are unreachable in
i + 1 steps. Denoting the cube at iteration j by qj , each
fixpoint iteration queries the SAT solver for the existence of an
(Fi ∧¬qj)-predecessor to some qj-state. The absence of such
a predecessor indicates the inductiveness of ¬qj relative to Fi.
Otherwise, there is an (Fi ∧¬qj)-state s that is a predecessor
to some qj-state. A new cube qj+1 is formed by taking the
common literals in qj and s (denoted by qj t s). The number
of literals in the cube thus strictly decreases in every iteration,
effectively expanding the set of states in qj .

The MIC procedure can be optimized using the up procedure
[7], which is outside the scope of this paper.

III. ADDRESSING
COUNTEREXAMPLES-TO-GENERALIZATION

A. Presentation of the Procedure

Keeping only the common literals of qj and s provides an
overapproximating union over state sets—a join in the cube
lattice. While this operation responds to the need to include
the qj-predecessor s in the state set described by qj+1, it also
typically brings in other Fi-states. Therefore, even when all
q0-states are unreachable, down (eventually) fails if, through
overapproximation, it incorporates a reachable state.

State s is called a counterexample to generalization (CTG)
since it is encountered in the context of dropping a literal
(in MIC) in order to generalize a cube. Unlike CTIs, states
brought in as a result of dropping a literal or joining are not
necessarily backward reachable from the error. On one hand,
if s is backward reachable—and it represents a set of deep
backward reachable states—then addressing it could save IC3
from having to explicitly traverse the state graph from the
error state to s. On the other hand, if s is neither backward
nor forward reachable, it could still obstruct generalization:
when it is joined with qj to form qj+1, it could cause the
inclusion of a reachable state. As described so far, IC3 would
never attempt directly to block s since it only generalizes from
backward reachable states. Yet blocking s, rather than joining

with it, could enable finding an inductive subclause, thereby
helping the generalization procedure produce stronger clauses
and potentially shortening the way to a proof.

Listing 2. Proposed generalization procedure.
1v o i d MIC (q : cube r e f , i : l e v e l) :
2MIC (q , i , 1)
3
4v o i d MIC (q : cube r e f , i : l e v e l , d : r e c D e p t h) :
5foreach l i t e r a l l in q :
6q̂ := q \ l
7i f ctgDown (q̂ , i , d) :
8q := q̂
9
10b o o l ctgDown (q : cube r e f , i : l e v e l ,
11d : r e c D e p t h) :
12ctgs := 0
13whi le t rue :
14i f I 6⇒ ¬q :
15re turn f a l s e
16i f Fi ∧ ¬q ∧ T ⇒ ¬q′ :
17re turn true
18with (Fi ∧ ¬q)− s t a t e s :
19i f d > maxDepth :
20re turn f a l s e
21i f ctgs < maxCTGs and i > 0 and
22(I ⇒ ¬s) and (Fi−1 ∧ ¬s ∧ T ⇒ ¬s′) :
23ctgs := ctgs+ 1
24f o r j := i to k do :
25i f Fj ∧ ¬s ∧ T 6⇒ ¬s′ :
26break
27MIC (s , j − 1 , d+ 1)
28clauses(Fj) := clauses(Fj) ∪ ¬s
29e l s e :
30ctgs := 0
31q := q t s

A generalization procedure that addresses CTGs is pre-
sented in Listing 2. Similarly to down, ctgDown first checks
whether ¬q is inductive (lines 14–17). However, if it is not
inductive, it does not immediately join q with the discovered
predecessor s. Rather, it attempts to block s at level i by
proving it inductive relative to Fi−1 (line 22). If this attempt
succeeds, it tries to block it at higher levels (lines 24–26).
It then strengthens the clause at the highest level relative to
which it was found to be inductive by applying MIC (line
27). (Again, notice that cubes are passed by reference, so that
when MIC returns, the cube s may be significantly expanded.)
Having addressed one cause for the non-inductiveness of ¬q,
ctgDown returns its attention to q.

To maintain its focus on the main goal of strengthening ¬q,
ctgDown considers at most maxCTGs CTGs between joins
(line 21). If the limit is exceeded or a CTG is not found to
be inductive, the CTG is joined with q (line 31). New states
brought in as a result of the join present an opportunity to
explore behaviors farther from the error, so ctgDown resets
the number of allowable CTGs to maxCTGs (line 30).

Since ctgDown calls MIC, the version of MIC associated with
ctgDown monitors the recursion depth through its d parameter.
The recursion depth is initialized by the wrapper function

142 159

to 1 (line 2) and updated by the call to MIC from ctgDown
(line 27). At a recursion depth of 1, ctgDown examines CTGs
that are encountered during generalization of a CTI-induced
clause. For larger depths, an encountered CTG is one that
interferes with the generalization of a CTG-induced clause. A
limit, maxDepth, limits the effort spent on addressing CTGs
of CTG-induced clauses. When this limit is exceeded (line
19), CTGs are not examined, and joins are disabled; instead,
ctgDown fails immediately if ¬q is not inductive (line 20).

B. Discussion

The recycled limit on handling CTGs results in an interest-
ing pattern of state exploration. IC3 itself explores, through its
priority queue, the state space in an explicit manner backward
from the error. Let s be such a state: s can reach the error in
a relatively few number of steps. If IC3 is forced to consider
a predecessor of s, then it is known that the predecessor, too,
can reach the error. In contrast, when MIC is applied to s, the
first step is to drop a literal, enlarging the represented state
set. In ctgDown, up to maxCTGs times, predecessors of the
enlarged cube are then considered as CTGs. They are likely
to be backward reachable; they are also likely to be about as
close to an error as s is1.

Eventually maxCTGs is exhausted, forcing a join. Predeces-
sors to the enlarged cube are then considered as CTGs. These
predecessors are less likely to be backward reachable but more
likely to be “farther” from an error than s. Deep backward
reachable states may be particularly valuable. This cycle can
continue for several iterations, each iteration exploring states
that are increasingly far from the error but at the cost of being
increasingly likely not to be able to reach the error. Further
iterations of dropping literals by MIC add layers of likelihoods
of depth and backward reachability to the state exploration.

Another behavior worth noting is that ctgDown can fail
more softly than down. When down fails, the only gained
information is that the dropped literal is actually required.
In contrast, ctgDown may successfully handle some CTGs
on the way to failing to prove the inductiveness of the given
cube. These CTG-derived lemmas could well prove useful in
addressing the overall model checking problem.

In early attempts at considering CTGs, a scheme that
delayed the handling of CTGs as much as possible was
investigated. Rather than prioritizing the direct handling of
CTGs over joining with them, it aggressively joined and
only handled CTGs upon failure. If ¬qj failed initiation, the
last-encountered CTG s was addressed directly. Successful
elimination of s would enable the reconsideration of qj−1;
failure would cause the CTG leading from qj−2 to qj−1 to
be addressed instead, and so on. This version was inferior
to ctgDown, possibly because too much effort was put into
addressing states that were either not actually backward reach-
able or too removed from the original CTI to be relevant to the

1While there are models for which this assumption is invalid, the fraction
of state bits of a large digital system that changes at each clock cycle is often
less than one tenth. This fraction supports the view that similarity between
states decreases with their distance in the state graph.

generalization effort. ctgDown explores CTGs in an outwardly
expanding set from the error; the unsuccessful variant explored
CTGs in an inwardly contracting set.

While these explanations assume characteristics of a state
space that need not hold for a given model, they offer an
intuitive motivation for using ctgDown instead of down: with
some trade-offs, it jumps to deep states, complementing IC3’s
conservative top-level behavior. Section V compares, empiri-
cally, the behavior of IC3 with down versus with ctgDown.

IV. RESULTS

In this section IC3 with ctgDown is compared empirically to
existing standard implementations of IC3. The new procedure
was implemented within the IC3 engines in IImc v1.3 (upcom-
ing release) [3] and in ABC vbb0deac (Apr 3, 2013) [4].
The implementations of ctgDown differ from the pseudocode
of Listing 2 in the following respects:

• In the IImc implementation, the consecution call in line
26 was implemented as a call to down. This change
enables blocking a CTG at a (higher) level at which
its negation is not inductive but contains an inductive
subclause. The experiments are inconclusive with regards
to which version is better.

• In the ABC implementation, the CTG cube is expanded
through ternary simulation before it is checked for induc-
tiveness (line 18) [8].

ABC’s standard implementation of IC3 does not employ down
in its generalization procedure; in particular, it never joins.
However, the implementation of ctgDown includes joining.
Experiments (whose details are not reported here) show that
a variant of ctgDown in which joining was disabled is inferior
to full ctgDown.

Hence, experiments with IImc compare the effects of ctg-
Down against down, while experiments with ABC compare the
effects of ctgDown against ABC’s generalization procedure.

The following parameter values were used in the experi-
ments for both implementations of ctgDown: maxDepth = 1
and maxCTGs = 32.

The benchmark suite was gathered from the HWMCC
2010–2012 benchmarks—with one exception. Backward-
encoded BEEM models (distinguished by the names
beem*ibj) were replaced with their corresponding “func-
tional” versions, also available from [5]. The backward en-
coding of these models involves two features3:

1) Serial exists-step transition relation [9]: this feature adds
“shortcut” transitions to the state graph.

2) Reverse relational encoding: the transition relation is
inverted, and the initial states are swapped with the
bad states. The latch updates are directly from primary
inputs, and a valid bit is added to track whether a
state is backward reachable in the original design.

2Generally, small values for maxCTGs (2–5) gave the best performance.
For higher values, IC3 tended to derive too many clauses.

3See http://fmv.jku.at/aiger/README.beemaigs for details.

143160

IImc has a “reverse” option to invert the transition relation
and exchange the initial and error states. With this option,
IImc typically works better on reverse-encoded models and
worse on forward-encoded ones. A possible explanation is that
a clause is a natural logical means of describing a design
intention; moreover, conjunctions of clauses capture local
arguments. In contrast, disjunctions of cubes—which is what
IC3 produces from the forward perspective on reverse-encoded
designs—do not. With both the functional and the backward
encodings of these models available, one would never choose
to use the backward encoding with IC3. Conclusions drawn
from data based on such benchmarks are misguided.

As a preprocessing step, IImc’s sr simplification tactic was
applied to each benchmark. Then, IImc and ABC with and
without the new generalization procedure were run on the
simplified benchmarks only invoking their IC3 engines. No
other features of IImc or ABC—e.g., multi-threading, other
proof engines, or more powerful simplification techniques—
were used. Each benchmark was run for up to 900 seconds.
To account for variability, each benchmark was run five times
with different random seeds. The experiments were performed
on two identical machines with four 2.80 GHz Intel cores
and 9 GBs of memory. The full results can be found at
http://vlsi.colorado.edu/fmcad13.

 1

 10

 100

 1000

 500 550 600 650 700 750 800 850 900 950

C
P

U
 t

im
e

(s
)

Number of solved benchmarks

IImc
IImc with ctgDown

ABC
ABC with ctgDown

Fig. 2. Cactus plot comparing the performance of IImc and ABC with and
without ctgDown.

A comparison between the performance of IC3 with and
without ctgDown is presented in Figures 2–4. Figure 2 shows
cactus plots for IImc and ABC and Figures 3 and 4 show
scatter plots. All the plots use the results of the median runs.

For the easier models, the use of ctgDown does not typically
reduce CPU time (Figures 3 and 4). An exception is the effect
on the run times of failing properties with IImc.

Detailed results by benchmark family are presented in Table
I. Benchmark families with at least 60 benchmarks are listed
separately. The remaining benchmarks are included in the
“other” category. The “Solved” columns show the minimum,
median, and maximum number of solved instances over the
five runs. The “Time” columns reports the median CPU time in

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

II
m

c
w

it
h

 c
tg

D
o

w
n

:
C

P
U

 t
im

e
(s

)

IImc: CPU time (s)

 UNSAT
SAT

Fig. 3. IImc scatter plot

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

A
B

C
 w

it
h

 c
tg

D
o

w
n

:
C

P
U

 t
im

e
(s

)

ABC: CPU time (s)

 UNSAT
SAT

Fig. 4. ABC scatter plot

seconds. Overall, IImc and ABC with ctgDown solve 17 and 27
more instances, respectively, than their standard counterparts4.
The same trend was observed when the timeout was increased
to one hour: IImc and ABC solved 17 and 24 more instances
respectively.

V. ANALYSIS OF IC3’S BEHAVIOR

An observed weakness in IC3 with down is that on some
models, it handles long chains of states explicitly rather than
symbolically. ctgDown is intended to address this weakness

4Since the median is used, the sum of the gains for the individual families
is not necessarily equal to the overall gain.

144 161

TABLE I
DETAILED RESULTS BY BENCHMARK FAMILY.

IImc ABC
Standard With ctgDown Standard With ctgDown

Family Size Solved Time (s) Solved Gain Time (s) Solved Time (s) Solved Gain Time (s)
139 99 98/99/99 2524 99/99/99 0 1230 99/99/99 701 99/99/99 0 754
6s 120 18/19/22 93466 19/21/22 2 94211 19/23/24 88401 27/30/31 7 82941
beem 86 46/48/49 38149 47/50/51 2 39594 50/51/53 34098 54/56/57 5 31191
bob 149 121/122/125 25804 120/120/122 (2) 28679 122/123/124 24292 122/124/127 1 24083
intel 60 22/23/23 35004 29/30/31 7 31153 23/23/23 35665 25/26/27 3 34249
pdt 350 330/331/332 19291 336/336/337 5 15469 327/329/329 22162 333/333/333 4 18120
other 280 270/271/272 11947 272/274/275 3 11463 269/270/271 12591 272/274/274 4 10359
Total 1144 910/913/917 226790 924/930/932 17 222460 914/916/919 218906 936/943/944 27 201417

by accelerating IC3’s exploration of deep backward reachable
states while still maintaining its characteristic focus on the
property. It attempts to achieve this objective by considering
CTGs. As discussed, CTGs interfere with generalizing from
CTIs and so are worthwhile candidates for blocking with
generalization—although they need not be backward reach-
able. This section presents an analysis that, through measuring
several metrics, suggests that ctgDown achieves its intended
behavior. It highlights differences in the behavior of IC3 with
the standard (down) and improved (ctgDown) generalization
procedures. The data in this section were collected from IImc’s
IC3 runs. Data collected from ABC’s runs also support the
observations made.

Data points for scatter plots in this section are divided
into two categories: those for which IC3 performs better with
ctgDown, marked by a × in the plots, and those for which IC3
performs better with down, marked by a +.

The first experiment compares the average distances of
CTGs and CTIs from an error. To measure the depths of
CTGs, exact BDD-based backward reachability is performed;
the resulting “onion rings” can be used to compute the depth
of a given state. Of the CTGs handled in these experiments,
42% were backward reachable. For the depths of the CTIs,
the length of the chain through which a CTI was found
provides an upper bound on its actual backward depth. Figure
5 shows a plot for the average CTI depth against the average
CTG depth for the 294 benchmarks for which the preliminary
BDD-analysis managed to complete within 12 hours. The
plot confirms that CTGs are typically deeper than CTIs—
sometimes by several orders of magnitude. The plot also
indicates that ctgDown helps in the cases where IC3 is forced
to explore deep CTIs.

Next, several metrics of IC3 runs were analyzed to under-
stand when the proposed generalization procedure helps or
harms the performance of IC3. The metrics are the maximum
length of traces from states in the priority queue to an error;
the average size of derived clauses; the convergence level, i.e.,
the level at which a proof or a counterexample is found; and
the average number of clauses derived per level.

Plots comparing IC3 with and without the proposed general-
ization procedure on the four metrics are shown in Figures 6a–
6d. The same information is presented with box-and-whisker
plots in Figure 6e with the ratio of each metric with ctgDown

 0.1

 1

 10

 100

 1000

 10000

 100000

 0.1 1 10 100 1000 10000 100000

A
v

er
ag

e
C

T
I

D
ep

th

Average CTG Depth

Worse Performance
Better Performance

Fig. 5. A comparison between the depths of CTIs and CTGs.

to without.
Figure 6a indicates a significant reduction in the depth

of the explicit search performed by IC3 when ctgDown is
used. Statistics indicate an average reduction of 22.3% in the
depth of IC3’s explicit search over all benchmarks. A higher
reduction in the depth of the search often indicates better
performance for IC3. This is confirmed by the non-overlapping
notches in the box plot, which indicate a significant difference
in the median depth ratios between cases with better and those
with worse performance.

The point in the lower right corner of Figure 6a represents
an extreme case in which IC3 with ctgDown proved the
property with very little explicit backward search; with down,
the depth of the priority queue went up to 2049.

Figure 6b points out ctgDown’s ability to produce stronger
CTI-induced clauses. Again, a stronger clause indicates im-
proved performance. On average, ctgDown drops 14% more
literals than down, which is statistically significant as indicated
by the box plot.

A characteristic of the new procedure is that it often in-
creases the convergence level of IC3, as indicated in Figure 6c.

145162

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

II
m

c
w

it
h

 c
tg

D
o

w
n

IImc

Worse Performance
Better Performance

(a) Maximum depth of priority queue.

 1

 10

 1 10

II
m

c
w

it
h

 c
tg

D
o

w
n

IImc

Worse Performance
Better Performance

(b) Average CTI-induced clause size.

 1

 10

 100

 1000

 1 10 100 1000

II
m

c
w

it
h

 c
tg

D
o

w
n

IImc

Worse Performance
Better Performance

(c) Convergence level.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

II
m

c
w

it
h

 c
tg

D
o

w
n

IImc

Worse Performance
Better Performance

(d) Average clauses per level.

●

●
●●
●

better worse

0.
00

1
0.

01
0

0.
10

0
1.

00
0

M
ax

. d
ep

th
 o

f p
rio

rit
y

qu
eu

e

●
●●

●●

●

●
●

●

●

●

●

better worse

0.
4

0.
8

1.
2

A
ve

ra
ge

 C
T

I−
in

du
ce

d
cl

au
se

 s
iz

e

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●●
●
●

●
●

●●●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●
●

●●
●
●

●
●●●
●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●
●

●

●

●

●
●
●
●

●

●
●
●●
●

better worse

0.
2

0.
5

2.
0

5.
0

C
on

ve
rg

en
ce

 le
ve

l ●●

●
●

●
●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●
●●

better worse

0.
05

0.
50

5.
00

A
ve

ra
ge

 c
la

us
es

 p
er

 le
ve

l

(e) Box plots for the ratios of the metrics shown in parts a–d.

Fig. 6. Analyzing the effects of ctgDown on the IImc runs.

146 163

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000

A
B

C
 w

it
h

 c
tg

D
o

w
n

ABC

Worse Performance
Better Performance

Fig. 7. Convergence level.

This potentially undesirable side effect is probably attributable
to the aggressiveness of ctgDown in deriving clauses to block
CTGs—which, again, need not actually be backward reach-
able. In contrast, the standard procedure only derives clauses
in response to truly backward reachable states. A clause that
blocks a forward reachable state is certainly not inductive and
thus cannot appear in the final inductive strengthening. Such
clauses can cause overstrengthening of the Fi’s; then IC3 must
propagate to higher levels in order to drop the clauses. Points
to the far right in Figure 5 represent cases in which such
behavior is exhibited. Although CTGs are much deeper than
CTIs, the percentage of handled CTGs that are forward reach-
able is higher than average causing overstrengthening. Also,
as Figure 6c shows, a higher convergence level is significantly
correlated with worse performance. Similar observations hold
for ABC with ctgDown as Figure 7 indicates. The box plot in
Figure 6e shows that 75% of the runs in which ctgDown was
beneficial did not increase the convergence level. In contrast,
for 75% of the runs that did not benefit from ctgDown, the
convergence level was higher. On the other hand, statistics
indicate that the increase in convergence level only occurs
for passing properties; for 75% of the failing properties, the
convergence level isn’t affected.

Points on the y-axis in Figure 6c correspond to benchmarks
for which IC3 with down converges at level 1 while IC3
with ctgDown converges at higher levels. A characteristic
behavior of IC3 with down is that clauses generated at level
1 are globally inductive until IC3 is forced to step back to
level 0. Subsequently, generated clauses have the support of
clauses generated relative to F0 and thus need not be globally
inductive. Aggressive handling of CTGs interferes with this
initial behavior. A variant implementation was tried in which
CTG handling was disabled until IC3 was forced to step back
to level 0. IC3 with this variant ctgDown then converged

at level 1 on these benchmarks; however, the performance
difference across the benchmark suite was insignificant.

Finally, Figure 6d and the corresponding box plot indicate
a clear correlation between the performance difference and
the average number of clauses derived per level. An excessive
number of clauses derived to block CTGs is often accompanied
by longer runtimes.

VI. RELATED WORK

Several improvements orthogonal to the generalization
method presented here have been described for IC3. Ternary
simulation [8] and SAT-based [10] methods of enlarging CTI
cubes significantly improve running time. A scheme for inte-
grating lazy abstraction with IC3 has also been developed [11].

VII. CONCLUSION

This paper presents an improved generalization procedure
for IC3. Generalization is a key operation that lifts IC3 from
explicit to symbolic analysis. Addressing states that impede
generalization allows IC3 to deal with deep counterexamples
to induction with less effort. The proposed procedure has
been shown to significantly improve the performance of two
independent implementations of IC3. While ctgDown achieves
the objective of decreasing the depth of the explicit search, the
impact on convergence level is mixed. Ongoing investigations
seek to explain the interplay between the strength of lemmas,
the convergence level, and the overall performance of IC3.

ACKNOWLEDGMENT

This work utilized the Janus supercomputer, which is sup-
ported by the National Science Foundation (award number
CNS-0821794) and the University of Colorado Boulder. The
Janus supercomputer is a joint effort of the University of
Colorado Boulder, the University of Colorado Denver and the
National Center for Atmospheric Research. Janus is operated
by the University of Colorado Boulder.

REFERENCES

[1] A. R. Bradley, “k-step relative inductive generalization,” CU Boulder,
Tech. Rep., Mar. 2010, http://arxiv.org/abs/1003.3649.

[2] ——, “SAT-based model checking without unrolling,” in Verification,
Model Checking, and Abstract Interpretation (VMCAI’11), Austin, TX,
Jan. 2011, pp. 70–87, lNCS 6538.

[3] “URL: http://iimc.colorado.edu.”
[4] “URL: http://www.eecs.berkeley.edu/∼alanmi/abc/.”
[5] “Hardware model checking competition. http://fmv.jku.at/hwmcc.”
[6] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems:

Safety. Springer-Verlag, 1995.
[7] A. R. Bradley and Z. Manna, “Checking safety by inductive generaliza-

tion of counterexamples to induction,” in Formal Methods in Computer
Aided Design (FMCAD’07), Austin, TX, Nov. 2007, pp. 173–180.

[8] N. Een, A. Mishchenko, and R. Brayton, “Efficient implementation of
property-directed reachability,” in Formal Methods in Computer Aided
Design (FMCAD’11), Austin, TX, Nov. 2011, pp. 125–134.

[9] J. Dubrovin, T. Junttila, and K. Heljanko, “Exploiting step semantics for
efficient bounded model checking of asynchronous systems,” Science of
Computer Programming, vol. 77, no. 10-11, pp. 1095–1121, 2012.

[10] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo, “Incremental
formal verification of hardware,” in Formal Methods in Computer Aided
Design (FMCAD’11), Austin, TX, Nov. 2011, pp. 135–143.

[11] Y. Vizel, O. Grumberg, and S. Shoham, “Lazy abstraction and SAT-
based reachability for hardware model checking,” in Formal Methods in
Computer-Aided Design (FMCAD’12), Oct. 2012.

147164

Parameter Synthesis with IC3
Alessandro Cimatti Alberto Griggio ∗ Sergio Mover Stefano Tonetta

Fondazione Bruno Kessler, Trento, Italy
{cimatti,griggio,mover,tonettas}@fbk.eu

Abstract—Parametric systems arise in different application
domains, such as software, cyber-physical systems or tasks
scheduling. A key challenge is to estimate the values of parame-
ters that guarantee the desired behaviours of the system.

In this paper, we propose a novel approach based on an exten-
sion of the IC3 algorithm for infinite-state transition systems. The
algorithm finds the feasible region of parameters by complement,
incrementally finding and blocking sets of “bad” parameters
which lead to system failures. If the algorithm terminates we
obtain the precise region of feasible parameters of the system.

We describe an implementation for symbolic transition systems
with linear constraints and perform an experimental evaluation
on benchmarks taken from the domain of hybrid systems. The
results demonstrate the potential of the approach.

I. INTRODUCTION

Parametric systems arise in many application domains from
real-time systems to software to cyber-physical systems. In
these applications, the system is often part of a larger envi-
ronment, and the designer has to define the system relative to
some unknown parameters of the environment. The design of
a robust system requires the verification to not rely on concrete
values for the parameters but to prove the correctness of the
system for a certain region of values. The use of parameters is
fundamental in the early phases of the development, giving the
possibility to explore different design choices. In fact, a para-
metric system represents a set of (non-parametric) systems,
one for each valuation of the parameters.

A key challenge for the design of parametric systems is
the estimation of the parameter valuations that guarantee the
correct behavior of the system. Manual estimation of these val-
ues is time consuming and does not find optimal solutions for
specific design problems. Therefore, a fundamental problem is
to automatically synthesize the maximal region of parameter
valuations for which the system satisfies some properties.

In this paper, we focus on the verification of invariant
properties and how to extend the SMT-based algorithms to
solve the synthesis problem. The general approach works by
complement, building the set of “bad” parameter valuations.
It relies on the enumeration of counterexamples violating the
properties, extracting from the counterexample a region of bad
parameter valuations by quantification of the state variables.

The novel contribution of this paper is a new synthesis
algorithm based on IC3, one of the major recent breakthroughs
in SAT-based model checking, and lately extended to the SMT

∗ Supported by Provincia Autonoma di Trento and the European Commu-
nity’s FP7/2007-2013 under grant agreement Marie Curie FP7 - PCOFUND-
GA-2008-226070 “progetto Trentino”, project ADAPTATION.

case. The key idea of the synthesis algorithm is to exploit the
features of IC3. First, IC3 may find a set of counterexamples
consisting of a sequence of set of states so, . . . , sk, where each
state in si is guaranteed to reach some of the bad states in sk
in k− i steps; this is exploited in the expensive quantification
of the state-variables, that can be performed on shortest, and
thus more amenable, counterexamples. Second, the internal
structures of IC3 allows our extension to be integrated in
a fully incremental fashion, never restarting the search from
scractch to find a new counterexample.

Various approaches already solve the parameter synthesis
problem for several kind of systems, like infinite-state transi-
tion systems [4], timed and hybrid automata [10], [12], [9],
[7], [1], [2]. The advantages of the new algorithm are that it
synthesizes an optimal region of parameters (unlike [9], [1]), it
is incremental and applies quantifier elimination only to small
formulas (unlike [9], [7]), and it avoids computing the whole
set of the reachable states (unlike [10], [12]).

We implemented the algorithm for symbolic transition sys-
tems with linear constraints and performed an experimental
evaluation on benchmarks on timed and hybrid systems. We
compared the approach with similar SMT-based techniques
and with techniques based on the computation of the reachable
states. The results show the potential of the approach.

II. BACKGROUND

A. Transition Systems

A transition system S is a tuple S = 〈X, I, T 〉 where X
is a set of (state) variables, I(X) is a formula representing
the initial states, and T (X,X ′) is a formula representing the
transitions. In this paper, we shall deal with linear rational
arithmetic formulas, that is, Boolean combinations of propo-
sitional variables and linear inequalities over rational variables.
A state of S is an assignment to the variables X . A path of S
is a finite sequence s0, s1, . . . , sk of states such that s0 |= I
and for all i, 0 ≤ i < k, si, s′i+1 |= T . Given a formula
P (X), the verification problem denoted with S |= P is the
problem to check if for all paths s0, s1, . . . , sk of S, for all
i, 0 ≤ i ≤ k, si |= P . The dual problem is the reachability
problem, which is the problem to find a path s0, s1, . . . , sk
of S such that sk |= ¬P . P (X) represents the “good” states,
while ¬P represents the “bad” states.

B. Parameter Synthesis

In parametric systems, besides the standard constants, the
formulas can include also parameters, which are rigid symbols

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 148165ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

with “unknown” values. Let U be the set of parameters. A
parameter valuation is as assignment to the parameters. Given
a formula φ and a parameter valuation γ, we denote with γ(φ)
the formula obtained from φ by replacing each parameter in
U with the assignment given by γ.

A parametric transition system S is a tuple S =
〈U,X, I, T 〉 where U is the set of parameters, X is the set
of variables, I(U,X) is the initial formula, and T (U,X,X ′)
is the transition formula. Each parameter valuation γ induces
a transition system Sγ = 〈X, γ(I), γ(T)〉.

Given a parametric transition system S = 〈U,X, I, T 〉 and
a formula P (U,X), we say that a parameter valuation γ is
feasible iff Sγ |= γ(P). The parameter synthesis problem
is the problem of finding a set ρ(U) of feasible parameter
valuations (i.e., for every γ ∈ ρ, Sγ |= γ(P)). A set of
feasible parameter valuations ρ(U) is optimal if it contains
all the feasible parameter valuations.

C. IC3 with SMT

IC3 [3] is an efficient algorithm for the verification of finite-
state systems, with Boolean state variables and propositional
logic formulas. IC3 was subsequently extended to the SMT
case in [5], [11]. In the following, we present its main ideas,
following the description of [5]. For brevity, we have to omit
several important details, for which we refer to [3], [5], [11].

Let S and P be a transition system and a set of good states
as in §II-A. The IC3 algorithm tries to prove that S |= P
by finding a formula F (X) such that: (i) I(X) |= F (X);
(ii) F (X) ∧ T (X,X ′) |= F (X ′); and (iii) F (X) |= P (X).

In order to construct an inductive invariant F , IC3 maintains
a sequence of formulas (called trace) F0(X), . . . , Fk(X) such
that: (i) F0 = I; (ii) Fi |= Fi+1; (iii) Fi(X) ∧ T (X,X ′) |=
Fi+1(X

′); (iv) for all i < k, Fi |= P .
The algorithm proceeds incrementally, by alternating two

phases: a blocking phase, and a propagation phase. In the
blocking phase, the trace is analyzed to prove that no intersec-
tion between Fk and ¬P (X) is possible. If such intersection
cannot be disproved on the current trace, the property is
violated and a counterexample can be reconstructed. During
the blocking phase, the trace is enriched with additional
formulas, that can be seen as strengthening the approximation
of the reachable state space. At the end of the blocking phase,
if no violation is found, Fk |= P .

The propagation phase tries to extend the trace with a new
formula Fk+1, moving forward the clauses from preceding
Fi’s. If, during this process, two consecutive elements of the
trace (called frames) become identical (i.e. Fi = Fi+1), then
a fixpoint is reached, and IC3 terminates with Fi being an
inductive invariant proving the property.

In the blocking phase IC3 maintains a set of pairs (s, i),
where s is a set of states that can lead to a bad state, and
i > 0 is a position in the current trace. New formulas (in the
form of clauses) to be added to the current trace are derived by
(recursively) proving that a set s of a pair (s, i) is unreachable
starting from the formula Fi−1. This is done by checking the

satisfiability of the formula:

Fi−1 ∧ ¬s ∧ T ∧ s′. (1)

If (1) is unsatisfiable, and s does not intersect the initial states
I of the system, then ¬s is inductive relative to Fi−1, and IC3
strengthens Fi by adding ¬s to it1, thus blocking the bad state
s at i. If, instead, (1) is satisfiable, then the overapproximation
Fi−1 is not strong enough to show that s is unreachable. In this
case, let p be a subset of the states in Fi−1 ∧¬s such that all
the states in p lead to a state in s′ in one transition step. Then,
IC3 continues by trying to show that p is not reachable in one
step from Fi−2 (that is, it tries to block the pair (p, i − 1)).
This procedure continues recursively, possibly generating other
pairs to block at earlier points in the trace, until either IC3
generates a pair (q, 0), meaning that the system does not satisfy
the property, or the trace is eventually strengthened so that the
original pair (s, i) can be blocked.

A key difference between the original Boolean IC3 and
its SMT extensions in [5], [11] is in the way sets of states
to be blocked or generalized are constructed. In the blocking
phase, when trying to block a pair (s, i), if the formula (1)
is satisfiable, then a new pair (p, i − 1) has to be generated
such that p is a cube in the preimage of s wrt. T . In the
propositional case, p can be obtained from the model µ of (1)
generated by the SAT solver, by simply dropping the primed
variables occurring in µ. This cannot be done in general in
the first-order case, where the relationship between the current
state variables X and their primed version X ′ is encoded in
the theory atoms, which in general cannot be partitioned into a
primed and an unprimed set. The solution proposed in [5] is to
compute p by existentially quantifying (1) and then applying
an under-approximated existential elimination algorithm for
linear rational arithmetic formulas. Similarly, in [11] a theory-
aware generalization algorithm for linear rational arithmetic
(based on interpolation) was proposed, in order to strengthen
¬s before adding it to Fi after having successfully blocked it.

III. PARAMETER SYNTHESIS WITH IC3
A. Solving the synthesis problem with reachability

A naive approach to synthetize the set of parameters ρ(U) is
to incrementally find the complement set β(U) (thus, ρ = ¬β)
of unfeasible parameter valuations, rephrasing the problem as a
reachability problem for a transition system Sρ and iteratively
removing the counterexamples to Sρ |= P .

More specifically, given the parametric transition system
S = 〈U,X, I, T 〉, the algorithm keeps an over-approximation
ρ(U), initially true, of the safe region. The encoding of S
is the transition system Sρ = 〈X ∪ P, Iρ, Tρ〉 where Tρ =
T ∧

∧
p∈U p

′ = p forces parameters to not change their value
in the evolution of the system and Iρ = I ∧ ρ restricts the
parameter valuations to the over-approximation.

At every iteration, a new parameter valuation is removed
from ρ. The algorithm terminates if it proves that Sρ |= P ,
and ρ is the solution to the synthesis problem.

1¬s is actually generalized before being added to Fi. Although this is
foundamental for the IC3 effectiveness, we do not discuss it for simplicity.

149166

This simple approach does not work in the context of
infinite-state transition systems, where the possible number of
counterexamples and the values of the parameters are infinite.
For this reason, we need an algorithm that removes a set of
parameters, instead of a single point.

B. Description of the synthesis algorithm with IC3

We embed a reasoning similar to the naive algorithm in
IC3, exploiting its generalization of counterexamples and in-
crementality. The generalization avoids to explicitly enumerate
the counterexamples, while incrementality allows to reuse all
the clauses learned by IC3 across different safety checks.

Therefore, IC3 is used to prove that Sρ |= P . If it is
successful (recall that in the SMT extension, the problem
is undecidable), we can conclude that ρ is a set of feasible
parameters and, in particular, is optimal. Instead, if there exists
a set of parameters such that S 6|= P , IC3 might find a
counterexample to P . The counterexample is found in the
blocking phase as a sequence π := (s0, 0), . . . , (sn, n), where
s0 |= I ′, sn |= ¬P and for 0 < i < n − 1, si ∧ T ′ |= si+1.
Possibly, π does not represent a single path of the system that
reaches a violation, but a set of paths that reach ¬P . This is an
intrisic feature of IC3, which generalizes the counterexamples
to induction found in the blocking phase, trying to block set
of states rater than a single state2. The state so represents a
set of states that will eventually reach ¬P . Thus, we compute
from s0 a set of bad parameters βso(U) that will eventually
reach sn: βso(U) := ∃X.so(U,X). We rely on a quantifier
elimination procedure to get a quantifier-free formula for βso .

The algorithm refines its conjecture about the unfeasible
parameters of the system. Let β′ := β∨βso and ρ′ := ρ∧¬βso
be the new approximations of unfeasible and feasible regions
of parameters. We have to prove that Sρ′ |= P . We perform the
verification incrementally, reusing all the frames of IC3. Since
ρ′ := ρ ∧ ¬βso , we have that Sρ′ = 〈X ∪ P, Iρ ∧ ¬βso , Tρ〉.3
Thus, we incrementally encode Sρ′ strengthening the initial
condition and the transition relation used in the algorithm, and
also strengthening the first frame kept by the IC3 algorithm
(i.e. F0 := F0∧¬(βso)). The strengthening of F0 removes the
state so from I (possibly blocking also other bad states).

Since Sρ is an overapproximation of Sρ′ , the invariant
mantained by IC3 (F0 = I , Fi |= Fi+1, Fi |= P , Fi(X) ∧
T (X,X ′) |= Fi+1(X

′)) holds for the problem Sρ′ |= P .
From this point, we rely on the usual behaviour of IC3,

which tries to block (s1, 1) with the strengthened frame F0.
The algorithm terminates if either P is proved or the F0

becomes unsatisfiable, showing that ρ is empty.
Theorem 1: Given a parametric transition

system S = 〈U,X, I, T 〉 and a formula P (X),
ρ(U) := PARAMIC3(U, I, T, P) is the optimal set of
feasible parameter valuations.

2We follow the IC3 formulation of [8], which shows that IC3 can find a set
of counterexamples, improving its performance. Moreover, in the SMT-based
IC3 [5] the approximate pre-image computes a set of states.

3We add ¬βso also to Tρ, since it is an inductive invariant of Sρ′ .

For lack of space, the proof is available in a technical report
(http://es.fbk.eu/people/mover/fmcad13 ext.pdf).

C. Optimizations

We presented a version of the algorithm which computes
a region of bad states βso only from the initial states of
π := (s0, 0), . . . , (sn, n). However, this is only one of the
possible choices, since more general regions of bad parameters
can be found considering each si in π. In fact, βso is one of the
extreme cases, while the other one is βn(U) := ∃X.(BMCn),
which encodes the set of all the parameters that may reach
¬P in n steps, where BMCn denotes I0 ∧

∧n−1
i=0 T

i ∧ ¬Pn.
However, the cost of eliminating the quantifiers grows as
well, and it might in fact become impractical. In principle,
one may consider the intermediate cases βsi (that is, the
reachability of one of the intermediate states si in π) to trade
the generality of the result with the cost of the quantifier
elimination. Furthermore, we notice that for soundness we do
not need the precise set βsi , but we can consider its under-
approximations, since this still guarantees to remove only
bad parameters valuations. As an advantage, in this case the
quantifier elimination problems are easier to solve and are
more general than βso . In practice, we use an heuristic, which
we describe in the next Section, that combines the precise and
the under-approximated approach, enabling us to find a trade-
off between generality and the cost of quantifier elimination.

IV. EXPERIMENTS

We have implemented the algorithm described in the previ-
ous section on top of the fully symbolic SMT-based IC3 of
[5]. The tool uses MATHSAT [6] as backend SMT engine, and
works on transition systems with linear arithmetic constraints.

Evaluation. Our evaluation consists of three parts. In the
first, we compare our implementation (called PARAMIC3 in
what follows) with the approach described in [7], in order
to evaluate the viability of our technique when compared to
other SMT-based solutions. For this, we have implemented
the algorithm described in [7] using our “regular” SMT-based
IC3 implementation as the backend engine for reachability
checking (called ITERATIVE-BLOCK-PATH(IC3) in what follows).
We remark that the tool of [7] was based only on Bounded
Model Checking (BMC), and exploited domain-specific infor-
mation for computing the maximum needed bound, which is
not available in our more general context.

In the second part, we evaluate the effectiveness of the
optimizations described in the previous section, by comparing
the default heuristic used by PARAMIC3, using both the full
counterexample path π and its initial state (s0, 0) for blocking
bad regions of parameters, with the basic strategy using only
(s0, 0) (called PARAMIC3-basic in the following). In particular,
the default heuristic used by PARAMIC3 works as follows. At
the beginning, only initial states (s0, 0) of counterexample
paths are used to block bad regions of parameters. If the
algorithm starts enumerating too many bad regions, it starts
exploiting also full paths π, by computing the bad region
βπk (U) = ∃X.BMCπk , where k is the length of π, and BMCπk

150 167

IT
E

R
A

T
IV

E
-B

L
O

C
K

-P
A

T
H

(I
C

3)

 1

 10

 100

 1000

 1 10 100 1000

PARAMIC3

Fig. 1. Run time comparison (sec.) between
PARAMIC3 and ITERATIVE-BLOCK-PATH(IC3).

PA
R

A
M

IC
3-

ba
si

c

 1

 10

 100

 1000

 1 10 100 1000

PARAMIC3

Fig. 2. Run time comparison (sec.) between
PARAMIC3 and PARAMIC3-basic.

R
E

D

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

PARAMIC3

Fig. 3. Run time comparison (sec.) between
PARAMIC3 and RED.

is the formula encoding all the counterexample traces of length
k where the values for the Boolean variables are the same as
in π, similarly to what is done in [7]. The computation of βπk
is aborted if it becomes too expensive4 , in order to control
the tradeoff between the quality of the obtained bad region
and the cost of performing quantifier elimination.

Finally, in the third part of our evaluation, we compare
PARAMIC3 against RED [12], a state-of-the-art tool for param-
eter synthesis for linear-hybrid automata.

Benchmarks. We have selected benchmarks used in previous
work on parameter synthesis for hybrid systems. Most of
them come from the suite of RED. We have a total of 92
instances from 13 different families. All the instances, the
scripts and the tools used for reproducing our experiments are
available at http://es.fbk.eu/people/mover/fmcad13.tar.gz. For the
first two parts of our evaluation, we have experimented with
two different ways of encoding linear hybrid automata into
symbolic transition systems, resulting in a set of 192 instances.
For the comparison with RED, we picked the encoding giving
the best overall performance for PARAMIC3.

Results. We have run our experiments on a cluster of Linux
machines with a 2.27GHz Xeon CPU, using a timeout of
600 seconds and a memory limit of 3Gb for each instance.
Figures 1–3 show the scatter plots that compare the total run
time (in seconds) of the different techniques. From the plots,
we can make the following observations. (i) Our new algorithm
is clearly superior to the technique of [7], both in number of
completed instances and in execution time. Overall, PARAMIC3
successfully solves 5 more instances than ITERATIVE-BLOCK-
PATH(IC3), and it is almost always faster. We remark that both
algorithms use the same implementation of IC3 as backend,
run with the same options. (ii) Our heuristic for using full
counterexample paths π for blocking bad regions of parameters
pays off for harder problems. With it, PARAMIC3 solves 6 more
instances which were previously out of reach, without any
overhead for the other instances. (iii) The comparison with
RED shows that our technique is very promising. Although
there is no clear winner, there are more instances for which
PARAMIC3 outperforms RED than the converse. In general, the

4We currently use a cutoff value on the number of elementary operations
in the quantifier elimination module of MATHSAT for this.

two tools seem to be somewhat complementary. We remark
that RED is specialized for timed and linear-hybrid automata
and that most of the benchmarks we used come from its suite,
whereas PARAMIC3 works for arbitrary transition systems and
it is not tuned for linear hybrid systems in any way.

V. CONCLUSIONS AND FUTURE WORK

We proposed a new algorithm based on IC3 for synthesizing
an optimal region of parameter valuations guaranteeing the
satisfaction of an invariant property. The algorithm exploits the
features of IC3 to incrementally remove sets of bad parameter
valuations and to reduce the cost of expensive quantifier elimi-
nation operations by performing them on small formulas. Our
experimental results show that the new synthesis algorithm
performs better than similar SMT-based techniques and is
complementary to other techniques based on the computation
of the reachable states. In the future, we plan to improve the
algorithm by better exploiting the structure of the problem, to
evaluate it in other domains such as software, and to apply it
in the context of modular component-based verification.

REFERENCES

[1] É. André and U. Kühne. Parametric analysis of hybrid systems using
HyMITATOR. In iFM, 2012.

[2] G. Behrmann, K. Guldstrand Larsen, Jacob Illum Rasmussen. Beyond
liveness: Efficient parameter synthesis for time bounded liveness. In
FORMATS, 2005.

[3] A. Bradley. Sat-based model checking without unrolling. In VMCAI,
2011.

[4] R. Bruttomesso, A. Carioni, S. Ghilardi, and S. Ranise. Automated
analysis of parametric timing-based mutual exclusion algorithms. In
NFM, 2012.

[5] A. Cimatti and A. Griggio. Software Model Checking via IC3. In CAV,
2012.

[6] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani. The MathSAT5
SMT Solver. In TACAS, 2013.

[7] A. Cimatti, L. Palopoli, and Y. Ramadian. Symbolic computation of
schedulability regions using parametric timed automata. In RTSS, 2008.

[8] N. Eén, A. Mishchenko, and Robert K. Brayton. Efficient implemen-
tation of property directed reachability. In FMCAD, pages 125–134,
2011.

[9] G. Frehse, S. Jha, and B. Krogh. A counterexample-guided approach to
parameter synthesis for linear hybrid automata. In HSCC, 2008.

[10] T. Henzinger and P. Ho. Hytech: The cornell hybrid technology tool.
In Hybrid Systems, 1994.

[11] K. Hoder and N. Bjørner. Generalized property directed reachability. In
SAT, 2012.

[12] F. Wang. Symbolic parametric safety analysis of linear hybrid systems
with bdd-like data-structures. IEEE Trans. Software Eng., 31(1), 2005.

151168

Generalized Counterexamples
to Liveness Properties

Gadi Aleksandrowicz, Jason Baumgartner, Alexander Ivrii, Ziv Nevo IBM Corporation

Abstract—We consider generalized counterexamples in
the context of liveness property checking. A generalized
counterexample comprises only a subset of values necessary
to establish the existence of a concrete counterexample.
While useful in various ways even for safety properties,
the length of a generalized liveness counterexample may
be exponentially shorter than that of a concrete counterex-
ample, entailing significant potential algorithmic benefits.

One application of this concept extends the k-LIVENESS
proof technique of [1] to enable failure detection. The
resulting algorithm is simple, and poses negligible over-
head to k-LIVENESS in practice. We additionally propose
dedicated algorithms to search for generalized liveness
counterexamples, and to manipulate generalized counterex-
amples to and from concrete ones. Experiments confirm
the capability of these techniques to detect failures more
efficiently than existing techniques for various benchmarks.

I. INTRODUCTION

It is well-known that counterexamples are often re-
dundant, containing many values that are irrelevant to
the failure exhibited therein. The process of eliminating
unnecessary values from a trace is referred to as gener-
alization, and has numerous benefits. For example, the
elimination of irrelevant values facilitates manual and
automated debugging [2], and improves the effectiveness
of counterexample-guided abstraction refinement [3].

This paper focuses upon counterexamples to liveness
properties. For finite systems, such counterexamples
may efficiently be represented as lasso-shaped traces
consisting of a prefix and a loop suffix exhibiting a state
repetition which can be infinitely unrolled. The length
of a lasso is the sum of the prefix and suffix lengths. A
unique benefit of generalizing a liveness counterexample
is that it may shorten the lasso length – possibly expo-
nentially so – if the set of state variables comprising a
state repetition is reduced during generalization.

Example 1: Let q, x, y be Boolean signals whose ini-
tial and next-state behaviors are determined as follows:
q0 = 1, x0 = 0, y0 = 0, q′ = (q ∧ x) ∨ (¬q ∧ y),
x′ = q ∧ y, y′ = ¬x. Consider liveness property FGq,
specifying that on every trace q must eventually become
true forever. A counterexample would illustrate q = 0
at least once in its loop suffix, for example (q, x, y) =
(1, 0, 0) → (0, 0, 1) → (1, 0, 1) → (0, 1, 1) → (1, 0, 0)
of length 4. Note that (q = 1) ∧ (x = 0) ⇒ (q′ = 0) ∧

(y′ = 1) and (q = 0) ∧ (y = 1)⇒ (q′ = 1) ∧ (x′ = 0).
This illustrates a generalized counterexample: (1, 0, ·)→
(0, ·, 1)→ (1, 0, ·) of length 2.

Example 2: We may modify q′ from Example 1 to
q′ = (q ∧ x ∧ (cnt = 0)) ∨ (¬q ∧ y), where cnt
is an n-bit cyclic counter. Now the minimal concrete
counterexample has length 2n, while the generalized
counterexample from Example 1 is still valid.

Example 3: One may argue that cnt is sequentially
unobservable in Example 2 because q ∧ x ≡ 0, hence
a transformation-based approach may enable the detec-
tion of an adequate short counterexample [4]. We may
modify this example to x′ = (q ∨ i) ∧ y, where i is
a nondeterministic input. Now cnt becomes observable,
precluding a direct application of transformation-based
methods. However, the generalized counterexample is
still valid since both transitions (1, 0, ·) → (0, ·, 1) and
(0, ·, 1)→ (1, 0, ·) can be achieved for some value of the
inputs, here i = 0 for transition (0, ·, 1)→ (1, 0, ·).

We show that, surprisingly, the traces produced by the
underlying safety model checker of k-LIVENESS [1]
are often sufficient to witness a counterexample. Fur-
thermore, in many cases the traces which do not exhibit
a counterexample may be manipulated using our tech-
niques to yield valid counterexamples.

II. PRELIMINARIES

We represent a finite state system S as a tuple
〈i, x, I(x), T (i, x, x′)〉, which consists of primary inputs
i, state variables x, predicate I(x) defining the initial
states, and predicate T (i, x, x′) defining the transition
relation. Next-state variables are denoted as x′. We
assume that T is represented as a netlist, that is a directed
acyclic graph with nodes corresponding to logic gates.
Given the values of x and i, the values of x′ may thus be
uniquely computed by propagation – i.e., using Boolean
or three-valued simulation.

State variables and their negations are called literals,
and disjunctions (conjunctions) of literals are called
clauses (cubes). A state is a Boolean assignment to all
of x. A generalized state is an assignment to a subset of
x, representing a set of states. We denote concrete states
by s and generalized states by t throughout the paper.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 152169ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

Definition 1: Given two generalized states t0 and t1,
we say that t0 is a predecessor of t1 if for every concrete
state s0 ∈ t0 there exists a concrete state s1 ∈ t1 and an
input i0 such that (i0, s0, s′1) |= T.

Definition 2: We say that t0 is a concrete predecessor
of t1 if t0 is a concrete state.

Note that the definition of a predecessor is not sym-
metric, and it does not require that every state in t1 is
reachable from a state in t0. For practical purposes we
need more restricted notions of a predecessor.

Definition 3: Given two generalized states t0 and t1
and input i0, we say that t0 is an implying predecessor
of t1 with respect to i0 if t0∧i0∧T∧¬t′1 is unsatisfiable.

Definition 4: We say that t0 is a propagating prede-
cessor of t1 with respect to i0 if t0 and i0 imply t′1 by
propagation.

From these definitions, each concrete predecessor is
also propagating with respect to some input, and each
propagating predecessor with respect to i0 is also imply-
ing with respect to i0. We omit explicit input references
when they are clear from context.

Example 4: Consider x′ = x∧ (y⊕ i), where x and y
are state variables and i is an input. Then x = 1∧y = 1
is an implying predecessor of x = 1 with respect to
i = 0. Further, x = 1 is predecessor of x = 1 but cannot
be an implying predecessor since there is no value of i
which works for all y.

Definition 5: A concrete trace is a sequence of con-
crete states 〈s0, . . . , sn〉 such that s0 |= I , and for each
0 ≤ k < n, sk is a concrete predecessor of sk+1.

Definition 6: A generalized trace is a sequence of
generalized states 〈t0, . . . , tn〉 such that t0 contains an
initial state, and for each 0 ≤ k < n, tk is a predecessor
of tk+1.

We say that concretizing a state t is the process of
adding literals to t, and generalizing t is the process of
removing literals from t.

A. Generalized Counterexamples to Liveness

In the spirit of [1] we consider liveness properties
given in the form FGq. More general liveness properties
(and fairness constraints) may be reduced to this form
using additional logic. Furthermore, since the validity of
FG(Xq) is equivalent to the validity of FGq, we can
assume that q itself is a state variable.

Definition 7: A concrete counterexample to FGq is
a concrete trace 〈s0, . . . , sn〉 and an index m with 0 ≤
m < n, such that (1) sm = sn, and (2) ∃k ∈ [m..n]
with sk =⇒ ¬q.

Thus s0, . . . , sm−1 corresponds to the lasso prefix, and
sm, . . . , sn corresponds to the loop suffix, with cycle sk
exhibiting ¬q. Note that sm = sn implies that sn is a

concrete predecessor of sm+1, hence the loop can be
infinitely unrolled.

Definition 8: A generalized counterexample to FGq
is a generalized trace 〈t0, . . . , tn〉 and an index m with
0 ≤ m < n, such that (1) tm =⇒ tn, and (2) ∃k ∈
[m..n] with tk =⇒ ¬q.

Note that we do not require that tm = tn, but rather
that tn is more concrete than tm.

Examples 1-3 illustrate that the length of a generalized
counterexample to FGq may be exponentially shorter
(with respect to netlist size) than that of a concrete
counterexample. Theorem 1 will demonstrate that the
former implies the existence of the latter. Because a gen-
eralized counterexample may be exponentially shorter
than a concrete one, in cases it may be easier to de-
tect a generalized counterexample, which motivates the
algorithms in Sections IV and V.

In practice, a generalized counterexample may actu-
ally be more informative and easier to debug since it
more clearly illustrates the “essential” reason for the
failure. Similarly, it is often undesirable in practice that a
liveness counterexample on a reduced netlist (after cone-
of-influence, redundancy removal, . . .) be extended to a
possibly exponentially-longer unreduced trace merely to
ensure a state repetition over irrelevant logic.

III. TRACE MANIPULATION ALGORITHMS

A. Trace Concretization

Given a generalized trace, we may fully or partially
concretize it using Algorithm 1. ConcretizeInitial(t0)
returns a concretization of t0 which still contains a state
in I , which may be computed with a satisfiability query.
ConcretizeForward(t̃k, tk+1) returns a concretization of
tk+1 with t̃k as its predecessor. If t̃k is a propagating
predecessor of tk+1, we can use three-valued simulation
to implement ConcretizeForward , using an unknown X
value for any state variable not in t̃k and assessing which
state variables attain fixed values in tk+1. Alternatively,
we can use a satisfiability query: if t̃k is an implying
predecessor of tk+1 with respect to some ik, for each
state variable x not in tk+1 we can consider the query
t̃k ∧ ik ∧ T ∧ x′. If this query is unsatisfiable, x = 0
can be added to tk+1. Similarly, if t̃k ∧ ik ∧ T ∧ ¬x′ is
unsatisfiable, x = 1 can be added to tk+1.

Theorem 1: Any generalized counterexample c to
FGq may be extended to a concrete counterexample c̃.

Proof: Consider a generalized counterexample c to
FGq with its lasso state repeating at times m and n >
m. By the discussion above, we can find a concrete trace
c̃ which agrees with valuations in c, though the states at
times m and n in c̃ may not be identical. However, since

2

153170

Algorithm 1 Trace Concretization

Input: A trace 〈t0, . . . , tn〉
Output: A trace 〈t̃0, . . . , t̃n〉 with tk =⇒ t̃k for all k.

1: t̃0 ← ConcretizeInitial(t0)
2: for k = 0, . . . , n− 1 do
3: t̃k+1 ← ConcretizeForward(t̃k, tk+1)

Algorithm 2 Trace Generalization

Input: A trace 〈t0, . . . , tn〉
Output: A trace 〈t̃0, . . . , t̃n〉 with t̃k =⇒ tk for all k.

1: t̃n ← GeneralizeF inal(tn)
2: for k = n− 1, . . . , 0 do
3: t̃k ← GeneralizeBackward(tk, t̃k+1)

the loop of c can be infinitely unrolled, assuming a finite
system, eventually a state in c̃ will repeat, thus yielding
a concrete counterexample.

Theorem 1 demonstrates that a generalized liveness
counterexample may be mapped to a concrete one using
simulation, implying a scalable algorithm.

B. Trace Generalization

Given a trace, we may use Algorithm 2 to gener-
alize it. GeneralizeFinal(tn) returns a generalization
of tn. For example, if the trace witnesses a number
of failures of q and tn =⇒ ¬q, this corresponds
to removing some of the other variables from tn.
GeneralizeBackward(tk, t̃k+1) returns a generalization
of tk which still forms a predecessor of t̃k+1. If tk is a
propagating predecessor of tk+1, then we can generalize
tk using ternary simulation: if replacing the value of a
state variable in tk by X does not influence any of the
variables in t′k+1, then this variable can be removed from
tk. More generally, when tk is an implying predecessor
of tk+1 with respect to some ik, we can consider the
unsatisfiability of tk ∧ ik ∧ T ∧ ¬t′k+1 and generalize
from tk variables unnecessary in the unsatisfiable core
returned by the SAT solver.

C. Modifying Traces with Tentative Loops

The following example demonstrates that the pro-
cesses of concretizing and generalizing a trace are both
capable of creating or destroying the validity of that trace
as a counterexample.

Example 5: Let q, x, y be state variables with initial
values q0 = 1, x0 = 0, y0 = 0 and next-state values
q′ = q ∧ x, x′ = x, y′ = ¬y. The concrete trace
(1, 0, 0) → (0, 0, 1) → (0, 0, 0) does not exhibit a
counterexample to FGq. A partially-generalized trace

Design k generalized k concrete k modified
cubak 20 20 20
cujc128f 5 1 1
cutf2 9 12 5
cutq2 16 16 12
lmcs06dme2p0 4 5 4

TABLE I
VALUES OF k YIELDING VALID COUNTEREXAMPLES

Design k-LIVENESS BMC
cubak 295s 12084s
cuhanoi10 5s 3492s

TABLE II
k-LIVENESS WITH INTERNAL IC3 TRACE VS. BMC

(1, 0, ·) → (0, 0, ·) → (0, 0, ·) does exhibit a counterex-
ample. A futher-generalized trace (1, 0, ·)→ (0, 0, ·)→
(0, ·, ·) again does not exhibit a counterexample.

Consider a generalized trace 〈t0, . . . , tn〉 with a pair
of indices i < j such that ti ∧ tj 6= ⊥ and ∃k ∈ [i..j]
with tk =⇒ ¬q. The condition ti ∧ tj 6= ⊥
means that there is no state variable present in opposite
polarities in ti vs tj . We call 〈ti, . . . , tj〉 a tentative
loop. We propose the following technique, referred to as
ConcretizeTentative(i, j): starting from ti, concretize
the trace forward by conjuncting the states ti+1, . . . , tj
with the values forced by propagation. In this way, the
concretized state tj might now become more concrete
than ti yielding a counterexample. One may further tailor
the concretization process to yield a repeating state when
possible via an appropriate SAT query.

IV. COUNTEREXAMPLES VIA k-LIVENESS
The k-LIVENESS algorithm of [1] proves properties

of form FGq by bounding the number of times that q
can become false: if there are no traces with more than k
occurrences of ¬q, then on every trace q must eventually
become true forever. The algorithm works by gradually
increasing k until a proof is obtained.

When FGq does not hold, it is noted in [1] that a
bounded counterexample trace for some k may be ana-
lyzed to see if it is a valid unbounded counterexample:
given a finite system and large-enough k, there must
be a trace with a repeated state. Though for a realistic
system, it is stipulated that k would likely need to be
impractically large.

Surprisingly, we find that the opposite is true: on 44 of
the HWMCC’12 benchmarks with failing liveness prop-
erties, the traces returned by the underlying safety model
checker exhibit a counterexample with reasonably-small
values of k. Additionally, on most of these one may
detect a counterexample for even smaller values of k by
manipulating traces with ConcretizeTentative. A few
selected results are presented in Table I.

As in [1], we have implemented k-LIVENESS on top
of IC3/PDR. PDR minimizes proof obligations using

3

154 171

ternary simulation [5], and thus directly yields gener-
alized counterexamples for bounded property failures.
Column 2 corresponds to the smallest value of k for
which this generalized trace kept internally by IC3
exhibits a generalized counterexample. Column 3 cor-
responds to the smallest k for which the concretiza-
tion of the trace from Column 2 using Algorithm 1
exhibits a concrete counterexample. The final column
uses ConcretizeTentative(i, j) on the trace of Column
2, for each tentative loop 〈ti, . . . , tj〉 therein.

On cutf2 and lmcs06dme2p0, considering generalized
traces detects counterexamples earlier due to removal of
irrelevant state variables. On cujc128f, removing state
variables from later timesteps precludes the detection of
counterexamples. And on cutf2, partial concretization of
the generalized trace yields a counterexample earlier than
the other two methods.

Regarding impact on verification resources: on most
of the failing liveness HWMCC’12 testcases, direct
bounded model checking (BMC) often yields a coun-
terexample with significantly lesser resources than k-
LIVENESS augmented with our techniques. We note
that the set of public liveness testcases is unfortunately
quite small. Nonetheless, our techniques in cases are
substantially faster than existing method such as BMC:
see Table II. This offers a some evidence of the practical
utility of our techniques on classes of complex problems.

V. SEARCHING FOR GENERALIZED
COUNTEREXAMPLES

In this section we present an algorithm which di-
rectly searches for a minimal propagating generalized
counterexample. This algorithm uses bounded model
checking applied to a ternary-valued encoding of the
netlist. This algorithm incrementally increases the un-
folding depth n every time it proves that no generalized
counterexample of length ≤ n exists.

For a given n, we seek a sequence t0, . . . , tn of
generalized states and a sequence i0, . . . , in of inputs
so that the following conditions are satisfied:

1) t0 contains an initial state;
2) for each k ∈ [0..n− 1] the assignments to tk and

to ik alone imply tk+1;
3) ∃m ∈ [0..n− 1] such that tm =⇒ tn;
4) ∃k ∈ [m..n− 1] such that tk =⇒ ¬q.
Note that every concrete lasso-shaped counterexample

satisfies these conditions, thus if there are concrete
counterexamples of length n, the suggested scheme will
succeed with the value n or less.

Unfortunately, on the limited set of failing
HWMCC’12 benchmarks, the minimal length of a

propagating counterexample is the same as the minimal
length of a concrete counterexample, and so the
proposed scheme does not help. On the other hand,
on contrived Examples 1-3, this algorithm detects
generalized counterexamples of length 2 for any size of
cnt, which not surprisingly may outperform by a large
degree other techniques which search for a concrete
counterexample.

VI. RELATED WORK

The concept of minimizing counterexample traces has
been explored extensively for a variety of purposes such
as enhanced debugging, e.g. [2]. A related concept of
generalizing a predecessor of a given state either by
ternary simulation, via a SAT solver, or using quantifier
elimination has also been widely explored, e.g. [6]. How-
ever, a significant distinction is that we we consider gen-
eralized counterexamples to liveness properties which
can be significantly shorter than concrete counterexam-
ples, and as such dedicated algorithms which search for
generalized counterexamples may be developed.

The work of [4] addresses the topic of netlist trans-
formations which preserve the existence of a liveness
counterexample. For example, the cone-of-influence re-
duction combined with other netlist rewriting techniques
can remove various signals from the netlist, thus possibly
shortening lengths of counterexamples. However, netlist
transformations apply to all time-frames and all possible
traces, which does not offer the granularity of state-
specific reductions enabled by our technique.

Cycle-dependent abstractions do allow the granular-
ity of abstracting variables irrelevant at a particular
timestep, though are typically only applicable as em-
bedded in specific proof techniques (e.g., [7]). However,
in general the existence of a counterexample on an
abstracted model does not imply the existence of a
counterexample on the concrete model. Additionally,
this prior work does not address shortening of liveness
counterexamples.

REFERENCES

[1] K. Claessen and N. Sörensson, “A liveness checking algorithm
that counts,” in FMCAD, 2012.

[2] K.-H. Chang, V. Bertacco, and I. Markov, “Simulation-based bug
trace minimization with BMC-based refinement,” in ICCAD, 2005.

[3] Dong Wang et al., “Formal property verification by abstraction
refinement with formal, simulation and hybrid engines,” in DAC,
2001.

[4] J. Baumgartner and H. Mony, “Scalable liveness checking via
property-preserving transformations,” in DATE, 2009.

[5] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implemen-
tation of property directed reachability,” in FMCAD, 2011.

[6] P. Chauhan, E. M. Clarke, and D. Kroening, “Using SAT based
image computation for reachability analysis,” 2003.

[7] L. Zhang, M. Prasad, and M. Hsiao, “Interleaved invariant check-
ing with dynamic abstraction,” in CHARME, 2005.

4

155172

The Design and Implementation of the Model
Constructing Satisfiability Calculus

Dejan Jovanović
New York University

Clark Barrett
New York University

Leonardo de Moura
Microsoft Research

Abstract—We present the design and implementation of the
Model Constructing Satisfiability (MCSat) calculus. The MCSat
calculus generalizes ideas found in CDCL-style propositional SAT
solvers to SMT solvers, and provides a common framework
where recent model-based procedures and techniques can be
justified and combined. We describe how to incorporate support
for linear real arithmetic and uninterpreted function symbols
in the calculus. We report encouraging experimental results,
where MCSat performs competitive with the state-of-the art
SMT solvers without using pre-processing techniques and ad-hoc
optimizations. The implementation is flexible, additional plugins
can be easily added, and the code is freely available.

I. INTRODUCTION

Considering the theoretical hardness of SAT, the astonishing
adeptness of SAT solvers when attacking practical problems
has changed the way we perceive the limits of algorithmic
reasoning. Modern SAT solvers are based on the idea of
conflict-driven clause learning (CDCL) [1]–[3]. The CDCL
algorithm is a combination of an explicit backtracking search
for a satisfying assignment complemented with a deduction
system based on Boolean resolution. In this combination, the
worst-case complexity of both components is often circum-
vented by the components guiding and focusing each other.

Generalization of the SAT problem to the first-order do-
main is called satisfiability modulo theories (SMT). On the
shoulders of efficient SAT solvers, and numerous successful
applications, SMT has gained momentum as a more expressive
and equally performant framework. The common approach to
solving SMT problems is to employ a SAT solver to enu-
merate assignments of the Boolean abstraction of the formula.
The candidate (partial) Boolean assignments are then either
confirmed or refuted by a decision procedure dedicated to
reasoning about conjunctions of theory-specific constraints. If
multiple theories are involved, satisfiability in the combination
of such theories can be ensured by relying on high level
combination frameworks in the spirit of Nelson and Oppen
[4]–[6]. This style of reasoning is commonly called DPLL(T)
[7], [8] and is employed by most of the SMT solvers today.

The Model-Constructing Satisfiability (MCSat) calculus [9]
provides a more general alternative to DPLL(T), lifting the
idea of the CDCL-style model construction with conflict
resolution to the first-order domain. MCSat encompasses many
recent model-based decision procedures for theories such as

The research reported in this paper was supported in part by NSF grant
CNS-1228768.

linear real arithmetic [10]–[12], linear integer arithmetic [13],
nonlinear arithmetic [14], and floating-point [15] arithmetic.

Although the model-based decision procedures have proved
effective for theories of high complexity, it was unclear
whether the approach could be used with combinations of
theories, and whether the approach could be competitive
for “simple” theories where incumbent solutions seem to be
satisfactory. In this paper we describe an implementation of
the MCSat framework that can reason effectively in the com-
bination of linear real arithmetic and uninterpreted functions,
providing positive answers to both concerns. The procedure
for linear arithmetic is a careful but conceptually simple im-
plementation of a model-driven Fourier-Motzkin elimination,
while the combination with uninterpreted functions is provided
through model-driven Ackermanization [5], [16].

II. PRELIMINARIES

We assume that the reader is familiar with the usual notions
and terminology of propositional and first-order logic (see e.g.
[17]).

As usual, we will denote the set of rational numbers as Q
and use a, b, c to denote constants from Q. We assume a finite
set of Boolean and real variables, denoting them with letters
x, y, z, and a finite set of uninterpreted function symbols
which we denote with letters f , g. Each such function symbol
f is associated with a fixed arity k > 0. We define a UF
pure term inductively, with variables and constants being UF
pure terms, and a function term f(t1, . . . , tk) being UF pure
if each ti is a UF pure term. For example, f(1) and f(f(x))
are UF pure, but x + y and f(x + y) are not. We will refer
to non-constant UF pure terms as generalized variables and,
with abuse of notation, we will also refer to them with letters
x, y, z. Intuitively, generalized variables are terms seeking an
interpretation.

We use p, q to denote linear polynomials over generalized
variables with coefficients in Q. All polynomials are assumed
to be in sum-of-monomials normal form a1x1+· · ·+anxn+c,
with ai and c being constants, and xi denoting generalized
variables. For linear polynomials p and q, a linear constraint
is a constraint of the form p O q, where O ∈ {<,≤,=}.

An atom is either a Boolean variable or a linear constraint,
and we consider atoms to be generalized variables of Boolean
type. A literal L is an atom or a negation of an atom. A clause
C is a disjunction of literals (L1 ∨ · · · ∨ Ln), and we denote
the empty clause with ⊥.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 156173ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

Example II.1. Consider the constraints

f(x+ 1) < y, x = y .

The term f(x + 1) is not pure, but we can purify the
constraints by introducing a new variable s1 obtaining

f(s1) < y, s1 = x+ 1, x = y .

The constraints above are satisfiable, for example, by the
interpretation x 7→ 1, y 7→ 1, s1 7→ 2, f(s1) 7→ 0.

A. Deduction Rules
MCSat as a proof system is a clausal deduction system

based on clausal inference rules. Given a set of input clauses,
MCsat either finds an assignment of variables that satisfies
the clauses, or derives a proof of the unsatisfiability using the
rules below.

The core of MCSat is driven by the Boolean resolution rule.
Given two clauses C ∨ L and ¬L ∨D, we can eliminate the
literal L using the Boolean resolution rule

C ∨ L ¬L ∨D
C ∨D

We denote the result of applying the resolution rule with
resolveB(C,D,L).

For reasoning in linear arithmetic we use the Fourier-
Motzkin rule. Given two inequalities (pL < x) and (x < pU),
we can eliminate the variable x using the Fourier-Motzkin
rule, obtaining a new inequality (pL < pU). In clausal form,
this rule can be stated as

¬(pL < x) ∨ ¬(x < pU) ∨ (pL < pU)

We denote this rule with resolveFM. The rule above is applied
to strict inequalities and, as expected, we overload resolveFM
to cover non-strict inequalities and equalities.

In addition to the Fourier-Motzkin rule, in order to reason
about dis-equalities we also use the equality split rule, which
states that the relation between polynomials p and q can only
be one of the three.

(p = q) ∨ (q < p) ∨ (p < q)

We denote the split rule with splitEq.
For reasoning about uninterpreted functions we use the Ack-

ermann expansion rule which states that, for any uninterpreted
function symbol f of arity k, if xi = yi for i = 1, . . . , k, then
also f(x1, . . . , xk) = f(y1, . . . , yk), or, in clausal form

x1 6= y1 ∨ · · · ∨ xk 6= yk ∨ f(x1, . . . , xk) = f(y1, . . . , yk)

We denote the Ackermann rule with resolveCC.
We also assume a general “normalization” rule that per-

forms simple semantics-preserving transformations on clauses,
denoted with a dashed line, such as

¬(p < q) ∨ (x < 0) ∨ (x < 0)

(q ≤ p) ∨ (x < 0)

The four rules above, together with the normalization rule,
comprise the whole of our proof system, which speaks to the
simplicity of the MCSat approach.

BCP FM

UF

Trail

Clause and Variable
Database

Fig. 1. Main solver components

III. CORE ARCHITECTURE

The MCSat architecture consists of a core solver that
manages the solver components depicted in Figure 1. The main
components are the clause and variable database, the solver
trail, and the reasoning plugins. The core solver drives the
solving process, and is responsible for dispatching notifications
and handling requests from the plugins, while the plugins
reason about the content of the trail. The most important duty
of the core is to perform conflict analysis when the reasoning
plugins detect a conflicting state.

The clause database contains a compact representation of
all the clauses in the system (including unit clauses). The
clause database contains both the input clauses and the clauses
learned during the search. The variable database maintains the
information about all the generalized variables in the system in
an efficient index-based form. Both databases are occasionally
compacted, by heuristically marking the clauses to keep, and
then garbage-collecting unmarked clauses and variables using
a mark-and-sweep approach. Maintaining a balanced amount
of clauses and variables is crucial in the MCSat setting as,
in contrast to the DPLL(T) framework, model-based decision
procedures can generate many new literals that would, if not
removed, eventually overwhelm the system.

Plugins are the standard way of extending MCSat, and we
currently have implementations of dedicated plugins that can
reason about the Boolean structure, linear real arithmetic, and
uninterpreted function symbols, described in Section IV.

A. The Trail

The central data-structure in the framework is the solver
trail. It is a generalized version of the trail found in modern
SAT solvers. In our design of the interface to the trail, we make
sure that the trail is used not only as the container of reasoning
history, but also as the object ensuring formal progress towards
termination of the search process.

The trail is a sequence of trail elements, where each element
can be either a Boolean decision, a semantic decision, a clausal
propagation, or a semantic propagation.

A Boolean decision is a literal L that we assume to be true,
and is emphasized in the trail as L. These elements are the
equivalent of decided literals found in modern SAT solvers. A
semantic decision is a decision on the value of a non-Boolean
generalized variable. We write semantic decisions as x 7→α,
where α represents a value from the type of the variable x.
For example, we may decide that the value of a real variable

157174

x is 1.1 A clausal propagation is a literal L derived to be
true through clause C using Boolean constraint propagation
(BCP), which is marked as L↓C . If the clause C = L, i.e. it is
a unit clause, we mark the propagation just as L↓. The level
of a decision element, or a clausal propagation, is the number
of decisions in the trail up to and including the element itself.

We say that a literal L (term t) can be evaluated if the
generalized variables that appear in the literal L (term t) are
all assigned values in the trail through semantic decisions. A
semantic propagation marks a literal L that can be evaluated
to true. We denote semantic propagation as L↓k, where the
value k represents the level of the highest semantic decision
used in evaluating L. The level of a semantic propagation L↓k

is k. If a literal L (¬L) appears on the trail M as an element
of level k, we say that L is true (false) in M , and the level
of L is k.

Example III.1. Consider the clause

C ≡ (0 < x) ∨ (0 < y) ∨ (1 < x+ y)

and the trail

M = J
1

x 7→0,
2

¬(0 < y),
1

¬(0 < x)↓1,
2

(1 < x+ y)↓C , K .

The level of each element is marked above it in the trail. The
first two elements of M are a semantic decision assigning the
variable x to the value 0, and a Boolean decision of the literal
¬(0 < y). The next element of M is a semantic propagation
of ¬(0 < x). Note that the semantic propagation is marked
at level 1, as this is the level at which x is assigned. The last
element of M is a clausal propagation of the literal (1 < x+y)
due to clause C.

Adding new elements to the end of the trail, by performing
a decision, or propagating a literal, is restricted as follows.
• No literal L can be added to the trail (either by decision

or propagation), if the literal L or ¬L already appears on
the trail.

• No semantic decisions x 7→α can be added to the trail if
it invalidates a literal L that is already on the trail, i.e. if
¬L would be a semantic propagation after the decision.

• No Boolean decision L can be added to the trail if it
invalidates a clause C in the system, i.e. if the literal ¬L
appears in C, and all other literals of C are already false.

• A clausal propagation L↓C can only be added to the trail
if the literal L appears in C, and all other literals of C
are already false.

Besides adding elements to the trail, a trail can also be
backtracked. Backtracking amounts to retracting some deci-
sions and their consequences from the trail. We require that
any backtracking of the trail be accompanied with a clausal
backtracking reason that is used to maintain the invariance of
progress. The reason for backtracking is always a clause C
that evaluates to false in the trail, thus a signal that the search
must be revised. In addition to being false, the clause C should

1A Boolean decision is in fact just a special case of a semantic decision, but
we consider them separately for presentation and implementation purposes.

also be either a unique implication point [2] (UIP) clause or a
semantic split clause, as explained below, and we denote this
with the predicate canBacktrackWith(M,C).

Let topLevel(M,C) denote the highest level (in M) of a
literal from C, and let topLiterals(M,C) denote the set of
literals from C at this highest level. Clause C is a UIP clause if
there is only one literal L in topLiterals(M,C). A UIP clause
C can thus be used to propagate L at the second highest level
of literals in C, or level 0 if C is unit, and we denote this
level as uipLevel(M,C). Clause C is a semantic split if each
L ∈ topLiterals(M,C) is a semantic propagation L↓k in M .

Algorithm 1: MCSAT::BACKTRACKWITH(M , C)
Data: trail M , clause C evaluates to false in M

1 if C is a UIP clause in M then
2 level ← uipLevel(M,C)
3 else C is a semantic split clause in M
4 level ← topLevel(M,C) - 1

5 remove from M all elements of level > level
6 if C was a UIP clause then
7 for the unassigned L ∈ C, add L↓C to M
8 else C was a semantic split clause
9 for an unassigned L ∈ C, add decision L to M

The backtracking procedure backtrackWith is presented
in Algorithm 1. We call propagations, decisions, and back-
tracking valid if they conform to the restrictions outlined
above.

Example III.2. Consider again the clause C and trail M
from Example III.1. Using the Fourier-Motzkin rule, we can
deduce the following valid clause

¬(1− x < y) ∨ ¬(y ≤ 0) ∨ (1− x < 0)

R1 ≡ ¬(1 < x+ y) ∨ (0 < y) ∨ (1 < x)

The first two of the literals from R1 are already false in
the trail M , and the last literal (1 < x) is a new literal. The
new literal can be evaluated in M , and we can propagate it
semantically, obtaining a new trail

J
1

x 7→0,
2

¬(0 < y),
1

¬(0 < x)↓1,
2

(1 < x+ y)↓C ,
1

¬(1 < x)↓1K .

The clause R1 is valid and evaluates to false at M , i.e.
the search needs to be revised. But, R1 is not suitable for
backtracking since it contains two literals of level 2, and none
of them is a semantic propagation. Fortunately, we can use
the Boolean resolution rule to remove the literal propagated
by C and deduce

C R1

R2 ≡ (1 < x) ∨ (0 < x) ∨ (0 < y)

The clause R2 only contains one literal at the highest level,
so it is an UIP clause suitable for backtracking. The effect of
backtracking the trail with backtrackWith(R) is a new

158 175

trail

J
1

x 7→0,
1

¬(0 < x)↓1,
1

¬(1 < x)↓1,
1

(0 < y)↓R2
K .

Note that, in addition to the propagated UIP literal, the back-
tracking procedure also kept the late semantic propagations.

It is important to note that we diverge slightly from the
original MCSat presentation [9], in that the trail as presented
here contains explicit semantic propagation elements. In [9],
all semantic propagation was implicit in the trail and available
through evaluation. This change was guided by implemen-
tation reasons since it allows, for example, a more efficient
implementation of Boolean constraint propagation. The change
is a minor one, and the main theoretical results from [9] hold in
this setting and we restate the most important ones as lemmas.

It was shown in [9] (Theorem 1) that using valid trail
operations is enough to ensure termination, if we assume that
all literals that the system will ever see come from a finite set
of literals B, that we call the finite basis.

Lemma III.1. Starting from an empty trail JK, any procedure
that only uses valid trail operations, while using only literals
from the finite basis B, can only make a finite number of such
trail operations.

In Section IV we will show how the finite basis assumption
can be ensured for problems combining linear arithmetic and
uninterpreted functions.

B. Conflict Analysis

As in CDCL SAT solvers, conflict analysis is used to learn
from the conflicting clauses encountered during the search –
clauses with all literals false in the trail. As seen in Example
III.2, it is possible to identify clausal conflicts that can not
directly be used for backtracking. Conflict analysis takes a
conflicting clause and transforms it into a new clause that is
suitable for backtracking. This newly learned clause is used
in the main solver loop to revise the search.

A conflicting clause is not suitable for backtracking if it
contains more than one literal at the top level, and these
literals are not semantic propagations. It is easy to show that
the problematic literals are clausal propagations, and conflict
analysis can eliminate them by performing Boolean resolution
with the clauses that propagated them. Since the analysis uses
existing valid clauses and the resolution rule, the result of
such conflict analysis will be a valid deduction. Therefore,
if conflict analysis learns an empty clause ⊥, this will be a
signal to the main solver that the problem is unsatisfiable. The
conflict analysis procedure is presented in Algorithm 2.

Note that the analysis procedure only uses the resolveB rule.
Other deduction rules are “axiom” rules used to create new
clauses which can be used to identify conflicting situations
or for propagation purposes. Also, as the analysis procedure
concludes as soon it finds a clause suitable for backtracking,
if this is the case due to a UIP clause, the analysis style
corresponds to the 1st UIP SAT strategy [18].

Algorithm 2: MCSAT::ANALYZECONFLICT(M , C)
Data: solver trail M , clause C inconsistent with M

1 k ← M .size()
2 while C 6= ⊥ and ¬ canBacktrackWith(M,C) do
3 k ← k − 1
4 if M [k] = L↓D and ¬L ∈ C then
5 C ← resolveB(C,D,L)

6 return C

Lemma III.2. Given a valid trail M and a clause C that
is false in M , the analyzeConflict(M , C) procedure
always terminates with a clause R that is a valid deduction
and is either the empty clause or is suitable for backtracking.

C. Main Search Loop

The algorithm behind MCSat is based on the search-and-
resolve loop common in modern SAT solvers (e.g. [19]).
The main loop of the solver performs a “smart” search for
a satisfying assignment and terminates either by finding the
assignment that satisfies the original problem, or deduces that
the problem is unsatisfiable. The main check() method of
the solver is presented in Algorithm 3.

Algorithm 3: MCSAT::CHECK()
Data: solver trail M , variables to assign in queue

1 while true do
2 propagate()
3 if detected conflict with clause C then
4 R ← analyzeConflict(M , C)
5 if R = ⊥ then return unsat
6 backtrackWith (M , R)
7 else
8 if queue.empty() then return sat
9 x ← queue.pop()

10 decideValue(x)

The search process goes forward, making continuous
progress, either through propagation, conflict analysis, or by
making a decision. The propagate() procedure invokes
the propagation procedures provided by the enabled plugins.
Each plugin is allowed to propagate new information to the
top of the trail. If a plugin detects an inconsistency this is
communicated to the solver by producing a conflicting clause.
This is recorded by the solver and allows the solver to analyze
the conflict using the analyzeConflict() procedure. If
conflict analysis learns the empty clause ⊥, the problem is
proved unsatisfiable, otherwise the learned clause is used to
backtrack the search.

On the other hand, if the plugins have performed propaga-
tion to exhaustion, and no conflict was detected, the procedure
makes progress by deciding a value for an unassigned variable.
The solver picks an unassigned variable x to be assigned, and

159176

relegates the choice of the value to the plugin responsible for
assigning x. A choice of value for the selected unassigned
variable should exist, as otherwise a plugin should have
detected the inconsistency. MCSat uses a uniform heuristic to
select the next variable, regardless of their type. The heuristic
is based on how often a variable is used in conflict resolution,
and is popularly used in CDCL-style SAT solvers [3]. Note
that, as explained in the preliminaries, every atom (e.g., x < 2)
is treated as a generalized Boolean variable. If all the variables
are assigned to a value, this is a satisfying assignment for the
original problem.

IV. PLUGINS

The reasoning engines in MCSat are organized in modules
that we call plugins. The plugins can register listeners for
notification about important events in the system, such as new
assertion formulae, creation of new clauses and generalized
variables, and garbage-collection events. Plugins participate in
the solving process by performing propagation and detecting
conflicts, with dedicated plugins also taking part in selecting
values for variables.

In order to ensure completeness in the system, if a plugin is
dedicated to selecting values for a particular type T (such as
Boolean or real), it must be unit-constraint complete. We call
a plugin unit-constraint complete for type T if, after a call to
propagate(), either the plugin has identified a conflicting
clause C, or, for each unassigned variable x of type T there
exists a valid decision x 7→α (or a Boolean decision if T
is Boolean). Note that unit-constraint completeness does not
require that the plugin ensures consistency of all assertions,
only that the assertions with a single unassigned variable are
satisfiable – a much easier property to check.2

Example IV.1. Consider the clauses

C1 ≡ ((x+ y ≤ 0) ∨ (0 ≤ y) ∨ z)
C2 ≡ ((x+ y ≤ 0) ∨ (0 ≤ y) ∨ ¬z) ,

where variables x and y are of real type, and the variable z
is a Boolean, with the corresponding trail

M = J
1

x 7→0,
2

¬(x+ y ≤ 0),
3

¬(0 ≤ y) K .

In the trail M , the clauses C1 and C2 have all but one
literal false, i.e. they are unit constraints that can propagate
a literal. M does not allow a value for variable z, since
assigning z to true invalidates clause C1, and assigning z to
false invalidates C2. This kind of unit constraint conflict can
be detected with exhaustive Boolean constraint propagation.
For example, using C1, we can propagate z obtaining

M ′ = J
1

x 7→0,
2

¬(x+ y ≤ 0),
3

¬(0 ≤ y),
3

z↓C1
K .

In the trail M ′ the clause C2 is false and is a conflicting
clause.

2This is a variant of local consistency closely related to forward checking
[20].

In addition to the Boolean conflict above, the original trail
M does not allow a selection of value for the real variable
y. With respect to y there are two unit constraints in M – the
constraint ¬(x + y ≤ 0) ≡ (0 < x + y) (that evaluates to
0 < y) and the constraint ¬(y ≥ 0) ≡ y < 0 – and they are
in conflict.

The conflicting unit constraints can be resolved using the
resolveFM rule obtaining the clause

¬(−x < y) ∨ ¬(y < 0) ∨ (−x < 0)

R ≡ (x+ y ≤ 0) ∨ (0 ≤ y) ∨ (0 < x)

We can semantically propagate that the new literal (0 < x) is
false, obtaining a trail

M ′′ = J
1

x 7→0,
2

¬(x+ y ≤ 0),
3

¬(0 ≤ y),
1

¬(0 < x)↓1 K .

In the trail M ′′ the clause R is false and is a conflicting
clause.

A. BCP And Watchlists

As hinted in Example IV.1, in order to ensure unit-
completeness for the Boolean variables in a clausal setting, it
is enough to perform Boolean constraint propagation (BCP) to
exhaustion. We’ve implemented the customary efficient BCP
loop in a dedicated BCP plugin, with the basic mechanics built
upon the important concept of watchlists.

In the SAT literature, the two-literal watchlist was first
introduced in [3] as an efficient mechanism to detect when
a clause becomes unit. In the MCSat approach, the concept
of watchlists is more generally applicable and we use it in
other plugins too. The key insight is the following. If we are
interested in detecting when, of a set V of variables, exactly
k variables are left unassigned, it is enough to “watch” a set
W ⊆ V of (k + 1) variables by maintaining the invariant
that all variables in W are unassigned. If a variable x ∈ W
becomes assigned, then we try to replace x with another
unassigned variable y ∈ V \W . If we can’t find an unassigned
variable y to replace x, this means that in V there are now
exactly k variables unassigned.

B. Linear Real Arithmetic

The plugin for reasoning about linear arithmetic (FM plu-
gin) is responsible for reasoning about linear constraints and
deciding values for variables of real type. In order to maintain
unit completeness for variables of the real type, we should
ensure that for each real variable x, the set of all linear
constraints from the trail M , that are unit in variable x, is
consistent.

We call a literal L ∈M a linear constraint unit in x, if the
atom of L is a linear constraint, and all variables of L different
from x are assigned in M . Any linear constraint L ∈M , unit
in x, can be equivalently written as one of

x 6= p, p O x, x O p ,

with O ∈ {<,≤,=}. Since the constraint is unit, the polyno-
mial p can be evaluated in M and takes some value v ∈ Q.

160 177

Example IV.2. Consider the trail

M = J¬(x+ y < 0), x 7→0,¬(x+ z = 1), (0 < y + z)K .

The trail M contains two unit linear constraints. The literal
¬(x+ y < 0) is unit in variable y, is equivalent to (−x ≤ y),
and evaluates to 0 ≤ y. The literal ¬(x+ z = 1) is unit in z,
is equivalent to z 6= 1−x, and evaluates to z 6= 1. The linear
constraint (0 < y + z) is not unit in M .

Using the watchlist mechanism, we can efficiently maintain
an up-to-date set of linear constraints that are unit. The unit
constraints in the trail impose constraints on the unit variables,
and for each variable x, the FM plugin tracks the following
• the strongest lower bound of x implied by a unit linear

constraint L ∈M ;
• the strongest upper bound of x implied by a unit linear

constraint L ∈M ;
• a set of values vD such that x is implied to be different

from vD by a unit linear constraint L ∈M .
Having the information above, for each variable x, we can

now effectively reason about its unit feasibility by inspecting
if there is a value within its upper and lower bound that is not
disallowed by a disequality constraint. If, for some variable x,
there is no such value, it must be due to a bound conflict or
a disequality conflict.

Variable x is in a bound conflict if the trail contains two unit
linear constraints LL ≡ (pL OL x) and LU ≡ (x OU pU),
with pL and pU evaluating to vL and vU , where either vL >
vU , or vL = vU but at least one of the bounds OL or OU is
strict (<). This conflict can be resolved using the resolveFM
rule

¬(pL OL x) ∨ ¬(x OU pU) ∨ (pL O pU)

where O is the result of combining OL and OU . This clause
can be used as an explanation of the conflict since the first two
literals evaluate to false, and the last literal doesn’t contain x
and can be semantically propagated as false.

Variable x is in a disequality conflict if the trail contains
a unit disequality constraint (x 6= pD), and two unit linear
constraints (pL ≤ x) and (x ≤ pU), with pD, pL and
pU all evaluating to the same value v. This conflict can be
resolved using a derived rule we call resolveDiseq with the
derivation presented in Figure 2. This rule produces a clause
that can be used as an explanation of the conflict since the
first three literals evaluate to false and the last two literals
can be semantically propagated as false. The resolveDiseq
rule is applicable for disequality conflicts with unit equality
constraints too, and although a more precise rule exists, we
use this one for simplicity.

In addition to detecting conflicts, the FM plugin also eagerly
performs semantic propagation. Using the same watch-list
mechanism, the FM plugin tracks all linear constraints in the
system, and can detect when a linear constraint becomes fully
assigned. Such constraints are evaluated using the assignment
in the trail and added to the trail as semantic propagations.

Computing bounds implied by unit constraints and perform-
ing semantic propagation of fully assigned linear constraints
can be very expensive. The propagation loop of the FM plugin
spends 90% or more of its time evaluating these constraints. In
order to improve performance we use the value time-stamping
feature of the main solver. The main solver maintains a global
ever-increasing time-stamp for decision values. Each variable
x is associated with its own time-stamp, and the time-stamp
of x gets assigned to the global time-stamp every time x is
assigned to a value different from the value that x was assigned
to in the previous attempt. This allows us to detect when a set
of variables (say variables of a linear constraints) are assigned
to the same values as the previous time we considered the set,
by keeping the maximal time-stamp of those variables. This
in turn allows us to cache bound computations and semantic
evaluations of linear constraints, in cases when the same values
were chosen.

If no conflicts were detected, the FM plugin is dedicated to
picking the values of the real variables. In order to improve
performance of arithmetic operations, when deciding on a
value for a variable, if possible, we always choose the values
to be dyadic rationals.3 Additionally, if allowed by the bounds,
when picking a value for a variable x, we try to use the
value that was used for x previously (value-caching). This is
a strategy similar to phase-caching in SAT solvers [21], and
allows for better evaluation cache performance when using
value time-stamping described above.

C. Uninterpreted Functions
Most decision procedures for uninterpreted functions are

based on fast union-find algorithms complemented with
congruence-closure reasoning [22], [23]. Instead, we adopt
a very simple approach to reasoning about uninterpreted
functions that detects direct conflicts in term assignments.

We say that a function term f(x1, . . . , xn) has an evaluation
representative f(α1, . . . , αn) in a trail M , if each xi is
either the constant αi, or is assigned by M to value αi.
For each uninterpreted function term that appears in the input
formula (generalized variables), we maintain a single-variable
watchlist of its non-constant arguments. This allows us to
detect when all of the arguments of the function application
have been assigned, and the term therefore has an evaluation
representative. The UF plugin can then detect a conflict if
two terms with the same evaluation representative are ever
assigned to different values, and then explain the conflict using
the resolveCC rule.

Example IV.3. Consider the unit constraint f(x) < f(y) and
assume that the trail is in the state

M = J
0

(f(x) < f(y))↓,
1

f(x) 7→0,
2

f(y) 7→1,
3

x 7→0K .

In this state, the UF plugin knows that the arguments of f(x)
are fully assigned, with the evaluation representative f(0), and
is assigned to 0.

3Dyadic rationals D = { p
2k
| p ∈ Z, k ∈ N} are a convenient dense

sub-ring of Q, allowing more efficient ring operations (+, ×) due to less gcd
computation.

161178

splitEq
(x = pD) ∨ (pD < x) ∨ (x < pD)

resolveFM
¬(pL ≤ x) ∨ ¬(x < pD) ∨ (pL < pD)

resolveB
(x = pD) ∨ (pD < x) ∨ ¬(pL ≤ x) ∨ (pL < pD)

resolveFM
¬(pD < x) ∨ ¬(x ≤ pU) ∨ (pD < pU)

resolveB
(x = pD) ∨ ¬(pL ≤ x) ∨ ¬(x ≤ pU) ∨ (pL < pD) ∨ (pD < pU)

Fig. 2. Derivation of the disequality lemma.

We continue from this state to assign the next unassigned
variable y, and the responsible plugin (FM) can assign it to
any value, including

JM,
4

y 7→0K .

The UF Plugin now has enough information to detect a
conflicting state: the term f(y) has all arguments assigned,
with the representative f(0) that is already assigned to the
value 0 6= 1. We can explain the conflict using the resolveCC
rule to obtain the explanation clause

R ≡ ¬(x = y) ∨ (f(x) = f(y))

We can propagate the new literals semantically, adding
(x = y)↓4 and ¬(f(x) = f(y))↓2 to the trail and marking a
conflict with the clause R. The single top literal of R being
false makes this clause an UIP clause and the solver can then
backtrack to resolve the conflict, obtaining

JM,
2

¬(f(x) = f(y))↓2,
3

¬(x = y)↓RK .

With the new trail, the FM plugin can now make a more
informed decision on the value of y, which will satisfy the
constraints.

D. Finite Basis

In order to guarantee termination through Lemma III.1, we
need to guarantee that starting from the initial problem, the
literals that the procedure operates on can be bound to a finite
set. New literals are only created by the plugins, particularly
the FM and UF plugins, as part of clauses that explain
conflicting situations. The UF plugin only creates new literals
using the resolveCC rule, introducing new equalities over
function terms and their arguments. Given that the number
of function terms in the input problem is finite, and no new
function terms are ever introduced, the number of new literals
that the UF plugin can introduce is finite. As already shown in
[10]–[12], fixing the decision order on variables of real type
ensures that the number of new literals introduced by the FM
plugin is also finite. The argument follows from the fact that
the FM rule always introduces linear constraints from existing
ones, with the top variable eliminated. In practice, however,
we do not enforce a fixed variable order, as the flexibility in
deciding variables is crucial for performance.

V. EXPERIMENTAL RESULTS

We implemented the MCSat framework as an independent
engine in the CVC4 [24] solver (reusing the basic infrastruc-

ture and the parser) with the code freely available, and we
refer to this implementation as mcsat.4

In order to evaluate the new approach, we compared our
implementation with several SMT solvers that support linear
arithmetic and uninterpreted functions, namely cvc4 1.2 [24],
z3 4.3.1 [25], mathsat 5.1.12 [26], and yices 1.0.38 [27]. All
of these solvers are DPLL(T) based and implement a variant
of the simplex algorithm described in [28]. All experiments
were preformed on AMD Opteron 250 2.4GHz machines with
a timelimit of 30 minutes and memory limited to 2GB.

We first compared the solvers on a set of pure arithmetic
benchmarks from the QF LRA category of the SMTLIB
library.5 The results are presented in Table I and show that
the new mcsat implementation is competitive with the other
solvers, and even excels on some problems that are hard for
the DPLL(T)-based simplex solvers (such as the clocksynchro
examples).

We then evaluated the solvers on the benchmarks that
combine linear arithmetic and uninterpreted functions. For this
we combined the benchmarks from the QF UFLRA and the
QF UFLIA categories of the STMLIB library, while changing
all the integer problems into their real-relaxation counterpart.6

The results are presented in Table II. The results on this
set show a very robust performance of mcsat, with our
implementation solving all problems, in the least amount of
total time. Again, there is a category of problems (wisas) hard
for the DPLL(T)-based solvers where mcsat excels.

VI. CONCLUSION

We presented the design and implementation of the model-
based satisfiability calculus. The new solver can effectively
reason in linear real arithmetic and uninterpreted functions,
and is competitive with existing solvers. We proposed a simple
combination mechanism for uninterpreted functions, based on
model filtering, that has proven to be competitive with more
sophisticated theory-combination frameworks.

We see many exciting directions for future work. In addition
to integrating and developing further the existing model-based
decision procedures for integer and non-linear real arithmetic,
we plan to develop a decision procedure for the theory of
arrays based on [29]. We also plan to work on implementing
theory propagation algorithms that have proved effective in
the DPLL(T) framework, and to work on integration of ex-
isting decision procedures (such as simplex) into the MCSat
framework.

4Source code of the revision used in experiments is available at
https://github.com/dddejan/CVC4/tree/mcsat-fmcad2013
in the src/mcsat directory. Use with cvc4 --enable-mcsat.

5Available at http://www.smt-lib.org/.
6sed -e s/Int/Real/g -e s/QF_UFLIA/QF_UFLRA/g

162 179

TABLE I
COMPARISON OF MCSAT WITH OTHER SOLVERS ON QF LRA BENCHMARKS.

mcsat cvc4 z3 mathsat5 yices
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

clocksynchro (36) 36 123.11 36 1166.55 36 1828.74 36 1732.59 36 1093.80
DTPScheduling (91) 91 31.33 91 72.92 91 100.55 89 1980.96 91 926.22
miplib (42) 8 97.16 27 3359.40 23 3307.92 19 5447.46 23 466.44
sal (107) 107 12.68 107 13.46 107 6.37 107 7.99 107 2.45
sc (144) 144 1655.06 144 1389.72 144 954.42 144 880.27 144 401.64
spiderbenchmarks (42) 42 2.38 42 2.47 42 1.66 42 1.22 42 0.44
TM (25) 25 1125.21 25 82.12 25 51.64 25 1142.98 25 55.32
ttastartup (72) 70 4443.72 72 1305.93 72 1647.94 72 2607.49 72 1218.68
uart (73) 73 5244.70 73 1439.89 73 1379.90 73 1481.86 73 679.54

596 12735.35 617 8832.46 613 9279.14 607 15282.82 613 4844.53

TABLE II
COMPARISON OF MCSAT WITH OTHER SOLVERS ON QF UFLRA BENCHMARKS.

mcsat cvc4 z3 mathsat5 yices
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

EufLaArithmetic (33) 33 39.57 33 49.11 33 2.53 33 20.18 33 4.61
Hash (198) 198 34.81 198 10.60 198 7.18 198 1330.88 198 2.64
RandomCoupled (400) 400 68.04 400 35.90 400 31.44 400 18.56 384 39903.78
RandomDecoupled (500) 500 34.95 500 40.63 500 30.98 500 21.86 500 3863.79
Wisa (223) 223 9.18 223 87.35 223 10.80 223 65.27 223 2.80
wisas (108) 108 40.17 108 5221.37 108 443.36 106 1737.41 108 736.98

1462 226.72 1462 5444.96 1462 526.29 1460 3194.16 1446 44514.60

REFERENCES

[1] S. Malik and L. Zhang, “Boolean satisfiability from theoretical hardness
to practical success,” Communications of the ACM, vol. 52, no. 8, pp.
76–82, 2009.

[2] J. P. M. Silva and K. A. Sakallah, “GRASP – a new search algorithm
for satisfiability,” in ICCAD, 1997.

[3] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: engineering an efficient SAT solver,” in Design Automation
Conference, 2001, pp. 530–535.

[4] G. Nelson and D. C. Oppen, “Simplification by cooperating decision
procedures,” ACM Transactions on Programming Languages and Sys-
tems, vol. 1, no. 2, pp. 245–257, 1979.

[5] L. de Moura and N. Bjørner, “Model-based Theory Combination,” in
Satisfiability Modulo Theories, ser. ENTCS, vol. 198, 2008, pp. 37–49.

[6] D. Jovanović and C. Barrett, “Being careful about theory combination,”
Formal Methods in System Design, pp. 1–24, 2012.

[7] S. Krstić and A. Goel, “Architecting solvers for SAT modulo theories:
Nelson-Oppen with DPLL,” Frontiers of Combining Systems, pp. 1–27,
2007.

[8] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T),” Journal of the ACM, vol. 53, no. 6, pp. 937–
977, 2006.

[9] L. de Moura and D. Jovanović, “A Model-Constructing Satisfiability
Calculus,” in Verification, Model Checking, and Abstract Interpretation,
vol. 7737, 2013, pp. 1–12.

[10] S. Cotton, “Natural domain SMT: A preliminary assessment,” in FOR-
MATS, 2010.

[11] K. L. McMillan, A. Kuehlmann, and M. Sagiv, “Generalizing DPLL to
richer logics,” in Computer Aided Verification, 2009, pp. 462–476.

[12] K. Korovin, N. Tsiskaridze, and A. Voronkov, “Conflict resolution,”
Principles and Practice of Constraint Programming, pp. 509–523, 2009.

[13] D. Jovanović and L. de Moura, “Cutting to the chase: Solving linear
integer arithmetic,” in Automated Deduction, 2011, pp. 338–353.

[14] ——, “Solving non-linear arithmetic,” Automated Reasoning, pp. 339–
354, 2012.

[15] L. Haller, A. Griggio, M. Brain, and D. Kroening, “Deciding floating-
point logic with systematic abstraction,” in Formal Methods in
Computer-Aided Design, 2012, pp. 131–140.

[16] W. Ackermann, Solvable cases of the decision problem, 1954, vol. 12.
[17] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability

modulo theories,” in Handbook of Satisfiability, 2009.
[18] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient

conflict driven learning in a Boolean satisfiability solver,” in Computer-
aided Design, 2001, pp. 279–285.

[19] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and
applications of satisfiability testing, 2004, pp. 502–518.

[20] C. Bessiere, “Constraint propagation,” in Handbook of Constraint Pro-
gramming, 2006, pp. 29–83.

[21] K. Pipatsrisawat and A. Darwiche, “A lightweight component caching
scheme for satisfiability solvers,” in Theory and Applications of Satisfi-
ability Testing, 2007, pp. 294–299.

[22] G. Nelson and D. C. Oppen, “Fast decision procedures based on
congruence closure,” Journal of the ACM, vol. 27, no. 2, pp. 356–364,
1980.

[23] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: a theorem prover for
program checking,” Journal of the ACM, vol. 52, no. 3, pp. 365–473,
2005.

[24] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided Verification,
2011, pp. 171–177.

[25] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” TACAS,
pp. 337–340, 2008.

[26] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
MathSAT5 SMT Solver,” in TACAS, 2013, pp. 93–107.

[27] B. Dutertre and L. D. Moura, “The yices SMT solver,” Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, 2006.

[28] ——, “A fast linear-arithmetic solver for DPLL(T),” in Computer Aided
Verification, 2006, pp. 81–94.

[29] R. Brummayer and A. Biere, “Lemmas on Demand for the Extensional
Theory of Arrays,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 6, pp. 165–201, 2009.

163180

Trimming while Checking Clausal Proofs
Marijn J.H. Heule, Warren A. Hunt, Jr., and Nathan Wetzler

The University of Texas at Austin

Abstract—Conflict-driven clause learning (CDCL) satisfiability
solvers can emit more than a satisfiability result; they can
also emit clausal proofs, resolution proofs, unsatisfiable cores,
and Craig interpolants. Such additional results may require
substantial modifications to a solver, especially if preprocessing
and inprocessing techniques are used; however, CDCL solvers
can easily emit clausal proofs with very low overhead. We
present a new approach with an associated tool that efficiently
validates clausal proofs and can distill additional results from
clausal proofs. Our tool architecture makes it easy to obtain
such results from any CDCL solver. Experimental evaluation
shows that our tool can validate clausal proofs faster than existing
tools. Additionally, the quality of the additional results, such as
unsatisfiable cores, is higher when compared to modified SAT
solvers.

I. INTRODUCTION

Conflict-driven clause learning (CDCL) satisfiability solvers
compute the satisfiability of a given Boolean formula. When
a solver claims a formula is unsatisfiable, most solvers can
also emit a proof of unsatisfiability as a sequence of learned
clauses, and some solvers can produce an unsatisfiable core of
the clauses used to refute a formula. Such proofs can then be
checked to validate the unsatisfiability claim of a CDCL solver,
while the core can be used as a starting point for extracting
minimal unsatisfiable subsets (MUS) and interpolants.

Proofs of unsatisfiability can be expressed in clausal- or
resolution-style formats [1], [2], [3], [4], and such proofs
provide assurance that a solver is correct [5]. Any CDCL
solver can emit clausal proofs with low overhead, and clausal
proofs are much smaller than resolution-style proofs. However,
clausal proofs are relatively expensive to validate, and clausal
checkers can be complicated, making them harder to trust
or mechanically verify. Although resolution proofs are easy
to validate with a simple proof checker, they are hard to
obtain and can be huge in size. This paper provides additional
evidence that clausal proofs are more useful in practice.

SAT solvers that emit additional results [6], such as unsat-
isfiable cores, store an antecedent graph: a directed acyclic
graph that represents a dependency between learned and input
clauses. Storing an antecedent graph requires significant mod-
ifications to a SAT solver’s implementation. The size of the
antecedent graph can be two orders of magnitude larger than
the size of the clause database. This requires a lot of memory,
even with optimizations [7], and can slow down a solver
significantly. Also, it may be hard to compute the antecedents
of learned clauses for some reasoning techniques, such as
equivalence reasoning and hidden literal elimination [8]. Few
solvers support the storing of antecedent graphs, and no top-
tier SAT solver has the ability to store them.

This paper uses clausal proof checking to produce additional
results from SAT solvers. More specifically, we reconstruct an
antecedent graph from a clausal proof rather than producing
it while solving. Goldberg and Novikov [1] proposed an
algorithm, known as backward checking, to achieve this. As
far as we know, there is no available implementation of this
method. We noticed that this method can be very expensive
when used on clausal proofs from state-of-the-art CDCL
solvers. In this paper, we present two optimizations for this
algorithm [1] to reduce its computational costs substantially:
we add clause deletion information to clausal proofs and we
develop an alternative procedure to perform unit propagation.

We have implemented a proof-checking tool, called DRUP-
trim, that mitigates one of the main drawbacks of clausal proof
checking, namely speed. CDCL SAT solvers can easily emit
clausal proofs, and these proofs can now be used to produce
additional results from any SAT solver. Our DRUP-trim tool
also enables validation of lookahead SAT solvers [9]. These
solvers use several types of local learning that make it hard
to emit resolution proofs; however, clausal proofs are easy
to emit. Our work is most closely related to that of Van
Gelder [3] whose RUP2RES tool converts clausal proofs into
resolution proofs. In contrast to RUP2RES, our DRUP-trim
tool can emit additional results such as unsatisfiable cores
and reduced proofs. DRUP-trim does not store arcs in the
antecedent graph and therefore does not suffer from high
memory consumption. A slightly modified version of DRUP-
trim was used to validate the unsatisfiability results of SAT
Competition 2013.

Our contributions are in three areas: verification of unsat-
isfiability proofs, minimal unsatisfiable core extraction, and
computation of Craig interpolants. Our DRUP-trim tool fa-
cilitates fast validation of unsatisfiability results of CDCL
solvers and, in the process, generates additional results that
can be used as a starting point for tools that produce MUSes
or Craig interpolants. Most preprocessing techniques used in
state-of-the-art CDCL solvers [10] can be easily converted into
clausal proofs which can be used to obtain additional results
for problems that are too hard to solve without them.

Our paper begins with an introduction to satisfiability,
resolution, Boolean constraint propagation, and clausal proofs
in Section II. In Section III, we review antecedent graphs and
their applications and optimizations. Next, we present a series
of improvements to clausal proof checking: backward reverse
unit propagation (Section IV), the addition of clause deletion
information (Section V), and a preference for clauses that are
already marked as part of the core (Section VI). In Section VII,
we evaluate our method and we conclude in Section VIII.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 164181ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

II. PRELIMINARIES

We briefly review necessary background concepts: con-
junctive normal form (CNF), resolution, Boolean constraint
propagation, and clausal proofs.

A. Conjunctive Normal Form

For a Boolean variable x, there are two literals, the positive
literal, denoted by x, and the negative literal, denoted by x̄. A
clause is a finite disjunction of literals, and a CNF formula is
a finite conjunction of clauses. The set of literals occurring in
a CNF formula F is denoted by LIT(F). A truth assignment
for a CNF formula F is a partial function τ that maps literals
l ∈ LIT(F) to {t, f}. If τ(l) = v, then τ(l̄) = ¬v, where
¬t = f and ¬f = t. An assignment can also be thought of as
a conjunction of literals. Furthermore, given an assignment τ :
• A clause C is satisfied by τ if τ(l) = t for some l ∈ C.
• A clause C is falsified by τ if τ(l) = f for all l ∈ C.
• A formula F is satisfied by τ if τ(C) = t for all C ∈ F .
• A formula F is falsified by τ if τ(C) = f for some
C ∈ F .

A CNF formula with no satisfying assignments is called
unsatisfiable. A clause C is logically implied by formula
F if adding C to F does not change the set of satisfying
assignments of F .

B. Resolution

The resolution rule states that, given two clauses C1 = (x∨
a1 ∨ . . . ∨ an) and C2 = (x̄ ∨ b1 ∨ . . . ∨ bm), the clause
C = (a1 ∨ . . . ∨ an ∨ b1 ∨ . . . ∨ bm), can be inferred by
resolving on variable x. We say C is the resolvent of C1 and
C2, while C1 and C2 are the antecedents of C. We write
C = C1 ./ C2. The resolvent C is logically implied by any
formula containing C1 and C2.

C. Boolean Constraint Propagation

A clause C is unit under an assignment τ if (1) there exists
exactly one literal l ∈ C such that l 6∈ τ and l̄ 6∈ τ , and (2)
for all l′ ∈ C such that l′ 6= l, l̄′ ∈ τ . We say l is the unit
literal for unit clause C. Given a formula F and an assignment
τ , Boolean constraint propagation BCP(F, τ), also known as
unit propagation, repeatedly extends τ with unit literals (for
a unit clause C ∈ F under τ) until a fixed point is achieved.
If at some point during BCP τ falsifies a clause, we say that
BCP derives a conflict.

Example 1. Given the formula F = (a∨ b∨ c) ∧ (a∨ b̄) and
the assignment τ = (ā), BCP extends τ with unit literal b̄ and
then with unit literal c. As a result, BCP(F, τ) = (ā∧ b̄∧ c).

D. Clausal Proofs

Goldberg and Novikov [1] introduced clausal proofs as
an alternative to resolution-style proofs [2] of unsatisfiability.
They observed that each clause learned by CDCL conflict
analysis can be validated using BCP. Learned clauses are
disjunctions of literals, and the complement of a clause, written
C̄, can be interpreted as an assignment. If BCP(F, C̄) derives

a conflict, then C is logically implied by F . This process is
also known as reverse unit propagation (RUP) [3]. Learned
clauses in CDCL solvers can be checked using RUP by
performing the unit propagation steps in the reverse order of
the search procedure; hence the name. A clausal proof, then,
consists of a sequence of learned clauses that have the RUP
property; i.e., they can be validated using RUP. A (clausal)
refutation is a proof that contains the (unsatisfiable) empty
clause.

In order to distinguish learned clauses from input clauses,
we appeal to the notion that lemmas are used to construct a
proof of a theorem. Here, learned clauses are lemmas which
support a theorem stating that a formula is unsatisfiable. From
now on, we will use the term clauses to refer to input clauses,
while lemmas will refer to learned clauses.

The elegance of clausal proofs is that they can be expressed
in conjunctive normal form; however, the order of lemmas in
the proof is important. Clausal proofs are significantly smaller
when compared to resolution proofs, and only minor modifi-
cations of a SAT solver are required to output clausal proofs.
However, clausal proof checking can be quite expensive. And,
checking algorithms for clausal proofs are also typically more
complex than those for resolution proofs, making it harder to
trust or prove correctness of the algorithm.

III. ANTECEDENT GRAPHS

An antecedent graph is a directed acyclic graph that rep-
resents the refutation of a formula. The root nodes of an
antecedent graph represent the clauses in the original formula,
and internal nodes represent lemmas. A directed arc from node
C1 to node C2 signifies the use of C1 in the construction of
C2. In other words, C1 is an antecedent for C2. One of the
leaf nodes in the antecedent graph is the empty clause.

Example 2. Consider the CNF formula:

(b̄ ∨ c) ∧ (a ∨ c) ∧ (ā ∨ b) ∧ (ā ∨ b̄) ∧ (a ∨ b̄) ∧ (b ∨ c̄)

Fig. 1 shows an antecedent graph of this formula in which
clauses are shortened: b̄c for (b̄ ∨ c). The antecedent graph
consists of four lemmas including the empty clause. For each
lemma, the set of incoming arcs represents the antecedents.
So the antecedents of lemma (c) are clauses (b̄ ∨ c), (a ∨ c),
and (ā ∨ b).

b̄c ac āb āb̄ ab̄ bc̄

c

b̄
ā

∅

Fig. 1. Antecedent graph for an example formula. Apart from the lemma (ā),
all clauses and lemmas are in the cone of ∅.

165182

The cone of a lemma L is the set of all clauses and lemmas
from which L is reachable. We refer to core clauses as the
clauses that are in the cone of the empty clause. Similarly, core
lemmas refer to the lemmas in the cone of the empty clause
and core arcs are all incoming arcs of core lemmas. If a solver
stores the antecedent graph, it is easy to compute the core
clauses, lemmas, or arcs by simply checking for reachability
to the empty clause.

The number of core arcs is typically 300 to 400 times larger
than the number of core lemmas. To illustrate this difference,
we computed the number of core arcs and core lemmas using
Picosat [6] while solving the application benchmarks of the
SAT 2009 suite, the results of which are shown as a scatter
plot in Fig. 2. See Section VII for the details of the machine
used in this experiment. Compared to the number of literals
in core lemmas, the number of core arcs is about 10 times
larger. That means that the memory consumption of a solver
that stores the antecedent graph is at least 10 times larger
as compared to a solver that does not store the full graph.
In practice, this number can be significantly larger because
the solver needs to keep some deleted lemmas — even with
optimizations [7]. We observed that emitting additional results
by Picosat (which requires an antecedent graph) increased the
memory requirement by a factor 100 for several benchmarks.
Consequently, storing the antecedent graph while solving can
reduce the performance of solvers significantly and result in
memory exhaustion.

10
2

10
3

10
4

10
5

10
6

10
2

10
3

10
4

10
5

10
6

n
u

m
b

e
r

o
f

c
o

re
 a

rc
s

number of core lemmas (green) / number of literals in core lemmas (red)

diagonal
core arcs vs core lemmas

core arcs vs literals in core lemmas

Fig. 2. A scatter plot of the number of core arcs (y-axis) versus the number
of core lemmas (green) and the number of literals in core lemmas (red).

In this paper, we propose to reconstruct the antecedent graph
after the search has ended by using clausal proofs. Hence, SAT
solvers that want to compute additional results will no longer
need to store arcs in the antecedent graph.

Applications

Verification of unsatisfiability proofs: The tool that we
present in this paper is a fast proof checker for clausal
unsatisfiability proofs. Our tool allows developers and users to
verify solver output. Additionally, our tool can emit a reduced
proof with optimal clause deletion information. A reduced
clausal proof might then be be validated by a mechanically-
verified proof checker.

Minimal unsatisfiable core extraction: Computing a min-
imal unsatisfiable subset (MUS) consists of two phases. In the
first phase, called trimming, the input formula is solved and
an antecedent graph is constructed. All original and learned
clauses that are not in the cone of the empty clause are
removed. This phase can substantially reduce the number of
original and learned clauses, and this phase can be repeated.
The second phase [11] repeats the following until a fixed point
is reached. Select an original clause that is not marked as a
clause in the minimal unsatisfiable core. Next, a new Boolean
formula is constructed that consists of the remaining original
clauses (without the selected clause) and all learned clauses
that do not have the selected clause in their dependency cone.
If this Boolean formula is satisfiable, the selected clause is
marked as part of the minimal unsatisfiable core; otherwise,
the selected clause and all learned clauses that have this clause
in their dependency cone are removed.

Computing Craig interpolants: Another application from
the field of model checking relies on the availability of an
antecedent graph to compute Craig interpolants [12]. Given
two satisfiable Boolean formulas A and B such that A ∧ B
is unsatisfiable, the interpolant I of A and B is a Boolean
formula that is logically implied by A, unsatisfiable when
conjoined with B, and contains only variables that are in A and
B. Algorithms that compute Craig interpolants, which include
recent improvements by Vizel [13], use the antecedent graph
of the formula A ∧B.

Optimizations

Reconstruction may result in a different antecedent graph
than the one achieved during search. For example, assume that
the antecedent graph in Fig 1 was produced by a SAT solver.
During reconstruction, we might be able to produce a smaller
antecedent graph that has fewer core clauses, core lemmas,
and core arcs. An example of such an optimized antecedent
graph is shown in Fig. 3.

b̄c ac āb āb̄ ab̄ bc̄

c

b̄
ā

∅

Fig. 3. Optimized antecedent graph for the example formula.

166 183

Aside from reconstruction of the antecedent graph, we
also propose strategies to minimize the number of core
clauses, core lemmas, or core arcs. We noticed that there
is a trade-off between optimizing these different aspects (see
Section VII-B).

Minimizing Core Clauses: The smaller the number of
core clauses, the closer the one gets to a MUS. Hence, trying
to minimize the set of core clauses during reconstruction could
reduce the cost to extract a MUS.

Minimizing Core Lemmas: By reducing the number of
lemmas in a clausal proof, checking costs are reduced, poten-
tially enabling the use a mechanically-verified proof checker.
Furthermore, a smaller number of lemmas can also lower the
cost of MUS extraction by reducing the number of internal
nodes in the antecedent graph.

Minimizing Core Arcs: The number of core arcs is related
to the size of a resolution refutation of the core clauses. By
minimizing the core arcs during the reconstruction, a smaller
resolution refutation is obtained which can improve the speed
of validating a resolution proof.

IV. BACKWARD REVERSE UNIT PROPAGATION

This section describes a method [1] to validate clausal
proofs. The backward checking variant (see Section IV-B) can
also be used to reconstruct an antecedent graph for a given
proof. As far as we know, there is no implementation of this
method available. We noticed that this method can be very
expensive when used on clausal proofs from state-of-the-art
CDCL solvers. Sections V-A and VI discuss two optimizations
that make this method much more efficient.

A. Forward Checking

Forward checking validates each lemma of a proof, in the
order that they were learned, by checking if they have the
RUP property. Forward checking is simple to implement [1],
[3], [14], relatively easy to parallelize, and can start as soon
as a lemma is learned. However, this approach may check
lemmas that are not required to validate a proof.

B. Backward Checking

Backward checking validates lemmas in the reverse order
that they were learned. The advantage of checking a proof
backward is that while validating a lemma, one can mark all
the clauses that are used to determine that the lemma has
the RUP property. When an unmarked lemma is encountered
during a backward loop, the lemma is skipped. This can signif-
icantly reduce the checking costs by skipping lemmas during
proof checking. Another advantage of backward checking is
that it produces an unsatisfiable core from the original input
clauses. This procedure can be used to trim formulas when
computing minimal unsatisfiable cores.

Backward checking is more complex, however, because the
checker needs to compute which clauses and lemmas were
used for each lemma in a proof. Because of this complexity,
it is harder to trust or verify a backward checking algorithm.
Furthermore, the computation of the core clauses makes the

procedure more costly. If only a few lemmas can be skipped,
backward checking can be more costly than forward checking.
Checking can only start when the solver has terminated, pre-
venting an implementation that solves and checks in parallel.
Finally, efficient backward checking is difficult to parallelize
because lemma dependency is unknown.

Fig. 4 shows the pseudo-code of the backward checking
algorithm. Its input is the original formula F and a stack of
learned lemmas S. The top of the stack is the last learned
clause. For a refutation, this is typically the empty clause ∅.
Initially, all clauses and lemmas are unmarked (line 1). A stack
without the empty clause is not a refutation (line 2). The empty
clause is marked (line 3). We pop lemmas from the stack until
we find a marked lemma (lines 4-6), the first of which will
be the empty clause. For marked lemmas, we validate that
this lemma has the RUP property with respect to the original
formula and all remaining lemmas in the stack (line 7). If the
check succeeds, then the clauses and lemmas that were used
during BCP are marked. The algorithm succeeds if it was able
to validate all lemmas in S (line 9).

backwardRUP (CNF formula F , stack S of lemmas)
1 forall C ∈ F ∪ S do core [C] = 0
2 if ∅ 6∈ S return “invalid refutation”
3 core [∅] = 1
4 while S is not empty do
5 L := S.pop()

6 if core [L] then
7 if BCP (F ∪ S, L̄) = “failed” then
8 return “failed”
9 return “refutation validated”

Fig. 4. Pseudo-code of the backward reverse unit propagation procedure.

Each lemma is validated by checking that a lemma L has
the property RUP; this is performed by the BCP procedure
(Fig. 5). BCP has two inputs: the set of clauses FS consisting
of the original formula F and the remaining lemmas in the
stack S, and the assignment τ that falsifies a lemma L (denoted
by L̄). During the procedure, a set of clauses U is maintained
of all clauses that have become unit (line 1). The procedure
terminates when the current assignment τ falsifies a clause in
FS, by calling the MarkCore procedure (lines 3-4). Otherwise,
it extends τ and updates U for each discovered unit clause
(lines 5-7). If there are no more unit clauses and no clause
has been falsified, the algorithm returns “failed” (line 8).

The MarkCore procedure works as follows. The falsified
clause R is marked (line 1). Then, any unit clauses that were
found during BCP (in stack U) are examined in reverse order.
If resolution is possible between the clause C on the top of
the stack and resolvent R (which was the originally falsified
clause), then C is marked and the resolvent R is updated by
applying the resolution step R := R ./ C. When the stack is
empty, the resulting R is falsified by the input assignment τ
of the BCP procedure that called MarkCore.

167184

BCP (set of clauses FS, assignment τ)
1 U := ∅
2 forever do
3 if ∃ C ∈ FS s.t. τ(C) = f then
4 return MarkCore (U , C)
5 if ∃ C ∈ FS s.t. unit(C, τ) then
6 U.push(C)

7 τ := τ ∪ unit(C, τ)

8 else return “failed”

Fig. 5. Pseudo-code of the unit propagation (BCP) procedure.

MarkCore (unit stack U , clause R)
1 core [R] := 1
2 while U is not empty do
3 C := U.pop()

4 if C and R have exactly one clashing literal then
5 core [C] := 1
6 R := R ./ C

7 return “succeeded”

Fig. 6. The MarkCore procedure marks all clauses and lemmas that were
involved in validating a lemma.

The MarkCore procedure is similar to the analyzeFinal [15]
procedure that is used in CDCL solvers that support assump-
tions (decisions at level 0) also known as the last unique
implication point.

Notice that the core arcs are not stored in this approach. This
reduces the memory consumption significantly as compared to
storing the antecedent graph during search. We can calculate
how many core arcs would have been in the graph by summing
up how often lines 1 and 5 of MarkCore are executed. Also,
one can obtain the full antecedent graph by inserting edges
from R (line 1) or C (line 5) to the current lemma L (in the
backwardRUP procedure).

V. ADDING INFORMATION TO CLAUSAL PROOFS

The main disadvantage of clausal proof checking and trim-
ming is the computational cost. Two methods have been pro-
posed that add extra information in proofs to reduce the costs.
The first method adds deletion information [14] (Section V-A)
and the second method adds antecedents [6] (Section V-B).

A. Adding Deletion Information

The RUP checking algorithm presented in the prior section
is costly for large proofs. The costs of verifying large proofs
can be one-to-two orders of magnitude larger than the solving
time. SAT solvers aggressively delete learned clauses during
search whereas a RUP checking algorithm can only add
lemmas.

In order to combat this disadvantage, we proposed to extend
proof logging with clause deletion information [14]. In our

proposed proof format, called DRUP (for delete reverse unit
propagation), one can add lemmas to the formula (exactly in
the same way as in the RUP format) and delete lemmas from
the formula. Deleted lemmas have a d prefix. Fig. 7 shows
an example CNF formula and a refutation for that formula in
the DRUP format. The tool presented in this paper is the first
proof checker that supports the DRUP format.

CNF formula

p cnf 3 6
-2 3 0
1 3 0

-1 2 0
-1 -2 0
1 -2 0
2 -3 0

DRUP proof

-2 0
d -2 3 0

-1 0
d -1 2 0

3 0
0

Fig. 7. The CNF formula from Example 2 in the typical DIMACS format
(left) and a refutation for that formula in the DRUP format (right). The literals
a, ā, b, b̄, c, and c̄ are represented by 1, −1, 2, −2, 3, and −3, respectively.
Whitespaces can be of any length; spacing is used to improve readability. The
symbol 0 marks the end of clauses (DIMACS) and lemmas (DRUP).

backwardDRUP (CNF formula F , stack S of lemmas)
1 forall C ∈ F ∪ SA do core [C] = 0
2 if ∅ 6∈ SA return “invalid refutation”
3 core [∅] = 1
4 while S is not empty do
5 〈L, flag〉 := S.pop()

6 if flag 6= “d” and core [L] then
7 if BCP ((F ∪ SA) \ SD, L̄) = “failed” then
8 return “failed”
9 return “refutation validated”

Fig. 8. Pseudo-code of the backward DRUP procedure.

We modify backwardRUP to account for deletion informa-
tion (Fig. 8). Given a stack of of labelled lemmas S, the set
SA denotes the lemmas in S with no label, while the set SD

denotes the lemmas in S with label d. The top level procedure
needs to be modified in three places. First, the ∅ should be in
SA (line 2). Second, we ignore other tests if the flag of a
lemma is d (line 6). Third, all clauses in F ∪ SA which are
also in SD are ignored during BCP (line 7).

B. Extending RUP with Antecedents

Another approach annotates RUP proofs with antecedent
information [6]; we refer to these proofs as extended RUP
proofs. Picosat [6] can emit extended RUP proofs. The reason
why clausal proofs are expensive to validate is that the number
of clauses that become unit during BCP (i.e., the set U)
contains many clauses that were not required to show that the
RUP property holds. In extended RUP proofs, each lemma in
the proof is extended with a set of clauses that is sufficient to
validate that lemma. Typically, this set contains the antecedents
of the lemma. By restricting BCP to the set of clauses provided

168 185

with each lemma (instead of all clauses of F ∪ S), one can
significantly decrease the time to validate a proof.

In order to emit an extended RUP proof, a SAT solver
needs to store and maintain the antecedents of all lemmas;
this requires a lot of memory and can significantly reduce
the solving time. Furthermore, the number of antecedents can
be an order of magnitude larger than the number of literals
in a lemma. Hence, extended RUP proofs can be an order
of magnitude larger than RUP proofs. In contrast, DRUP
proofs are usually only twice as large as RUP proofs. Finally,
extended RUP proofs must contain a list of the clauses in
the input formula (since they will act as antecedents). This
means that a checker also needs to validate that clauses that
are claimed to be in the input formula are indeed present.

VI. PREFERRING CORE CLAUSES DURING BCP

We observed that, for many benchmarks, only a fraction of
the original clauses and lemmas will be in the unsatisfiable
core. To improve the speed of the checking algorithm, we
considered an alternative implementation for BCP that prefers
marked clauses and lemmas to unmarked clauses and lemmas.
The pseudo-code of this algorithm is shown in Fig. 9.

CoreFirstBCP (set of clauses FS, assignment τ)
1 U := ∅
2 forever do
3 if (∃ C ∈ FS s.t. τ(C) = f) and (core [C]) then
4 return MarkCore (U , C)
5 if (∃ C ∈ FS s.t. unit(C, τ)) and (core [C]) then
6 U.push(C)

7 τ := τ ∪ unit(C, τ)

8 else if ∃ C ∈ FS s.t. τ(C) = f then
9 return MarkCore (U , C)

10 else if ∃ C ∈ FS s.t. unit(C, τ) then
11 U.push(C)

12 τ := τ ∪ unit(C, τ)

13 else return “failed”

Fig. 9. BCP preferring clauses and lemmas which are in the core.

Ryvchin [16] proposed postponing unit propagation on
interesting constraints, a subset of the clauses in the original
formula. We observed that the number of core clauses and core
lemmas becomes smaller when one postpones unit propagation
on all clauses and lemmas that are not yet in the core.

VII. EXPERIMENTAL EVALUATION

To demonstrate the usefulness of the DRUP-trim tool1, we
experimented with it on the application benchmarks from the
SAT 2009 competition. We ran our tests on a system with
a 4-core Intel Core i7 2.6GHz processor, 16GB of RAM,
and 1TB of disk space running MacOS X 10.8.3. Throughout
this section, we use two SAT solvers: Glucose 2.2 [17] and

1DRUP-trim is available at http://cs.utexas.edu/∼marijn/drup-trim/.

Picosat-953 [6]. Glucose is one of the fastest SAT solvers
available and won the SAT 2012 Challenge. Our approach
allows for Glucose preprocessing techniques [10] in the
proof format, and therefore avoids the reconstruction problems
presented by Belov [18]. Picosat is the fastest solver that can
emit additional results such as resolution proofs, RUP proofs,
and unsatisfiable cores.

This section describes two experiments using Picosat,
Glucose, and our DRUP-trim tool. In the first experiment,
we evaluate the time to emit proofs and the time to extract
additional results. In the second, we evaluate the effectiveness
of trimming as it relates to unsatisfiable cores, reduced clausal
proofs, and reduced resolution proofs.

A. Comparing solving / checking / trimming times

For our first experiment, we determined how many unsat-
isfiable benchmarks of the SAT 2009 application suite could
be solved by Glucose and Picosat. We ran Picosat with the
option to emit extended RUP proofs. We modified Glucose to
emit DRUP proofs (the input format for our DRUP-trim tool).
This modification is about 40 lines of code, most of which are
added to support preprocessing techniques [14].

Within a timeout of 900 seconds, Glucose with DRUP
logging solved 123 instances, while Picosat with extended
RUP proof logging solved only 81 instances. The benchmarks
solved by Picosat were a subset of the benchmarks solved
by Glucose. With an even larger timeout of 9000 seconds,
Picosat was only able to solve 101 out of the 123 unsatisfiable
benchmarks that Glucose can solve in 900 seconds. On most
of the unsolved benchmarks, Picosat exhausted memory (limit
15 Gb). We noticed that turning on the proof logging in
Picosat increased the memory consumption on some bench-
marks by two orders of magnitude. In contrast, proof logging
in our modified version of Glucose does not require additional
memory because the proof is stored directly on disk. This
experiment shows the disadvantage of producing additional
results within a SAT solver: one is not able to produce a
proof or core due to lack of memory on several benchmarks.
We observed similar problems when using the state-of-the-art
MUS extraction tool Muser [19] on the same instances.

Fig. 10 shows the runtime of Glucose and Picosat with
proof logging enabled and the costs to validate the proofs
emitted by Glucose. In our cactus plot, the data points for
each line are sorted based the y-axis. The checking costs with
four different settings of our DRUP-tool are also shown. Two
settings use forward checking to validate all lemmas in the
proof and do not mark clauses. One setting ignores the deletion
information in the proofs (denoted by RUP-checking, similar
to the approach in [3]), while DRUP-trim forward uses this
information (similar to the approach in [14]). The other two
settings use backward checking and hence mark the clauses
and lemmas in the core. The fastest setting is the one that uses
the core-first BCP technique. The core-first BCP is usually
faster than conventional BCP. However, for some benchmarks
with hundreds of thousands of variables, conventional BCP
outperforms core-first BCP. This difference is caused by the

169186

http://cs.utexas.edu/~marijn/drup-trim/

10
-1

10
0

10
1

10
2

10
3

 0 20 40 60 80 100 120

ti
m

e
 (

s
e
c
o

n
d

s
,

lo
g

s
c
a

le
)

number of produced / validated proofs

picosat + trace log
RUP-check forward
DRUP-trim forward
DRUP-trim backward
DRUP-trim core-first
glucose + DRUP log

Fig. 10. Cactus plot of comparing the time to solve application benchmarks
and the time to validate the emitted proofs. The plot shows the running time
for the solvers Glucose with DRUP logging and Picosat with extended RUP
logging. Additionally, the costs of checking the DRUP proofs with DRUP-
trim are shown. Notice that the y-axis (time) uses a logarithmic scale.

structure of certain large benchmarks and is not related to size
of formulas.

For the first 80 instances, the solving times recorded by
Glucose and the corresponding checking times of DRUP-
trim are comparable. For the next 25 instances, checking takes
about twice as long as compared to solving. The checking time
is only slower for a handful of instances. Yet, DRUP-trim with
core-first BCP was able to check all proofs within a timeout
of 900 seconds. We believe it is now feasible to check all
unsatisfiability results.

B. Comparing the Quality of Trimming

We restrict the experiments to the 101 benchmarks of the
SAT 2009 application suite that Picosat with extended RUP
logging was able to solve within the timeout of 9000 seconds
and a memory limit of 15 Gb. Recall that Glucose could solve
all these instances in less than 900 seconds.

Fig. 11 shows the size of the unsatisfiable cores produced
by Picosat that stores the antecedent graph and by Glu-
cose using our DRUP-trim tool. We experimented with two
variants: one with conventional BCP and one with core-first
BCP. Core-first BCP not only reduces the validation cost for
formulas (Fig. 10) but is also more effective in trimming the
formula (Fig. 11). Furthermore, the cores produced by Picosat
are larger than the ones produced by DRUP-trim using the
Glucose proof. This suggests that it is not beneficial to store
the antecedent graph during search in order to trim a formula.

The differences between Picosat and Glucose also have
an impact on the comparison. For example, we observed
that preprocessing (used in Glucose, but not in Picosat)

influences the size of unsatisfiable cores produced by SAT
solvers. Whether the effect is positive or negative differs from
benchmark to benchmark. We compared Picosat and Glucose
because they are publicly-available, state-of-the-art solvers that
support resolution and clausal proofs, respectively. Picosat’s
poorer performance (with antecedent logging) compared to
Glucose (with DRUP logging) is caused by a combination of
older heuristics, lack of preprocessing, and heavier memory
use.

10
4

10
5

10
6

 0 20 40 60 80 100

n
u

m
b

e
r

o
f

c
la

u
s
e

s
 (

lo
g

s
c
a

le
)

number of (trimmed) benchmarks

size of input formula
picosat
glucose backwards
glucose core-first

Fig. 11. Cactus plot of comparing the size (in the number of clauses) of the
trimmed formulas. Notice that the y-axis (size) uses a logarithmic scale.

We modified Picosat so that it can emit DRUP proofs
without storing an antecedent graph (which affects only 10
lines of code). We then compared the original version of Pi-
cosat to the modified version. The alternative DRUP approach
produces smaller unsatisfiable cores (on average 11% smaller)
and smaller clausal proofs (on average 21% smaller). Recall
that the alternative approach does not store the core arcs and
uses 1% to 10% of the memory of the original approach.

The native core approach in Picosat produces fewer core
arcs compared to the approach using DRUP-trim with the
core-first BCP strategy. This is not surprising: by postponing
BCP on clauses and lemmas that are not in the core, several
arcs to core clauses and core lemmas are produced. The
number of core arcs can be substantially larger using the
alternative approach (a factor four on average, mostly because
of some outliers). A possible way to reduce the number of core
arcs is to run the DRUP-trim tool twice. First, using core-first
BCP on the original formula and proof; and second, using
conventional BCP on the core clauses and the core lemmas.

Our results use the DRUP-trim tool only once. We noticed
that in most cases, the core can be further reduced by applying
DRUP-trim multiple times. This can be done in two ways: use
the reduced clausal proof or compute a new proof for the core

170 187

clauses using a SAT solver. The best approach depends on the
benchmark. For some benchmarks, a SAT solver produces a
larger proof for the core clauses. In those cases, one should
use the reduced proof. However, if a SAT solver is able to
produce a smaller refutation for the core clauses, then those
lemmas would be better for a new iteration.

VIII. CONCLUSION

We presented the tool DRUP-trim that can efficiently check
clausal proofs and can produce additional results including
unsatisfiable cores and reduced clausal proofs. DRUP-trim
is the fastest clausal proof checker available. This tool also
makes it more convenient to check clausal proofs and to obtain
additional results. A slightly modified version of DRUP-trim
was used to check the unsatisfiability results of the upcoming
SAT Competition 2013.

DRUP-trim was able to verify all unsatisfiability claims of
the state-of-the-art SAT solver Glucose 2.2 on the benchmarks
of the SAT 2009 application suite. Other work on checking
unsatisfiability results [1], [2], [3], [4], [11], [16] only shows
results for selected (small) sets of benchmarks. We compared
our DRUP approach with Picosat, the strongest solver that
can emit resolution proofs. In contrast to emitting a DRUP
proof, building a resolution proof during search can signifi-
cantly increase the memory requirements of the solver. As a
consequence Picosat resulted in memory outs on about 20
application benchmarks that Glucose 2.2 was able to solve
in 900 seconds. This suggests that resolution proofs are not
a viable method for checking the unsatisfiability results in a
general setting, such as the SAT Competition.

However, our clausal-based approach does not subsume
current resolution-based methods. We expect that resolution-
based methods will continue to be useful for applications that
require short (a few seconds) SAT solver runs. Our clausal-
based approach is useful for applications that require one or
more long (a few minutes) SAT runs. For a long SAT run, it is
beneficial to use the latest SAT-solver technology —which is
not presently available in solvers that emit resolution proofs—
and avoid storing very large antecedent graphs.

One of our optimizations, the core-first BCP technique,
facilitates the computation of smaller unsatisfiable cores and
smaller reduced clausal proofs when compared to resolution-
style methods. However, the number of core arcs increases
when this technique is used. Our future work will focus on
reducing the number of core arcs in DRUP-trim. This can be
useful to reduce the cost of MUS extraction and interpolant
tools.

The best tools for extracting minimal unsatisfiable cores,
such as Muser [19], and computing interpolants, such as CNF-
ITP [13], are based on resolution proofs. But there are two
important drawbacks. First, similar to proof checking, some
benchmarks cannot be solved when one builds a resolution
proof during search. Second, none of the top-tier solvers sup-
port the emission of a resolution refutation. Current approaches
[19], [11], [16], [13] rely on either Picosat or Minisat [20]
which are no longer the strongest solvers. We propose to use

DRUP proofs as input for tools that compute MUSes and
interpolants. This makes it easy to use any SAT solver for
those tools.

ACKNOWLEDGMENT

The authors are supported by DARPA contract number
N66001-10-2-4087.

REFERENCES

[1] E. I. Goldberg and Y. Novikov, “Verification of proofs of unsatisfia-
bility for CNF formulas,” in Design, Automation and Test in Europe
Conference and Exhibition (DATE). IEEE, 2003, pp. 10 886–10 891.

[2] L. Zhang and S. Malik, “Validating sat solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions,” in DATE, 2003, pp. 10 880–10 885.

[3] A. Van Gelder, “Verifying RUP proofs of propositional unsatisfiability,”
in International Symposium on Artificial Intelligence and Mathematics
(ISAIM). Springer, 2008.

[4] A. Darbari, B. Fischer, and J. Marques-Silva, “Industrial-strength certi-
fied SAT solving through verified SAT proof checking,” in International
Colloquium on Theoretical Aspects of Computing (ICTAC). Springer-
Verlag, Sep. 2010, pp. 260–274.

[5] R. Brummayer, F. Lonsing, and A. Biere, “Automated testing and
debugging of SAT and QBF solvers,” in Proceedings of SAT 2010, ser.
SAT’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 44–57.

[6] A. Biere, “PicoSAT essentials,” Journal on Satisfiability, Boolean Mod-
eling and Computation (JSAT), vol. 4, no. 2-4, pp. 75–97, 2008.

[7] R. Ası́n, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“Efficient generation of unsatisfiability proofs and cores in SAT,” in
LPAR-17, ser. LNCS, I. Cervesato, H. Veith, and A. Voronkov, Eds.,
vol. 5330, Springer. Springer, 2008, pp. 16–30.

[8] M. Heule, M. Järvisalo, and A. Biere, “Efficient cnf simplification based
on binary implication graphs,” in SAT, ser. Lecture Notes in Computer
Science, K. A. Sakallah and L. Simon, Eds., vol. 6695. Springer, 2011,
pp. 201–215.

[9] M. J. H. Heule and H. van Maaren, Look-Ahead Based SAT Solvers.
Handbook of Satisfiability, IOS Press, February 2009, ch. 5, pp. 155–
184.

[10] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Theory and Applications of Satisfiability
Testing (SAT). Springer, 2005, pp. 61–75.

[11] A. Nadel, “Boosting minimal unsatisfiable core extraction,” in Formal
Methods in Computer-Aided Design (FMCAD). IEEE, 2010, pp. 221–
229.

[12] K. L. McMillan, “Interpolation and SAT-based model checking,” in
Computer Aided Verification (CAV). Springer, 2003, pp. 1–13.

[13] Y. Vizel, V. Ryvchin, and A. Nadel, “Efficient generation of small
interpolants in CNF,” in Computer Aided Verification (CAV). Springer,
2013, p. to appear.

[14] M. J. H. Heule, W. A. Hunt, Jr., and N. Wetzler, “Bridging the gap
between easy generation and efficient verification of unsatisfiability
proofs,” Software Testing, Verification, and Reliability (STVR): Special
Issue on Tests and Proofs, 2013, accepted with minor revisions.

[15] N. Eén, A. Mishchenko, and N. Amla, “A single-instance incremental
sat formulation of proof- and counterexample-based abstraction,” CoRR,
vol. abs/1008.2021, 2010.

[16] V. Ryvchin and O. Strichman, “Faster extraction of high-level minimal
unsatisfiable cores,” in Theory and Applications of Satisfiability Testing
(SAT). Springer, 2011, pp. 174–187.

[17] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
SAT solvers,” in International Joint Conference on Artifical Intelligence
(IJCAI), C. Boutilier, Ed., 2009, pp. 399–404.

[18] A. Belov, M. Järvisalo, and J. Marques-Silva, “Formula preprocessing
in MUS extraction,” in Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer, 2013, pp. 108–123.

[19] A. Belov and J. Marques-Silva, “Accelerating MUS extraction with
recursive model rotation,” in Formal Methods in Computer-Aided Design
(FMCAD). IEEE, 2011, pp. 37–40.

[20] N. Eén and N. Sörensson, “An extensible sat-solver,” in SAT, ser. LNCS,
E. Giunchiglia and A. Tacchella, Eds., vol. 2919. Springer, 2003, pp.
502–518.

171188

Simplex with Sum of Infeasibilities for SMT
Tim King∗

∗New York University

Clark Barrett∗ Bruno Dutertre†

†SRI International

Abstract—The de facto standard for state-of-the-art real and
integer linear reasoning within Satisfiability Modulo Theories
(SMT) solvers is the Simplex for DPLL(T) algorithm given by
Dutertre and de Moura. This algorithm works by performing a
sequence of local optimization operations. While the algorithm
is generally efficient in practice, its local pivoting heuristics
lead to slow convergence on some problems. More traditional
Simplex algorithms minimize a global criterion to determine the
feasibility of the input constraints. We present a novel Simplex-
based decision procedure for use in SMT that minimizes the sum
of infeasibilities of the constraints. Experimental results show that
this new algorithm is comparable with or outperforms Simplex
for DPLL(T) on a broad set of benchmarks.

I. INTRODUCTION

The simplex algorithm introduced by Dutertre and de Moura
in [1] for use in the DPLL(T) framework is the core reasoning
module for linear arithmetic in nearly every state-of-the-art
Satisfiability Modulo Theories (SMT) solver including CVC4,
MathSAT, OpenSMT, SMTInterpol, Yices, and Z3 [2], [3],
[4], [5], [6]. The algorithm—which we will call SIMPLEX-
FORSMT—relies on specific pivoting heuristics to search for a
satisfying model or a conflict. Many pivot choices are possible
and those choices can dramatically change the search for a
solution. The heuristic pivot selection scheme that many SMT
solvers use is based on local criteria and is potentially subject
to cycling: it may return to the same basis state infinitely
often. Solvers employ tactics to detect cycling, and slowly
edge towards pivot-selection rules that guarantee termination,
such as Bland’s Rule [7], [8], [9]. Unfortunately, Bland’s rule
converges very slowly and is not effective on hard problems
that require many pivots.

Before SIMPLEXFORSMT, earlier simplex-based ap-
proaches for SMT used repeated optimization (via an algo-
rithm like PRIMAL in Section III) as constraints arrived [15],
[16], [17]. Since its initial publication, little work has been
published on directly improving the simplex solver itself.
Griggio’s thesis [13] gives a number of details on implemen-
tation and additional pivoting heuristics. Most recent work on
QF_LRA has focused on combining floating point and exact
precision solvers [18], [19], [20].

In the more traditional setting, Simplex is used to minimize
(or maximize) a linear function f . Throughout execution of
the Simplex algorithm, the value of f never increases. As
long as f strictly decreases, no cycling is possible. Thus,
specialized techniques to prevent cycling are only required to
break out of sequences of degenerate pivots, that is, pivots that
do not change f . Procedures can then be designed around two

different modes: a heuristic mode that is efficient in practice,
and a mode for escaping degeneracy.

This paper proposes an adaptation for SMT of the sum-
of-infeasibilities method from the Simplex literature [7], [8].
We call this method SOISIMPLEX. Minimizing the sum-of-
infeasibilities provides a witness function similar to f which
accomplishes several things at once: it helps guide the search
towards both models and conflicts; it prevents cycling; and it
can be used to determine when to safely re-enable aggressive
heuristics without losing termination.

In other aspects, SOISIMPLEX is similar to the SIMPLEX-
FORSMT algorithm, providing similar features and having
similar performance on many problems. However, its perfor-
mance is noticeably better on certain problem instances that
require many pivots.

The rest of the paper is organized as follows. Section II
covers basic background material on SMT, DPLL(T), and
linear real arithmetic. Section III describes a naive traditional
primal simplex optimization routine. Section IV gives a de-
scription of SIMPLEXFORSMT. Section V then describes the
new SOISIMPLEX algorithm. Empirical results are given in
Section VI, and Section VII concludes.

II. BACKGROUND

The basic SMT problem is to determine whether a formula
is satisfiable with respect to some fixed first-order theory T .
Modern SMT solvers rely on an architecture called DPLL(T)
which integrates a fast SAT solver with one or more theory
solvers for specific first-order theories [10]. The SAT solver
reasons about the Boolean skeleton of the formula, allowing
the theory solvers to reason only about conjunctions of literals
in their theory. This paper’s main concern is a novel theory
solver for quantifier-free linear real arithmetic (QF_LRA).

A formula in QF_LRA is a Boolean combination of atoms
of the form

∑
cj · xj ./ d, where cj , d are rational, ./∈

{=,≤,≥}, and V = {x1, x2, . . . , xn} is a set of variables.
By using simple transformations [1], the set of constraints
presented to a QF_LRA theory solver can always be written
as: TV = 0 ∧ l ≤ V ≤ u, where T is a matrix, and l and u
are vectors of lower and upper bounds on the variables. We
will refer to the entry in row i and column j of T as ti,j ,
and use ri to denote the i-th row of T . We further use l(x)
and u(x) to denote the lower and upper bound on a specific
variable x. If x has no lower (upper) bound, then l(x) = −∞
(u(x) = +∞). The theory solver searches for an assignment
a : V 7→ R that satisfies the constraints. If no such assignment

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 172189ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

1: procedure UPDATE(j, δ)
2: a(xj)← a(xj) + δ
3: for all i|ti,j 6= 0 do
4: a(xi)← a(xi) + ti,j · δ

(a) Changing a(xj) by δ (xj ∈ N)

1: procedure PIVOT(i, j)
2: rj ← rj − 1

ti,j
· ri

3: for all k|tk,j 6= 0 ∧ k 6= j do
4: rk ← rk + tk,j · rj
5: B ← (B − {bi}) ∪ {xj}
6: N ← V \ B

(b) Pivot bi and xj (ti,j 6= 0)

1: procedure UPDATEANDPIVOT(j, δ, i)
2: UPDATE(j, δ)
3: if i 6= j then
4: PIVOT(i, j)

(c) Composing Update and Pivot

Fig. 1: Algorithms for maintaining Ta = 0

exists, the theory solver must detect a conflict and provide
an explanation (cf. [10], [1]), an infeasible subset (preferably
small) of the set of constraints presented to the theory solver.

In all of the algorithms in this paper, we assume T is an n×
n matrix in tableau form: the variables V are partitioned into
the basic variables B and nonbasic variables N (to emphasize
when a variable xi is basic, we will write bi as a synonym
for xi when xi ∈ B), and the i-th row of T is all zeroes iff
xi ∈ N . Furthermore, for each column i such that xi ∈ B, we
have tk,i = 0 for all k 6= i and ti,i = −1. Thus, each nonzero
row ri of T represents a constraint bi =

∑
xj∈N ti,j · xj . It

is sometimes convenient to use the matrix obtained by adding
the identity matrix to T . We define τ = T + I and refer to
the entry in row i and column j of τ as τi,j . Note that on the
diagonal, τi,i = 0 for bi ∈ B and τj,j = 1 for xj ∈ N (off
the diagonal, τi,j = ti,j). The column length for a variable
xj , denoted by |Col(j)|, is the number of nonzero entries in
column j.

The algorithms in this paper work by making a series
of changes to an initial assignment a until the constraints
are satisfied or determined unsatisfiable. During this process,
Ta = 0 is an invariant. To initially satisfy this invariant, one
can set a(xi) = 0 for all xi ∈ V . To maintain the invariant,
whenever the assignment to a nonbasic variable changes, the
assignments to all dependent basic variables are also updated
(Fig. 1a). The main ingredient of Simplex-based procedures
is the pivoting operation shown in Figure 1b. Pivoting takes a
basic variable bi and a nonbasic variable xj such that ti,j 6= 0,
and swaps them: after pivoting, xj becomes basic and bi
becomes nonbasic. Figure 1c gives the composition of the
update and pivot operations, UPDATEANDPIVOT.

1: procedure PRIMAL(f)
2: while Flex(f) 6= ∅ do
3: UPDATEANDPIVOT(PRIMALSELECT())

4: return a(f)

(a) PRIMAL(f) with a generic selection routine

1: procedure PRIMALSELECT
2: S ← ∅
3: for all xj ∈ Flex(f) do
4: S ← S ∪ 〈j, k〉, where 〈| δB(j, k)|, k〉 is minimal
5: select 〈j, k〉∈S minimizing 〈−| sgn(δB(j, k))t0,j |, j〉
6: return 〈j, δB(j, k), k〉

(b) PRIMALSELECT with a terminating variant of Dantzig’s rule

Fig. 2: Primal Simplex

III. NAIVE PRIMAL SIMPLEX

The classic problem in linear optimization is to find an
assignment a that satisfies the linear equalities Ta = 0
and the bounds l ≤ a ≤ u, and that minimizes a linear
function f =

∑
xk∈V ck · xk. The problem can be solved

with the PRIMAL Simplex algorithm shown in Figure 2. It is
typical to assume that the algorithm is given an initial feasible
assignment as input, so that both Ta = 0 and l ≤ a ≤ u are
initially satisfied.

The optimization function f is treated as a special additional
variable f = x0 =

∑
xk∈V ck · xk. We add a row and column

to T (for convenience, at the top and left, indexed by 0), with
t0,j = cj , for 1 ≤ j ≤ n, ti,0 = 0, 1 ≤ i ≤ n, and t0,0 = −1.
The entries in the new row corresponding to basic columns
can be set to zero using matrix row additions (as is done in
PIVOT). We can then treat f (which we use as another name
for x0 below) as a basic variable with no bounds. (Note that
to instead maximize f with the same machinery, we simply
minimize its negation −f .)

Every round of PRIMAL begins by checking whether or not
f is currently at its minimum. This is done by looking at the
assignments to each nonbasic variable on f ’s row. The value
of xj that minimizes f–call this vj–is u(xj) if t0,j is negative
and l(xj) if t0,j is positive (ignoring other constraints). If
a(xj) = vj for each nonbasic variable xj on f ’s row (where
t0,j 6= 0), then the current value of f , a(f), must be the
minimum because we can prove f ≥ a(f) as follows:

f =
∑
τ0,j>0

t0,jxj +
∑
τ0,k<0

t0,kxk

≥
∑
τ0,j>0

t0,j l(xj) +
∑
τ0,k

t0,ku(xk)

=
∑
τ0,j>0

t0,ja(xj) +
∑
τ0,k<0

t0,ka(xk) = a(f)

(1)

The search can then terminate. Otherwise, there is some xj on
f ’s row s.t. a(xj) 6= vj , and it is unclear whether a(f) is at
a minimum. By trying to change a(xj) for these xj , we can
at the same time hunt for an assignment that decreases a(f)

173190

and search for a proof of optimality. We will call the non-
basic variables on f ’s row whose assignments are not at their
relevant bounds the flexible variables for this row. The set of
flexible variables for an arbitrary basic variable bi is denoted
Flex(d, bi) where d is a directional rational that is used as an
implicit multiplier:

Flex(d, bi) = {xj |d · τi,j > 0 ∧ a(xj) > l(xj)}∪
{xk|d · τi,k < 0 ∧ a(xk) < u(xk)}

(2)

The parameter d allows us to choose whether to minimize
or maximize bi and will be discussed further in Sections IV
and V. When d = 1 (as it always is in this Section), we will
drop the first argument to Flex as a notational convenience.
Thus, f is at its minimum when Flex(f) = ∅.

To decrease the value of a(f), we choose some xj ∈
Flex(f) and determine an appropriate δ for UPDATE(xj , δ)
(we discuss the strategy for picking xj below). The direction
in which we attempt to move a(xj) is determined by t0,j :
if t0,j < 0, then we want δ ≥ 0 and if t0,j > 0, then we
want δ ≤ 0. Since the UPDATE operation must maintain the
invariant l ≤ a ≤ u, the value of δ is constrained by the
bounds on xj : l(xj) ≤ a(xj) + δ ≤ u(xj). Also, for every bi
that depends on xj , the value a(bi) must stay within bounds:
l(bi) ≤ a(bi) + ti,j · δ ≤ u(bi). These cases can be unified
using τ : for all k, l(xk) ≤ a(xk) + τk,j · δ ≤ u(xk).

PRIMAL always considers UPDATE(j, δ) operations that are
maximal: the value of δ is selected so that at least one
variable’s assignment is pushed against its bound (any larger
change would violate the bound). For each k, the candidate
value for δ is the one that sets xk equal to one of its bounds
(which bound is determined by the sign of δ and the sign of
τk,j). We call these candidate values for δ the break points of
xj . Formally, let δU(j, k, α) be the amount xj must change in
order to make xk equal to α after an UPDATE:

δU(j, k, α) =
1

τk,j
(α− a(xk)) , and

δB(j, k) =

δU(j, k, l(xk)) t0,j · τk,j > 0

δU(j, k, u(xk)) t0,j · τk,j < 0

undefined otherwise

The break points for xj are all defined values of δB(j, k).
In PRIMAL, for each j, we simply select k to minimize

| δB(j, k)| (ties can be broken by picking the minimum k).
The operation UPDATE(j, δB(j, k)) then maintains the in-
variant that no variable violates its bound. Additionally, the
assignment to xk is guaranteed to be pressed up against
its bound. When j 6= k, xk is a basic variable, so we
can allow for (potential) future progress by pivoting xk
out of the basis and replacing it with xj . The operation
UPDATEANDPIVOT(j, δB(j, k), k) then maintains both the in-
variant Ta = 0 and l ≤ a ≤ u.1 Because xk leaves the basis,
our strategy of minimizing | δB(j, k)| to select k is called a

1When k = j, UPDATEANDPIVOT(j, δB(j, j), j) corresponds to an update
without a pivot.

leaving rule. By always selecting updates like this, PRIMAL
ensures that a(f) monotonically decreases.

We have just described a rule for selecting xk given xj ,
but we need an entering rule for selecting xj . A simple way
to ensure termination is to select the entering variable xj
with the smallest index j. This style of selecting entering and
leaving variables is called Bland’s rule in the literature, and
its termination is a classic result of linear programming [9],
[8], [7]. A better heuristic is to select xj so as to maximize
the value of |t0,j |. This is called Dantzig’s rule.2

The algorithm PRIMAL(f) in Figure 2 is a minimization
routine that repeatedly selects an update and pivot until
Flex(f) is empty and then returns the minimum value found
for f .3 The selection procedure uses a terminating variant of
Dantzig’s rule (it follows Dantzig’s rule as long as δB(j, k) is
nonzero, otherwise it follow’s Bland’s rule). Note that when
δB(j, k) 6= 0, the value of f strictly decreases, which makes it
impossible to return to any previous state (as all previous states
had larger values of f). Thus, the presense of a minimization
function makes it easier to rule out cycles (the source of
nonterminating runs). Termination only needs to be addressed
for cases when f gets stuck and stops decreasing.

IV. SIMPLEX FOR DPLL(T)

The SIMPLEXFORSMT algorithm from [1] is tightly tuned
to the DPLL(T) framework. It is designed to support incre-
mental processing of arithmetic literals and efficient backtrack-
ing, and it computes minimal explanations in case of conflicts.
Strict inequalities are encoded using an implicit infinitesimal
variable δ (see [1] for details on δ-rationals).

In the DPLL(T) framework, a SAT solver incrementally
sends theory literals to the theory solver. Periodically, it
queries the solver about the current set of literals, expecting
that the solver will either report satisfiable (with a satisfying
assignment) or unsatisfiable (with a conflict). With appropri-
ate preprocessing, we can assume that the linear equalities
Ta = 0 are fixed (modulo pivoting) from the beginning,
that all variables are initially unbounded, and that the theory
literals sent by the SAT solver are of the form xi ≤ c or
xi ≥ c. The literals sent thus determine the bound constraints:
l ≤ V ≤ u. As in PRIMAL, the invariant Ta = 0 is always
maintained. This is done by starting with a(x) = 0 for all x
and by using only UPDATE to change variable assignments.
The main job of SIMPLEXFORSMT then is to modify the
current assignment using UPDATE until it satisfies the bounds
or report a conflict if this is impossible. This is done by the
SIMPLEXFORSMTCHECK routine shown in Figure 3.

This routine focuses on searching for an assignment a that
satisfies l ≤ a ≤ u. We say that x is an error variable if a
violates one of the bounds on x, and we denote by E the set

2Dantzig’s rule tends to be dominated in practice by more sophisticated
rules such as steepest gradient descent [9], [8], [7].

3For the purposes of this paper, we have ignored unbounded problems, i.e.
problems where a(f) can take on arbitrarily low values [9], [8], [7]. To handle
this case, change the while loop condition additionally to stop once a(f) is
set to −∞.

174 191

of error variables. Let Vio(x) denote the amount by which x
violates its bound:

Vio(x) =

l(x)− a(x) a(x) < l(x)

a(x)− u(x) a(x) > u(x)

0 otherwise

(3)

Thus, Vio(x) is nonnegative and piecewise linear, and x
satisfies its bounds iff Vio(x) = 0. Finding a satisfying
assignment requires reducing each Vio(xi) to 0. Locally,
minimizing a Vio(xi) is equivalent to minimizing di ·xi where
di is 1 if a(x) > u(x), -1 if a(x) < l(x), and 0 otherwise.

In Fig. 3, the first loop ensures that the nonbasic variables
satisfy their bounds (lines 3-4). The main work of the routine
is the second loop which focuses on finding updates to basic
variables that are in E. When E = ∅, the current assignment is
feasible and the search stops. Otherwise, there is some bi ∈ E.

The set Flex(di, bi) contains the nonbasic flexible variables
of row i that enable the function di · bi to decrease. If
Flex(di, bi) is nonempty, then a variable xj ∈ Flex(di, bi)
is chosen; bi is pivoted with xj ; and the assignment to xj is
updated enough to move bi to its violated bound. Let VB(bi)
denote the violated bound on bi (either l(bi) or u(bi)). Then for
xj ∈ Flex(di, bi), the operation UPDATE(j, δU(j, i,VB(bi)))
will set a(bi) to the violated bound.

If Flex(di, bi) is empty, then the bounds on the nonbasic
variables on bi’s row imply that di · bi is at a minimum value
so there is no way to satisfy di · bi ≤ di · VB(bi) without
violating some other bound. Thus, the current set of bounds
is unsatisfiable. We can compute an explanation by collecting
all of the contributing bounds on row i:∧
di·τi,j>0

xj ≥ l(xj) ∧
∧

di·τi,k<0

xk ≤ u(xk) ∧ di · bi ≤ di ·VB(bi)

We denote the conflict explanation generated in this fashion
as RC(i). This explanation is minimal (if any constraint is
removed, the remaining constraints are satisfiable) [11]. Upon
detection, the row conflicts are added to the set of conflicts C.

To ensure termination, it is sufficient to always select the
minimum bi ∈ E to leave the basis, and the minimum
xj ∈ Flex(di, bi) (a variation of Bland’s rule). However,
the dominant heuristic in state-of-the-art implementations of
SIMPLEXFORSMT is to instead select the xj ∈ Flex(di, bi)
with minimum column length |Col(j)|. This heuristic works
quite well in practice but is not guaranteed to terminate. (The
function Vio(bi) will decrease to 0 for bi but it may increase
for other basic variables or for xj .) A simple means of ensuring
termination is to count the number of pivots and switch to
Bland’s rule once this passes a finite cap, This strategy is
shown in Figure 3. The variable pc is the pivot count and,
once pc reaches some threshold H, the pivot selection heuristic
switches to Bland’s rule. This strategy or slight variations
of it are currently used by default in CVC4, MathSat [13],
OpenSMT [14], Yices, Yices 2, and Z3 [12].

An improvement to the algorithm (and a contribution of
this paper) can be obtained by implementing a more aggres-
sive conflict detection. Instead of only checking the row of

1: procedure SIMPLEXFORSMTCHECK
2: pc← 0
3: while ∃xj ∈ N ∩ E do
4: UPDATE(xj ,−dj ·Vio(xj))

5: while E 6= ∅ ∧ C = ∅ do
6: UPDATEANDPIVOT(SIMPLEXFORSMTSELECT())
7: pc← pc +1

8: return C = ∅ ? Sat(a) : Unsat(C)
9: procedure SIMPLEXFORSMTSELECT

10: select bi from E to minimize i
11: CHECKFORCONFLICT(i)
12: if C 6= ∅ then
13: return 〈i, 0, i〉
14: h← pc < H ? 1 : 0
15: select xj from Flex(di, bi) to minimize 〈h·|Col(j)|, j〉
16: return 〈j, δU(j, i,VB(i)), i〉
17: procedure CHECKFORCONFLICT(i)
18: if Flex(di, bi) = ∅ then
19: C ← {RC(i)}

Fig. 3: Check procedure for SIMPLEXFORSMT; uses a ter-
minating selection rule and a procedure for detecting conflicts
on row i

1: procedure CHECKALLCONFLICTS
2: for all i|1 ≤ i ≤ n do
3: if conflict on row i then
4: C ← C ∪ {RC(i)}

Fig. 4: Procedure that checks for all conflicts

the first basic variable in error for a conflict, all rows are
checked for conflicts. This variation (a replacement for the
CHECKFORCONFLICT(I) procedure in Fig. 3 is shown in
Figure 4. To implement this efficiently, we keep track of the
size of Flex(±1, bi) for all bi ∈ B. These counts depend on
the coefficients ti,j , and the relationships a(xj) < u(xj) and
a(xj) > l(xj). The bookkeeping for keeping these counts
accurate is amortized into the theory solver operations. Con-
flict detection then amounts to checking when |Flex(di, bi)|
is 0 for bi ∈ E. (Only bi that were affected in the previous
iteration need to be tested for conflicts.) An evaluation of
SIMPLEXFORSMT with and without this optimization (using
CVC4) showed a 46% speedup on the QF_LRA SMT-LIB
benchmarks. This optimization is on by default in CVC4.

V. SUM OF INFEASIBILITIES SIMPLEX

In this section, we introduce a Simplex-based theory solver
for QF_LRA which we call SOISIMPLEX. Like SIMPLEX-
FORSMT in the previous section, it is designed to search for
both conflicts and satisfying assignments in the context of a
DPLL(T) search. It attempts to address the troubling lack of
a straightforward global criterion for progress in SIMPLEX-
FORSMT by introducing a function to minimize. The function
minimized is the sum of infeasibilities of all of the variables.

175192

1: procedure SOICHECK
2: while ∃xj ∈ N ∩ E do
3: UPDATE(xj ,−dj ·Vio(xj))

4: while Flex(f) 6= ∅ ∧ C = ∅ do
5: UPDATEANDPIVOT(SOISELECT())

6: if C 6= ∅ then
7: return Unsat(C)
8: else if E = ∅ then
9: return Sat(a)

10: else
11: return Unsat(SoiQE) (Sec. V-B)
12: procedure SOISELECT
13: CHECKALLCONFLICTS()
14: if C 6= ∅ then
15: return 〈1, 0, 1〉
16: S ← ∅
17: for xj ∈ Flex(f) do
18: L← ∅
19: for all k|k = j ∨ tk,j 6= 0 do
20: L← L∪{〈δU(j, k, l(xk)), k〉}
21: L← L∪{〈δU(j, k, u(xk)), k〉}
22: select 〈δ, k〉 ∈ L to minimize 〈∆Vio(j, δ), |δ|, k〉
23: S ← S ∪ 〈j, δ, k〉
24: select 〈j,δ,k〉∈S minimizing 〈sgn(∆Vio(j, δ))·|t0,j |, j〉
25: return 〈j, δ, k〉

Fig. 5: SOICHECK and selection rules for SOISIMPLEX

For a given assignment, the sum of infeasibilities is given by:
Vio(V) =

∑
x∈V Vio(x). Let VioF be the result of replacing

a(x) by x in the definition of Vio. The optimization function
can be written as: VioF (V) =

∑
x∈V VioF (x). Minimizing

the sum of infeasibilities is a standard technique for finding
an initially feasible assignment for linear programs [7], [8].

We assume the same setup as in the previous section: we
start with a fixed (modulo pivoting) tableau and a satisfying as-
signment a, and then the SAT solver sends a set of literals that
determine the upper and lower bounds for the variables. The
theory solver must provide a check routine that either reports
satisfiable (with a satisfying assignment) or unsatisfiable (with
a conflict). The main loop for SOISIMPLEX uses essentially
the same machinery to minimize VioF (V) as was used in
PRIMAL for minimizing a linear function f . However, there
are a number of complications caused by the fact that VioF (V)
is only piecewise linear instead of linear. The majority of this
section is devoted to handling these challenges.

Because we cannot represent the optimization function
VioF (V) directly in the tableau, we use a linearized ap-
proximation. First note that that Vio(V) =

∑
x∈V Vio(x) =∑

xi∈V di · (a(xi)−VB(xi)). In some neighborhood of a(xi),
the value of di · VB(xi) will be constant. Discarding this
term and replacing a(xi) with xi results in the function
f(V) =

∑
xi∈V di · xi. Note that the function still depends

on the current assignment (which determines di), but for a

given assignment, the function is linear. We can substitute for
the basic variables and rearrange the sums to get:

f =
∑
xj∈N

(∑
xi∈V

diτi,j

)
· xj .

We use this function in roughly the same way we used f
in PRIMAL: it is the 0th variable and it is always basic. To
compute the tableau row for f , we simply compute coefficients
for each nonbasic variable xj by adding, for each row i, the
entry in column j multiplied by the directional multiplier di.
The computed coefficients depend on di and thus have to
be updated every time the assignment changes. This can be
implemented efficiently by instrumenting UPDATE to detect
when di changes to d′i for some i. When this happens, we
update f ’s row (r0) as follows: r0 ← r0 +(d′i−di) ·τi (where
τi is the i-th row of τ).

The check procedure for SOISIMPLEX is given in Fig. 5.
It iterates while: no row contains a conflict (C = ∅), and there
is a nonbasic variable on f ’s row with slack (Flex(f) 6= ∅). If
C 6= ∅, then SIMPLEXFORSMTCHECK safely terminates with
the discovered conflict. If Flex(f) and E are empty, the current
assignment is satisfying. Otherwise, E 6= ∅, Flex(f) = ∅, and
f is at a minimum. Section V-B discusses extracting a conflict
explanation with the SoiQE procedure.

As in the PRIMAL algorithm, the selection procedure iterates
over all xj ∈ Flex(f). The leaving rule considers xj as well
as every basic variable bk where tk,j is nonzero. We consider
two possible updates (break points) for each such variable: one
which sets it to its upper bound and one which sets it to its
lower bound. Unlike PRIMAL, we consider updates for which
some new basic variable could become violated. However,
we still ensure that global progress is made. We denote by
∆Vio(j, δ) the amount that Vio(V) would change if we were
to change the current assignment by executing UPDATE(j, δ).
From all of the possible leaving variables and updates, we then
select the pair for which ∆Vio(j, δ) is minimal (equivalently,
the pair that reduces the value of Vio(V) the most). Section
V-A describes how to efficiently compute the values for
∆Vio(j, δ). We also show in that section that for each xj , there
is always a choice of 〈δ, k〉 such that ∆Vio(j, δ) ≤ 0. This
ensures that Vio(V) monotonically decreases. Tie breaking for
the leaving rule is done by selecting the minimum value of |δ|
and then the minimum variable index k. The motivation for
the former is discussed in subsection V-C.

The entering rule selects between candidate triples 〈j, δ, k〉
for xj ∈ Flex(f). Any triple for which ∆Vio(j, δ) is negative
ensures that SOISIMPLEX is making progress. This allows for
SOISIMPLEX to treat Vio(V) in a manner analogous to a(f)
in PRIMAL. Following our modified Dantzig’s rule, we select
the entering variable with the largest coefficient so long as
it decreases Vio(V) with ties being broken by selecting the
variable with the smaller index.

We show how SOISIMPLEX works using the simple exam-
ple shown in Fig. 6. With the given assignment, the bound
x1 ≥ 3 is violated, and Vio(V) = 2. The variable x2 is

176 193

T : f = −2 · x2 + x3
x1 = 2 · x2 − x3

0 δ

Vi
o(

V
)

3 ≤ x1 ≤ 7 a(x1) = 1
x2 ≤ 3 a(x2) = 1

1 ≤ x3 a(x3) = 1

Fig. 6: Simple example showing Vio(V) after UPDATE(x2, δ)

flexible, and we examine it for updates. The break points for
x2 are at δ ∈ {1, 2, 3}, and correspond to changes to x2 that
respectively set x1 to its lower bound, x2 to its upper bound,
and x1 to its upper bound. Figure 6 shows how the value
of Vio(V) changes if x2 is updated by δ. For δ ∈ {1, 2},
∆Vio(2, δ) = −2 and Vio(V) will become 0. Because of the
tie-break on |δ|, the pair 〈δ.k〉 = 〈1, 1〉 is selected, and then
the triple 〈2, 1, 1〉 is returned. After the call to UPDATE, the
algorithm terminates with a satisfying solution.

A. Computing ∆Vio(j, δ)

To implement line 22 of SOISELECT, we must compute the
values of ∆Vio(j, δ) for every break point δ. We use the fact
that the function VioF is linear between break points and that
the slopes of these linear segments can be computed. Let ∆
be a increasing sorted list of the positive δ values in L, and
let δ0 = 0: 0 = δ0 < δ1 < Let κi be the set of values
of k that are paired with δi in L. We proceed as follows. We
know that ∆Vio(j, 0) = 0 and that the slope β0 as δ increases
from 0 is t0,j . Now, we can compute:

∆Vio(j, δi) = ∆Vio(j, δi−1) + βi−1 · (δi − δi−1).

Furthermore, we know that at δi, each variable xk (for
k ∈ κi) transitions to satisfying its bound or violating its
bound, meaning that dk will change at δi to some d′k. This
change can be used to compute the slope βi for the next
segment: βi = βi−1 +

∑
k∈κi

(d′k − dk) · τk,j . Continuing this
walk over increasing values of δ computes ∆Vio(j, δ) for all
δ ≥ 0. Another analogous pass can be done to compute the
∆Vio(j, δ) values for negative δ values. A number of nice
properties follow from the above computation, including the
the following lemma:

Lemma 1. For each xj ∈ Flex(f), there is some pair 〈δ, k〉 ∈
L such that ∆Vio(j, δ) ≤ 0.

Proof. If δ = 0 is a break point, then ∆Vio(j, 0) ≤ 0. Now
assume 0 is not a break point. The xj’s considered are on
f ’s row so t0,j 6= 0. If t0,j > 0, there must exist some
di · τi,j > 0. So there exists a negatively-valued break point,
δU(j, i,VB(i)). Let δ be the negative break point closest to
0. We know that ∆Vio(j, δ) = 0 + t0,j · δ < 0. Similarly, if
t0,j < 0, then ∆Vio(j, δ) < 0 for the minimal positive δ.

The proof further suggests that it is sufficient to consider either
just the negative or just the positive values of δ (depending on
the value of t0,j) without affecting correctness.

B. Conflicts with Multiple Rows

If Flex(f) = ∅, C = ∅ (i.e. no single row produces a
conflict) but E 6= ∅, we can still detect a conflict and derive an
explanation as follows. Similar reasoning to that in (1) can be
used to show that the sum of the assignments for the variables
in E is strictly greater than the sum of their violated bounds:∑

bi∈E

di · a(bi) >
∑
bi∈E

di ·VB(i).

So the bounds on the nonbasic variables in f ’s row and
the basic variables in error cannot together be satisfied. This
allows us to extract the following conflict explanation:∧
τ0,j>0

xj ≥ l(xj) ∧
∧

τ0,k<0

xk ≤ u(xk) ∧
∧
bi∈E

dibi ≤ di VB(i)

Explanations constructed like this may not be minimal. How-
ever, we observe that for any subset S of E, if we con-
struct the function fS =

∑
xj∈N

(∑
bi∈S di · ti,j

)
· xj , and

Flex(fS) = ∅, then we can extract a smaller explanation using
only the rows corresponding to basic variables in S. We use
a number of heuristics and a straightforward adaptation of the
QuickXplain algorithm [21] to attempt to find a minimal subset
S that still generates a conflict (without additional Simplex
search). Most of the time a conflict can be found with |S| = 2.
In this case, the explanation is guaranteed to be minimal.

C. Termination

The termination of SOISIMPLEX is again based on the
termination of Bland’s rule. Suppose that SOISIMPLEX does
not terminate. There are only a finite number of possible
assignments that can be considered as the number of variables
is finite, and every change to the assignment assigns a variable
xj to either u(xj) or l(xj). Because the value of Vio(V) is
determined by the assignment and monotonically decreases,
any nonterminating execution must have an infinite tail during
which Vio(V) is unchanged and the update selected, 〈j, δ, k〉
is such that ∆Vio(j, δ) = 0. As was shown in the proof of
Lemma 1, if the minimal ∆Vio(j, δ) found is 0, then δ = 0
must be a break point. The leaving rule enforces that the δ
selected minimizes the tuple 〈∆Vio(j, δ), |δ|, k〉. So in the tail
of a nonterminating execution ∆Vio(j, δ) = 0 and δ = 0 at
every step. Thus after this point, no variable is changing in as-
signment and no variable changes its relationship to its bounds.
Every leaving and entering variable is then selected based
on picking the minimum index. The argument that PRIMAL
cannot cycle under Bland’s rule can then be directly applied.
We refer readers interested in the proof of the termination of
Bland’s rule to [7], [8], [9].

D. Heuristics and Vio(V)

Instead of examining all xj ∈ Flex(f) for the best
candidate, we can instead just look at heuristically many
candidates. The search can stop once a candidate has been
found that makes progress (i.e. ∆Vio(j, δ) < 0). Further, there
is more freedom in selection heuristics than we have shown
here. In particular, one can use any heuristic desired until no

177194

progress has been made for a while. CVC4’s implementation
for example uses a heuristic that prefers shorter columns until
progress stalls and then uses Bland’s rule.

During the calculation of break points, it is possible to
determine if pivoting xj with bi would result in a row conflict
on xj’s new row in O(1) time by using the |Flex(±1, bi)|
values. Such selections are always prefered. CVC4’s selection
also heuristically prefers the set E to be as small as possible.

VI. EXPERIMENTAL RESULTS

In this section we describe two experiments. In the first,
we compare CVC4 against itself using two different sets of
options.4 The first set of options uses the default solver, an
implementation of SIMPLEXFORSMT (which is a bit better
than the version that won the QF_UFLRA division—which
includes QF_LRA—of SMT-COMP 2012 [22]). The second
set of options enables a new implementation of SOISIM-
PLEX. The two configurations of CVC4 are run with most
other heuristics disabled so that the comparison is an ac-
curate reflection of the performance of the two algorithms
as described in this paper.5 The comparison is done on the
QF_LRA benchmarks from the SMT-LIB library [23] as well
as a new family of benchmarks from biological modeling,
latendresse [24]. The latendresse family of bench-
marks is a set of problems that originated from an analysis of
biochemical reactions using the flux-balance analysis method.6

The miplib and latendresse families are of particular
interest as they contain the only timeouts in these experi-
ments. These problems are characterized by relatively little
propositional structure, and a large and relatively dense input
tableau. All of the experiments were conducted on a 2.66GHz
Core2 Quad running Debian 7.0 with a time limit of 1000
seconds. Every example stays below a memory limit of 2GB.
Overall, SOISIMPLEX solves 636 while SIMPLEXFORSMT
solves only 629. Interestingly, SOISIMPLEX is slightly slower
on the SMT-LIB benchmarks (see Fig. 7), and even solves
one fewer benchmark (the satisfiable miplib benchmark
fixnet-7000.smt2), but solves all of the latendresse
benchmarks while SIMPLEXFORSMT times out on 8 of them.

To understand these results better, we recorded how many
pivots were done (for both algorithms) during each call to
the respective check routines (for benchmarks that both al-
gorithms are able to solve). For the SMT-LIB benchmarks,
almost all queries sent to the theory solver are “easy” for the
simplex solvers (both SIMPLEXFORSMT and SOISIMPLEX).
Table I shows, for given numbers of pivots (or ranges of
numbers of pivots), the number of calls to check whose
pivot count is in that range. The maximum number of pivots
for any single call to check is 2238. The number of pivots

4Experiments were run using the submission to SMT-EVAL 2013: CVC4
version 1.2, available at github.com/CVC4/CVC4/tree/smteval2013.

5Both solvers are run with --new-prop --no-restrict-pivots.
SOISIMPLEX is run with the additional flag --use-soi. The
--no-restrict-pivots flag disables stopping simplex after K
pivots at non-leaf SIMPLEXFORSMTCHECK calls (K = 200 by default).

6These benchmarks are available at cs.nyu.edu/∼taking/soi.tgz and have
been submitted for inclusion into SMT-LIB’s QF_LRA family.

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

C
V

C
4

 S
O

IS
im

p
le

x

CVC4 SimplexForSMT

Fig. 7: Log-scaled running times (sec.) for experiment 1 on
the QF_LRA benchmarks from SMT-LIB.

is generally very low and on average, SOISIMPLEX uses
fewer pivots than SIMPLEXFORSMT. The 8 timeouts by
SIMPLEXFORSMT on latendresse have a very different
signature. Each of them times out in the middle of a very
long SIMPLEXFORSMTCHECK call performing thousands of
pivots. On average, the interrupted SIMPLEXFORSMTCHECK
routines had performed 18263 pivots and had been running
937s [/1000s]. This first experiment confirms our expectation
that SOISIMPLEX is effective at reducing the number of pivots
required to solve a problem.

For the second experiment, we compare the same two
algorithms in CVC4 against a number of state-of-the-art
QF_LRA solvers. For this experiment, we enable a number
of additional CVC4 options (those used in the SMT-EVAL
2013 run script) which are beyond the scope of this paper and
which significantly improve performance (for both algorithms)
on the miplib and latendresse benchmarks. These are
disabled in the first experiment to better understand the relative
strengths of the two algorithms on their own. The other solvers
we compare with are: Z3 4.1.2 [4], mathsat 5.2.3 [3], yices
2.1.1, and OpenSMT 1.0.1[6]. Table II contains a summary
of the number of problems solved by each solver and the
cumulative time taken on the solved instances for the three
families of benchmarks: all SMT-LIB QF_LRA benchmarks,
the miplib family from QF_LRA, and the latendresse
benchmarks.7 The second experiment shows that the strongest
overall solving strategy is obtained by using SOISIMPLEX.

7OpenSMT gave no answer on the latendresse benchmarks.

178 195

Range for n 0 1 [2, 10] [11, 100] [101, 1000] [1000, 2238] total
Number of calls to SIMPLEXFORSMTCHECK with n pivots 32832424 645473 896659 174743 2362 7 34551668∑

Total number of pivots performed by these calls 0 645473 3677258 3628577 479386 10173 8440867

Number of calls to SOICHECK with n pivots 30475287 924639 1008398 130167 655 0 32539146∑
Total number of pivots performed by these calls 0 924639 3900190 2366117 126506 0 7317452

TABLE I: Number of pivots per call to check for experiment 1.

CVC4 SOISIMPLEX CVC4 SIMPLEXFORSMT Z3 yices2 mathsat opensmt
set solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

QFLRA (634) 627 5621.29 625 5523.15 620 5582.46 619 5300 608 8043 597 17261
miplib (48) 35 641.3 33 1760 28 1158.42 27 1616 19 3049 21 1509
latendresse (18) 18 883.53 18 205 8 17.98 10 103.38 10 94.73 - -

TABLE II: Running time and number of problems solved for experiment 2.

VII. CONCLUSION

The authors believe these experiments demonstrate both the
strength and weakness of SIMPLEXFORSMT’s local optimiza-
tion criteria. It is good at keeping the amount of work small in
the context of a DPLL(T) style search. The local optimization
criteria requires little analysis and is quite an efficient heuristic
for many SMT problems; however, its global convergence is
questionable on large and hard examples. SOISIMPLEX adds
a global optimization criterion and appears to be more robust
for large and hard examples, but this comes with the cost of
some additional analysis during pivot selection. Future work
will explore how to heuristically take advantage of the best
characteristics of both algorithms.

ACKNOWLEDGEMENTS

We’d like to thank the other members of the NYU ACSys
research group for their many contributions to CVC4. This
work was funded in part by NSF Grants CCF-0644299, CNS-
0917375, and NASA Cooperative Agreement NNA10DE73C.

REFERENCES

[1] B. Dutertre and L. de Moura, “A fast linear-arithmetic solver for
DPLL(T),” in CAV 2006, LNCS 4144. Springer-Verlag, August 2006,
pp. 81–94.

[2] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in CAV 2011, LNCS 6806.
Springer-Verlag, 2011, pp. 171–177.

[3] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani, “The Math-
SAT5 SMT Solver,” in TACAS 2013, LNCS 7795. Springer-Verlag,
2013.

[4] L. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
TACAS 2008, LNCS 4963. Springer-Verlag, 2008, pp. 337–340.

[5] J. Christ, J. Hoenicke, and A. Nutz, “Smtinterpol: an interpolating
smt solver,” in Model Checking Software (SPIN Workshop 2012),
LNCS 7385. Springer-Verlag, 2012, pp. 248–254.

[6] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich, “The OpenSMT
Solver,” in TACAS 2011, LNCS 6605. Springer-Verlag, 2011, pp. 150–
153.

[7] P. E. Gill, W. Murray, and M. H. Wright, Numerical linear algebra and
optimization. Vol. 1. Redwood City, CA: Addison-Wesley Publishing
Company, 1991.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[9] A. Schrijver, Theory of Linear and Integer Programming. John Wiley
& Sons, 1989.

[10] R. Niewenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
modulo theories: From an abstract Davis-Putnam-Logemann-Loveland
procedure to DPLL(T),” JACM, vol. 53, no. 6, pp. 937–977, November
2006.

[11] B. Dutertre and L. de Moura, “Integrating Simplex with DPLL(T),”
Computer Science Laboratory, SRI International, Tech. Rep. SRI-CSL-
06-01, May 2006.

[12] L. de Moura, N. Bjørner, and C. Wintersteiger, “Z3 Source Code v4.3.1
select_pivot,” http://z3.codeplex.com/SourceControl/changeset/
view/89c1785b73225a1b363c0e485f854613121b70a7#src/smt/theory
arith core.h.

[13] A. Griggio, “An Effective SMT Engine for Formal Verification,” Ph.D.
dissertation, DISI - University of Trento, December 2009.

[14] R. Bruttomesso, S. Fulvio Rollini, N. Sharygina, and A. Tsitovich,
“OpenSMT Source Code r64,” http://opensmt.googlecode.com/svn/
trunk/src/tsolvers/lrasolver/LRASolver.C.

[15] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: A Theorem Prover for
Program Checking,” JACM, vol. 52, no. 3, pp. 365–473, May 2005.

[16] H. Rueß and N. Shankar, “Solving linear arithmetic constraints,” SRI
International, Tech. Rep. SRI-CSL-04-01, 2004.

[17] G. Badros, A. Borning, and P. Stuckey, “The Cassowary linear arithmetic
constraint solving algorithm,” ACM Transactions on Computer-Human
Interaction (TOCHI), vol. 8, no. 4, pp. 267–306, December 2001.

[18] D. Monniaux, “On using floating-point computations to help an ex-
act linear arithmetic decision procedure,” in CAV 2009, LNCS 5643.
Springer-Verlag, 2009, pp. 570–583.

[19] D. Caminha Barbosa de Oliveira and D. Monniaux, “Experiments on
the feasibility of using a floating-point simplex in an SMT solver,” in
Workshop on Practical Aspects of Automated Reasoning (PAAR). CEUR
Workshop Proceedings, 2012.

[20] G. Faure, R. Nieuwenhuis, A. Oliveras, and E. Rodrı́guez-Carbonell,
“Sat modulo the theory of linear arithmetic: Exact, inexact and com-
mercial solvers,” in SAT 2008, pp. 77–90.

[21] U. Junker, “QuickXplain: Conflict detection for arbitrary constraint prop-
agation algorithms,” in IJCAI-01 Workshop on Modelling and Solving
Problems with Constraints, 2001.

[22] R. B. Bruttomesso, D. Cok, and A. Griggio, “Smt-comp 2012,” Jun.
2012. [Online]. Available: http://smtcomp.sourceforge.net/2012/

[23] C. Barrett, A. Stump, and C. Tinelli, “The Satisfiability Modulo Theories
Library (SMT-LIB),” www.SMT-LIB.org, 2010.

[24] M. Latendresse, M. Krummenacker, M. Trupp, and P. D. Karp,
“Construction and completion of flux balance models from pathway
databases,” Bioinformatics, vol. 28, p. 38896, 2012.

179196

Efficient MUS Extraction with Resolution
Alexander Nadel1, Vadim Ryvchin1,2, Ofer Strichman2

1Intel Corporation, P.O. Box 1659, Haifa 31015 Israel
{alexander.nadel, vadim.ryvchin}@intel.com

2Information Systems Engineering, Technion, Israel ofers@ie.technion.ac.il

Abstract—We report advances in state-of-the-art algorithms
for the problem of Minimal Unsatisfiable Subformula (MUS)
extraction. First, we demonstrate how to apply techniques used
in the past to speed up resolution-based Group MUS extraction
to plain MUS extraction. Second, we show that model rotation,
presented in the context of assumption-based MUS extraction,
can also be used with resolution-based MUS extraction. Third,
we introduce an improvement to rotation, called eager rotation.
Finally, we propose a new technique for speeding-up resolution-
based MUS extraction, called path strengthening. We integrated
the above techniques into the publicly available resolution-based
MUS extractor HaifaMUC, which, as a result, now outperforms
leading MUS extractors.

I. INTRODUCTION

Given an unsatisfiable formula in Conjunctive Normal Form
(CNF), an Unsatisfiable Subformula (or Unsatisfiable Core;
hereafter, US) is an unsatisfiable subset of its clauses. A
Minimal Unsatisfiable Subformula (MUS) is a US such that
removal of any of its clauses renders it satisfiable. The problem
of finding a MUS is an active area of research [1]–[6].

The basic algorithm used in modern MUS extractors such
as MUSer2 [7] and HaifaMUC [3] is as follows. In the initial
approximation stage the algorithm finds a not-necessarily-
minimal US S with one or more invocations of a SAT
solver [8], [9]. It then applies the following deletion-based
iterative process over S’s clauses until S becomes a MUS.
Each iteration removes a candidate clause c from S and
invokes a SAT solver. If the resulting formula is satisfiable,
c must belong to the MUS, so c is returned to S and marked
as necessary. Otherwise c is removed from S. In addition,
the following two optimizations are commonly applied. First,
incremental SAT solving [10], [11] is used across all SAT
invocations. Second, when a clause c is found to be not
necessary, one can remove from S not only c, but all the
clauses (if any) omitted from the new core found by the SAT
solver. This latter technique is called clause set refinement
in [6]. The algorithm we have described up to here was
introduced in [12] and improved in [2], while the idea of
removing constraints one by one in order to get a minimally
infeasible set can be traced back to [13], [14]. See [2] for
a more detailed presentation of the algorithm and [1] for an
overview of various approaches to MUS extraction.

It was demonstrated in [2] that the approach we have
described can be implemented using either a resolution-based
or an assumption-based algorithm. The former relies on the
resolution proof maintained by the SAT solver for detecting the
core at each step, while the latter adds a new assumption literal

to each clause and detects the core using these assumptions. It
was shown in [2] that the resolution-based approach to MUS
extraction is faster than the assumption-based approach mainly
because of the overhead of maintaining assumption literals.

Various applications require finding a MUS with respect
to user-given groups of clauses [2], [15], called interesting
constraints, while clauses that do not belong to any interesting
constraint are called the remainder. The resulting problem is
called Group MUS (GMUS) extraction (or high-level MUS
extraction). It was shown in [2] that the approach we described
for plain MUS extraction can be applied to GMUS extraction
as well. Furthermore, it was shown in [3] that the resolution-
based approach to GMUS extraction can be improved con-
siderably by directing the search to ignore the interesting
constraints and to use the remainder and the necessary clauses
instead whenever possible. We call the techniques of [3] MUS-
biased search.

The first contribution of this paper is in showing that MUS-
biased search can be applied to plain MUS extraction. The
key observation is that while there are no remainder clauses
in plain MUS extraction, necessary clauses can still be used
for MUS-biased search after the approximation stage.

A recent essential enhancement to the plain MUS extraction
algorithm we have described is model rotation (or, simply,
rotation) [4], [6], [16]. Rotation was proposed in the con-
text of assumption-based MUS extraction. After implement-
ing rotation, the resulting assumption-based MUS extractor
MUSer2 outperformed the state-of-the-art resolution-based
MUS extractor HaifaMUC. It is sometimes postulated that
rotation gives the assumption-based approach an edge over
the resolution-based approach (cf. [5]).

The second contribution of this paper is thus in showing
that model rotation can be integrated into the resolution-based
approach. The paper’s third contribution is an improvement to
model rotation, called eager rotation, detailed in Sect. II-B.

The fourth contribution of our paper is called path strength-
ening. It is a generalization of a technique proposed in [17]
and later called redundancy removal in [6] and implemented
in MUSer2 [7]. Redundancy removal adds the literals of
¬c (where c is the candidate clause) as assumptions when
checking the satisfiability of S\c, because since S is known to
be unsatisfiable, then S \ c and (S \ c)∧¬c are equisatisfiable.
Path strengthening, on the other hand, adds as assumptions
the literals of ¬c,¬c1, . . . ,¬cm for some m ≥ 0, where
the sequence of clauses c, c1, . . . , cm constitutes the longest
common prefix of all paths in the resolution proof from c to

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 180197ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

the empty clause. Further details about path strengthening are
provided in Sect. II-C.

We integrated our algorithms into the resolution-based MUS
extractor HaifaMUC. We show in Sect. III that, as a result,
HaifaMUC now outperforms the leading MUS extractors
MUSer2 and Minisatabb [18]. Minisatabb improves
MUSer2 considerably based on the idea of replacing blocks
of assumptions with new variables [18].

II. THE ALGORITHMS

A. MUS-Biased Search

We will now describe how we adapted optimizations A-
D of the GMUS-oriented techniques proposed in [3] to plain
MUS extraction (we also tried adapting optimizations E-G [3],
but their impact on plain MUS extraction was negligible). We
denote the set of necessary input clauses by M . We call an
input clause c interesting if it belongs to S\M (i.e., c can still
serve as a candidate). A learned clause is marked as interesting
if it is derived using at least one interesting clause; otherwise
it is marked as necessary. If an interesting learned clause
participates in the proof, then the core includes its interesting
roots; this is undesirable since we are trying to minimize the
core. Most of our techniques are therefore targeted at biasing
the solver towards learning necessary rather than interesting
clauses. This is the reason that we call them, jointly, MUS-
biased search. An exception is the first optimization below,
which is focused on reducing the amount of memory used to
store the proof.
A. Maintain partial resolution proofs. There is no need to

store in the proof any clauses identified as necessary,
since the algorithm does not need to work with these
clauses explicitly anymore. Hence, we discard from the
proof all the clauses that emanate exclusively from M .

B. Perform selective clause minimization. Clause minimiza-
tion [19] is a technique for shrinking conflict clauses.
Specifically, if a conflict clause c contains two literals
l1, l2 such that l1 → l2 because of the rest of the formula,
then l2 can be removed from c. The disadvantage of
this technique in our context is that it may reclassify
c from ‘necessary’ to ‘interesting’, if the implication
l1 → l2 depends on an interesting clause. This in turn
may increase the size of the core later on as explained
above. Hence our optimization does not apply clause
minimization if it leads to such a reclassification. In other
words we prefer a longer conflict clause if this enables
us to maintain its classification as a necessary clause.

C. Postpone propagation over interesting clauses. Perform
Boolean Constraint Propagation (BCP) on necessary
clauses first, with the aim of learning a necessary clause
when possible.

D. Reclassify interesting clauses. When an interesting clause
c becomes necessary, look for any clauses in the resolu-
tion derivation that were derived from c that also become
necessary (that is, were derived solely from necessary
clauses) and reclassify them.

Note that while these optimizations improve GMUS ex-
traction even during the approximation stage owing to the
availability of remainder clauses, their impact on plain MUS
extraction begins only during the minimization stage, when
there are enough necessary clauses (which, like remainder
clauses, must be in the proof). Indeed we demonstrate in
Sect. III that optimization B is not cost-effective before there is
a significant number of necessary clauses, which is the reason
that we invoke it starting from the 2nd satisfiable iteration.

B. Eager Model Rotation

Model rotation can improve deletion-based MUS extraction
by searching for additional clauses that should be marked
as necessary without an additional SAT call. Suppose, for
example, that for an unsatisfiable set S, S \ c is satisfiable.
Consequently c is marked as necessary. Let h be the satisfying
assignment. Note that h(c) = false, because otherwise h(S)
would be true, which contradicts S’s unsatisfiability. Now,
suppose that an assignment h′ that is different than h in only
one literal l ∈ c satisfies all the clauses in S other than exactly
one clause c′ ∈ S. Hence h′(S \ c′) = true, which means that
like c, c′ must also be in any unsatisfiable subset of S, and can
therefore be marked as necessary as well. Rotation flips the
values of each of c’s literals one at a time in search of such
clauses. When one is found, rotation is called recursively with
c′. This algorithm is summarized in Fig. 1(a). We observe
that rotation, proposed in the context of assumption-based
MUS extraction, can be integrated into our resolution-based
algorithm without any changes.

Fig 1(b) shows ERMR (Eager Recursive Model Rotation) –
an improvement to rotation that weakens rotation’s terminating
condition. The reader may benefit from first reading the main
algorithm in Fig. 2(a), which calls ERMR. The only difference
between ERMR and RMR is that ERMR may call rotation with
a clause that is already in M , the reason being that it can lead
to additional marked clauses owing to the fact that the call is
with a different assignment. Clearly there is a tradeoff between
the time saved by detecting more clauses for M and the time
dedicated to the search. For example, one may run RMR with
more than one satisfying assignment as a starting point, but
this will require additional SAT calls to find extra satisfying
assignments. ERMR refrains from additional SAT calls. Rather
it changes the stopping criterion: instead of stopping when
c ∈ M (line 4 in Fig. 1(a)), it stops when c ∈ K, where K
holds the clauses that were discovered in the current call from
MUS. There are other variations on weakening the terminating
condition of rotation in the literature [5], [6]. We leave to
future study a detailed comparison of our algorithm to these
works.

C. Path Strengthening

Path strengthening relies on the following property, which
we call cut falsifiability (observed already in [12], [20]). Let
S be an unsatisfiable formula, π its resolution proof, and c
a candidate clause. Let ρc be the subgraph of π containing
all the clauses that appear on at least one path from c to the

181198

empty clause � (including c and �). Then, any model h to
S \{c} must falsify at least one clause in any vertex cut of ρc
(since otherwise a satisfiable vertex cut in π would exist). An
immediate corollary is that all the clauses in some path from
c to � must be falsified by any model h to S \ {c}.

We use this property as follows. Let P =
[c0 = c, c1, . . . , cm] be a path in the resolution proof starting
from a candidate clause c. P is the longest unique prefix if it
is the longest path starting at c, such that each ci ∈ P has
only one child (that is, c participates in the derivation of one
clause only). Path strengthening is based on the following
property, induced by cut falsifiability: all the clauses of P
must be falsified in any model h to S \ {c}. Fig. 2(b) shows
a variant of the main algorithm in which path strengthening
has been applied: each invocation of the SAT solver is
carried out under the assumptions ¬P = {¬c0, . . . ,¬cm}.
Before each iteration our algorithm attempts to increase P
length by removing from the resolution proof clauses that
are not backward reachable from the empty clause. Note
that whenever P contains clauses which do not subsume
c, path strengthening will provide more assumptions to the
solver than redundancy removal; hence path strengthening is
expected to be more efficient than redundancy removal.

Cut falsifiability-based techniques are not immediately com-
pliant with clause set refinement, since clause set refine-
ment requires solving without assumptions. MUSer2 solves
this problem for redundancy removal by applying clause set
refinement only when the assumptions are not used in the
proof; otherwise it skips clause set refinement. Our path
strengthening algorithm applies clause set refinement when
either the assumptions are not used in the proof or whenever
the N latest iterations applied path strengthening and the result
was unsatisfiable, N being a user-given threshold.

III. EXPERIMENTAL RESULTS

We checked the impact of our algorithms when applied to
the 295 instances used for the MUS track of the SAT 2011
competition. For the experiments we used machines with 32Gb
of memory running Intelr Xeonr processors with 3Ghz CPU
frequency. The time-out was set to 1800 sec. The implemen-
tation was done in HaifaMUC. We refer to a configuration
of HaifaMUC that implements the deletion-based algorithm
with incremental SAT and clause set refinement as Base. We
compare our tool to the latest version of MUSer2 [7] and
Minisatabb [18]. Extended experimental data is available
from the second author’s home page.

Fig. 3 summarizes the main results. Several observations
are in order: 1) rotation is very useful; 2) eager rotation is
effective; 3) optimizations A and D are useful, while optimiza-
tion B is beneficial only if delayed until the second satisfiable
iteration (2 being the optimal value, based on experiments);
4) path strengthening (with N=20, 20 being the optimal value
experimentally) is more beneficial than redundancy removal,
and finally 5) HaifaMUC, enhanced by all our algorithms, is
2.18x faster than MUSer2 and solves 13 more instances, and is
48% faster than Minisatabb and solves 4 more instances.

HaifaMUC is faster than Minisatabb on 196 instances,
while Minisatabb is faster than HaifaMUC on 15 in-
stances. Fig. 5 shows a cactus plot comparing Base, MUSer2,
Minisatabb and the new best configuration of HaifaMUC,
while Fig. 4 compares HaifaMUC to Minisatabb.

IV. CONCLUSION

We proposed a number of algorithms for speeding up
MUS extraction. First, we adapted GMUS-oriented MUS-
biased search algorithms to plain MUS extraction. Second, we
integrated model rotation into resolution-based MUS extrac-
tion. Third, we introduced an enhancement to rotation, called
eager rotation. Finally, we introduced a new enhancement,
path strengthening, to resolution-based MUS extraction. We
implemented the algorithms in the resolution-based MUS
extractor HaifaMUC, which, as a result, outperformed the
leading MUS extractors MUSer2 and Minisatabb.

V. ACKNOWLEDGMENTS

The authors would like to thank Daher Kaiss for supporting
this work and Paul Inbar for editing the paper.

REFERENCES

[1] Silva, J.P.M.: Minimal unsatisfiability: Models, algorithms and applica-
tions (invited paper). In: ISMVL’10. (2010) 9–14

[2] Nadel, A.: Boosting minimal unsatisfiable core extraction. In: FM-
CAD’10. (2010) 221–229

[3] Ryvchin, V., Strichman, O.: Faster extraction of high-level minimal
unsatisfiable cores. In: SAT’11. (2011) 174–187

[4] Silva, J.P.M., Lynce, I.: On improving MUS extraction algorithms. In:
SAT’11. (2011) 159–173

[5] Wieringa, S.: Understanding, improving and parallelizing MUS finding
using model rotation. In: CP’12. (2012) 672–687

[6] Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extrac-
tion. AI Commun. 25(2) (2012) 97–116

[7] Belov, A., Marques-Silva, J.: MUSer2: An efficient MUS extractor.
JSAT 8(1/2) (2012) 123–128

[8] Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatis-
fiable Boolean formula. In: Preliminary Proceedings of SAT’03. (2003)

[9] Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for
CNF formulas. In: DATE’03. (2003) 886–891

[10] Strichman, O.: Pruning techniques for the SAT-based bounded model
checking problem. In: CHARME’01. (2001) 58–70

[11] Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving.
Electr. Notes Theor. Comput. Sci. 89(4) (2003)

[12] Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal
unsatisfiable core extraction. In: SAT’06. (2006) 36–41

[13] Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint
sets in linear programs. INFORMS Journal on Computing 3(2) (1991)
157–168

[14] Bakker, R.R., Dikker, F., Tempelman, F., Wognum, P.M.: Diagnosing
and solving over-determined constraint satisfaction problems. In: IJ-
CAI’93. (1993) 276–281

[15] Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal
unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1) (2008)
1–33

[16] Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recur-
sive model rotation. In: FMCAD’11. (2011) 37–40

[17] van Maaren, H., Wieringa, S.: Finding guaranteed MUSes fast. In:
SAT’08. (2008) 291–304

[18] Lagniez, J.M., Biere, A.: Factoring out assumptions to speed up MUS
extraction. In: SAT’13. (2013) 276–292

[19] Sörensson, N., Biere, A.: Minimizing learned clauses. In: SAT’09.
(2009) 237–243

[20] Nadel, A.: Understanding and Improving a Modern SAT Solver. PhD
thesis, Tel Aviv University, Tel Aviv, Israel (August 2009)

182 199

1: function RMR(S,M, c, h) . recursive model rotation
2: for all x ∈ V ar(S) do
3: h′ = h[x← ¬x]; . swap assignment of x
4: if UnsatSet(S, h′) = {c′} and c′ 6∈ M then

5: M =M ∪ {c′};
6: RMR (S,M, c′, h′);

1: function ERMR(S,M,K, c, h) . Initially K = {c}
2: for all x ∈ V ar(S) do
3: h′ = h[x← ¬x];
4: if UnsatSet(S, h′) = {c′} and c′ 6∈ K then
5: K = K ∪ {c′};
6: if c′ 6∈M then M =M ∪ {c′};
7: ERMR (S,M,K, c′, h′);

(a) (b)

Fig. 1. (a) The recursive model rotation of [16], where UnsatSet(S, h′) is the subset of S’s clauses that are unsatisfied by the assignment h′, and (b) our
modified version. K is a set of clauses that is initialized to c before calling ERMR. K ⊆ M is an invariant, and hence ERMR is called at least as many
times as RMR in (a).

1: function MUS(unsatisfiable formula S)
2: M = ∅;
3: while true do
4: choose c ∈ S \M . If there is none, break;
5: if SAT(S \ {c}) then
6: K = {c};
7: M = ERMR (S, c,M,K, h)
8: else
9: S = core;

1: function MUS(unsatisfiable formula S)
2: M = ∅;
3: while true do
4: choose c ∈ S \M . If there is none, break;
5: let P be the longest unique prefix
6: discard clauses not backward reachable from �
7: if SAT(S \ {c}, {¬ci | ci ∈ P}) then
8: K = {c}; M = ERMR (S, c,M,K, h)
9: else

10: if ¬P not used in proof then S = core;
11: else
12: S = S \ {c}
13: if condition then . Heuristic. See text
14: SAT (S); . guaranteed unsat
15: S = core;

(a) (b)

Fig. 2. (a) Deletion-based MUS extraction enhanced by eager rotation and clause set refinement, where h is the satisfying assignment, and core is the
unsatisfiable core (b) an improvement based on path strengthening. In line 7 the literals defined by {¬ci | ci ∈ P} are assumptions.

Base rot erot erot AD erot ABD erot AB2D erot AB2CD erot AB2CD rr erot AB2CD ps20 MUSer2 Minisatabb
Time 93931 48018 44335 36295 37798 32968 32918 30800 27263 59502 40485
Unsolved 30 12 10 8 13 8 8 6 4 17 8

Fig. 3. Total run-time in sec. and number of unsolved instances for various solvers, when applied to the 295 instances from the 2011 MUS competition,
excluding 12 instances which were not solved by any of the solvers (the time-out value of 1800 sec. was added to the run-time when a memory-out occured).
Base is defined in Sect. III, rot = Base+rotation, erot = Base+eager rotation. A, B, C, and D correspond to the optimizations defined in Sect. II-A. ‘2’ in
AB2CD means that the optimization was invoked after the 2nd satisfiable result. ‘rr’ refers to redundancy removal combined with clause set refinement using
MUSer2’s scheme, described in Sect. II-C. ‘ps20’ means that path strengthening with N = 20 was applied as described in Sect. II-C.

Fig. 4. Direct comparison of the new best configuration of HaifaMUC
erot AB2CD ps20 (X-Axis) and Minisatabb (Y-Axis).

Fig. 5. Comparison of Base, MUSer2, Minisatabb, and the new
best configuration of HaifaMUC erot AB2CD ps20. The graph shows
the number of solved instances (X-Axis) per time-out in seconds (Y-Axis)
for each solver.

183200

Parameterized Model Checking of Fault-tolerant
Distributed Algorithms by Abstraction

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, Josef Widder
Vienna University of Technology (TU Wien)

Abstract—We introduce an automated parameterized verifica-
tion method for fault-tolerant distributed algorithms (FTDA).
FTDAs are parameterized by both the number of processes and
the assumed maximum number of faults. At the center of our
technique is a parametric interval abstraction (PIA) where the
interval boundaries are arithmetic expressions over parameters.
Using PIA for both data abstraction and a new form of counter
abstraction, we reduce the parameterized problem to finite-state
model checking. We demonstrate the practical feasibility of our
method by verifying safety and liveness of several fault-tolerant
broadcasting algorithms, and finding counter examples in the case
where there are more faults than the FTDA was designed for.

I. INTRODUCTION

Fault-tolerant distributed algorithms (FTDA) constitute a
core topic of distributed algorithm theory, with a rich body
of results [27], [2]. Yet, they have not been systematically
studied from a model checking point of view. For FTDAs
one typically considers systems of n processes out of which
at most t may be faulty. In this paper we consider various
faults such as crash faults, omissions, and Byzantine faults. As
FTDAs are parameterized in n and t, we require parameterized
verification to establish the correctness of an FTDA. The
pragmatic approach to verify a system of fixed size is not
practical, as only very small instances can be verified due
to state space explosion [24], [36], [34]. While in classic
parameterized model checking the number of processes n is
the sole parameter, for FTDAs, t is also a parameter, and is
essentially a fraction of n, expressed by a resilience condition,
e.g., n > 3t. Thus, one has to reason about all runs with n−f
non-faulty and f faulty processes, where f ≤ t and n > 3t.

From an operational viewpoint, FTDAs typically consist of
multiple processes that communicate by passing messages. As
senders can be faulty, a receiver cannot wait for a message
from a specific sender process. Thus, most FTDAs use counters
to reason about the environment; e.g., if a process receives a
certain message from more than t distinct senders, then one
of the senders must be non-faulty. A large class of FTDAs
expresses these counting arguments using threshold guards:

if received <m> from t+1 distinct processes
then action(m);

Threshold guards generalize existential and universal guards
[16], i.e., rules that wait for messages from at least one or

Supported by the Austrian National Research Network S11403 and S11405
(RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and
Technology Fund (WWTF) grants PROSEED, ICT12-059, and VRG11-005.
Details that had to be omitted from this paper can be found in [23].

all processes, respectively. As can be seen from the above
example, and as discussed in [24], existential and universal
guards are not sufficient to capture advanced FTDAs: Thresh-
old guards are a basic building block that has been used in
various environments (various degrees of synchrony, fault as-
sumptions, etc.) and FTDAs, such as consensus [15], software
and hardware clock synchronization [32], [19], approximate
agreement [14], and k-set agreement [13]. The ability to
efficiently reason about these guards is thus a keystone for
automated parameterized verification of such algorithms.

This paper considers parameterized verification of FTDAs
with threshold guards and resilience conditions. We introduce
a framework based on a new form of control flow automata
that captures the semantics of threshold-guarded FTDAs, and
propose a novel two-step abstraction technique. It is based
on parametric interval abstraction (PIA), a generalization of
interval abstraction where the interval borders are expressions
over parameters rather than constants. Using the PIA domain,
we obtain a finite-state model checking problem in two steps:
Step 1: PIA data abstraction. We evaluate the threshold
guards over the parametric intervals. Thus, we abstract away
unbounded variables and parameters from the process code.
We obtain a parameterized system where the replicated pro-
cesses are finite-state and independent of the parameters.
Step 2: PIA counter abstraction. We use a new form of
counter abstraction where the process counters are abstracted
to PIA. As Step 1 guarantees that we need only finitely many
counters, PIA counter abstraction yields a finite-state system.

To evaluate the precision of our abstractions, we im-
plemented our abstraction technique in a tool chain, and
conducted experiments on several FTDAs. Our experiments
showed the need for abstraction refinement to deal with
spurious counterexamples [7] that are due to parameterized
abstraction and fairness. This required novel refinement tech-
niques, which we also discuss in this paper. In addition to
refinement of PIA counter abstraction, which is automated in
a loop using a model checker and an SMT solver, we are
also exploiting simple user-provided invariant candidates (as
in [28], [35]) to refine the abstraction.

We verify several FTDAs that have been derived from
the well-known distributed broadcast algorithm by Srikanth
and Toueg [32], [33], and a folklore reliable broadcasting
algorithm [2, Sect. 8.2.5.1]. Each of these FTDAs tolerates
different faults (e.g., crash, omission, Byzantine), and uses
different threshold guards. To the best of our knowledge, we
are the first to achieve parameterized automated verification of
Byzantine FTDAs.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 184201ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

qI

q1

q2

q3

q4

sv = V1

sv 6= V1∧
nsnt0 = nsnt∧
sv0 = sv

nsnt0 = nsnt + 1

sv0 = SE

q5

q6

q7

q8

q9
qF

rcvd ≤ rcvd′ ∧ rcvd′ ≤ nsnt + f

(t+ 1 > rcvd′)∧
sv′ = sv0 ∧
nsnt′ = nsnt0

t+ 1 ≤ rcvd′

sv0 = V0

sv0 6= V0∧
nsnt′ = nsnt0

nsnt′ = nsnt0 + 1

n− t > rcvd′
n− t ≤ rcvd′

sv′ = SE

sv′ = AC

Fig. 1. CFA of our case study for
Byzantine faults.

qI

q1

q2q3

q4

q5

qF

rcvd ≤ rcvd′ ∧
rcvd′ ≤ nsnt + nsntf

sv = V1sv = V0

sv = AC

sv = CR

1 > rcvd′

1 ≤ rcvd′

sv′ = CR

nsntf ′ =
nsntf + 1

sv′ = AC

nsnt′ =
nsnt + 1

Fig. 2. CFA of FTDA from [18]
(if x′ is not assigned, then x′ = x).

II. OUR APPROACH AT A GLANCE

To give an intuition of our method, we start with the control
flow automaton (CFA) given in Figure 1 that formalizes our
case study FTDA. The CFA uses the shared integer variable
nsnt (capturing the number of messages sent by non-faulty
processes), the local integer variable rcvd (storing the number
of messages received by the process so far), and the local status
variable sv, which ranges over a finite domain (capturing the
local progress w.r.t. the FTDA). In [24] we show that this
formalization captures the logic of our case study FTDA.

We use the CFA to represent one atomic step of the FTDA:
Each edge is labeled with a guard. A path from qI to qF
induces a conjunction of all the guards along it, and imposes
constraints on the variables before the step (e.g., sv), after
the step (sv′), and temporary variables (sv0). If one fixes the
variables before the step, different valuations (of the primed
variables) that satisfy the constraints capture non-determinism.

A system consists of n − f processes that concurrently
execute the code corresponding to the CFA, and communicate
via nsnt. Thus, there are two sources of unboundedness: first,
the integer variables, and second, the parametric number of
processes. We deal with these two issues in two steps.
Step 1: PIA data abstraction. We observe that the CFA
contains several transitions which are labeled with threshold
guards that refer to (unbounded) variables and parameters. For
instance, the CFA in Figure 1 contains the following transition,
which is labeled with a threshold guard:

q4 q5t+ 1 ≤ rcvd′

The CFA also contains a guard n − t ≤ rcvd′. Actually, the
correctness of the FTDA is based on the fact that the values

of the thresholds, e.g., t+1 and n− t, are sufficiently far apart
from each other under the resilience condition n > 3t∧f ≤ t;
in particular, (n − t) − f ≥ t + 1. These properties are
also used in the manual proofs [33]. We observe that such
FTDAs are designed by carefully choosing the thresholds and
the resilience condition. Consequently, our abstraction must
be sufficiently precise to preserve the relationship between
thresholds and the resilience condition.

The second important observation is that it is not necessary
to keep track of the precise value of variables that are compared
against thresholds, e.g., rcvd′. Rather, in our case study, it is
sufficient to know whether rcvd′ lies in the interval [0, t+ 1[,
or [t+ 1, n− t[, or [n− t,∞[, in order to determine which of
the threshold guards of the CFA are satisfied. Our parametric
interval abstraction PIA exploits this idea. In addition, in
Step 2 we will see that we also have to distinguish 0 from
other values. Thus, PIA consists of mapping integers to a finite
domain of four intervals I0 = [0, 1[and I1 = [1, t+ 1[and
I2 = [t+ 1, n− t[and I3 = [n− t;∞[.

Then, we replace the guards that refer to unbounded vari-
ables and parameters by their existential abstraction. For
instance, the above transition with the guard “t + 1 ≤ rcvd′”
means that rcvd′ lies in the intervals [t+1, n−t[or [n−t,∞[.
As these correspond to the abstract intervals I2 and I3,
respectively, we can replace the guard by:

q4 q5rcvd′ = I2 ∨ rcvd′ = I3

The abstraction of the guard “nsnt0 = nsnt + 1” can be
expressed similarly, as later discussed in Figure 4. The ex-
pression “rcvd′ ≤ nsnt + f”, which is also used in a guard, is
more complicated as it involves two variables and a parameter.
Still, the basic abstraction idea is the same. The corresponding
abstract expression has the form (rcvd′ = I0 ∧ nsnt =
I0)∨ (rcvd′ = I0∧nsnt = I1)∨· · ·∨ (rcvd′ = I3∧nsnt = I3).

These abstract guards are Boolean expressions over equal-
ities between variables and abstract values. Therefore, it is
sufficient to interpret the variables nsnt and rcvd over the finite
domain. Hence, all variables range over finite domains, and we
arrive at finite state processes in this way. Our system, however,
is still parameterized, namely, in the number of processes.
Step 2: PIA counter abstraction. We reduce this system to
a finite state system using the following two ideas. First, we
change to a counter-based representation, i.e., the global state
is represented by the (abstract) shared variable nsnt, and by
one counter for each of the local states. A counter stores how
many processes are in the corresponding local state. Second, as
processes interact only via the nsnt variable, precisely counting
processes in certain states may not be necessary; as nsnt
already ranges over the abstract domain, it is natural to count
processes in terms of the same abstract domain.

The local state of a process is determined by the values of sv
and rcvd. Thus, we denote by κ[x, y] = I that the number
of processes with sv = x and rcvd = y lies in the abstract
interval I . Then, in Figure 3, the state s0 represents the initial
states with t+ 1 to n− t− 1 processes having sv = V0 and 1
to t processes having sv = V1. (We omit local states that have
the counter value I0 to facilitate reading.)

185202

κ[V0, I0] = I2
κ[V1, I0] = I1

nsnt = I0

s0

κ[V0, I0] = I2
κ[V0, I1] = I1
κ[V1, I0] = I1
nsnt = I0

s1

κ[V0, I0] = I1
κ[V0, I1] = I1
κ[V1, I0] = I1
nsnt = I0

s2

κ[V0, I1] = I1
κ[V1, I0] = I1
nsnt = I0

s6

κ[V0, I0] = I2
κ[V0, I1] = I2
κ[V1, I0] = I1
nsnt = I0

s3

κ[V0, I0] = I1
κ[V0, I1] = I2
κ[V1, I0] = I1
nsnt = I0

s4

.

.

Fig. 3. A small part of the transition system obtained by counter abstraction.
As shown by our experimental data in Table I of Section VII, the reachable
state space is substantially larger.

Figure 3 gives a small part of the transition system obtained
from the counter abstraction starting from initial state s0.
Each transition corresponds to one process taking a step in
the concrete system. For instance, in the transition (s0, s2)
a process with local state [V0, I0] changes its state to [V0, I1].
Therefore, the counter κ[V0, I0] is decremented and the counter
κ[V0, I1] is incremented. However, as we interpret counters
over the abstract domain, the operations of incrementing and
decrementing a counter are actually non-deterministic. Conse-
quently, the transition (s0, s1) captures the same concrete local
step as (s0, s2). In (s0, s1), the non-deterministic decrement
of the abstract counter κ[V0, I0] did not change its value.

Typically, the specifications of FTDAs refer to global states
where “there is a process in a given local state” or “all
processes are in a given local state.” To express this via
counters, we have to check whether counter values are I0.
Abstraction refinement. Our abstraction steps result in a
system which is an over-approximation of all systems with
fixed parameters. For instance, the non-determinism in the
counters may “increase” or “decrease” the number of processes
in a system, although in all concrete system the number
of processes is constant: Consider the transition (s2, s6) in
Figure 3, and let x, y, z be the non-negative integers that
are in s2 abstracted to κ[V0, I0], κ[V0, I1], and κ[V1, I0],
respectively. Similarly y′ and z′ are abstracted to κ[V0, I1]
and κ[V1, I0] in s6. If the following inequalities do not have
a solution under the resilience condition (n > 3t, t ≥ f), then
there is no concrete system with a transition between two states
that are abstracted to s2 and s6, respectively.

1 ≤ x < t+ 1, 1 ≤ y < t+ 1, 1 ≤ z < t+ 1,

1 ≤ y′ < t+ 1, 1 ≤ z′ < t+ 1,

x+ y + z = y′ + z′ = n− f.

We use an SMT solver for this, and examine each transition
of a counterexample returned by a model checker. If a transi-
tion is spurious, then we remove it from the abstract system.
Related abstractions. Interval abstraction [10] is a natural
solution to the problem of unboundedness of local variables.
However, if we fixed the interval bounds to numeric values,
then they would not be aligned to the thresholds, and the

abstraction would not be sufficiently precise to do parametric
verification. At the same time, we do not have to deal with
symbolic ranges over variables in the sense of [30], because
for FTDAs the interval bounds are constant in each run.

Further, we want to produce a single process skeleton that
is independent of parameters and captures the behavior of
all process instances. This can be done by using ideas from
existential abstraction [9], [12], [25] and sound abstraction of
fairness constraints [25]. We combine these two ideas to arrive
at PIA data abstraction.

The PIA counter abstraction is similar to [29], in that
counters range over an abstract domain, and increment and
decrement is done using existential abstraction. The domain
in [29] consists of three values representing 0, 1, or more.
This domain is sufficient for mutual-exclusion-like problems:
It allows to distinguish good from bad states, while it is not
possible (and also not necessary) to distinguish two bad states:
A bad state is one where at least two processes are in the
critical section, which is precisely abstracted in the three-
valued domain. However, two bad states where, e.g., 2 and 3
processes are in the critical section, respectively, cannot be
distinguished. Verification of threshold-based FTDAs requires
more involved counting; e.g., we have to capture whether at
least n− t processes or at most t processes incremented nsnt.
Therefore, we use counters from the PIA domain.

III. SYSTEM MODEL WITH MULTIPLE PARAMETERS

In this section we develop all notions that are required to
precisely state the parameterized model checking problem for
multiple parameters. As running example, we use the parame-
ters mentioned above, namely, the number of processes n, the
upper bound on the number of faults t, and the actual number
of faults f . We start to define parameterized processes (that
access shared variables) in a way that allows us to modularly
compose them into a parameterized system instance.

We apply this modeling to verify FTDAs as follows: as
input we take a process description that uses the parameters n
and t in the code. From this we construct a system instance
parameterized with n, t, and f , which then describes all runs of
an algorithm in which exactly f faults occur. The verification
problem for a distributed algorithm in the concrete case with
fixed n and t is the composition of model checking problems
that differ in the actual value of f ≤ t. This modeling also
allows us to set f = t+ 1, which models runs in which more
faults occur than expected, and search for counterexamples.
For the parameterized case, we introduce a resilience condition
on these parameters, and require to verify the algorithm for all
values of parameters that satisfy the resilience condition.

We define the parameters, local variables of the processes,
and shared variables referring to a single domain D that
is totally ordered and has the operations of addition and
subtraction. In this paper we assume that D is the set of
nonnegative integers N0.

We start with some notation. Let Y be a finite set of
variables ranging over D. We denote by D|Y |, the set of all
|Y |-tuples of variable values. Given s ∈ D|Y |, we use the
expression s.y, to refer to the value of a variable y ∈ Y in

186 203

vector s. For two vectors s and s′, by s =X s′ we denote the
fact that for all x ∈ X , s.x = s′.x holds.
Process. The set of variables V is {sv} ∪ Λ ∪ Γ ∪ Π: The
variable sv is the status variable that ranges over a finite
set SV of status values. The finite set Λ contains variables that
range over the domain D. The variable sv and the variables
from Λ are local variables. The finite set Γ contains the
shared variables that range over D. The finite set Π is a set
of parameter variables that range over D, and the resilience
condition RC is a predicate over D|Π|. In our example,
Π = {n, t, f}, and the resilience condition RC(n, t, f) is
n > 3t ∧ f ≤ t ∧ t > 0. Then, we denote the set of
admissible parameters by PRC = {p ∈ D|Π| | RC(p)}.

A process operates on states from the set S = SV ×D|Λ|×
D|Γ| ×D|Π|. Each process starts its computation in an initial
state from a set S0 ⊆ S. A relation R ⊆ S × S defines
transitions from one state to another, with the restriction
that the values of parameters remain unchanged, i.e., for all
(s, t) ∈ R, s =Π t. Then, a parameterized process skeleton is
a tuple Sk = (S, S0, R).

We get a process instance by fixing the parameter values
p ∈ D|Π|: one can restrict the set of process states to S|p =
{s ∈ S | s =Π p} as well as the set of transitions to R|p =
R∩(S|p×S|p). Then, a process instance is a process skeleton
Sk|p = (S|p, S0|p, R|p) where p is constant.
System Instance. For fixed admissible parameters p, a dis-
tributed system is modeled as an asynchronous parallel com-
position of identical processes Sk|p. The number of processes
depends on the parameters. To formalize this, we define the
size of a system (the number of processes) using a function
N : PRC → N0, for instance, when modeling only correct
processes explicitly, we use n− f for N(n, t, f).

Given p ∈ PRC , and a process skeleton Sk = (S, S0, R),
a system instance is defined as an asynchronous parallel
composition of N(p) process instances, indexed by i ∈
{1, . . . , N(p)}, with standard interleaving semantics. Let AP
be a set of atomic propositions. A system instance Inst(p,Sk)
is a Kripke structure (SI , S

0
I , RI ,AP, λI) where:

• SI = {(σ[1], . . . , σ[N(p)]) ∈ (S|p)N(p) | ∀i, j ∈
{1, . . . , N(p)}, σ[i] =Γ∪Π σ[j]} is the set of (global)
states. Informally, a global state σ is a Cartesian product
of the state σ[i] of each process i, with identical values
of parameters and shared variables at each process.

• S0
I = (S0)N(p) ∩ SI is the set of initial (global) states,

where (S0)N(p) is the Cartesian product of initial states
of individual processes.

• A transition (σ, σ′) from a global state σ ∈ SI to a
global state σ′ ∈ SI belongs to RI iff there is an index
i, 1 ≤ i ≤ N(p), such that:

(MOVE) The i-th process moves: (σ[i], σ′[i]) ∈ R|p.
(FRAME)The values of the local variables of the other

processes are preserved: for every process in-
dex j 6= i, 1 ≤ j ≤ N(p), it holds that
σ[j] ={sv}∪Λ σ′[j].

• λI : SI → 2AP is a state labeling function.
Remark 1: The set of global states SI and the transition

relation RI are preserved under every transposition i ↔ j of

process indices i and j in {1, . . . , N(p)}. That is, every system
Inst(p,Sk) is fully symmetric by construction.
Atomic Propositions. We define the set of atomic propo-
sitions AP to be the disjoint union of APSV and APD:
The set APSV contains propositions that capture comparison
against a given status value Z ∈ SV , i.e., [∀i. svi = Z] and
[∃i. svi = Z]. Further, the set of atomic propositions APD
captures comparison of variables x, y, and a linear combina-
tion c of parameters from Π; APD consists of propositions of
the form [∃i. xi + c < yi] and [∀i. xi + c ≥ yi].

The labeling function λI of a system instance Inst(p,Sk)
maps a state σ to expressions p from AP as follows (the
existential case is defined accordingly using disjunctions):

[∀i. svi = Z] ∈ λI(σ) iff
N(p)∧
i=1

(σ[i].sv = Z)

[∀i. xi + c ≥ yi] ∈ λI(σ) iff
N(p)∧
i=1

(σ[i].x+ c(p) ≥ σ[i].y)

Temporal Logic. We specify properties using temporal logic
LTL -X over APSV . We use the standard definitions of paths and
LTL -X semantics [6]. A formula of LTL -X is defined inductively
as: (i) a literal p or ¬p, where p ∈ APSV , or (ii) Fϕ, Gϕ,
ϕUψ, ϕ∨ψ, and ϕ∧ψ, where ϕ and ψ are LTL -X formulas.
Fairness. We are interested in verifying safety and liveness
properties. The latter can be usually proven only in the
presence of fairness constraints. As in [25], [29], we consider
verification of safety and liveness in systems with justice
fairness constraints. We define fair paths of a system instance
Inst(p,Sk) using a set of justice constraints J ⊆ APD. A
path π of a system Inst(p,Sk) is J-fair iff for every p ∈ J
there are infinitely many states σ in π with p ∈ λI(σ). By
Inst(p,Sk) |=J ϕ we denote that the formula ϕ holds on all
J-fair paths of Inst(p,Sk).

Definition 2: Given a system description containing
• a domain D,
• a parameterized process skeleton Sk = (S, S0, R),
• a resilience condition RC (generating a set of admissible

parameters PRC),
• a system size function N ,
• justice requirements J ,

and an LTL -X formula ϕ, the parameterized model checking
problem (PMCP) is to verify ∀p ∈ PRC . Inst(p,Sk) |=J ϕ.

IV. THRESHOLD-GUARDED FTDAS

In [24], we formalized threshold-guarded FTDAs in
Promela. In order to introduce our abstraction technique, we
propose a language-independent approach that focuses on the
control flow and is based on control flow automata (CFA) [21].

A guarded control flow automaton (CFA) is an edge-labeled
directed acyclic graph A = (Q, qI , qF , E) with a finite set Q
of nodes called locations, an initial location qI ∈ Q, and a final
location qF ∈ Q. A path from qI to qF is used to describe
one step of a distributed algorithm. The edges have the form

187204

E ⊆ Q×guard×Q, where guard is defined as an expression
of one of the following forms where a0, . . . , a|Π| ∈ Z, and
Π = {p1, . . . , p|Π|}:
• if Z ∈ SV , then sv = Z and sv 6= Z are status guards;
• if x is a variable in D and C ∈ {≤, >}, then

a0 +
∑

1≤i≤|Π|

ai · pi C x

is a threshold guard;
• if y, z1, . . . , zk are variables in D for k ≥ 1, and C ∈
{=, 6=, <, ≤, >,≥}, and a0, . . . , a|Π| ∈ Z, then

y C z1 + · · ·+ zk +
(
a0 +

∑
1≤i≤|Π|

ai · pi
)

is a comparison guard;
• a conjunction g1 ∧ g2 of guards g1 and g2 is a guard.
Status guards are used to capture the basic control flow.

Threshold guards capture the core primitive of the FTDAs we
consider. Finally, comparison guards are used to model send
and receive operations. Figure 1 shows an example CFA with
Γ = {nsnt}, Λ = {rcvd}, and Π = {n, t, f}.
Obtaining a Skeleton from a CFA. One step of a process
skeleton is defined by a path from qI to qF in a CFA. Given SV ,
Λ, Γ, Π, RC, and a CFA A, we define the process skeleton
Sk(A) = (S, S0, R) induced by A as follows: The set of
variables used by the CFA is W ⊇ Π ∪ Λ ∪ Γ ∪ {sv} ∪ {x′ |
x ∈ Λ∪Γ∪{sv}}, which may contain also temporary variables.
A variable x corresponds to the value before a step, x′ to the
value after the step, and x0, x1, . . . to intermediate values. A
path p from qI to qF induces a conjuction of all the guards
along it. We call a mapping v from W to the values from the
respective domains a valuation. We write v |= p to denote that
the valuation v satisfies the guards of the path p. We define
the mapping between a CFA A and the transition relation of
a process skeleton Sk(A): If there is a path p and a valuation
v with v |= p, then v defines a single transition (s, t) of a
process skeleton Sk(A), if for each variable x ∈ Λ∪Γ∪{sv} it
holds that s.x = v(x) and t.x = v(x′) and for each parameter
variable z ∈ Π, s.z = t.z = v(z). Finally, the initial states S0

need to be specified. For the type of algorithms we consider
in this paper, all variables of the skeleton that range over D
are initialized to 0, and sv ranging over SV takes an initial
value from a fixed subset of SV . (For other algorithms, or self-
stabilizing systems, one would choose different initializations.)

Remark 3: It might seem restrictive that our guards do not
contain, e.g., increment, assignments, non-deterministic choice
from a range of values. However, all these statements can be
translated in our form using the SSA transformation algorithm
from [11]. For instance, Figure 1 has been obtained from the
Promela case study in [24], which contains the mentioned
statements. Figures 1 and 2 provide two of the algorithms we
have used for our experiments in Section VII.

Definition 4 (PMCP for CFA): We define the Parameter-
ized Model Checking Problem for CFA A by specializing
Definition 2 to the parameterized process skeleton Sk(A).

The problem given in Definition 4 is undecidable even if
the CFA contains only status variables [23].

V. ABSTRACTION SCHEME

The input to our abstraction method is the infinite parame-
terized family F = {Inst(p,Sk(A)) | p ∈ PRC} of Kripke
structures specified via a CFA A. The family F has two
principal sources of unboundedness: unbounded variables in
the process skeleton Sk(A), and the unbounded number of
processes N(p). We deal with these two aspects separately,
using two abstraction steps, namely the PIA data abstraction
and the PIA counter abstraction. In both abstraction steps we
use the parametric interval abstraction PIA.

Given a CFA A, let GA be the set of all linear combi-
nations a0 +

∑
1≤i≤|Π| ai · pi in the left-hand sides of A’s

threshold guards. Every expression ε of GA defines a function
fε : PRC → D. Let T = {0, 1} ∪ {fε | ε ∈ GA} be a finite
threshold set, and µ + 1 its cardinality. For convenience, we
name elements of T as θ0, θ1, . . . , θµ with θ0 corresponding to
the constant function 0, and θ1 corresponding to the constant 1.
E.g., the CFA in Fig. 1 has the threshold set {θ0, θ1, θ2, θ3},
where θ2(n, t, f) = t + 1 and θ3(n, t, f) = n − t. Then, we
define the domain of parametric intervals as:

D̂ = {Ij | 0 ≤ j ≤ µ}

Our abstraction rests on an implicit property of many
FTDAs, namely, that the resilience condition RC induces an or-
der on the thresholds used in the algorithm (e.g., t+1 < n−t).

Definition 5: The finite set T is uniformly ordered if for all
p ∈ PRC , and all θj(p) and θk(p) in T with 0 ≤ j < k ≤ µ,
it holds that θj(p) < θk(p).

Assuming such an order does not limit the application of our
approach: In cases where only a partial order is induced by RC,
one can simply enumerate all finitely many total orders. As
parameters, and thus thresholds, are kept unchanged in a run,
one can verify an algorithm for each threshold order separately,
and then combine the results.

Definition 5 allows us to properly define the parameterized
abstraction function αp : D → D̂ and the parameterized
concretization function γp : D̂ → 2D.

αp(x) =

{
Ij if x ∈ [θj(p), θj+1(p)[for some 0 ≤ j < µ

Iµ otherwise.

γp(Ij) =

{
[θj(p), θj+1(p)[if j < µ

[θµ(p),∞[otherwise.

From θ0(p) = 0 and θ1(p) = 1, it immediately follows
that for all p ∈ PRC , we have αp(0) = I0, αp(1) = I1, and
γp(I0) = {0}. Moreover, from the definitions of α, γ, and
Definition 5 one immediately obtains:

Proposition 6: For all p in PRC , and for all a in D, it holds
that a ∈ γp(αp(a)).

Definition 7: We define comparison between parametric in-
tervals Ik and I` as Ik ≤ I` iff k ≤ `.

The PIA domain has similarities to predicate abstraction
since the interval borders are naturally expressed as predicates,
and computations over PIA are directly reduced to SMT
solvers. However, notions such as the order of Definition 7
are not naturally expressed in terms of predicate abstraction.

188 205

x̂2

x1

x̂1

1 t+ 1 n− t

I0 I1 I2 I3

I0

I1

I2

I3

Φ ≡ x2 = x1 + 1 Φ̂ ≡ x̂1 = I0 ∧ x̂2 = I1

∨ x̂1 = I1 ∧ x̂2 = I1

∨ x̂1 = I1 ∧ x̂2 = I2

∨ x̂1 = I2 ∧ x̂2 = I2

∨ x̂1 = I2 ∧ x̂2 = I3

∨ x̂1 = I3 ∧ x̂2 = I3

Fig. 4. The shaded area approximates the line x2 = x1 + 1 along the
boundaries of our parametric intervals. Each shaded rectangle corresponds to
one conjunctive clause in the formula to the right. Thus, given Φ ≡ x2 = x1+
1, the shaded rectangles correspond to ||Φ||∃, from which we immediately
construct the existential abstraction Φ̂.

A. PIA data abstraction

We now discuss an existential abstraction of a formula Φ that
is either a threshold or a comparison guard (we consider other
guards later). To this end, we introduce notation for sets of vec-
tors satisfying Φ. According to Section IV, formula Φ has two
kinds of free variables: parameter variables from Π and data
variables from Λ∪Γ. Let xp be a vector of parameter variables
(xp1, . . . , x

p
|Π|) and xv be a vector of variables (xv1, . . . , x

v
k)

over Dk. Given a k-dimensional vector d of values from D, by

xp = p,xv = d |= Φ

we denote that Φ is satisfied on concrete values xv1 =
d1, . . . , x

v
k = dk and parameter values p. Then, we define:

||Φ||∃ = {d̂ ∈ D̂k | ∃p ∈ PRC ∃d = (d1, . . . , dk) ∈ Dk.

d̂ = (αp(d1), . . . , αp(dk)) ∧ xp = p,xv = d |= Φ}

Hence, the set ||Φ||∃ contains all vectors of abstract values
that correspond to some concrete values satisfying Φ. Parame-
ters do not appear anymore due to existential quantification. A
PIA existential abstraction of Φ is defined to be a formula Φ̂
over a vector of variables x̂ = (x̂1, . . . , x̂k) over D̂k such that
{d̂ ∈ D̂k | x̂ = d̂ |= Φ̂} ⊇ ||Φ||∃.
Computing PIA abstractions. The central property of our
abstract domain is that it allows to abstract comparisons against
thresholds (i.e., threshold guards) in a precise way. That is, we
can abstract formulas of the form θj(p) ≤ x1 by Ij ≤ x̂1 and
θj(p) > x1 by Ij > x̂1. In fact, this abstraction is precise in
the following sense.

Proposition 8: For all p ∈ PRC and all a ∈ D:
θj(p) ≤ a iff Ij ≤ αp(a), and θj(p) > a iff Ij > αp(a).

For comparison guards we use the general form, well-known
from the literature, from the following proposition.

Proposition 9: If Φ is a formula over variables x1, . . . , xk
over D, then

∨
(d̂1,...,d̂k)∈||Φ||∃ x̂1 = d̂1 ∧ · · · ∧ x̂k = d̂k is a

PIA existential abstraction.
If the domain D̂ is small (as it is in our case), then one

can enumerate all vectors of abstract values in D̂k and check
which belong to our abstraction ||Φ||∃, using an SMT solver.
As example consider the PIA domain {I0, I1, I2, I3} for the

CFA from Fig. 1. Fig. 4 illustrates ||Φ||∃ of x2 = x1 + 1 and
the use of the formula from Proposition 9.
Transforming CFA. We now describe a general method to
abstract guard formulas, and thus construct an abstract process
skeleton. To this end, we denote by αE a mapping from a
concrete formula Φ to some existential abstraction of Φ (not
necessarily constructed as above). By fixing αE , we can define
an abstraction of a guard of a CFA:

abs(g) =

αE(g) if g is a threshold guard
αE(g) if g is a comparison guard
g if g is a status guard
abs(g1) ∧ abs(g2) otherwise, i.e., g is g1 ∧ g2

By abusing the notation, for a CFA A by abs(A) we denote
the CFA that is obtained from A by replacing every guard g
with abs(g). Note that abs(A) contains only guards over sv
and over abstract variables over D̂. For model checking, we
have to reason about the Kripke structures that are built using
the skeletons obtained from CFAs. We denote by Skabs(A),
the process skeleton that is induced by CFA abs(A), and by
Inst(p,Skabs(A)) an instance constructed from Skabs(A).
Soundness. It can be shown that for all p ∈ PRC , and for
all CFA A, Inst(p,Sk(A)) is simulated by Inst(p,Skabs(A)),
with respect to APSV . Moreover, the abstraction of a J-fair
path of Inst(p,Sk(A)) is a J-fair path of Inst(p,Skabs(A)).

B. PIA counter abstraction
In this section, we present a counter abstraction inspired

by [29], which maps a system instance composed of identical
finite state process skeletons to a single finite state system.
We use the PIA domain D̂ along with abstractions αE({x′ =
x+ 1}) and αE({x′ = x− 1}) for the counters.

Let us consider a process skeleton Sk = (S, S0, R), where
S = SV × D̃|Λ| × D̃|Γ| × D̃|Π| that is defined using an
arbitrary finite domain D̃. We present counter abstraction over
the abstract domain D̂ in two stages, where the first stage is
only a change in representation, but not an abstraction.
Stage 1: Vector Addition System with States (VASS). Let
L = {` ∈ SV × D̃|Λ| | ∃s ∈ S. ` ={sv}∪Λ s} be the set
of local states of a process skeleton. As the domain D̃ and
the set of local variables Λ are finite, L is finite. We write
the elements of L as `1, . . . , `|L|. We define the counting
function K : SI × L → D such that K[σ, `] is the number
of processes i whose local state is ` in global state σ ∈ SI ,
i.e., σ[i] ={sv}∪Λ `. Thus, we represent the system state σ as a
tuple (g1, . . . , gk,K[σ, `1], . . . ,K[σ, `|L|]), i.e., by the shared
global state and by the counters for the local states. If a process
moves from local state `i to local state `j , the counters of `i
and `j will decrement and increment, respectively.
Stage 2: Abstraction of VASS. We abstract the counters K
of the VASS representation using the PIA domain to obtain
a finite state Kripke structure C(Sk). To compute C(Sk) =
(SC, S

0
C, RC,AP, λC) we proceed as follows:

A state w ∈ SC is given by values of shared vari-
ables from the set Γ, ranging over D̃|Γ|, and by a vector

189206

(κ[`1], . . . , κ[`|L|]) over the abstract domain D̂ from Sec-
tion V. More concisely, SC = D̂|L| × D̃|Γ|.

Definition 10: The parameterized abstraction mapping h̄cntp

maps a global state σ of the system Inst(p,Sk) to a state w
of the abstraction C(Sk) such that: For all ` ∈ L it holds that
w.κ[`] = αp(K[σ, `]), and w =Γ σ.

From the definition, one can see how to construct the initial
states. Informally, we require (1) that the initial shared states
of C(Sk) correspond to initial shared states of Sk, (2) that
there are actually N(p) processes in the system, and (3) that
initially all processes are in an initial state.

The intuition for the construction of the transition relation
is as follows: Like in VASS, a step that brings a process
from local state `i to `j can be modeled by decrementing the
(non-zero) counter of `i and incrementing the counter of `j
using the existential abstraction αE({κ′[`i] = κ[`i]− 1}) and
αE({κ′[`j] = κ[`j] + 1}).
Soundness. We show that for all p ∈ PRC , and for all
finite state process skeletons Sk, Inst(p,Sk) is simulated by
C(Sk), w.r.t. APSV . Further, the abstraction of a J-fair path of
Inst(p,Sk) is a J-fair path of C(Sk).

Theorem 11 (Soundness of data & counter abstraction):
For all CFA A, and for all formulas ϕ from LTL -X over APSV
and justice constraints J ⊆ APD: if C(Skabs(A)) |=J ϕ, then
for all p ∈ PRC it holds Inst(p,Sk(A)) |=J ϕ.

VI. ABSTRACTION REFINEMENT

The states of the abstract system are determined by variables
over D̂. Proposition 8 shows that we precisely abstract the
relevant properties of our variables, i.e., comparisons to thresh-
olds. Hence, the classic CEGAR approach [7], which consists
of refining the state space, does not appear suitable. However,
the non-determinism due to our existential abstraction leads to
spurious transitions that one can eliminate.

We encountered two sources of spurious transitions: As
discussed in Section II, transitions can “lose processes,” i.e.,
any concretization of the abstract number of processes is less
than the number of processes we started with. This is not
within the assumption of FTDAs, and thus spurious. Second,
in our case study (cf. Figure 1) processes increase the global
variable nsnt by one, when they transfer to a state where the
value of the status variable is in {SE,AC}. Hence, in concrete
system instances, nsnt should always be equal to the number
of processes whose status variable value is in {SE,AC}, while
due to phenomena similar to those discussed above, we can
“lose messages” in the abstract system.

The experiments show that in our case studies neither
losing processes nor losing messages has influence on the
verification of safety specifications. However, these behaviors
pose challenges for liveness as they lead to spurious coun-
terexamples: Message passing FTDAs typically require that a
process receives messages from (nearly) all correct processes,
which is problematic if processes (i.e., potential senders) or
messages are lost.

Besides, in Figure 1 we model message receptions by an
update of the variable rcvd, more precisely, rcvd ≤ rcvd′ ∧
rcvd′ ≤ nsnt + f . One may observe that this alone does not

require that the value of rcvd actually increases. Hence, we
add justice requirements, e.g., J = {[∀i. rcvdi ≥ nsnt]} in our
case study. As observed by [29], counter abstraction may lead
to justice suppression. Given a counter-example in the form
of a lasso, we detect whether its loop contains only unjust
states. If this is the case, similar to an idea from [29], we
refine C(Skabs(A)) by adding a justice requirement, which is
consistent with existing requirements in all concrete instances.

Below, we give a general framework for a sound refinement
of C(Skabs(A)). (In [23], we provide a more detailed discus-
sion on the practical refinement techniques that we use in our
experiments.) To simplify presentation, we define a monster
system as a (possibly infinite) Kripke structure Sysω =
(Sω, S

0
ω, Rω,AP, λω), whose state space and transition relation

are disjoint unions of state spaces and transition relations of
system instances Inst(p,Sk(A)) = (Sp, S

0
p, Rp,AP, λp) over

all admissible parameters:

Sω =
⋃

p∈PRC

Sp, S0
ω =

⋃
p∈PRC

S0
p, Rω =

⋃
p∈PRC

Rp

λω : Sω → 2AP and ∀p ∈ PRC ,∀s ∈ Sp. λω(s) = λp(s)

Let h : Sω → SC be an abstraction mapping, e.g., a
combination of the abstraction mappings from Section V.

Definition 12: A sequence T = {σi}i≥1 is a concretization
of path T̂ = {wi}i≥1 from C(Skabs(A)) if and only if σ1 ∈ S0

ω
and for all i ≥ 1 it holds h(σi) = wi.

Definition 13: A path T̂ of C(Skabs(A)) is a spurious path
iff every concretization T of T̂ is not a path in Sysω .

A prerequisite to abstraction refinement is to check whether
a counter-example provided by the model checker is spurious.
While for finite state systems there are methods to detect
whether a path is spurious [7], we are not aware of a method
to detect whether a path T̂ in C(Skabs(A)) corresponds to a
path in the (concrete) infinite monster system Sysω . Therefore,
we limit ourselves to detecting and refining uniformly spuri-
ous transitions and unjust states. We first consider spurious
transitions.

Definition 14: An abstract transition (w,w′) ∈ RC is uni-
formly spurious iff there is no transition (σ, σ′) ∈ Rω with
w = h(σ) and w′ = h(σ′).

The following theorem provides us with a general criterion
that ensures that removing uniformly spurious transitions does
not affect the property of transition preservation.

Theorem 15: Let T ⊆ RC be a set of spurious transitions.
Then for every transition (σ, σ′) ∈ Rω there is a transition
(h(σ), h(σ′)) in RC \ T .

It follows that the system (SC, S
0
C, RC \ T,AP, λC) still

simulates Sysω . After considering spurious transitions, we
now consider justice suppression.

Definition 16: An abstract state w ∈ SC is unjust under
q ∈ APD iff there is no concrete state σ ∈ Sω with w = h(σ)
and q ∈ λω(σ).

Consider infinite counterexamples of C(Skabs(A)), which
have a form of lassos w1 . . . wk(wk+1 . . . wm)ω . For such a
counterexample T̂ we denote the set of states in the lasso’s
loop by U . We then check, whether all states of U are unjust

190 207

under some justice constraint q ∈ J . If this is the case, then T̂
is a spurious counterexample, because the justice constraint q
is violated. Note that it is sound to only consider infinite paths,
where states outside of U appear infinitely often; in fact, this
is a justice requirement. To refine C’s unjust behavior we add
a corresponding justice requirement. Formally, we augment J
(and APD) with a propositional symbol [off U]. Further, we
augment the labelling function λC such that every w ∈ SC is
labelled with [off U] if and only if w 6∈ U .

Theorem 17: Let J ⊆ APD be a set of justice requirements,
q ∈ J , and U ⊆ SC be a set of unjust states under q. Let π =
{σi}i≥1 be an arbitrary fair path of Sysω under J . The path
π̂ = {h(σi)}i≥1 is fair in C(Skabs(A)) under J ∪ {[off U]}.

From this we derive that loops containing only unjust states
can be eliminated, and thus C(Skabs(A)) be refined.

We encountered cases where several non-uniform spurious
transitions resulted in a uniformly spurious path (i.e., a coun-
terexample). We refine such spurious behavior by invariants.
These invariants are provided by the user as invariant can-
didates, and are then automatically checked to actually be
invariants using an SMT solver. In our example the invariant
is simply “the number of processes that sent a message equals
the number of sent messages.”

VII. EXPERIMENTAL EVALUATION

To show feasibility of our abstractions, we have imple-
mented the PIA abstractions and the refinement loop in OCaml
as a prototype tool BYMC. We evaluated it on different
broadcasting algorithms. They deal with different fault models
and resilience conditions; the algorithms are: (BYZ), which is
the algorithm from Figure 1, for t Byzantine faults if n > 3t,
(SYMM) for t symmetric (identical Byzantine [2]) faults if
n > 2t, (OMIT) for t send omission faults if n > 2t, and
(CLEAN) for t clean crash faults [37] if n > t. In addition,
we verified the RBC algorithm — formalized also in [18] —
whose CFA is given in Figure 2. In this paper we verify the
following safety and liveness specifications:

[∀i. svi 6= V1]→G [∀j. svj 6= AC] (U)
[∀i. svi = V1]→F [∃j. svj = AC] (C)

G (¬ [∃i. svi = AC])∨ F [∀j. svj = AC] (R)

In addition, in [18] a specification A for RBC was introduced,
which we verify for RBC. In contrast to [18], we actually im-
plemented our verification method and give experimental data.

From the literature we know that we cannot expect to verify
these FTDAs without restricting the environment, e.g., with
communication fairness, namely, every message sent is even-
tually received. To capture this, we use justice requirements,
e.g., J = {[∀i. rcvdi ≥ nsnt]} in the Byzantine case.

We extended PROMELA [22] with constructs to express
Π, AP, RC, and N [24]. BYMC receives a description of
a CFA A in this extended PROMELA, and then syntactically
extracts the thresholds. The tool chain uses the Yices SMT
solver for existential abstraction, and generates the counter
abstraction C(Skabs(A)) in standard Promela, such that we can
use Spin to do finite state model checking. Finally, BYMC
also implements the refinements introduced in Section VI

TABLE I. SUMMARY OF EXPERIMENTS

M |= ϕ? RC Spin Spin Spin Spin |D̂| #R Total
Time Memory States Depth Time

Byz |= U (A) 2.3 s 82 MB 483k 9154 4 0 4 s
Byz |= C (A) 3.5 s 104 MB 970k 20626 4 10 32 s
Byz |= R (A) 6.3 s 107 MB 1327k 20844 4 10 24 s
Sym |= U (A) 0.1 s 67 MB 19k 897 3 0 1 s
Sym |= C (A) 0.1 s 67 MB 19k 1113 3 2 3 s
Sym |= R (A) 0.3 s 69 MB 87k 2047 3 12 16 s
Omt |= U (A) 0.1 s 66 MB 4k 487 3 0 1 s
Omt |= C (A) 0.1 s 66 MB 7k 747 3 5 6 s
Omt |= R (A) 0.1 s 66 MB 8k 704 3 5 10 s
Cln |= U (A) 0.3 s 67 MB 30k 1371 3 0 2 s
Cln |= C (A) 0.4 s 67 MB 35k 1707 3 4 8 s
Cln |= R (A) 1.1 s 67 MB 51k 2162 3 13 31 s

RBC |= U — 0.1 s 66 MB 0.8k 232 2 0 1 s
RBC |= A — 0.1 s 66 MB 1.7k 333 2 0 1 s
RBC |= R — 0.1 s 66 MB 1.2k 259 2 0 1 s
RBC 6|= C — 0.1 s 66 MB 0.8k 232 2 0 1 s
Byz 6|= U (B) 5.2 s 101 MB 1093k 17685 4 9 56 s
Byz 6|= C (B) 3.7 s 102 MB 980k 19772 4 11 52 s
Byz 6|= R (B) 0.4 s 67 MB 59k 6194 4 10 17 s
Byz |= U (C) 3.4 s 87 MB 655k 10385 4 0 5 s
Byz |= C (C) 3.9 s 101 MB 963k 20651 4 9 32 s
Byz 6|= R (C) 2.1 s 91 MB 797k 14172 4 30 78 s
Sym 6|= U (B) 0.1 s 67 MB 19k 947 3 0 2 s
Sym 6|= C (B) 0.1 s 67 MB 18k 1175 3 2 4 s
Sym |= R (B) 0.2 s 67 MB 42k 1681 3 8 12 s
Omt |= U (D) 0.1 s 66 MB 5k 487 3 0 1 s
Omt 6|= C (D) 0.1 s 66 MB 5k 487 3 0 2 s
Omt 6|= R (D) 0.1 s 66 MB 0.1k 401 3 0 2 s

and refines the Promela code for C(Skabs(A)) by introducing
predicates capturing spurious transitions and unjust states.

Table I summarizes our experiments run on 3.3GHz Intel R©
CoreTM 4GB. In the cases (A) we used resilience conditions as
provided by the literature, and verified the specification. The
model RBC is the reliable broadcast algorithm also considered
in [18] under the resilience condition n ≥ t ≥ f . In the
bottom part of Table I we used different resilience conditions
under which we expected the algorithms to fail. The cases (B)
capture the case where more faults occur than expected by
the algorithm designer (f ≤ t + 1 instead of f ≤ t), while
the cases (C) and (D) capture the cases where the algorithms
were designed by assuming wrong resilience conditions (e.g.,
n ≥ 3t instead of n > 3t in the Byzantine case). We
omit (CLEAN) as the only sensible case n = t = f (all
processes are faulty) results into a trivial abstract domain of
one interval [0,∞). The column “#R” gives the numbers of
refinement steps. In the cases where it is greater than zero,
refinement was necessary, and “Spin Time” refers to the SPIN
running time after the last refinement step. Finally, column |D̂|
indicates the size of the abstract domain.

VIII. RELATED WORK

Traditionally, correctness of FTDAs is shown by handwritten
proofs [27], [2], and, in some cases, by proof assistants [26],
[31], [5]. Completely automated model checking or synthesis
are usually not parameterized [24], [36], [34], [3]. Our work
stands in the tradition of parameterized model checking for
protocols [4], [20], [17], [29], [8], e.g., mutual exclusion and
cache coherence. In particular, counter abstraction and justice
preservation by Pnueli et al. [29] are keystones of our work.

191208

To the best of our knowledge there are two papers on
parameterized model checking of FTDAs [18], [1]. The au-
thors of [18] use regular model checking to make interesting
theoretical progress, but did not do any implementation. Their
models are limited to processes whose local state space and
transition relation are finite and independent of parameters.
This was sufficient to formalize a reliable broadcast algorithm
that tolerates crash faults, and where every process stores
whether it has received at least one message. Such models
are not sufficient to capture FTDAs that contain threshold
guards as in our case. Moreover, the presence of a resilience
condition such as n > 3t would require them to intersect the
regular languages, which describe sets of states, with context-
free languages that enforce the resilience condition.

In [1], the safety of synchronous broadcasting algorithms
that tolerate crash or send omission faults has been verified.
These FTDAs have similar restrictions as the ones considered
in [18]: Alberti et al. [1] mention that they did not consider
FTDAs that feature “substantial arithmetic reasoning”, i.e.,
threshold guards and resilience conditions, as they would
require novel suitable techniques. Our abstractions address this
arithmetic reasoning.

To the best of our knowledge, the current paper is thus the
first in which safety and liveness of an FTDA that tolerates
Byzantine faults has been automatically verified for all system
sizes and all admissible numbers of faulty processes.

IX. CONCLUSIONS

We extended the standard setting of parameterized model
checking to processes that use threshold guards, and are
parameterized with a resilience condition. As a case study
we have chosen the core of several broadcasting algorithms
under different failure models, including one [33] that tolerates
Byzantine faults. These algorithms are widely applied in the
literature: typically, multiple (possibly an unbounded number
of) instances are used in combination. As future work, we
plan to use compositional model checking techniques [28]
for parameterized verification of such algorithms. Another
open issue is to capture additional fault assumptions such as
communication faults [5], [37].

REFERENCES

[1] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi, “Uni-
versal guards, relativization of quantifiers, and failure models in model
checking modulo theories,” JSAT, vol. 8, no. 1/2, pp. 29–61, 2012.

[2] H. Attiya and J. Welch, Distributed Computing, 2nd ed. Wiley, 2004.
[3] B. Bonakdarpour, S. S. Kulkarni, and F. Abujarad, “Symbolic synthesis

of masking fault-tolerant distributed programs,” Distributed Computing,
vol. 25, no. 1, pp. 83–108, 2012.

[4] M. C. Browne, E. M. Clarke, and O. Grumberg, “Reasoning about
networks with many identical finite state processes,” Inf. Comput.,
vol. 81, pp. 13–31, 1989.

[5] B. Charron-Bost and S. Merz, “Formal verification of a consensus
algorithm in the heard-of model,” IJSI, vol. 3, no. 2–3, pp. 273–303,
2009.

[6] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[7] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752–794, 2003.

[8] E. Clarke, M. Talupur, and H. Veith, “Proving Ptolemy right: the
environment abstraction framework for model checking concurrent
systems,” in TACAS’08/ETAPS’08. Springer, 2008, pp. 33–47.

[9] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM TOPLAS, vol. 16, no. 5, pp. 1512–1542, 1994.

[10] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL. ACM, 1977, pp. 238–252.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM TOPLAS, vol. 13, no. 4, pp. 451–490, 1991.

[12] D. Dams, R. Gerth, and O. Grumberg, “Abstract interpretation of
reactive systems,” ACM TOPLAS, vol. 19, no. 2, pp. 253–291, 1997.

[13] R. De Prisco, D. Malkhi, and M. K. Reiter, “On k-set consensus
problems in asynchronous systems,” TPDS, vol. 12, no. 1, pp. 7–21,
2001.

[14] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” J. ACM,
vol. 33, no. 3, pp. 499–516, 1986.

[15] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” J.ACM, vol. 35, no. 2, pp. 288–323, 1988.

[16] E. A. Emerson and V. Kahlon, “Reducing model checking of the many
to the few,” in CADE, ser. LNCS, 2000, vol. 1831, pp. 236–254.

[17] ——, “Exact and efficient verification of parameterized cache coherence
protocols,” in CHARME, ser. LNCS, vol. 2860, 2003, pp. 247–262.

[18] D. Fisman, O. Kupferman, and Y. Lustig, “On verifying fault tolerance
of distributed protocols,” in TACAS, ser. LNCS, vol. 4963, 2008, pp.
315–331.

[19] M. Függer and U. Schmid, “Reconciling fault-tolerant distributed com-
puting and systems-on-chip,” Dist. Comp., vol. 24, no. 6, pp. 323–355,
2012.

[20] S. M. German and A. P. Sistla, “Reasoning about systems with many
processes,” J. ACM, vol. 39, pp. 675–735, 1992.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-
tion,” in POPL. ACM, 2002, pp. 58–70.

[22] G. Holzmann, The SPIN Model Checker. Addison-Wesley, 2003.
[23] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder, “Counter attack

on Byzantine generals: Parameterized model checking of fault-tolerant
distributed algorithms,” arXiv CoRR, vol. abs/1210.3846, 2012.

[24] ——, “Towards modeling and model checking fault-tolerant distributed
algorithms,” in SPIN, ser. LNCS, vol. 7976, 2013, pp. 209–226.

[25] Y. Kesten and A. Pnueli, “Control and data abstraction: the cornerstones
of practical formal verification,” STTT, vol. 2, pp. 328–342, 2000.

[26] P. Lincoln and J. Rushby, “A formally verified algorithm for interactive
consistency under a hybrid fault model,” in FTCS, 1993, pp. 402–411.

[27] N. Lynch, Distributed Algorithms. Morgan Kaufman, 1996.
[28] K. L. McMillan, “Parameterized verification of the flash cache coher-

ence protocol by compositional model checking,” in CHARME, ser.
LNCS, vol. 2144, 2001, pp. 179–195.

[29] A. Pnueli, J. Xu, and L. Zuck, “Liveness with (0,1,∞)- counter
abstraction,” in CAV, ser. LNCS. Springer, 2002, vol. 2404, pp. 93–111.

[30] S. Sankaranarayanan, F. Ivancic, and A. Gupta, “Program analysis using
symbolic ranges,” in SAS, ser. LNCS, vol. 4634, 2007, pp. 366–383.

[31] U. Schmid, B. Weiss, and J. Rushby, “Formally verified Byzantine
agreement in presence of link faults,” in ICDCS, 2002, pp. 608–616.

[32] T. K. Srikanth and S. Toueg, “Optimal clock synchronization,” Journal
of the ACM, vol. 34, no. 3, pp. 626–645, 1987.

[33] T. Srikanth and S. Toueg, “Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms,” Dist. Comp., vol. 2, pp. 80–94, 1987.

[34] W. Steiner, J. M. Rushby, M. Sorea, and H. Pfeifer, “Model checking a
fault-tolerant startup algorithm: From design exploration to exhaustive
fault simulation,” in DSN, 2004, pp. 189–198.

[35] M. Talupur and M. R. Tuttle, “Going with the flow: Parameterized
verification using message flows,” in FMCAD, 2008, pp. 1–8.

[36] T. Tsuchiya and A. Schiper, “Verification of consensus algorithms using
satisfiability solving,” Dist. Comp., vol. 23, no. 5–6, pp. 341–358, 2011.

[37] J. Widder and U. Schmid, “Booting clock synchronization in partially
synchronous systems with hybrid process and link failures,” Dist.
Comp., vol. 20, no. 2, pp. 115–140, 2007.

192 209

Verifying Multi-threaded Software with Impact
Björn Wachter

Department of Computer Science
University of Oxford

Email: bjoern.wachter@cs.ox.ac.uk

Daniel Kroening
Department of Computer Science

University of Oxford
Email: daniel.kroening@cs.ox.ac.uk

Joël Ouaknine
Department of Computer Science

University of Oxford
Email: joel.ouaknine@cs.ox.ac.uk

Abstract—Lazy abstraction with interpolants, also known as
the Impact algorithm, is en vogue as a state-of-the-art software
model-checking technique for sequential programs. However, a
direct extension of the Impact algorithm to concurrent programs
is bound to be inefficient as it has to explore all thread
interleavings, which leads to control-state explosion. To this end,
we present a new algorithm that combines a new, symbolic form
of partial-order reduction with Impact. Our algorithm carries
out the dependence analysis on-the-fly while constructing the
abstraction and is thus able to deal precisely with dynamic
dependencies arising from accesses to tables or pointers — a
setting where classical static partial-order reduction techniques
struggle. We have implemented the algorithm in a prototype
tool that analyses concurrent C program with POSIX threads
and evaluated it on a number of benchmark programs. To our
knowledge, this is the first application of an Impact-like algorithm
to concurrent programs.

I. INTRODUCTION

Concurrent software is gaining importance owing to the
advent of power-efficient multi-core architectures. Model
checking for concurrent software is thus one of the most press-
ing problems facing the verification community. Concurrent
software in C/C++ is usually written using mainstream APIs
such as POSIX, or via a combination of language and library
support as in Java. Typically, multiple threads are spawned—
either up-front or dynamically—which communicate via shared
variables. While software verification generally has to cope
with data state explosion, threads introduce the problem of
state explosion due to the need of keeping track of a plethora
of thread interleavings.

Lazy abstraction with interpolants [1], also known as the
Impact algorithm, has emerged as one of the most efficient
algorithms for addressing the data state explosion problem for
sequential programs. Impact unwinds the control-flow graph
of the program in the form of an abstract reachability tree.
Whenever the exploration arrives at an error state, the nodes
on the error path are annotated with invariants that prove
infeasibility of the error path. The crux of the algorithm is
a covering check that allows the algorithm to soundly stop
the unwinding and terminate with a correctness proof of the
program. The underlying observation is that tree nodes represent
sets of program states which are related by subset relations.
Roughly, a node w labeled with x > 0 “contains” a node v
labeled with x > 1. If we have established that the superset

Supported by ERC project 280053, EPSRC project EP/H017585/1 and the
Semiconductor Research Corporation (SRC) under task 2269.002.

main() thread T1 thread T2
assume(i!=j);
v[i]=0; v[j]=0; A : v[i]=1; a : v[j]=-2;
pthread_create(T1); B : v[i]=v[i]+1; b : v[j]=v[j]+1;
pthread_create(T2); C : v[i]=v[j]; c : v[i]=v[i]+1;
pthread_join(T1);
pthread_join(T2);
assert(v[j] ≥ 0);

A a

B a A b

C a B b A c

a C b B c A

b C c B

c C

A a

B a A b

C a B b A c

a C b B c A

b C c B

c C

Fig. 1: An example program (top) and its complete interleaving
(left) and reduced interleaving semantics (right).

node w cannot be on an error path, we do not need to search
for an error path from subset node v . This combination of low-
cost program unwindings combined with path-based refinement
and covering checks gives rise to an efficient software model
checking algorithm.

However, the original Impact algorithm has been devised
for sequential code only. A direct extension of Impact to
multi-threaded programs amounts to an enumeration of thread
interleavings. Let us illustrate this with the example program
with two threads given in Figure 1. On the left-hand side of the
figure, the state graph with the complete set of interleavings is
shown. Note that there is a diamond-shaped structure where
program paths merge, e.g., executing instruction A and then a
leads to the same state as executing a first and then A, making
certain sequences of instructions redundant. This situation is
very common in multi-threaded programs.

Impact produces the full program unwinding, as the explo-
ration of the abstract tree has to reach an error location to
discover the right invariants. The algorithm may find identical
invariants for redundant paths, but this does not prune the
abstract exploration, as, at that point, the program paths have
already been completely unwound.

Force cover, an optimization of Impact, improves this
situation by giving Impact the power to discover that certain
program executions merge without fully exploring the paths
to the error location. This reduces the number of paths to
be explored. On our example, the application of force covers
results in a tree of a similar size as the graph on the left-hand

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 193210ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

side of Figure 1. In particular, even with force covers, Impact
still explores all thread interleavings in our example, which
can be prohibitively expensive. A a

B a b

C a b c

a
C

b c A

b C
c B

c C

Fig. 2: Impact with POR
and force cover

A principal method to reduce
the number of interleavings in
the exploration of concurrent pro-
grams is partial-order reduction
(POR) [2]–[5]. The right-hand
side of Figure 1 shows an explo-
ration reduced by means of partial-
order reduction. A key contribution
of this paper is a novel combina-
tion of Impact with POR, which
produces the abstract tree shown in Figure 2. Impact with force
cover alone explores a tree with five further nodes, as it does
not know in advance that the executions merge, while partial-
order reduction is able to discover this earlier. Discovering
redundant paths early on during the exploration is crucial to
avoid path explosion.

Contributions:
• We present an extension of the Impact algorithm to

concurrent software.
• We show how to combine partial-order reduction with

Impact. Due to a subtle interplay between node coverings
and POR, obtaining a sound verification procedure is non-
trivial. To this end, we give a general framework to prove
such combinations correct, and an algorithm based on
this framework which combines Impact with monotonic
partial-order reduction [6].

• We compare the effect of partial-order reduction and force
covers; our conjecture is that the two techniques yield
orthogonal benefits and are best combined.

We present background and basic definitions in Section II.
We develop a variant of the Impact algorithm for concurrent
software in Section III. We present a combination of partial-
order reduction and Impact in Section IV. Experimental results
are discussed in Section V.

II. BASIC DEFINITIONS

Program semantics: We consider a concurrent program
P composed of a finite set of threads T , which communicate
by performing operations on shared variables.

A state of a concurrent system consists of the local states
Slocal of each thread, i.e., the value of the thread’s program
counter given by a program location l ∈ L and values of the
local variables of the thread, and of the shared states Sshared,
i.e., values for communication objects such as locks, tables and
the like. Thus, we have a global state space S = Sshared ×Slocal.

A global control location is a function l : T → L from threads
to control locations. Let LG be the set of global control locations.
The global location in state s is denoted by l(s). For a given
global location l and thread T , we write lT as a shorthand
for l(T). By l[T 7→ l], we denote the global location where the
location of thread T maps to l , while the locations for all other
threads T ′ remain unchanged.

We characterize program data in terms of formulas in
standard first-order logic. We denote the set of well-formed
formulas over symbols Σ by F (Σ). For a given formula F we
denote the set of formulas over the same symbols by F (F).

Let V be the vocabulary that represents the program variables.
A state formula is a formula in F (V) and represents a set of
global states. A transition formula, from now on, typically
denoted by the letter R, is a formula in F (V ∪V ′).

Formally, we model a program as a pair (init,T) where
init ∈F (V) is the initial-state predicate, and T a finite set of
threads. We assume that the set of threads is endowed with
some total order <. A thread T ∈T is a tuple T = (L, l i , l , A)
consisting of a finite set of control locations L, an initial location
l i ∈ L, an error location l , and a set of actions A. An action is a
pair a = (l , N) ∈ L×2F (V ∪V ′)×L , consisting of a current location
l and a set of successor control locations l ′, each associated with
a transition constraint. An assignment l1: x=y+1; l2: . . .
is represented as (l1, {(x ′ = y +1∧ y ′ = y ; l2)}). An assertion
l1: assert(x<y); l2: . . . becomes an action (l1, {(x ≥ y∧
x ′ = x∧y ′ = y, l), (x < y∧x ′ = x∧y ′ = y, l2)}), which enters the
error location l if the condition is violated. Sets of successors
are used to represent branching control flow, e.g., the encoding
of the if-statement l1: if(x==1) goto l3; l2: . . . is
(l1, {(x = 1∧x ′ = x, l3), (x 6= 1∧x ′ = x, l2)}).

We write L(T) and A(T) to denote the locations and actions
of a thread. For an action a = (l , N) ∈ A(T) of thread T , action
a is enabled at location l and at global location l if a is enabled
at lT . We assume that exactly one action aT,l of any given T
is enabled at any location l ∈ L.

The control-flow graph C FGT = (l i ,E) of thread T =
(L, l i , l , A) is defined by entry node l i and edges E =⋃

a∈A(T) Ea where Ea = {(l , l ′) ∈ L × L | a = (l , N), (R, l ′) ∈ N }.
The control-flow nodes are topologically ordered. We say that
an action a induces a back edge if Ea contains a back edge.

We say that an action a = (l , N) ∈ T is enabled at a state
if a is enabled at global location l(s). We denote the enabled
actions at a state s by enabled(s). We assume that an action
a = (l , N) defines a total function {s ∈ S | a ∈ enabled(s)} → S
on all program states for which it is enabled.

For ease of notation, we identify a with this function and
write a(s) to denote the successor of a state s under action a.

Invariants and Correctness Proofs: A program path π is a
sequence (l0,T0, a0, l1) . . . (lN−1,TN−1, aN−1, lN). For a thread T ,
and l , l ′ ∈ L(T) with l 6= l ′, we write l @ l ′ if there exists a
program path from l to l ′.

A path is an error path if l0 is the vector of initial
locations for all threads, and lN−1 contains an error location
of a thread. We denote by F (π) the sequence of formulas
init(0) ∧R(0)

0 , . . .R(N−1)
N−1 obtained by shifting each Ri i time

frames into the future. We say that π is feasible if
∧

R(i)
i

is logically satisfiable. A solution to
∧

R(i)
i corresponds to a

program execution assigning values to the program variables
at each execution step. The program is said to be safe if all
error paths are infeasible.

An inductive invariant is a mapping I : LG → F (V) such
that init ⇒ I (li) and for all locations l ∈ LG , all threads T ∈T ,

194 211

and actions a = (l ,R, l ′) ∈ T in thread T enabled in l, we
have I (l)∧R ⇒ I (l[T 7→ l ′]). A safety invariant is an inductive
invariant with I (l) ≡ False for all error locations l. If there is a
safety invariant the program is safe.

Interpolants: In case a path is infeasible, an explanation
can be extracted in the form of an interpolant. To this end, we
define sequent interpolants [7]. A sequent interpolant for formu-
las A1, . . . , AN , is a sequence Â1, . . . , ÂN where the first formula
is equivalent to true Â1 ≡ True, the last formula is equivalent to
false ÂN ≡ False, consecutive formulas imply each other, i.e.,
for all i ∈ {1, . . . , N }, Âi−1 ∧ Ai ⇒ Âi , and, the i -th sequent is a
formula over the common symbols of its prefix and postfix, i.e.,
for all i ∈ {1, . . . N }, Âi ∈ F (A1, . . . , Ai)∩F (Ai+1, . . . , AN). For
certain theories, quantifier-free interpolants can be generated
for inconsistent, quantifier-free sequences A1, . . . , AN [7].

III. IMPACT ALGORITHM FOR CONCURRENT PROGRAMS

We now present an extension of the original Impact algorithm
to concurrent programs. The algorithm returns either a safety
invariant for a given program, finds a counterexample or
diverges (the verification problem is undecidable). To this
end, the algorithm constructs an abstraction of the program in
the form of an abstract reachability tree, which corresponds to
a program unwinding annotated with invariants.

Definition 3.1 (ART): An abstract reachability tree (ART)
A for program P is a tuple (V ,ε,→,.) consisting of a tree
with nodes V , root node ε ∈V , edges →⊆V 2, and a covering
relation .⊆V 2 between tree nodes such that:

• every nodes v ∈V is labeled with a tuple (l,φ) consisting
of a current global control location l, and a state formula
φ. We write l(v) and φ(v) to denote the control location
and annotation, respectively, of node v .

• edges correspond to program actions, and tree branching
represents both branching in the control flow within a
thread and thread interleaving. Formally, an edge is a tuple
(v,T,R, w) where v, w ∈ V , T ∈ T , and R the transition
constraint of the corresponding action.

We write v
T→ w if there exists an edge (v,T,R, w) ∈→. We

denote by the transitive closure of →.

To put abstract reachability trees to work for proving program
correctness for unbounded executions, we need a criterion to
prune the tree without missing any error paths. This role is
assumed by the covering relation ..

Intuitively, the purpose of node labels is to represent
inductive invariants, i.e., over-approximations of sets of states,
and the covering relation is the equivalent of a subset relation
between nodes. Suppose that two nodes v, w share the same
control location, and φ(v) implies φ(w). If there was a feasible
error path from v , there would be a feasible error path from w .
Therefore, if we can find a safety invariant for w , we do not
need to explore successors of v , as φ(v) is at least as strong
as the already sufficient invariant φ(w).

Note that, therefore, if w is safe, all nodes in the subtree
rooted in v are safe as well. Therefore, a node is covered if

and only if the node itself or any of its ancestors has a label
implied by another node’s label at the same control location.

To obtain a proof from an ART, the ART needs to fulfill
certain conditions, summarized in the following definition:

Definition 3.2 (Safe ART): Let A = (V ,ε,→,.) be an ART.
• A is well-labeled if the labeling is inductive, i.e.,

∀(v,T,R, w) ∈→: l(v) = l(w) ∧ φ(v) ∧ R ⇒ φ(w)′ and
compatible with covering, i.e., (v, w) ∈ . : φ(v) ⇒φ(w)
and w not covered.

• A is complete if all of its nodes are covered, or have an
out-going edge for every action that is enabled at l.

• A is safe if all error nodes are labeled with False.

Theorem 3.3: If there is a safe, complete, well-labeled ART
of program P , the program is safe.

Proof As in [1], the labeling immediately gives a safety
invariant M , M(l′) =∨

{φ(v) | l(v) = l′}.

A. Concurrent Impact with Full Interleaving

The concurrent version of the IMPACT algorithm we describe
next (Algorithm 1) constructs an ART by alternating three
different operation on nodes: EXPAND, REFINE, and CLOSE.
At all times, the algorithm maintains the invariant that the tree
is well-labeled and safe, i.e., to produce a correctness proof
the algorithm needs to make the tree complete.

To keep track of nodes where the tree is incomplete,
uncovered leaf nodes are kept in a work list Q.

EXPAND takes an uncovered leaf node and computes its
successors. To this end, it iterates over all threads. For every
enabled action, it creates a fresh tree node w , and sets its
location to the control successor l ′ given by the action. To
ensure that the labeling is inductive, the formula φ(w) is set to
True. Then the new node is added to the work list Q. Finally,
a tree edge is added (Line 23), which records the step from v
to w and the transition formula R. Note that if w is an error
location, the labeling is not safe; in which case, we need to
refine the labeling, invoking operation REFINE.

REFINE takes an error node v and, detects if the error
path is feasible and, if not, restores a safe tree labeling. First,
it determines if the unique path π from the initial node to
v is feasible by checking satisfiability of F (π). If F (π) is
satisfiable, the solution gives a counterexample in the form
of a concrete error trace, showing that the program is unsafe.
Otherwise, an interpolant is obtained, which is used to refine
the labeling. Note that strengthening the labeling may destroy
the well-labeledness of the ART. To recover it, pairs w . vi

for strengthened nodes vi are deleted from the relation, and
the node w is put into the work list again.

CLOSE takes a node v and checks if v can be added to the
covering relation. As potential candidates for pairs v.w , it only
considers nodes created before v , denoted by the set V ≺v (V .
This is to ensure stable behavior, as covering in arbitrary order
may uncover other nodes, which may not terminate. Thus
only for uncovered nodes w ∈V ≺v , it is checked if l(w) = l(v)
and φ(v) implies φ(w). If so, (v, w) is added to the covering

195212

Algorithm 1 Impact with support for concurrent programs

1: procedure MAIN()
2: Q := {ε}, . :=;
3: while Q 6= ; do
4: select and remove v from Q
5: CLOSE(v)
6: if v not covered then
7: if er r or (v) then
8: REFINE(v)
9: EXPAND(v)

10: return P is safe
11:
12: procedure EXPAND(v)
13: for T ∈T do
14: EXPAND-THREAD(T, v)

15: procedure EXPAND-THREAD(T, v)
16: (l,φ) := v
17: for (l , N) ∈ A(T) with lT = l do
18: for (R, l ′) ∈ N do
19: w := fresh node
20: l(w) := l[T 7→ l ′]
21: φ(w) := True
22: Q :=Q ∪ {w}, V :=V ∪ {w}
23: →:=→∪{(v,T,R, w)}
24:
25: procedure CLOSE(v)
26: for w ∈V ≺v : w uncovered do
27: if l(v) = l(w)∧φ(v) ⇒φ(w) then
28: . :=.∪ {(v, w)}
29: . :=.\ {(x, y) ∈. | v y}

30: procedure REFINE(v)
31: if v not error node or φ(v) ≡ False then
32: return
33: π := v0, . . . vN path from ε to v
34: if F (π) has interpolant A0 . . . AN then
35: for i = 0. . . N do
36: φ := A−i

i
37: if φ(vi) 6Íφ then
38: Q :=Q ∪ {w | w . vi }
39: . :=.\ {(w, vi) | w . vi }
40: φ(vi) :=φ(vi)∧φ

41: for w ∈V s.t. w v do
42: CLOSE(w)
43: else
44: abort (program unsafe)

relation .. To restore well-labeling, all pairs (x, y) where y is
a descendant of v , denoted by v y , are removed from ., as
v and all its descendants are covered.

MAIN first initializes the queue with the initial node ε, and
the relation . with the empty set. It then runs the main loop of
the algorithm until Q is empty, i.e., until the ART is complete,
unless an error is found which exits the loop. In the main loop,
a node is selected from Q. First, CLOSE is called to try and
cover it. If the node is not covered and it is an error node,
REFINE is called. Finally, the node is expanded, unless it was
covered, and evicted from the work list.

An important optimization of the algorithm is another
subroutine, called force cover. Initially, all new nodes are
labeled with invariant True. Therefore, they will not be covered
by an existing node with a non-trivial invariant, although this
may be a permissible labeling. To check coverage, force cover
finds the nearest common ancestor of two nodes and then
checks the characteristic formula to the new node to see if
the invariant of the other node also holds at the new node.
Beyer [8] showed that this optimization is essential for the
performance of Impact.

Wrapping up the extension of the original Impact algorithm
to concurrent programs: the single control location becomes
a vector, and the EXPAND routine enumerates all possible
interleavings. This algorithm is very inefficient in its basic
form: due to the full interleaving semantics, the number of
global control locations grows very quickly. We shall amend
this in the next section.

IV. PARTIAL ORDER REDUCTION

Performing a thread interleaving at every step would be
prohibitively expensive. Impact needs some way of reducing
interleaving. Therefore, we present an algorithm that combines
partial-order reduction with the Impact algorithm. A very
simple kind of partial order reduction is to only allow inter-
leaving when shared-variable accesses occur, however a much
stronger reduction is possible in many cases. In this section,
we consider a more advanced partial exploration strategy
that generates monotonic program paths Πmono, wherein
consecutive independent actions only occur in the order of
increasing thread ids [6].

Recall that the soundness proof of the original IMPACT
algorithm rests on three pillars, namely: completeness, safety
and well-labeledness of ARTs. However, partial order reduction
clashes with the original completeness criterion of IMPACT
that requires the very thing we aim to avoid: full expansion of
all thread interleavings. Thus we need a new soundness proof
and, in particular, a weaker completeness criterion, to combine
abstraction with partial-order reduction.

To this end, we introduce the new concept of Π-completeness,
which is parameterized with an exploration strategy via a set of
program paths Π, and gives a systematic framework to combine
abstraction with partial-order reduction. Based on this concept,
we also present the dPOR-IMPACT algorithm, which explores
monotonic paths and produces Πmono-complete ARTs.

Before we come to Π-completeness and dPOR-IMPACT, we
first need to review some basic POR concepts and notation.

A. Independence and Mazurkiewicz Equivalence

Partial-order reduction is based on the notion of indepen-
dence of actions. Intuitively, two actions are independent if
they commute and we can execute them in any order:

Definition 4.1 (Independence): Two actions a1 and a2 are
independent, denoted by a1 || a2, if for all states s ∈ S
where a1 and a2 are co-enabled, i.e., a1, a2 ∈ enabled(l(s)),
we have a1(a2(s)) = a2(a1(s))). Otherwise, we say that they
are dependent and write a1 �|| a2.

Partial-order reduction techniques are based on finding a rep-
resentative subset of the interleavings avoiding the exploration
of all equivalent interleavings, i.e., interleavings that lead to
equivalent orderings of actions. This leads to the notion of
Mazurkiewicz equivalence [9]:

Definition 4.2 (Mazurkiewicz equivalence): Two program
paths are Mazurkiewicz equivalent if they result from exchang-
ing the order of two independent actions.
We call a set of program paths Π representative if it contains a
representative path for every Mazurkiewicz equivalence class.

An example for a representative set of program paths are
the monotonic program paths, which are defined as follows:

196 213

v2

v0 v1 u2 v3 v4

l0 l1 l2 l3 l4

Fig. 3: Path correspondence. Rounded rectangles represent ART
nodes v0, . . . , v4 and u2. We have u2.v2. The gray arrows depict
ART edges. The path l0 . . . l5 is a control flow path.

Definition 4.3 (Monotonic paths): A program path π =
(l0,T0, a0, l1) . . . (lN−1,TN−1, aN−1, lN) is monotonic if for all
i , j ∈ {0, . . . , N −1} with i < j , ai || a j and Ti > T j , we have
j 6= i +1. Let Πmono be the set of monotonic program paths.

B. Π-completeness

We will say that an ART A is Π-complete with respect
to a set of program paths Π if each path π ∈ Π is covered
by A . Intuitively, a program path is covered if there exists a
corresponding sequence of nodes in the tree, where correspond-
ing means that it visits the same control locations and takes
the same actions. In absence of covers, the matching between
control paths and sequences of nodes is straightforward.

However, a path of the ART may end in a covered node. For
example, consider the path l0 . . . l5 in Figure 3. While prefix
l0l1l2 can be matched by node sequence v0v1u2, node u2 is
covered by node v2, formally u2. v2. But how we can match
the remainder of the path? We are stuck at node u2, a leaf with
no out-going edges. Our solution is to allow the corresponding
sequence to “climb up” the covering order . to a more abstract
node, here we climb from u2 to v2. Node v2 in turn must have
a corresponding out-going edge, as it cannot be covered and
its control location is also l2. Finally, the corresponding node
sequence for l0 . . . l4 is v0 . . . v4.

Figure 4 illustrates the formalization of our notion of path
correspondence. On top of the figure, we depict a fragment
of a program path with locations li , li+1 and li+2, and, at
the bottom, the corresponding path which climbs from node
ui+1 to node vi+1 where ui+1 and vi+1 are both at location
l(ui+1) = l(vi+1) = li+1 and ui+1. vi+1. A corresponding path
is allowed to climb up not only at one position i but at any
position i (or none) and at arbitrarily many positions.

This notion is formalized in the following definition:

Definition 4.4 (Corresponding paths & path cover): Con-
sider a program P . Let A be an ART for P and let
π = (l0,T0, a0, l1) . . . (lN−1,TN−1, aN−1, lN) be a program path.
A corresponding path for π in A is a sequence v0, . . . , vn in
A such that, for all i ∈ {0, . . . , N −1}, l(vi) = li , and

∃ui+1 ∈V : vi
Ti ,ai→ ui+1 ∧ (ui+1 = vi+1 ∨ui+1. vi+1)

A program path π is covered by A if there exists a correspond-
ing path v0, . . . , vn in A .

We are now ready to define our new completeness criterion:

Definition 4.5 (Π-completeness): Let P be a program and Π

a set of program paths. ART A for P is Π-complete if every
path π ∈Π is covered by A .

li li+1 li+2

vi ui+1 vi+1 vi+2
Ti , ai Ti+1, ai+1

.

Ti , ai Ti+1, ai+1

Fig. 4: Illustration of Definition 4.4. The diagram shows a
fragment of an ART A with notation for the nodes of the
definition. The dashed line represents a covering edge.

A Π-complete, safe, well-labeled ART constitutes a proof
of program correctness, as stated in the following proposition:

Proposition 4.6: Let P be a program. Let Π be a representative
set of program paths. Assume that A is safe, well-labeled and
Π-complete. Then program P is safe.

C. Abstraction Algorithm

We now combine POR with IMPACT. The obvious starting
point is to modify the EXPAND function in Algorithm 1. We
first introduce the modified expansion function EXPAND♦.
However, changing only the expansion function turns out to
be insufficient. Due to a subtle interplay between coverings
and POR, the resulting algorithm does not guarantee Πmono-
completeness, and is unsound, which we illustrate with a small
example. We then describe a method to fix this problem and
present Algorithm 2, a sound variant of Impact with POR.

First, we change EXPAND such that only monotonic paths
are unwound. To this end, instead of expanding all threads
at a node, EXPAND♦ first checks if expanding with T yields
a non-monotonic program path. This check is carried out in
function SKIP♦ for given node v and thread T . Function SKIP♦
analyses the thread T ′ and action a′ executed by the parent u
of v , and returns true if the thread T is smaller than T < T ′
and action a′ is independent of a.

Algorithm 2 dPOR-IMPACT
1: procedure EXPAND♦(v)
2: for T ∈T with ¬SKIP♦(v,T) do
3: EXPAND-THREAD(T, v)
4:
5: procedure SKIP♦(v,T)
6: choose unique T ′, a′ s.t. u

T ′ ,a′
→ v

7: return
(
T < T ′ ∧ (

ACTION(v,T) || a′))∧¬LOOP(u,T ′)
8:
9: procedure CLOSE♦(v)

10: for w ∈V ≺v : w uncovered do
11: if l(v) = l(w)∧φ(v) ⇒φ(w) then
12: . := (.∪ {(v, w)}) \ {(x, y) ∈. | v y}

13: for T with v
T,...→ v ′ and not w

T,...→ w ′ do
14: EXPAND-THREAD(T, w)

Intuitively, two writes to the same variable are dependent,
a read and a write to the same variable are dependent, but
two reads to the same variable are independent. Two actions
a and a′ are independent, denoted by a || a′, if Ra ∩Wa′ =
; ∧ Wa ∩ (Ra′ ∪Wa′) =; where Ra and Ra′ are the variables
being read, and, Wa and Wa′ the variables being written.

Additionally, we introduce function LOOP to detect control-
flow loops. Function LOOP(u,T) returns true if action a = (l , N)

197214

of T at node u induces a back edge in the thread’s control
flow. This completes our discussion of EXPAND♦.

As mentioned before, just modifying EXPAND yields an un-
sound algorithm that does not guarantee Πmono-completeness.
Consider the example program below. Note that to violate
the assertion, the context switch between the two threads
has to happen right after T1 has executed x=1. However, the
covering between the left and the right (2,0)-node prevents this
expansion, leading to an ART that is not Πmono-complete.
In particular, the counterexample path is not covered by
the resulting ART, i.e., there is no corresponding path, as
assert(x==0) is not expanded at the covering (2,0)-node.

0,01,0

2,02,0

3,02,1

∗

∗x=1

x=0
Xassert(x==0) .

T1 T2
0: if(*) 0: assert(x==0);
1: x=1; 1:
2: x=0;
3:

the counterexample is
T1 : *, T1 : x=1;, T2 : assert(x==0)

To guarantee Πmono-completeness, we modify CLOSE to
carry out expansions at the covering node, so-called cover
expansions – yielding function CLOSE♦. We consider actions
that would have been expanded at the covered node, had
there been no cover. These actions are now expanded in the
covering node. In our example, this results in an expansion
of assert(x==0) on the right (2,0)-node, which triggers a
refinement that uncovers the left (2,0)-node and reveals the
counterexample in the next step.

This combination of EXPAND♦ and CLOSE♦ guarantees
Πmono-completeness, as proved in the following lemma, which
also establishes the correctness of dPOR-Impact:

Lemma 4.7: If Algorithm 2 reports that the program is safe,
the computed ART A is Πmono-complete.

Proof We need to show that every path π ∈Πmono is covered
by A . We carry out a proof by induction on the length N = |π|
of π. The base case for N = 1 is trivial. Assume that N ≥ 2
and that every path of length at most N −1 is covered. Let
π= (l0,T0, a0, l1) . . . (lN−1,TN−1, aN−1, lN) ∈Πpm be a path of
length N . We need to prove that there exists a corresponding
path v0, . . . , vN that meets the criteria of Definition 4.4.

By induction hypothesis, there exists a corresponding path
v ′

0, . . . , v ′
N−1 for the length N −1 prefix of π. As π ∈Πmono ,

we have that SKIP♦(v ′
N−1,TN−1) = F al se. Hence, if v ′

N−1 is
not covered, it will be expanded yielding a suitable successor
v ′

N , and choosing vi = v ′
i for all i ∈ {1, . . . , N } we are done. So

let us assume that vN−1 is covered. Then there exists vN−1

distinct from vN−1 such that vN−1 . vN−1 and vN−1 is not
covered. It could be that SKIP♦(vN−1,TN−1) = Tr ue, however
the covering v ′

N−1. vN−1 must result from an invocation of
CLOSE♦, forcing expansion of TN−1 at vN−1 and thus yields
a suitable successor vN . Thus we choose vi = v ′

i for i ∈
{1, . . . , N −2}, vN−1 and vN as above, and uN−1 = v ′

N−1.

D. Conditional Dependence

We now describe how to deal with aliasing in presence of
pointers and shared tables. This leads to dynamic dependencies
determined by the execution state, e.g., when dereferencing
pointers, the dependence relation is determined by pointer
aliasing. Two pointer variables may point to the same location
leading to a dependency, or to disjoint locations. When
accessing tables via indices, dependencies may arise when
two threads access the same position in a table, which depends
on the value of the indexing variable.

Dynamic dependencies can be accommodated in our frame-
work by considering so-called conditional dependence between
actions [2]. Effectively, the dependence relation, which was a
binary relation between actions until now, becomes a ternary
relation, such that dependencies are triples consisting of a state
and two actions. When carrying out partial-order reduction,
the ART is built in the same way as before, except that the
dependency check takes into account the aliasing information.

Computation of the aliasing information can be carried out
by simply inspecting the history of the state. However, note that
covering produces nodes that represent states with potentially
different histories. Hence, if aliasing information is used to
prune expansions, this alias information must also be annotated
in the node labels, to ensure soundness. This can be achieved
as follows: we carry out a simple aliasing analysis along the
history of a node, if we find that there is no aliasing (and
hence no dependence), we refine the nodes along the path with
inductive invariants that enforce absence of the alias. For a pair
of accesses, we define an alias expression al i as, such that the
expression becomes true if and only if the two accesses go
to the same address. The construction of alias expressions for
typical array accesses is described, e.g., in [6].

For illustration, consider the example in Figure 1. For the
path a A, we need to check independence of the access v[i]=2
and v[j]=-2, which gives the alias expression i = j . Let π be
the path to the node at which we check the alias relation, in our
example a A. The accesses are independent if the conjunction
of path formula and alias expression F (π)∧ al i as(|π|−1) is
unsatisfiable. In our example, this formula is unsatisfiable, due
to the assume statement in line 1 of main, and the nodes
along the path are refined with the interpolant i 6= j , and we
can make the reduction depicted in the figure.

V. EXPERIMENTS

We have implemented the techniques described in this
paper in a prototype tool, called IMPARA, a software model
checker for concurrent C programs with POSIX or WIN32
threads. Experiments were run on an Intel Xeon machine
with 8 cores at 3.07 GHz with 50 GB RAM. The time-
out is 900 s and the memory limit is 15 GB. We make
the implementation and detailed results available online at
http://www.cprover.org/concurrent-impact/ for evaluation.

Comparison with Other Tools: We compare the per-
formance of IMPARA 0.2 with the tools CBMC 4.5 [10]
(bounded model checking with partial-order encoding), ES-
BMC 1.20 [11] (bounded model checking, POR and state

198 215

http://www.cprover.org/concurrent-impact/

program safe CBMC ESBMC SATABS THREADER IMPARA
dekker y 0.6∗ 2.2∗ 0.2 TO 0.1
lamport y 12.4∗ 18.1∗ 0.3 38.1 0.3
peterson y 0.2∗ 2.0∗ 0.3 4.8 0.1
szymanski y 0.5∗ 4.7∗ 0.2 13.5 0.2
read_write_u n 0.2 TO 0.8 58.4 0.6
read_write_s y 0.4 TO 0.8 58.1 0.9
time_var_mutex y 0.2 110.3 95.4 4.3 0.1
stack_u n 1.0 TO TO 80.6 0.5
stack_s y 33.5 TO TO 250.1 38.8

TABLE I: IMPARA vs. other tools on competition benchmarks

hashing), THREADER 0.92 [12] (predicate abstraction and
thread-modular reasoning), and SATABS 3.1 [13] (SAT-based
predicate abstraction).

To this end, we use the concurrency benchmarks from
the Second Competition on Software Verification [14], which
includes typical mutual exclusion protocols, such as Dekker,
Peterson, Szymanski and Lamport, as well as programs that
manipulate concurrent data structures.

Some benchmarks contain unbounded loops, which can be
handled by IMPARA, SATABS and THREADER, while CBMC
and ESBMC require an unwinding limit, which we set to 6, the
maximum among the bounded loops. Partial loop exploration
is marked with a star superscript at the respective running time.

We observe that IMPARA shows promising performance
compared to the other tools, despite its prototype status. The
running time for selected benchmarks are given in Table I.
Each program contains assertions to be verified. Column “safe”
indicates if the respective program is safe.

IMPARA 0.2 uses CBMC 4.5 as a front end. The back
end, including the symbolic-execution engine, was written
from scratch. To focus the implementation effort on the
concurrency aspect, we use syntactic weakest preconditions
as an interpolation procedure. For many typical concurrency
benchmarks, weakest preconditions give sufficient invariants.
However, we anticipate that leveraging a more advanced
interpolation procedure could further improve performance.

We have implemented optimizations to speed up the fre-
quently occurring cover checks. In a cascaded approach, we
first use syntactic checks to cover trivial implications that can
be resolved syntactically, e.g., x > 0∧ y > 0 trivially implies
y > 0. Then we look up the implication in a table. Finally, if
that fails, we invoke a SMT solver to check implication.

Benchmarks Using Weak Memory Consistency: The
presented algorithm assumes interleaving semantics. Modern
multi-core architectures, however, implement weaker consis-
tency models, and therefore permit additional behaviors. Our
technique can be extended to support popular consistency
models including TSO (x86), PSO, RMO and PowerPC by
combining it with the instrumentation proposed in [15].

The sql benchmark is a bug in PostgreSQL worker
synchronization that occurs on the PowerPC architecture. A
developer fix has also been found to be buggy. IMPARA is able
to verify the safe programs and find counterexamples except
for the PowerPC variant of the PostgreSQL benchmark where
the tool times out. We anticipate that this can be fixed by a
more aggressive expression simplification.

Effect of dPOR and Force Covers: To evaluate the benefit
of dynamic partial-order reduction, and to compare different

program safe CBMC ESBMC SATABS THREADER IMPARA
Sober benchmark

SC y 0.3 X 1.2 X 0.3 X 120 FN 0.7 X
TSO n 0.5 X TO 2.6 X ERR 3.7 X
RMO n 0.5 X TO 2.5 X ERR 3.6 X
PSO n 0.3 X TO 1.4 X ERR 1.7 X
Power n 0.3 X TO 1.4 X ERR 1.7 X
fix_SC y 0.3 X 1.3 X 0.4 X 120 FN 0.7 X
fix_TSO y 0.3 X TO 5.5 X ERR 1.3 X
fix_PSO y 0.3 X TO 5.6 X ERR 1.4 X
fix_power y 0.3 X TO 5.6 X ERR 1.4 X

SQL benchmark
SC y 1.8∗ (X) 475.6∗ X 0.3 X 1.7 FN 0.4 X
TSO y 6.9∗ (X) TO 0.3 X 3.25 FN 0.5 X
Power n 824.9∗ X TO TO ERR TO
dev_fix_Power n TO TO 17.7 FP ERR TO

TABLE III: IMPARA on weak memory benchmarks

combinations of force cover and partial-order reduction, we
experiment with four different configurations of IMPARA:

• sPOR: expands interleavings only when an action is
executed that operates on shared variables; the original
implementation of CLOSE is used.

• sPOR+FC: sPOR with force cover (FC).
• dPOR: dPOR-IMACT without force cover; this requires

the CLOSE♦ function described in Sec. IV-C.
• dPOR+FC: dPOR with force cover.

Table II compares the four different configurations in terms
of their running time (“s” for seconds), number of nodes
(“|V |”) and number of cover checks that require an implication
check by an SMT solver (“impl”). Runs that have timed
out are recorded with “TO” in the time field, and all other
fields are filled with “–”. To quantify the penalty incurred
by cover expansions from CLOSE♦, we give the percentage
(“C”) of nodes resulting from cover expansions, e.g., 15%
for read_write_s and around 27% for safe Sober weak-
memory examples (to save space, we omit detailed results
for weak memory benchmarks). Note that cover expansions
were crucial to find assertion violations in the weak-memory
benchmarks. For safe programs, we find that dPOR always
produces less nodes than sPOR despite cover expansions.

Clearly, all configurations beat sPOR. On the other hand, we
observe that POR and FC are complementary techniques. POR
removes redundancies arising from thread interleaving, while
FC covers thread-internal branching, e.g., from conditionals
and loops, as well as redundant thread interleavings. For the
latter, FC needs more unwindings than POR. For the smaller
examples, these additional unwindings are few, as paths remain
short, but the cost increases in larger programs. Comparing FC
and POR, we observe that POR tends to reduce the number
of necessary implications checks. This is because FC catches
redundant interleavings that are removed by POR, and because
it is a refinement technique, which triggers implication checks.
Again, the cost of implication checks increases with program
size, which can make POR scale better to larger problems.

VI. RELATED WORK

Partial-order reduction (POR) [2]–[4] has been proposed
as a technique to combat state explosion by exploring only a
representative subset of all possible interleavings, and has been
implemented in the explicit-state model checkers SPIN [16] and
Verisoft [5]. Dynamic POR techniques [17], [18] are based on
the same concepts as classical static POR but capture dynamic

199216

sPOR sPOR+FC dPOR dPOR+FC
LOC safe s |V | impl s |V | impl s |V | impl C s |V | impl C

dekker 57 y 1.3 7407 9 0.2 504 8 0.1 433 3 0% 0.1 331 2 0%
lamport 79 y 9.6 36624 223 1.0 4740 226 1.0 7418 149 54% 0.3 1700 205 13%
peterson 45 y 0.7 3155 55 0.1 419 89 0.3 1081 43 0% 0.1 199 16 0%
szymanski 57 y 2.3 13332 14 0.3 1059 5 0.2 1264 5 0% 0.2 673 2 0%
read_write_u 59 n 5.4 31786 23 1.0 7628 119 1.6 18261 59 0% 0.6 4899 53 0%
read_write_s 68 y 75.2 109096 148 7.0 12932 1457 5.0 36777 129 14% 0.9 7065 223 15%
time_var_mutex 92 y 0.2 867 4 0.2 867 6 0.2 435 3 0% 0.1 252 1 0%
stack_u 144 n TO – – TO – – 3.1 2589 717 0% 0.5 424 81 0%
stack_s 144 y TO – – TO – – TO – – – 38.8 2037 4420 0%

TABLE II: Comparison of different configurations of IMPARA

dependencies induced by pointers on-the-fly during the state-
space exploration.

Our monotone exploration strategy dPOR corresponds to the
one used in [6], where POR is applied to SMT-based bounded
model checking. The idea of cover expansions in function
CLOSE♦ of our algorithm is inspired by a similar precaution
in stateful dynamic POR [19].

Cimatti et al. combine static POR with lazy abstraction [20]
to verify SystemC programs. There are several differences
to our approach: our POR technique aims at dynamic de-
pendencies induced by pointers, we are using Impact rather
than predicate abstraction, and our approach is geared towards
multi-threaded programs rather than SystemC programs.

Gupta et al. combine predicate abstractions with thread-
modular proof rules [21], [22] in a tool called THREADER [23].

In the setting of single-threaded programs, the IMPACT algo-
rithm has been re-implemented in a tool called WOLVERINE
and compared with SATABS [24]. Beyer et al. have developed
an approach where different invariant-generation techniques
can be combined in a configurable tool CPA-CHECKER [25],
together with techniques such as large block encoding [26].
Using CPA-CHECKER, they compare predicate abstraction
with Impact [8] and evaluate the effectiveness of force covers.

VII. CONCLUSION

We have presented a new software model checking tech-
nique for concurrent programs based on lazy abstraction
with interpolants and partial-order reduction, which performs
very favorably compared to existing tools. In the future, we
would like to incorporate more advanced invariant-generation
techniques and investigate more aggressive POR techniques.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers, and also
Subodh Sharma, Luis María Ferrer Fioriti and Matt Lewis for
their valuable feedback.

REFERENCES

[1] K. L. McMillan, “Lazy abstraction with interpolants,” in CAV, ser. LNCS,
vol. 4144. Springer, 2006, pp. 123–136.

[2] P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems, ser. LNCS. Springer, 1996, vol. 1032.

[3] D. Peled, “All from one, one for all: on model checking using
representatives,” in CAV, ser. LNCS, vol. 697. Springer, 1993, pp.
409–423.

[4] A. Valmari, “Stubborn sets for reduced state space generation,” in
Applications and Theory of Petri Nets, ser. LNCS, vol. 483. Springer,
1989, pp. 491–515.

[5] P. Godefroid, “Software model checking: The VeriSoft approach,” Formal
Methods in System Design, vol. 26, no. 2, pp. 77–101, 2005.

[6] C. Wang, Z. Yang, V. Kahlon, and A. Gupta, “Peephole partial order
reduction,” in TACAS, ser. LNCS, vol. 4963. Springer, 2008, pp. 382–
396.

[7] K. L. McMillan, “An interpolating theorem prover,” Theor. Comput. Sci.,
vol. 345, no. 1, pp. 101–121, 2005.

[8] D. Beyer and P. Wendler, “Algorithms for software model checking:
Predicate abstraction vs. Impact,” in FMCAD. IEEE, 2012, pp. 106–
113.

[9] A. W. Mazurkiewicz, “Trace theory,” in Advances in Petri Nets, ser.
LNCS, vol. 255. Springer, 1986, pp. 279–324.

[10] J. Alglave, D. Kroening, and M. Tautschnig, “Partial orders for efficient
bounded model checking of concurrent software,” in CAV, 2013, pp.
141–157.

[11] L. Cordeiro and B. Fischer, “Verifying multi-threaded software using
SMT-based context-bounded model checking,” in ICSE. ACM, 2011,
pp. 331–340.

[12] A. Gupta, C. Popeea, and A. Rybalchenko, “Threader: A constraint-based
verifier for multi-threaded programs,” in CAV, 2011.

[13] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “Predicate
abstraction of ANSI–C programs using SAT,” Formal Methods in System
Design (FMSD), vol. 25, pp. 105–127, September–November 2004.

[14] D. Beyer, “Second competition on software verification – (summary of
SV-COMP 2013),” in TACAS, ser. LNCS, vol. 7795. Springer, 2013,
pp. 594–609.

[15] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig, “Software
verification for weak memory via program transformation,” in ESOP, ser.
LNCS, vol. 7792. Springer, 2013, pp. 512–532.

[16] G. J. Holzmann, “Software model checking with SPIN,” Advances in
Computers, vol. 65, pp. 78–109, 2005.

[17] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in POPL. ACM, 2005, pp. 110–121.

[18] G. Gueta, C. Flanagan, E. Yahav, and M. Sagiv, “Cartesian partial-order
reduction,” in SPIN, ser. LNCS, vol. 4595. Springer, 2007, pp. 95–112.

[19] Y. Yang, X. Chen, G. Gopalakrishnan, and R. M. Kirby, “Efficient
stateful dynamic partial order reduction,” in SPIN, ser. LNCS, vol. 5156.
Springer, 2008, pp. 288–305.

[20] A. Cimatti, I. Narasamdya, and M. Roveri, “Boosting lazy abstraction
for SystemC with partial order reduction,” in TACAS, ser. LNCS, vol.
6605. Springer, 2011, pp. 341–356.

[21] S. S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs I,” Acta Inf., vol. 6, pp. 319–340, 1976.

[22] C. B. Jones, “Tentative steps toward a development method for interfering
programs,” ACM Trans. Program. Lang. Syst., vol. 5, no. 4, pp. 596–619,
1983.

[23] A. Gupta, C. Popeea, and A. Rybalchenko, “Predicate abstraction and
refinement for verifying multi-threaded programs,” in POPL. ACM,
2011, pp. 331–344.

[24] D. Kroening and G. Weissenbacher, “Interpolation-based software
verification with WOLVERINE,” in CAV, ser. LNCS, vol. 6806. Springer,
2011, pp. 573–578.

[25] D. Beyer and M. E. Keremoglu, “CPAchecker: A tool for configurable
software verification,” in CAV, ser. LNCS, vol. 6806. Springer, 2011,
pp. 184–190.

[26] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani,
“Software model checking via large-block encoding,” in FMCAD. IEEE,
2009, pp. 25–32.

200 217

Proving Termination of
Imperative Programs Using Max-SMT

Daniel Larraz, Albert Oliveras, Enric Rodrı́guez-Carbonell, Albert Rubio
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract—We show how Max-SMT can be exploited in
constraint-based program termination proving. Thanks to ex-
pressing the generation of a ranking function as a Max-SMT
optimization problem where constraints are assigned different
weights, quasi-ranking functions –functions that almost satisfy all
conditions for ensuring well-foundedness– are produced in a lack
of ranking functions. By means of trace partitioning, this allows
our method to progress in the termination analysis where other
approaches would get stuck. Moreover, Max-SMT makes it easy
to combine the process of building the termination argument with
the usually necessary task of generating supporting invariants.
The method has been implemented in a prototype that has
successfully been tested on a wide set of programs.

I. I NTRODUCTION

Proving termination is necessary to ensure total correctness
of programs. Still, termination bugs are difficult to trace and
are hardly notified: as they do not arise as system failures but
as unresponsive behavior, when faced to them users tend to
restart their devices without reporting to software developers.
Due to this, approaches for proving termination of imperative
programs have regained an increasing interest in the last
decade [1]–[4].

One of the major difficulties in these methods is that often
supporting invariantsare needed. E.g., in [5] linear invariants
are exhaustively computed before termination analysis. In the
same paper a heuristic approach is also presented, which only
requires a light-weight invariant generator by restricting to
single-variable ranking functions. Another solution is proposed
in [6], where invariant generation is not performed eagerly
but on demand. By formulating both invariant and ranking
function synthesis as constraint problems, both can be solved
simultaneously, so that only the necessary supporting invari-
ants for the targeted ranking functions –namely,lexicographic
linear ranking functions– need to be discovered.

Based on [5], [6], we present a Max-SMT constraint-based
approach for proving termination. The crucial observation in
our method is that, albeit our goal is to show that transitions
cannot be executed infinitely by finding a ranking function
or an invariant that disables them, if we only discover an
invariant, or an invariant and aquasi-ranking functionthat
almost fulfills all needed properties for well-foundedness, we
have made some progress: either we can removepart of a
transition and/or we have improved our knowledge on the
behavior of the program. A natural way to implement this
idea is by considering that some of the constraints arehard
(the ones guaranteeing invariance) and others aresoft (those
guaranteeing well-foundedness) in a Max-SMT framework.

Moreover, by giving different weights to the constraints we can
set priorities and favor those invariants and (quasi-) ranking
functions that lead to the furthest progress.

The technique has been implemented in our toolCppInv,
which analyses programs with integer variables and linear
expressions. Thanks to it, we have proved termination of
a wide set of programs, which have been taken from the
programming learning environmentJutge.org [7] and from
benchmark suites in the literature [8].

A. Related Work.

As mentioned above, our method is based on [5]. Namely,
we have borrowed the core argument for termination proofs,
which is based on iteratively discarding those transitions that
cannot be executed infinitely. However, we improve on the way
supporting invariants are generated. While in [5] invariants
are pre-computed in a process that is independent from the
termination analysis and which turns out to be the bottleneck
of the approach, we find lazily the invariants needed to ensure
that ranking functions meet their requirements.

Our research also builds upon [6], where the constraint-
based method [9] was first applied to termination. However, we
extend this work in several aspects. First, in that approach only
linear programs with unnested loops can be handled, while we
can deal with arbitrary control structures. Moreover, in [6] the
generation of their lexicographic ranking functions requires a
higher-level loop that, before sending the constraint problem to
the solver, determines the precedence of the transitions in the
lexicographic order. On the other hand, in our approach this
outer loop is not needed. Finally, thanks to assigning weights
to the constraints, unlike [6] we do not need to stipulate
the number of supporting invariants that will be needed a
priori, and hence our constraint problems are simpler. Further,
weights allow us to guide the solving engine in the search of
appropriate ranking functions and invariants.

In [10], the lexicographic approach of [6] is extended so as
to handle programs with complex control flow. However, their
method still requires to search for the right ordering of the
transitions in order to obtain a successful termination proof.
Moreover, in this technique the procedures for synthesizing
ranking functions and auxiliary invariants do not share enough
information, while in our proposal these mechanisms are
tightly coupled. Finally, in [8] a method closely related to ours
is presented. Both approaches, which have been developed
independently, go in the same direction of achieving a better
cooperation between the invariant and the ranking function

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 201218ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

syntheses. Still, a significant difference is that we can exploit
the quasi-ranking functions produced in the absence of ranking
functions in order to progress in the termination analysis.

In addition to lexicographic ranking functions, there is a
group of effective tools whose termination arguments are
based on Ramsey’s Theorem and the notion oftransition
invariant [11]. Transition invariants are over-approximations
of the transitive closure of the transition relation restricted
to the reachable state space. The crucial observation is that a
transitive relation that isdisjunctively well-founded, i.e., that is
included in the union of well-founded relations, must be well-
founded too. Hence, if one is able to find a transition invariant
that is also disjunctively well-founded, the program must
be terminating. In [12], this transition invariant is computed
iteratively, starting from the empty relation, by discovering
unranked paths of the program thanks to a reachability check,
and using the approach in [3] for synthesizing new ranking
functions for them. On the other hand, in [13] the generation of
the disjunctively well-founded transition invariant is performed
bottom-up from innermost loops by identifying invariant and
transitive relations among a set of templates that are disjunc-
tively well-founded by construction. Nested loops are then
handled thanks to loop summarization. Our techniques can also
be seen as producing a disjunctively well-founded transition
invariant, being the difference with respect to the previous
approaches in the way new unranked paths are identified and
how a termination argument is generated for them.

Finally, a problem related to proving termination that has
recently raised interest in the area is that ofconditional
termination: to synthesize automatically preconditions on the
inputs that ensure program termination. In this context, in [15]
the authors consider what they callpotential ranking functions,
which are functions over program states that are bounded but
not necessarily decreasing. The quasi-ranking functions that
we consider here are more general, as for instance functions
that are decreasing but not bounded are also included. In [16],
the problem of conditional termination is also considered. The
approach is based on disjunctively well-founded relations as in
[12], but instead of identifying unranked program paths, thanks
to a dual inclusion the authors partition the transition relation
into those behaviors already proved to be terminating and those
whose status is still unknown. In our work we also proceed
by splitting the transition relation into a terminating part and
an unknown part. However, in [16] this division is achieved
by means of a fixpoint computation, while our approach is
constraint-based.

II. PRELIMINARIES

A. SMT and Max-SMT

Let P be a finite set ofpropositional variables. If p ∈ P ,
thenp and¬p are literals. Thenegationof a literal l, written
¬l, denotes¬p if l is p, and p if l is ¬p. A clause is a
disjunction of literals. Apropositional formulais a conjunction
of clauses. The problem ofpropositional satisfiability(abbrevi-
ated as SAT) consists in, given a formula, to determine whether

int main() {
int x, y, z;

ℓ1: while (y ≥ 1) {
x--;

ℓ2: while (y < z) {
x++; z--;

}
y = x+ y;
} }

ρτ1 : y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ2 : y < z, x′ = x+ 1, y′ = y, z′ = z − 1
ρτ3 : y ≥ z, x′ = x, y′ = x+ y, z′ = z

ℓ1

ℓ2

τ1

τ2

τ3

Θ(ℓ1) ≡ true

Θ(ℓ2) ≡ false

Fig. 1. Program and its transition system.

or not it is satisfiable, i.e., if it has amodel: an assignment of
Boolean values to variables that satisfies the formula.

An extension of SAT is thesatisfiability modulo theories
(SMT) problem [17]: to decide the satisfiability of a given
quantifier-free first-order formula with respect to a background
theory. Here we will consider the theories oflinear arithmetic
(LA), where literals are linear inequalities, and the more
general theory ofnon-linear arithmetic (NA), where literals
are polynomial inequalities.

Another generalization of SAT is theMax-SAT problem
[17]: it consists in, given aweightedformula F where each
clauseCi has a weightωi (a positive number or infinity), to
find the assignment such that the cost, i.e., the sum of the
weights of the falsified clauses, is minimized. Clauses with
infinite weight are calledhard, while the rest are calledsoft.
Equivalently, the problem can be seen as finding the model
of the hard clauses such that the sum of the weights of the
falsified soft clauses is minimized.

Finally, the problem ofMax-SMT [18] merges Max-SAT
and SMT, and is defined from SMT analogously to how Max-
SAT is derived from SAT. Namely, theMax-SMT problem
consists in, given a weighted formula, to find an assignment
that minimizes the sum of the weights of the falsified clauses
in the background theory.

B. Transition Systems, Invariants and Ranking Functions

Henceforth we will model imperative programs by means
of transition systems. A transition systemS = (v,L,Θ, T)
consists of a tuple ofvariablesv, a set oflocationsL, a map
Θ from locations to formulas characterizing the initial values
of the variables, and a set oftransitionsT . Each transition
τ ∈ T is a triple (ℓ, ℓ′, ρ), whereℓ, ℓ′ ∈ L are thepre and
post locations respectively, andρ is the transition relation:
a formula over the program variablesv and their primed
versionsv′, which represent the values of the variables after
the transition. See Fig. 1 for an example of a program together
with a corresponding representation as a transition system.

From now on we assume that variables takeintegervalues
and programs arelinear, i.e., the initial conditionsΘ and
transition relationsρ are described as conjunctions of linear
inequalities. Strict inequalities may be translated into non-strict
ones thanks to the integer type of the variables.

202 219

A stateis an assignment of a value to each of the variables
in v. A configurationis a pair(ℓ, σ) consisting of a locationℓ
and a stateσ. A computationis a (possibly infinite) sequence
of configurations(ℓ0, σ0), (ℓ1, σ1), ... such thatσ0 |= Θ(ℓ0),
and for each pair of consecutive configurations(ℓi, σi) and
(ℓi+1, σi+1), there exists a transitionτ = (ℓi, ℓi+1, ρ) ∈ T
such that(σi, σi+1) |= ρ. A configuration(ℓ, σ) is reachable
if there exists a computation ending at(ℓ, σ). A transition
system is said to beterminating if all its computations are
finite. The problem that we target in this work is, given a
transition system, to determine if it is terminating or not.

A transition τ = (ℓ, ℓ′, ρ) is disabled if it can never be
executed, i.e., if for all reachable configuration(ℓ, σ), there
does not exist anyσ′ such that(σ, σ′) |= ρ. A transition
τ is called finitely executableif in any computation,τ is
only executed a finite number of times (in particular, ifτ is
disabled). Otherwise, i.e., if there exists a computation where
τ is executed infinitely, we say thatτ is infinitely executable.

An assertionis a first-order formula overv. An assertionI
is an invariant at locationℓ if for any reachable configuration
(ℓ, σ), it holds thatσ |= I. An invariant mapµ assigns an
invariantµ(ℓ) to each of the locationsℓ. An important class
of invariant maps is that ofinductive invariant maps:

Definition 1: An invariant mapµ is said to beinductiveif:

• [Initiation] For every locationℓ ∈ L: Θ(ℓ) |= µ(ℓ)
• [Consecution] For every transitionτ = (ℓ, ℓ′, ρ) ∈ T :

µ(ℓ) ∧ ρ |= µ(ℓ′)′.

Invariant maps are fundamental when analyzing program
termination. For instance, a transitionτ = (ℓ, ℓ′, ρ) is proved to
be disabled if there is an invariantµ(ℓ) at locationℓ such that
µ(ℓ) ∧ ρ is unsatisfiable. In general, ifµ is an invariant map,
then any transitionτ = (ℓ, ℓ′, ρ) can be safely strengthened
by replacing the transition relationρ by µ(ℓ) ∧ ρ.

The basic idea of the approach we follow for proving
program termination [5] is to argue by contradiction that no
transition is infinitely executable. First of all, no disabled
transition can be infinitely executable trivially. Moreover, one
just needs to focus on transitions joining locations in the
same strongly connected component (SCC): if a transition is
executed over and over again, then its pre and post locations
must belong to the same SCC. So let us assume that one has
found aranking functionfor such a transitionτ , according to:

Definition 2: Let τ = (ℓ, ℓ′, ρ) be a transition such thatℓ
and ℓ′ belong to the same SCC, denoted byC. A function
R : v → Z is said to be aranking functionfor τ if:

• [Boundedness]ρ |= R ≥ 0
• [Strict Decrease]ρ |= R > R′

• [Non-increase] For every τ̂ = (ℓ̂, ℓ̂′, ρ̂) ∈ T such that
ℓ̂, ℓ̂′ ∈ C: ρ̂ |= R ≥ R′

Note that boundedness and strict decreaseonly depend on
τ , while non-increase depends onall transitions in the SCC.

The key result is that ifτ = (ℓ, ℓ′, ρ) admits a ranking
function R, then it is finitely executable. Indeed, first notice
that if one can executeτ from a configuration(ℓ, σ) then
R(σ) ≥ 0, because of boundedness. Also, the value ofR

at the states along any path contained inC cannot increase,
thanks to the non-increase property. Moreover, in any cycle
contained inC traversingτ , the value ofR strictly decreases,
due to the strict decrease property. Now, let us assume that
there was a computation whereτ was executed infinitely. Such
a computation would eventually visit only locations inC.
Because of the previous observations, by evaluatingR at the
states at whichτ is executed we could construct an infinitely
decreasing sequence of non-negative integers, a contradiction.

Finitely executable transitions can be safely removed from
the transition system as regards termination analysis. This in
turn may break the SCC’s into smaller pieces. If by applying
this reasoning recursively one can prove that all transitions are
finitely executable, then the transition system is terminating.

C. Constraint-Based Program Analysis

Here we review theconstraint-based program analysis
approach [6], [9]. The idea is to consider a template for
candidate invariant properties (respectively, ranking functions),
e.g., linear inequalities (linear expressions). These templates
involve both program variables as well as unknowns whose
values have to be determined so as to ensure the required prop-
erties. To this end, the implications in Definition 1 (Definition
2) are expressed by means ofconstraints(hence the name of
the approach) on the unknowns. If implications are encoded
soundly, any solution to the constraints yields an invariant map
(ranking function). Specifically, if linear arithmetic is the target
language, this can be achieved with Farkas’ Lemma:

Theorem 1 (Farkas’ Lemma):Let S be a system of linear
inequalitiesAx + b ≤ 0 (A ∈ Rm×n, b ∈ R

m) over real
variablesxT = (x1, . . . , xn). WhenS is satisfiable, it entails
a linear inequalitycTx + d ≤ 0 (c ∈ R

n, d ∈ R) iff there is
λ ∈ R

m such thatλ ≥ 0, cT = λTA andd ≤ λT b. Further,
S is unsatisfiable iff1 ≤ 0 can be so derived.

For clarity, henceforth the following notation is used. Given
a conjunction of linear inequalitiesAx + b ≤ 0 and a linear
inequalitycTx+d ≤ 0, where the coefficientsaij , bi, cj , d may
be real numbers or unknowns, we denote byAx + b ≤ 0 ⊢
cTx+ d ≤ 0 the set of constraints on the unknown coefficients
and on fresh real unknownsλ = (λ1, . . . , λm), consisting in
λ ≥ 0, cT = λTA andd ≤ λT b.

III. T ERMINATION ANALYSIS WITH MAX -SMT

In this section we first describe a constraint-based method
for termination analysis that uses SMT and identify some of
its shortcomings (Sect. III-A). Then we show how Max-SMT
can be used to overcome these limitations (Sect. III-B).

A. An SMT Approach to Proving Termination

Following the approach described in Sect. II-B [5], to show
that a transitionτ is finitely executable and thus discard it,
one needs either a disability argument or a ranking function
for it. To this end we construct a constraint system, i.e. an SMT
formula, whose solutions correspond to either an invariant that
proves disability, or a ranking function. Given an SCC, the
constraint system, if satisfiable, will allow discarding (at least,

203220

but possibly more than) one of the transitions in the SCC. By
iterating this procedure until no cycles are left we will obtain
a termination argument for the SCC.

To construct the constraint system, first of all we consider:
• for each locationℓ, a linear invariant templateIℓ(v) ≡

iℓ,0 +
∑

v∈v iℓ,v · v ≤ 0, whereiℓ,0, iℓ,v are unknown;
• a linear ranking function templateR(v)≡r0+

∑
v∈v rv ·v,

wherer0, rv are unknown.
Recall that ranking functions are associated to transitions,

not to locations. However, instead of introducing a template
for each transition, we just have one single template, which, if
the constraint system has a solution, will be a ranking function
for a transitionto be determined by the solver.

Similarly to [6], we take the following constraints from the
definitions of inductive invariant and ranking function:

Initiation: For ℓ ∈ L: Iℓ
def
= Θ(ℓ) ⊢ Iℓ

Disability: For τ = (ℓ, ℓ′, ρ) ∈ T : Dτ
def
= Iℓ ∧ ρ ⊢ 1 ≤ 0

Consecution: For τ = (ℓ, ℓ′, ρ) ∈ T : Cτ
def
= Iℓ ∧ ρ ⊢ I ′ℓ′

Boundedness: For τ = (ℓ, ℓ′, ρ) ∈ T : Bτ
def
= Iℓ ∧ ρ ⊢ R ≥ 0

Strict Decrease:For τ = (ℓ, ℓ′, ρ) ∈ T : Sτ
def
= Iℓ ∧ ρ ⊢ R > R′

Non-increase: For τ = (ℓ, ℓ′, ρ) ∈ T : Nτ
def
= Iℓ ∧ ρ ⊢ R ≥ R′

Let L andT be the sets of locations and transitions in the
SCC in hand, respectively. Let alsoP be the set ofpending
transitions, i.e., which have not been proved to be finitely
executable yet. Then we build the next constraint system:
∧

ℓ∈L

Iℓ∧
∧

τ∈T

(
Dτ∨Cτ

)
∧
∨

τ∈P

(
Dτ∨(Bτ∧Sτ)

)
∧
(
(
∧

τ∈P

Nτ)∨
∨

τ∈P

Dτ

)
.

The first two conjuncts guarantee that an invariant map is
computed; the other two, that at least one of the pending
transitions can be discarded. Notice that, if there is no disabled
transition, we ask thatall transitions inP are non-increasing,
but only that at leastone transition in P (the next to be
removed) is both bounded and strict decreasing. Note also
that for finding invariants one has to take into accountall
transitions in the SCC, even those that have already been
proved to be finitely executable: otherwise some reachable
states might not be covered, and the invariant generation
would become unsound. Hence in our termination analysis we
consider two transition systems: the original transition system
for invariant synthesis, whose transitions areT and which
remains all the time the same; and thetermination transition
system, whose transitions areP , i.e, where transitions already
shown to be finitely executable have been removed. This
duplication is similar to thecooperation graphof [8].

However, this first approach is problematic when a ranking
function needs several invariants. A possible solution is to
add more templates iteratively, so that for example initially
invariants consisting of a single linear inequality are tried,
if unsuccessful then invariants consisting of a conjunction of
two linear inequalities are tried, etc. But when proceeding in
this way, all problems before the right number of invariants
is found are unsatisfiable. This is wasteful, as no constructive
information is retrieved from unsatisfiable constraint systems.

Another problem with this method for analyzing termination
is that the kind of termination proofs it yields may be too
restricted. More specifically, when one proves that a transition
τ is finitely executable, then a single termination argument
shows there is no computation whereτ appears infinitely.
Although this produces compact proofs, on the other hand
sometimes there may not exist such a unique reason for
termination, and it becomes necessary a more fine-grained
examination. However, the approach as presented so far does
not provide a natural way or guidance for refining the analysis.

B. A Max-SMT Approach to Proving Termination

The main contribution of our work is to show that the
constraint system can be expressed in such a way that, even
when it turns out to be unsatisfiable, some information useful
for refining the termination analysis can be obtained. The key
observation is that, even though our aim is to prove transitions
to be finitely executable (by finding a ranking function or an
invariant that disables them), if we just find an invariant, or an
invariant and aquasi-ranking functionthat is close to fulfill
all required conditions, we have progressed in our analysis.

The idea is to consider the constraints guaranteeing invari-
ance ashard, so that any solution to the constraint system will
satisfy them, while the rest aresoft. Let us consider proposi-
tional variablespB, pS andpN, which intuitively represent if the
conditions of boundedness, strict decrease and non-increase in
the definition of ranking function are violated respectively, and
corresponding weightsωB, ωS andωN. We consider now the
next constraint system (where soft constraints are written[·, ω],
and hard ones as usual):
∧

ℓ∈L

Iℓ∧
∧

τ∈T

(
Dτ ∨Cτ

)
∧

∨

τ∈P

(
Dτ ∨

(
(Bτ ∨pB)∧(Sτ ∨pS)

))
∧

((∧

τ∈P

Nτ

)
∨
∨

τ∈P

Dτ∨pN
)
∧[¬pB, ωB]∧[¬pS, ωS]∧[¬pN, ωN].

Note that ranking functions have cost 0, and (if no transition
is disabled) functions that fail in any of the conditions are
penalized with the respective weight. Thus, the Max-SMT
solver looks for the best solution and gets a ranking function
if feasible; otherwise, the weights guide the search to get
invariants and quasi-ranking functions that satisfy as many
conditions as possible.

Hence this Max-SMT approach allows recovering informa-
tion even from problems that would be unsatisfiable in the
initial method. This information can be exploited to perform
dynamic trace partitioning [19] as follows. Assume that the
optimal solution to the above Max-SMT formula has been
computed, and let us consider a transitionτ ∈ P such that
Dτ ∨ ((Bτ ∨ pB)∧ (Sτ ∨ pS)) evaluates to true in the solution.
Then we distinguish several cases depending on the properties
satisfied byτ and the computed functionR:

• If τ is disabled then it can be removed.
• If R is non-increasing and satisfies boundedness and strict

decrease forτ , thenτ can be removed too:R is a ranking
function for it.

• If R is non-increasing and satisfies boundedness forτ

but not strict decrease, one can splitτ in the termination

204 221

transition system into two new transitions: one where
R > R′ is added toτ , and another one whereR = R′

is enforced. Then the new transition withR > R′ is
automatically eliminated, asR is a ranking function for
it. Equivalently, this can be seen as addingR = R′ to τ .
Now, if the solver could not proveR to be a true ranking
function for τ because it was missing an invariant, this
transformation will guide the solver to find that invariant
so as to disable the transition withR = R′.

• If R is non-increasing and satisfies strict decrease forτ

but not boundedness, the same technique from above can
be applied: it boils down to addingR < 0 to τ .

• If R is non-increasing but neither strict decrease nor
boundedness are fulfilled forτ , thenτ can be split into
two new transitions: one withR < 0, and another one
with R ≥ 0 ∧R = R′.

• If R does not satisfy the non-increase property, then it
is rejected; however, the invariant map from the solution
can be used to strengthen the transition relations for the
following iterations of the termination analysis.

Note this analysis may be worth applying on other transi-
tions τ in the termination transition system apart from those
that makeDτ ∨ ((Bτ ∨ pB) ∧ (Sτ ∨ pS)) true. E.g., ifR is a
ranking function for a transitionτ but fails to be so for another
oneτ ′ because strict decrease does not hold, then, according
to the above discussion,τ ′ can be strengthened withR = R′.

On the other hand, working in this iterative way requires
imposing additional constraints to avoid getting to a standstill.
Namely, in the case where non-increase does not hold and
so one would like to exploit the invariant, it is necessary to
impose that the invariant is not redundant. More in detail,
let us consider a fixed locationℓ, and let I(1)ℓ , . . . , I

(k)
ℓ be

the previously computed invariants at locationℓ. ThenIℓ, the
invariant to be generated atℓ, is redundant if it is implied

by I
(1)
ℓ , ..., I(k)ℓ , i.e., if Eℓ

def
= ∀v (I

(1)
ℓ (v) ∧ . . . ∧ I

(k)
ℓ (v) →

Iℓ(v)). So we imposepN → ¬
∧

ℓ∈L Eℓ to ensure that violating
non-increase leads to non-redundant invariants. Conditions are
added similarly to avoid redundant quasi-ranking functions.

Another advantage of this Max-SMT approach is that by
using different weights we can express priorities over condi-
tions. Since, as explained above, violating the property of non-
increase invalidates the computed functionR, it is convenient
to makeωN the largest weight. On the other hand, when non-
increase and boundedness are fulfilled but not strict decrease
an equality is added to the transition, whereas when non-
increase and strict decrease are fulfilled but not boundedness
just an inequality is added. As we prefer the former to the
latter, in our implementation (see Sect. V) we setωB > ωS.

A further improvement is the generation oftermination
implications. A termination implication at a locationℓ is an
assertionJ(v) such that any transition in thetermination
transition systemthat leads intoℓ implies it, i.e., it holds
that ρ |= J(v′), where ρ is the relation of the transition.
Thus, J will eventuallyhold when ℓ is reached (although,
unlike ordinary invariants, may not initially be true; see

(c)(a) (b) (d)

Θ(ℓ1) ≡ true Θ(ℓ2) ≡ false

ρτ1 : y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ1.2 : x < 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ2 : y < z, x′ = x+ 1, y′ = y, z′ = z − 1
ρτ3 : y ≥ z, x′ = x, y′ = x+ y, z′ = z

ρτ ′3 : y ≥ 1, y ≥ z, x′ = x, y′ = x+ y, z′ = z

ℓ1ℓ1ℓ1 ℓ1

ℓ2ℓ2ℓ2 ℓ2

τ1τ1 τ1.2τ1.2

τ2

τ3 τ ′3 τ ′3

Fig. 2. Evolution of the termination transition system: initially (a) and after
the first (b), second (c) and third (d) round.

Example 1 below). Hence, it can be propagated forward in
the termination transition system to the transitions going out
from ℓ. To produce termination implications, for each location
ℓ a new linear inequality templateJℓ(v) is introduced and the
following constraint is imposed:

∧
τ=(ℓ̂,ℓ,ρ)∈P

(Dτ ∨ I
ℓ̂
∧ ρ ⊢

J ′

ℓ) . Additional constraints are enforced to ensure that new
termination implications are not redundant with the already
computed invariants and termination implications.

Example 1: Let us show a termination analysis of the
program in Fig. 1. In the first round, the solver finds the
invariant y ≥ 1 at ℓ2 and the ranking functionz for τ2.
While y ≥ 1 can be added toτ3 (resulting into a new
transitionτ ′3), the ranking function allows eliminatingτ2 from
the termination transition system (see Fig. 2 (b)).

In the second round, the solver cannot find a ranking
function. However, thanks to the Max-SMT formulation, it can
produce the quasi-ranking functionx, which is non-increasing
and strict decreasing forτ1, but not bounded. This quasi-
ranking function can be used to split transitionτ1 into two
new transitionsτ1.1 andτ1.2 as follows:

ρτ1.1 : x ≥ 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ1.2 : x < 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

Then τ1.1 is immediately removed, sincex is a ranking
function for it. The current termination transition system is
given in Fig. 2 (c).

In the third and final round, the termination implication
x < 0 is generated atℓ2, together with the ranking function
y for transition τ ′3. Note that the termination implication is
crucial to prove the strict decrease ofy for τ ′3, and that the
previously generated invarianty ≥ 1 at ℓ2 is needed to ensure
boundedness. Nowτ ′3 can be removed, which makes the graph
acyclic (see Fig. 2 (d)). This concludes the termination proof.

205222

x < 0

x > 0

y < 0

y > 0

z < 0

z > 0

Fig. 3. Chain of locations obtained from a sequence of statements
assume(x 6= 0); assume(y 6= 0); assume(z 6= 0). Note disequalities are
not natively supported, and so have to be split into disjunctions of inequalities.

IV. I MPLEMENTATION

The method presented in Sect. III has been implemented in
the toolCppInv1. This section describes this implementation.

CppInv admits code written inC++ as well as in the lan-
guage ofT2 [10]. The system analyses programs with integer
variables, linear expressions and function calls. Variables of
other data types, such as floating-point variables, are treated
as unknown values. Function calls are handled with techniques
similar to those in [20], although currently the returned value
is ignored. Further, for recursive functions, after a function call
we assign unknowns to all variables that can be modified in the
call (i.e., global variables and variables passed by reference).

In the transformation from the source code to the internal
transition system representation,CppInv attempts to reduce
the number of locations by composing transitions. Still, this
preprocessing may result in an exponential growth in the
number of transitions. As our technique does not require
minimized transition systems for soundness, the tool stops this
location minimization if a threshold number of transitions is
reached. Moreover, whenever a chain of locations connected
by transitions that do not modify variables (see Fig. 3) is
detected,CppInv does not attempt to eliminate the locations:
since no variable is updated, in these transitions any function
satisfies the non-increase condition, while no ranking function
is possible. For this reason, when producing the constraints,
these transitions are ignored as far as termination is concerned,
and are only considered for the generation of invariants.

Once the input is represented as a transition system, the ac-
tual termination analysis starts. See functionproved TS term:

bool proved TS term(Trans SysS = (v, L, Θ, T)) {
// C is the list of SCC’s topologically sorted according to ordering≺

(C, ≺) = computeSCCsand topologically sort(S);
for (C ∈ C by ≺) {

(L, T) = (locations(C), transitions(C));
P = copy(T);
for (ℓ ∈ L : ∃(ℓ̂, ℓ, ρ) ∈ T with ℓ̂ ∈ Ĉ ≺ C)
Θ(ℓ) = Θ(ℓ) ∨ SPost(ρ);

if (not proved SCC term(L, T, P)) return false; }
return true ; }

The SCC’s are computed and topologically sorted, and each
SCC is processed according to this order. Processing an SCC
involves first performing a copy of the transitions for keeping
track of those not proven finitely executable yet. Then the
initial conditions are updated with the strongest postconditions
of the incoming transitions from previous SCC’s, where the
strongest postcondition of a transition relationρ(v, v′) is the

1CppInv, together with all benchmarks used in the experimental evaluation
of Sect. V, is available at www.lsi.upc.edu/∼albert/cppinv-term-bin.tar.gz.

assertionSPost(ρ)(v) ≡ ∃w ρ(w, v). Finally the SCC is
analysed for termination. If it could not be proved terminating,
the procedure stops. Otherwise the next SCC is dealt with.

The analysis of termination of SCC’s is orchestrated by the
function proved SCC term:

bool proved SCC term(Set Loc L, Set TransT , Set TransP) {
if (dis trans(L, T , P) or rank fun(L, T , P) or term impl(L, T , P)){

if (P == ∅) return true ;
for (C′ SCC in the graph ofP) {

T ′ = transitions(C′);
if (T ′

6= ∅ and not proved SCC term(L, T , T ′)) return false; }
return true ; }

else return false; }

It takes as arguments: a set of locationsL and a set of transi-
tionsT , corresponding to an SCC of the transition system; and
the termination transition system: a non-empty setP ⊆ T of
transitions that still have to be proved finitely executable. As
explained in Sect. II-B, one may assume that the graph induced
by P is strongly connected. The function returnstrue if all
transitions inP can be proved finitely executable. We found
out that, instead of directly solving the full constraint system
introduced in Sect. III-B, in practice it is preferable to proceed
by phases. Each phase2 (functions dis trans, rank fun and
term imp) attempts to remove transitions fromP by different
means, and returnstrue if P has become empty or it is no
longer strongly connected. In the former case, we are done. In
the latter, the same procedure is recursively called. If after all
phasesP is non-empty, we report failure to prove termination.

In the first phase (functiondis trans), CppInv attempts
to eliminate transitions with disability arguments by gen-
erating the appropriate invariants (neither ranking functions
nor termination implications are considered at this point).
This is achieved by solving the following Max-SMT formula:∧

ℓ∈L Iℓ∧
∧

τ∈T (Dτ∨Cτ)∧(
∨

τ∈T Dτ∨pD)∧[¬pD, ωD]
3, where

pD is a propositional variable meaning that no transition can
be disabled, andωD is the corresponding weight. Transitions
that are detected to be disabled (by means of a call to an
SMT solver) are removed both from the original and the
termination transition system. Invariants are used to strengthen
the transition relations as described in Sect. II-B. The process
is repeated while new transitions can be disabled.

bool dis trans(Set Loc L, Set TransT , Set TransP) {
cont = true;
while (cont) {
cont = false;
for (τ = (ℓ, ℓ′, ρ) ∈ P)

if (ρ is UNSAT) // τ is disabled
(T , P) = (T − {τ}, P − {τ});

if (P == ∅) return true ;
H =

∧

ℓ∈L

Iℓ ∧

∧

τ∈T

(Dτ ∨ Cτ) ∧
∨

τ∈T

(Dτ ∨ pD);

S = [¬pD, ωD];
(I, c) = solve(H ∧ S); // I invariant map,c cost of solution
if (c == ∞) break; // No solution to hard clauses
for (ℓ ∈ L, (ℓ, ℓ′, ρ) ∈ T) // Strengthen relation with invariant
ρ = ρ ∧ I(ℓ);

if (c == 0) cont = true; }
return not is strongly connected(P); }

2These phases have a time limit in our implementation although this is not
made explicit in the pseudo-code shown below.

3Constraints that avoid redundancy are not included for simplicity.

206 223

www.lsi.upc.edu/~albert/cppinv-term-bin.tar.gz

In the second phase (functionrank fun), the system elim-
inates transitions by using ranking functions as arguments
(termination implications are not considered at this point). If
the computed functionR satisfies the non-increase property,
then each of the transitionsτ in the termination transition
system is examined and either removed ifR is a ranking
function for τ , or split otherwise, as described in Sect. III-B.

bool rank fun(Set Loc L, Set TransT , Set TransP){
while (true) {

H =
∧

ℓ∈L

Iℓ ∧

∧

τ∈T

Cτ ∧

∨

τ∈P

(
(Bτ ∨ pB) ∧ (Sτ ∨ pS)

)
∧

∧

τ∈P

(Nτ ∨ pN)

S = [¬pB, ωB] ∧ [¬pS, ωS] ∧ [¬pN, ωN];
(I,R, c) = solve(H ∧ S);
if (c == ∞) return false; // No solution to hard clauses
for (ℓ ∈ L, (ℓ, ℓ′, ρ) ∈ T) // Strengthen relation with invariant
ρ = ρ ∧ I(ℓ)

for (τ = (ℓ, ℓ′, ρ) ∈ P)
if (ρ is UNSAT) // τ is disabled

(T , P) = (T − {τ}, P − {τ});
if (non increase(R))

for (τ ∈ P)
if (bounded(τ , R) and strict decrease(τ , R)) P = P − {τ};
else split (τ , R, P); // Splits τ

if (P == ∅ or not is strongly connected(P)) return true ; } }

The third and final phase (functionterm impl, not detailed
here for lack of space) is very similar to the previous one, with
the difference that termination implications are also included.

As regards the constraints, we restrain ourselves to invari-
ants and ranking functions withintegercoefficients, since this
allows us to exploit efficient non-linear solving techniques
[21]. Moreover, in order to perform integer reasoning, the
following variation of Farkas’ Lemma, based on the Gomory-
Chvátal cutting plane rule [22], is employed:

Lemma 1:LetAx+b ≤ 0 (A ∈ R
m×n, b ∈ R

m) be a system
of linear inequalities over integer variablesxT = (x1, . . . , xn),
andcTx+d ≤ 0 (c ∈ Z

n, d ∈ R) be a linear inequality. If there
is λ ∈ R

m, i ∈ Z and f ∈ R such thatλ ≥ 0, cT = λTA,
λT b = i − f , 0 ≤ f < 1 and i ≥ d, thenAx + b ≤ 0 entails
cTx+ d ≤ 0.
Lemma 1 allows transforming an∃∀ problem into an∃
problem. If all coefficients in the premise are known values,
the resulting satisfiability problem is an SMT problem over
LA. Otherwise, an SMT problem over NA is obtained. Fur-
thermore, as some unknowns are integer (the coefficients) and
some are real (the multipliers), the resulting problems have
mixed types.

CppInv uses Barcelogic [23] for solving the generated
constraints. The Max-SMT(NA) solver for mixed non-linear
arithmetic inBarcelogic extends the techniques presented in
[21] for solving SMT(NIA) problems. This is achieved by
allowing integer and real variables in the underlying linear
arithmetic solver, and wrapping this solver with a branch-and-
bound scheme for optimization [18].

V. EXPERIMENTAL EVALUATION

In this section we show experiments that evaluate the
performance ofCppInv on a wide set of examples, which have
been taken from the online programming learning environment
Jutge.org [7] (see www.jutge.org), and from benchmark suites
in [8] and in research.microsoft.com/en-us/projects/t2/. We

TABLE I
RESULTS WITH BENCHMARKS FROMT2

#ins. noMS MS MS+QR MS+QR+TI T2
Set1 449 212 220 228 238 245
Set2 472 245 252 262 276 279

TABLE II
RESULTS WITH BENCHMARKS FROMJutge.org.

#ins. CppInv T2
P11655 367 324 328
P12603 149 143 140
P12828 783 707 710
P16415 98 81 81
P24674 177 171 168
P33412 603 478 371

#ins. CppInv T2
P40685 362 324 329
P45965 854 780 793
P70756 280 243 235
P81966 3642 2663 926
P82660 196 174 177
P84219 413 325 243

provide here a comparison with the new version ofT2, which
according to the results given in [8] is performing much better
when proving termination than most of the existing tools, in-
cludingTerminator [12], AProVE [25] or ARMC [24], among
others. We have also triedCProver [13] and Loopfrog [14],
but the results were not good on these sets of benchmarks. All
experiments were performed on an Intel Core i7 with 3.40GHz
clock speed and 16 GB of RAM.

The first two considered sets of benchmarks are those
provided by theT2 developers. Following the experiments
in [8], we have set a 300 secs. timeout. To show the impact of
the different techniques described in the paper, Table I presents
the number of instances in each set (#ins.) and the number of
those that we proved terminating with the following settings:

• (noMS)implements the generation of invariants and rank-
ing functions using a translation to SMT(NA), but without
using Max-SMT, i.e. with all constraintshard. The fact
that this plain version can already prove many instances
hints on the goodness of our underlying algorithm and
the impact of using our NA-solver in this application.

• (MS) implements the generation of invariants and ranking
functions using Max-SMT(NA), where the constraints
imposed by the ranking function are added assoft.

• (MS+QR)adds to the previous case the possibility to use
quasi-ranking functions.

• (MS+QR+TI) adds to the previous case the possibility to
infer termination implications.

Note that every added improvement allows us to prove
some more instances, while none is lost due to the additional
complexity of the constraints generated.

Moreover, by looking into the results in more detail, we
have observed that our tool andT2 complement each other
to some extent: in Set1CppInv can prove 7 instances which
cannot be proved byT2, while we cannot prove 14 which
can be handled byT2; similarly, in Set2CppInv can prove
8 programs which cannot be proved byT2, while we cannot
prove 11 that can be handled byT2. The average time in YES
answers ofT2 is 2.9 secs and ofCppInv is 12.8 secs.

In Table II, we show the comparison ofCppInv (with
all described techniques) andT2 on our benchmarks from
the programming learning environmentJutge.org, which is

207224

www.jutge.org
http://research.microsoft.com/en-us/projects/t2/

ℓ1 ℓ2

y > 0 ∧ y′ = y − 1 ∧ x′ = x− 1
y ≤ 0

y < 0 ∧ y′ = y + x

Θ(ℓ1) ≡ x > y Θ(ℓ2) ≡ false

Fig. 4. Program that requires invariants from previous SCC’s.

currently being used in several programming courses in the
Universitat Politècnica de Catalunya. The benchmark suite
consists of thousands of solutions written by students to
12 different programming problems. These programs can be
considered challenging since most often they are not the
most elegant solution but one with many more conditional
statements than necessary (e.g., the largest instance we can
successfully handle has nearly 700 transitions). Here, due to
the size of the benchmark suites (see column #ins.), for the
execution of both tools we have set a 120 secs. timeout.
The average time in YES answers ofT2 is 1.7 secs. and of
CppInv is 1.6 secs. Note that, in order to run these benchmarks
in T2, we have translated them intoT2 format using our
intermediate transition graph. This may be a disadvantage for
T2, as it happens in the reverse way whenCppInv is run onT2
benchmark set. In particular, we think the bad performance of
T2 in sets P33412, P81966 and P84219 may be related to the
way we handle division, which is crucial in these examples.

VI. CONCLUSIONS ANDFUTURE WORK

In short, the contributions of this paper are:

• a novel Max-SMT constraint-based approach to proving
termination. Thanks to expressing the synthesis of a
ranking function and a supporting invariant as a Max-
SMT problem, we achieve a better guided and more fine-
grained termination analysis than SMT-based methods.
Max-SMT reveals to be a convenient framework for
constraint-based termination analysis. In addition to our
method, other techniques such asunaffecting score max-
imization [10] can be naturally modeled in Max-SMT.

• a prototype of termination analyzer for (a subset of)C++.

One of the shortcomings of our approach is that invariant
synthesis is restricted to a single SCC. If invariants from
previous SCC’s have not been generated but are later required,
our technique cannot prove termination. E.g., in the program
shown in Fig. 4, the invariantx > 0 must be discovered
at ℓ1 so as to prove that the rightmost transition is finitely
executable, although it is not necessary for proving that the
leftmost loop is terminating. For future work we plan to
develop techniques to overcome this kind of situations. A
promising idea is to consider initiation conditions as soft:
then the generatedquasi-invariantsrepresent what is missing
from previous SCC’s, and then can be propagated backwards.
Alternatively, these quasi-invariants can be used to split the
initial conditions of the current SCC. Finally, as a byproduct,
this would allow us to solve the conditional termination
problem as well.

ACKNOWLEDGMENT

This research was supported by Spanish MEC/MICINN
under grant TIN 2010-21062-C02-01. We thankJutge.org for
providing benchmarks, and Byron Cook for giving us access
to T2 and their benchmarks and for his helpful comments.

REFERENCES

[1] D. Dams, R. Gerth, and O. Grumberg, “A heuristic for the automatic
generation of ranking functions,” inWorkshop on Advances in Verifica-
tion, 2000, pp. 1–8.

[2] M. Colón and H. Sipma, “Synthesis of linear ranking functions,” in
TACAS, ser. LNCS, vol. 2031. Springer, 2001, pp. 67–81.

[3] A. Podelski and A. Rybalchenko, “A complete method for the synthesis
of linear ranking functions,” inVMCAI, ser. LNCS, vol. 2937. Springer,
2004, pp. 239–251.

[4] A. Tiwari, “Termination of linear programs,” inCAV, ser. LNCS, vol.
3114. Springer, 2004, pp. 70–82.

[5] M. Colón and H. Sipma, “Practical methods for proving program
termination,” inCAV, ser. LNCS, vol. 2404. Springer, 2002, pp. 442–
454.

[6] A. Bradley, Z. Manna, and H. Sipma, “Linear ranking with reachability,”
in CAV, ser. LNCS, vol. 3576. Springer, 2005, pp. 491–504.

[7] J. Petit, O. Giménez, and S. Roura, “Jutge.org: an educational program-
ming judge,” inSIGCSE, ACM, 2012, pp. 445–450.

[8] M. Brockschmidt, B. Cook, and C. Fuhs, “Better termination proving
through cooperation,” inCAV, 2013, to appear.

[9] M. Colón, S. Sankaranarayanan, and H. Sipma, “Linear Invariant Gen-
eration Using Non-linear Constraint Solving,” inCAV, ser. LNCS, vol.
2725. Springer, 2003, pp. 420–432.

[10] B. Cook, A. See, and F. Zuleger, “Ramsey vs. lexicographic termination
proving,” in TACAS, ser. LNCS, vol. 7795. Springer, 2013, pp. 47–61.

[11] A. Podelski and A. Rybalchenko, “Transition invariants,” inLICS. IEEE
Computer Society, 2004, pp. 32–41.

[12] B. Cook, A. Podelski, and A. Rybalchenko, “Termination proofs for
systems code,” inPLDI, ACM, 2006, pp. 415–426.

[13] A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and D. Kroening,
“Loop summarization and termination analysis,” inTACAS, ser. LNCS,
vol. 6605. Springer, 2011, pp. 81–95.

[14] D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich, and C. Winter-
steiger, “Loopfrog: A Static Analyzer for ANSI-C Programs,” inASE,
IEEE, 2009, pp. 668–670.

[15] B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and M. Sagiv,
“Proving conditional termination,” inCAV, ser. LNCS, vol. 5123.
Springer, 2008, pp. 328–340.

[16] P. Ganty and S. Genaim, “Proving termination starting from the end,”
in CAV, 2013, to appear.

[17] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds.,Handbook
of Satisfiability, ser. Frontiers in Artificial Intelligence and Applications.
IOS Press, February 2009, vol. 185.

[18] R. Nieuwenhuis and A. Oliveras, “On SAT Modulo Theories and
Optimization Problems,” inSAT, ser. LNCS, vol. 4121. Springer, 2006,
pp. 156–169.

[19] L. Mauborgne and X. Rival, “Trace partitioning in abstract interpretation
based static analyzers,” inESOP, ser. LNCS, vol. 3444. Springer, 2005,
pp. 5–20.

[20] B. Cook, A. Podelski, and A. Rybalchenko, “Summarization for termi-
nation: no return!”Formal Methods in System Design, vol. 35, no. 3,
pp. 369–387, 2009.

[21] C. Borralleras, S. Lucas, A. Oliveras, E. Rodrı́guez-Carbonell, and
A. Rubio, “SAT Modulo Linear Arithmetic for Solving Polynomial
Constraints,”J. Autom. Reasoning, vol. 48, no. 1, pp. 107–131, 2012.

[22] J. A. Robinson and A. Voronkov, Eds.,Handbook of Automated Rea-
soning (in 2 volumes). Elsevier and MIT Press, 2001.

[23] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, and
A. Rubio, “The Barcelogic SMT Solver,” inCAV, ser. LNCS, vol. 5123.
Springer, 2008, pp. 294–298.

[24] A. Podelski and A. Rybalchenko, “ARMC: the logical choice for
software model checking with abstraction refinement,” inPADL, ser.
LNCS, vol. 4354. Springer, 2007, pp. 245–259.

[25] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl, “Automated
termination analysis of java bytecode by term rewriting,” inRTA
Volume 6 of LIPIcs., Schloss Dagstuhl, 2010, 259–276.

208 225

On the Concept of Variable Roles and
its Use in Software Analysis

Yulia Demyanova, Helmut Veith, Florian Zuleger
Vienna University of Technology

Abstract—Human written source code in imperative program-
ming languages exhibits typical patterns for variable use, such as
flags, loop iterators, counters, indices, bitvectors, etc. Although
it is widely understood by practitioners that these patterns are
important for automated software analysis tools, they are not
systematically studied by the formal methods community, and
not well documented in the research literature. In this paper, we
introduce the notion of variable roles on the example of basic
types (int, float, char) in C. We propose a classification of the
variables in a program by variable roles which formalises the
typical usage patterns of variables. We show that classical data
flow analysis lends itself naturally both as a specification for-
malism and an analysis paradigm for this classification problem.
We demonstrate the practical applicability of our method by
predicting membership of source files to the different categories
of the software verification competition SVCOMP 2013.

I. INTRODUCTION

Programs written in imperative programming languages,
such as C, Java, Perl, Python, share typical patterns of variable
use, like flags, loop iterators, counters, indices, bitvectors,
temporary variables, and so on. Experienced programmers
have informal knowledge of these patterns, to which we refer
as variable roles. For example, from the piece of C code
while(i<n) a[i++]=0;, it can be deduced that i is a
loop iterator and an array index. Similarly, from the statement
x&=y, we can infer that x is a bitvector.
In common programming languages, there is no direct map-
ping from data types to roles - multiple roles can be associated
with the same type. For example, in C, the type int can be
used to store such different values as boolean, file descriptor,
bitvector, and character literal. Moreover, it is not clear how to
extend standard type systems for languages like C to express
roles like array index, counter, and loop iterator. Additionally,
one variable can have several roles simultaneously, like the
variable i in the loop example above. In type systems, in
contrast, one variable must be assigned one and only one type.
Therefore, roles can not be considered simply as refined types.
Information about variable roles is implicitly contained in
the structure of the source code, thus the roles can often be
inferred by syntactic analysis. This can be done by analysing
the expressions or statements of a given kind, for example,
matching array indices in array subscripts. Alternatively, roles
can be inferred by searching for code patterns, for example,
t=x; x=y; y=t; is a typical pattern for a temporary
variable t.
The notion of a variable role has two dimensions. In general,
variable roles represent heuristics, which means that they can

be systematically studied and analysed, but they need to be
treated as auxiliary heuristic information. Thus, variable roles
can guide a verification tool, but the soundness of a formal
analysis must not depend on variable roles. Certain variable
roles, however, provide sound information, which can be relied
upon during verification, and thus these roles can be viewed
as types. We will explore these two dimensions of variable
roles in future work.
In this paper we define 14 variable roles with a standard data-
flow analysis. Our definition serves at the same time as an
algorithm to compute the roles. In order to choose the roles,
we have manually investigated 5.2 KLOC of C code from the
cBench benchmark [1]. We assigned roles to the variables of
basic types such as int, float and char. When choosing the
roles, we were inspired by typical programming patterns for
variable use in real life programs. We have chosen the roles in
such a way that a small number of roles is able to classify each
occurring program variable in the programs we considered. We
have implemented a prototype of a tool which maps basic-type
variables in C programs to sets of roles.
As this short paper is reporting work in progress, we are
currently exploring applications for variable roles. An im-
portant natural application is the use of variable roles to
create abstractions in software verification or choose abstract
domains through a better understanding of the program. For
example, in C programs integer variables are used to store
boolean flags, because there is no boolean type. When creating
an abstraction for a C program, we know that the predicate
x==0 provides sufficient information about a boolean variable
x. However, most state-of-the-art verification papers consider
a program as a logical formula and either ignore such implicit
information, or treat it as undocumented heuristics. For exam-
ple, the ASTREE static analyser [2] relies heavily on human
insight for selecting the right domain. Variable roles could be
used for automating this process, e.g., to suggest the use of
octagon or polyhedra domains for variables which occur only
in linear operations, BDDs for boolean variables, etc. This will
save a verification tool from enumerating all possible domains.
After submission of this paper, we learnt about current work in
this direction by the developers of the CPAchecker verification
tool [3].
Another important application area of our method is to clas-
sify source files, for example, from benchmarks for different
verification competitions, according to the relative number
of occurrences of variable roles in them. To demonstrate

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 209226ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

int x, y, n =1 0;
. . .
y =2 x;
while (x)
{

n++3;
x =4 x &5 (x-1);

}
a) bitvector, counter, iterator

int fd =1 open(path, flags);
int c, val =2 0;

while (read3(fd, &c, 1) > 0
&& isdigit4(c))

{
val =5 10*val + c-’0’;

}
b) character, file descriptor, linear

Fig. 1: Different patterns of use of integer variables

this point, we performed the following experiment with the
benchmarks from the software competition SVCOMP 2013
[4]. The competition distinguishes several categories of source
files, such as device drivers, embedded systems, concurrent
programs, and so on. The classification is done by human
experts, who manually analysed and comprehended the source
code. With our tool we computed the frequency of different
roles in each category and used this data to train a machine
learning tool to predict the competition categories for new
files. In a number of experiments, we randomly selected a
subset of the competition source files for training and used
the remaining source files to check our prediction against
the human classification. Importantly, we used a machine
learning technique not to infer roles, but rather to validate
their predictive power. The results of the experiments are
encouraging - the prediction is successful in more than 80%
of the cases. We highlight that our choice of the roles was
based on examples from cBench rather than SVCOMP.
The results of our experiment suggest that variable roles can be
used to interpret experimental results for current verification
tools. The strengths and weaknesses of the tools can be
identified by computing code metrics in terms of the relative
frequencies of the roles. This idea can be further elaborated
for building a portfolio-solver where we first analyse the
variable roles of the program under scrutiny and then select
the verification tool that is best suited.

Contributions:
• We identify 14 variable roles that commonly occur in

practical programs.
• We implement a prototype of a tool which assigns a set

of roles to every basic-type variable in a C program.
• Using our tool and a machine learning technique, we

predict the membership of a C program to a category
of the SW verification competition SVCOMP 2013. We
get encouraging results in a number of experiments.

II. FORMALISATION OF VARIABLE ROLES

A. Examples

We will use the C programs of Figure 1 to informally
introduce variable roles, whose formal definitions are given
later in the section. In the programs we have assigned labels
to the statements and expressions to which we refer from the
text.

The program in Figure 1a calculates the number of non-zero
bits of the variable x. In every loop iteration, a non-zero bit
of x is set to zero and the counter n is incremented. The loop
continues until all bits are set to zero. Although the variables
x and n are declared of the same type int, they are used
differently. For a human reading the program, the statements
n=0 and n++ in the loop body signal that n is a counter.
Indeed, n is used to count the number of loop iterations. On
the other hand, the value of the variable x as an integer is
not used in calculations, but rather individual bits in its binary
representation matter.
We define the roles by restricting the operations in which a
variable occurs. We require that a bitvector occurs in at least
one bitwise operation (bitwise AND, OR or XOR), like the
variable x in expression 5. We require that a counter variable
only changes its value in an increment or decrement statement
or gets assigned zero. The variable n, which is assigned in
statements 1 and 3, satisfies these constrains.
The program in Figure 1b reads a decimal number from a text
file and stores its numeric representation in the variable val.
In contrast, the variables fd and c are used to store the output
of the library functions open() and read() respectively.
The difference between the two variables is that c is later
used in calculations, while fd is only passed to the function
read() as a black box because its value does not directly
affect the result of the computations. One can conjecture that
c is a character, because it is passed as an input to the function
isdigit(), which checks whether its parameter is a decimal
digit character. Even though isdigit() is declared to take
a parameter of type int, the documentation states that the
parameter is a character to be tested, cast to int [5].
We define character, file descriptor and linear roles as follows.
We require that a character variable is assigned at least
once a character literal (e.g., c=’a’) or another character
variable, or is used in a standard C function for manipulating
characters (e.g., c=getchar() or isdigit(c)). A file
descriptor is required to be used in a standard C function
for manipulating files (e.g., fd=open(path,flags) or
read(fd,&c,1)). A linear variable can be assigned only
linear combinations of linear variables. The variables c and
val, assigned in statements 3 and 2,5 respectively, satisfy the
latter constraint.

B. Definition of the analysis
We define variable roles using classical intraprocedural

dataflow analysis [6]. In this section we use the notation as
follows. Var denotes the set of program variables, and Num
denotes all scalar constant literals (e.g., 0, 0.5, ’a’). S, E and B
denote the set of program statements, arithmetic and boolean
expressions respectively. For the elements of these sets we
use the same names in the lowercase version (e.g., var for a
program variable).
For a program s∈ S the result of analysis R is computed using
the function ResR, which is defined as follows:

ResR = InitR
⊔

genR(s),

210 227

BITVECTOR Init = ∅,
⊔

= ∪, c = o

gen(var := e) =
{
{var} if e ::= e1 bitop e2
∅ otherwise

gen(if b then s1 else s2) = gen(b) ∪ gen(s1) ∪ gen(s2)
gen(s1; s2) = gen(s1) ∪ gen(s2)

gen(skip) = ∅
gen(while b do s) = gen(b) ∪ gen(s)

gen(var) = gen(num) = ∅
gen(e1 bitop e2) = IsVar(e1) ∪ IsVar(e2)

∪ gen(e1) ∪ gen(e2)
gen(e1 arithop e2) = = gen(e1) ∪ gen(e2)

gen(bitnot e) = IsVar(e) ∪ gen(e)

IsVar(e) =
{
{var} if e ::= var
∅ otherwise

LINEAR Init = Var,
⊔

= \, c = f

gen(var:=e) =
{
{var} if lin(e)=false
∅ otherwise

gen(if b then s1 else s2) = gen(s1) ∪ gen(s2)
gen(s1; s2) = gen(s1) ∪ gen(s2)

gen(skip) = ∅
gen(while b do s) = gen(s)

gen(e) = ∅
lin(num) = true

lin(var) =
{

true if var ∈ ResLINEAR

false otherwise
lin(e1+e2) = lin(e1) ∧ lin(e2)

lin(e1*e2) =

lin(e2) if e1 ∈ Num
lin(e1) if e2 ∈ Num
false otherwise

lin(e1 bitop e2) = lin(bitnot e) = lin(e1/e2) = false
Fig. 2: Formal definition of roles BITVECTOR and LINEAR

where InitR ∈ P(Var) is the initial set of variables, the
function genR : S ∪ E ∪ B → P(Var) maps every statement
and expression to a set of generated variables, and the sign⊔

is used as a placeholder for a set operation and must be
instantiated for each analysis.
Analysis R is therefore defined by a tuple (InitR,

⊔
, genR,

c), where c∈ {f, o} indicates how to evaluate ResR. When c
is defined as f, a fixed point of ResR is computed, i.e. ResR

is iteratively recalculated until it does not change. When c is
defined as o, ResR is calculated in one iteration.

C. Example of role definition

In Figure 2 we formally define the analysis for the roles
BITVECTOR and LINEAR. Due to the lack of space we
give only an informal definition of the remaining roles in
Table I. We now show step by step the computation of the
BITVECTOR and LINEAR roles for the example program in
Figure 1a.
The analysis for the role BITVECTOR starts with the empty
set (Init = ∅). The operation

⊔
is defined to be set union,

and the result set is calculated in one iteration (c = o). When
statement 4 is processed, the variable x is added to the result
set because in this statement x is assigned the result of a
bitwise AND operation. At expression 5, the variable x is
also added to the result set because x occurs in a bitwise
operation. After that, the result set does not change anymore,
and the analysis yields the result {x}, as shown in Figure 3a.

TABLE I: Informal definition of variable roles
Role name Informal definition
SYNT CONST not assigned any value in the program
CONST ASSIGN assigned only numeric literals or CONST ASSIGN

variables
COUNTER assigned only in increment and decrement state-

ments, or assigned zero
LINEAR assigned only linear combinations of LINEAR vari-

ables
BOOL assigned only 0,1, the result of a boolean expression

or BOOL variables
INPUT modified by an external function
BRANCH COND occurs in the condition of an if statement
BITVECTOR occurs in a bitwise operation or assigned the result

of a bitwise operation
UNRES ASSIGN assigned a pointer dereference or modified by a

function
CHAR assigned only character literals, CHAR variables,

or passed to a library function which manipulates
characters

LOOP
ITERATOR

occurs in the condition of a loop and assigned in the
loop body

FILE DESCR passed to a library function which manipulates files
ARRAY INDEX occurs in an array subscript expression
ARRAY SIZE passed to a memory allocating library function

BITVECTOR
label gen(s)
4,5 {x}

Init(vd)=∅, Res={x}

a) bitvectors

LINEAR
Iter. label gen(s)
1 4 {x}
2 2 {y}

Init(vd)={x,y,n}, Res={n}
b) linear variables

Fig. 3: Step-by-step computation of roles

The analysis for the role LINEAR is computed as a fixed
point of the function ResR (c = f). It starts with the set
Var of all program variables, which evaluates to {x,y,n}.
The operation

⊔
is defined to be set subtraction. In the first

iteration, the variable x is excluded from the result set at
statement 4 because it is assigned a non-linear expression.
In the second iteration, the variable y is excluded from the
result set at statement 2 because it is assigned x, which does
not belong to the result set. In the third iteration, the result
set does not change, and the analysis yields the result {n}, as
shown in Figure 3b.

III. IMPLEMENTATION AND EXPERIMENTS

We used the clang compiler [7] to implement a prototype of
a tool, which assigns a subset of variable roles to every basic-
type variable. The current implementation does intraprocedural
analysis and does not include a pointer analysis. We replace
all function calls (e.g., c=getchar()) and pointer derefer-
ences (e.g., n=*ptr, n=arr[i]) with fresh variables. For
example, the statement c=getchar() would be rewritten
as c=t1, and in the LINEAR analysis the variable t1 would
not be excluded from the result set, but rather assigned the
role ”unresolved assignment”, which is a trade-off between
soundness and precision.
We ran two experiments. In the first one we computed the
relative number of the occurrences of each role in every
category. We calculated it by summing up the numbers in all
files of a category and normalising them by the total number of
variables in these files. The results for the categories ”Control

211228

a) Relative numbers of roles for 2 categories
R

el
at

i v
e

nu
m

be
rs

of
ro

le
s,

%
SY

N
T

CO
N

ST
CO

N
ST

A
SS

IG
N

CO
U

N
TE

R
LI

N
EA

R
BO

O
L

IN
PU

T
BR

A
N

CH
CO

N
D

BI
TV

EC
TO

R
U

N
RE

S
A

SS
IG

N

U
SE

D
IN

A
RI

TH
M

10%

20%

30%

40%

50%

Control Flow and Integer Variables
Linux Device Drivers 64-bit

b) Prediction error
in different settings

Tr
ai

ni
ng

se
t,

%
of

al
lfi

le
s

E
rr

or
of

ch
oi

ce
1

E
rr

or
of

ch
oi

ce
2

90% 15.94% 2.90%
80% 14.81% 5.93%
70% 16.20% 7.98%
60% 19.77% 7.98%
50% 18.60% 8.54%

Fig. 4: Comparison of categories and automatic classification
of files

Flow and Integer Variables” and ”Linux Device Drivers”
are shown in Figure 4a. We observed higher frequencies of
boolean flags and branching operations, counters, arithmetic
operations and constant assignments in the first category, and
high numbers (in comparison to other categories in SVCOMP)
of bitvectors and pointers in the second one.
In our main experiment, whose summary was given in Section
I, we used machine learning to create a classifier for source
files into the categories of the competition SVCOMP as a
function of the frequencies of variable roles in a file. Since
a program would typically share similarities with several
categories, we used a multiclass vector support machine [8] to
predict the category of a source file with some probability. For
example, we predict that a file is a driver with the probability
60%, a concurrent program with the probability 35%, and so
on. We translated the relative numbers of roles into the input
format of the machine learning tool Weka [9] as follows:
each source file represented one training example with the
category corresponding to the class, and relative numbers of
roles representing the vector of float attributes. We ran the
experiments for varying sizes of the training sets from 90%
to 50% of all files and analysed the remaining files by our
tool. Figure 4b shows the percentage of the files for which
the most likely category (second column) or the two most
likely categories (third column) do not include the actual file
category.

IV. RELATED WORK

The term variable roles was inspired by the work in program
comprehension [10] which informally defines roles as patterns
of how variables are initialised and updated. The authors have
defined nine roles, implemented a tool for assigning roles
to variables using static analysis, and evaluated it on Pascal
programs from textbooks. The work leaves open the question
of formalising the notion of variable roles as well as of the
possibility of applying the method to real-word programs.
The commercial bug finding tool Coverity [11] uses implicit
knowledge in the form of programmer’s beliefs, i.e. proposi-
tional statements about program variables and functions. The

authors use static analysis to extract two types of statements
– the sound statements which follow from the requirements
of safety, non-redundancy and reachability of the code (e.g.,
”a pointer is not null”) and hypotheses which follow from the
statistics of observations (e.g., ”calls to functions f() and g()
should be paired”).
Rondon et al. [12] use predicate abstraction over a fixed
set of predicates to infer so called liquid types, i.e. types
refined with a conjunction of propositional predicates (e.g.,
x>0 ∧ x<5). We consider this approach to be complementary
to ours, because it does not use any information from the
source code other than the transition relation, and concentrates
on arithmetic properties of variables.
Variable names and comments as an additional source of
knowledge about a program have been systematically studied
in program comprehension. The Latent Semantic Indexing
technique [13] allows to query the program source code using
words in natural language, based on the number of occurrences
of the words in variable names and comments. A study has
been made of the naming rules for variables in real-word
programs [14], and of expanding abbreviated identifiers to full
words [15]. We plan to use these techniques in future work.

ACKNOWLEDGMENT

This work is supported by the Austrian National Research
Network S11403-N23 (RiSE) of the Austrian Science Fund
(FWF) and by the Vienna Science and Technology Fund
(WWTF) through grants PROSEED and ICT12-059.

REFERENCES

[1] http://ctuning.org/wiki/index.php/CTools:CBench.
[2] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival, “The astrée analyzer,” in Programming Languages and
Systems. Springer, 2005, pp. 21–30.

[3] S. Apel, D. Beyer, K. Friedberger, F. Raimondi, and A. von Rhein,
“Domain types: Selecting abstractions based on variable usage,” CoRR,
Tech. Rep. abs/1305.6640, 2013.

[4] http://sv-comp.sosy-lab.org/2013/benchmarks.php.
[5] http://www.gnu.org/software/libc/manual/pdf/libc.pdf.
[6] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program

analysis. Springer-Verlag New York Incorporated, 1999.
[7] http://clang.llvm.org.
[8] J. Weston and C. Watkins, “Multi-class support vector machines,” De-

partment of Computer Science, Royal Holloway, University of London,
Tech. Rep. CSD-TR-98-04, 1998.

[9] http://www.cs.waikato.ac.nz/ml/weka.
[10] J. Sajaniemi, “An empirical analysis of roles of variables in novice-level

procedural programs,” in Proceedings of the IEEE Symposia on Human
Centric Computing Languages and Environments, 2002, pp. 37–39.

[11] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: a general approach to inferring errors in systems code,”
SIGOPS Operating Systems Review, vol. 35, no. 5, pp. 57–72, 2001.

[12] P. M. Rondon, M. Kawaguci, and R. Jhala, “Liquid types,” in Proceed-
ings of the ACM SIGPLAN conference on Programming language design
and implementation, 2008, pp. 159–169.

[13] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society for Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[14] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, no. 3, pp. 261–282, 2006.

[15] D. Lawrie, H. Feild, and D. Binkley, “Extracting meaning from abbrevi-
ated identifiers,” in IEEE International Working Conference on Source
Code Analysis and Manipulation, 2007, pp. 213–222.

212 229

2

Author Index

Aleksandrowicz, Gadi ... 169
Alur, Rajeev ... 1, 26, 42
Ashar, Pranav .. 15
Ball, Thomas .. 149
Barrett, Clark ... 173, 189
Baumgartner, Jason ... 169
Bayless, Sam .. 149
Blanc, Régis ... 93
Bloem, Roderick .. 77
Bodik, Rastislav ... 1
Bradley, Aaron .. 157
Carbonell, Enric Rodríguez 218
Chaki, Sagar .. 137
Chatterjee, Krishnendu .. 18
Cimatti, Alessandro ... 165
Claessen, Koen .. 53
Clarke, Edmund ... 105
Clarke, Lori A. ... 14
Conchon, Sylvain .. 61
De Moura, Leonardo .. 173
Deharbe, David .. 46
Demyanova, Yulia ... 226
Dutertre, Bruno .. 189
Een, Niklas .. 53
Eldib, Hassan ... 129
Fontaine, Pascal ... 46
Foster, Nate .. 9
Gao, Sicun ... 105
Goel, Amit ... 61
Goldberg, Eugene .. 85
Greenstreet, Mark .. 113
Griggio, Alberto .. 165
Grundy, Jim ... 11, 121
Guha, Arjun ... 9
Gupta, Ashutosh .. 77
Gurfinkel, Arie .. 137
Harris, Bill ... 12
Hassan, Zyad ... 157
Henzinger, Thomas .. 18
Heule, Marijn ... 181
Hofferek, Georg ... 77
Hoos, Holger .. 149
Horn, Alex ... 121
Hu, Alan .. 149
Hunt, Warren ... 181
Ivrii, Alexander .. 169
Jha, Somesh ... 12
Jiang, Jie-Hong Roland .. 77
John, Annu ... 201
Jovanović, Dejan ... 173

Juniwal, Garvit .. 1
Kaivola, Roope .. 97
King, Timothy ... 189
Kong, Soonho .. 105
Könighofer, Bettina ... 77
Konnov, Igor .. 201
Kroening, Daniel ... 121, 210
Krstic, Sava .. 61
Kuncak, Viktor .. 93
Larraz, Daniel .. 218
Le Berre, Daniel .. 46
Liang, Lihao .. 121
Loo, Boon .. 42
Malik, Sharad .. 145
Manolios, Panagiotis 17, 85
Martin, Milo M. K. .. 1
Mazure, Bertrand ... 46
Mebsout, Alain .. 61
Melham, Tom .. 97, 121
Moarref, Salar .. 26
Mover, Sergio .. 165
Nadel, Alexander ... 197
Narayana, Srinivas ... 145
Nevo, Ziv ... 169
O'Leary, John ... 97
Oliveras, Albert ... 218
Otop, Jan .. 18
Ouaknine, Joel ... 210
Pavlogiannis, Andreas ... 18
Peng, Yan .. 113
Raghothaman, Mukund ... 1
Reitblatt, Mark ... 9
Reps, Tom .. 12
Rubio, Albert ... 218
Ruemmer, Philipp .. 69
Ryvchin, Vadim ... 197
Schlesinger, Cole ... 9
Schmid, Ulrich ... 201
Seshia, Sanjit A. .. 1
Sethi, Divjyot ... 145
Singh, Rishabh ... 1
Sohail, Saqib .. 34
Solar-Lezama, Armando .. 1
Somenzi, Fabio .. 34, 157
Sterin, Baruch .. 53
Strichman, Ofer ... 137, 197
Subotic, Pavle .. 69
Tautschnig, Michael .. 121
Tonetta, Stefano ... 165
Topcu, Ufuk ... 26

231

Torlak, Emina .. 1
Udupa, Abhishek ... 1
Val, Celina ... 121, 149
Veith, Helmut .. 201, 226
Wachter, Björn .. 210
Wahl, Thomas .. 16
Wang, Anduo ... 42
Wang, Chao ... 129

Wei, Jijie .. 113
Wetzler, Nathan ... 181
Widder, Josef ... 201
Yu, Ge ... 113
Yuan, Yifei .. 42
Zaidi, Fatiha ... 61
Zuleger, Florian ... 226

232

COVER 4 COVER 1COVER 4 COVER 1

FMCAD 2013 SPONSORS
FMCAD 2013

Formal Methods in Computer–Aided Design
Portland, OR, USA, 20–23 October 2013

Edited by Barbara Jobstmann and Sandip Ray

In cooperation with
ACM Special Interest Group on Programming Languages

ACM Special Interest Group on Software Engineering

Technical co-sponshorship of IEEE Council on Electronic
Design Automation

F
o

rm
al M

eth
o

d
s in

C

o
m

p
u
ter—

A
id

ed
 D

esign
P

ortland, O
regon, U

S
A

 •
 20-23 O

ctober 2013

FMCAD 2013 SPONSORS
FMCAD 2013 SPONSORS

54418_IEEEFMCAD_COVER_bo.indd 1 10/9/2013 1:37:46 PM

	001_Frontal
	000 preface(2)
	001_organization
	002_tutorial_alur
	Introduction
	Problem Formulation
	Inductive Synthesis
	Synthesis via Active Learning
	Counterexample-Guided Inductive Synthesis
	Illustrative Example
	Enumerative Learning
	Constraint-based Learning
	Learning by Stochastic Search

	Benchmarks and Evaluation
	Conclusions
	References

	003_tutorial_foster
	Traditional Networking
	Software-Defined Networking
	Programming with Frenetic
	Verification with Frenetic
	Conclusion
	References

	004_tutorial_grundy
	005_tutorial_jha
	006_keynote_clarke
	007_keynote_ashar
	008_student_forum

	002-061_Papers
	002_tutorial
	010-061_Papers
	010_paper16
	011_paper60
	Introduction
	Preliminaries
	Problem Statement and Overview
	Problem Statement
	Overview of the Method

	Specification Refinement
	Generating Candidates
	Removing the Restrictive Formulas
	Synthesizing Patterns
	Patterns of the Form
	Patterns of the Form
	Patterns of the Form (1 2)

	Case studies
	Lift Controller
	AMBA AHB

	Conclusion and Future Work
	References

	012_paper81
	Introduction
	Preliminaries
	Linear-Time Properties
	Realizability, Synthesis, and Games

	R-Generability
	LTL and R-generability
	General Safety Properties
	Realizability of Transition Constraints
	Synthesis from Transition Constraints
	Boolean Equations
	Parameterized Solutions and Transition Constraints

	Obligation Properties
	Experimental Results
	Conclusion
	References

	013_paper29
	014_paper53
	Introduction
	Basic principles
	Definitions and notations
	Elements of SAT solving
	Greedy computation of prime implicants from models

	Computing prime implicants by propagation
	An abstract version
	Implementation with watched literals

	Experimental evaluation
	Conclusion
	References

	015_paper99
	016_paper99
	Introduction
	Invariants for Finite Instances and Beyond
	Formalizing the BRAB Algorithm
	Notations and Preliminaries
	The BRAB Algorithm
	Correctness

	Implementation
	Experimental results
	Experiments
	The FLASH Cache Coherence Protocol

	Related Work
	Conclusion and Perspectives
	References

	017_paper68
	018_paper46
	Introduction
	Illustration
	Preliminaries
	Uninterpreted Functions and Arrays
	Proofs of Unsatisfiability
	Transitivity-Congruence Chains
	Craig Interpolation

	Controller Synthesis
	Overview
	Finding Witness Functions through Interpolation
	Computing n-interpolants

	Algorithms for Proof Transformation
	Removing Non-Colorable Literals
	Splitting Non-Colorable Theory-Tautology Clauses
	Obtaining a local-first proof

	Experimental Results
	Conclusion
	References

	019_paper24
	020_paper45
	021_paper80
	022_paper25
	Introduction
	SMT over the Reals with ODEs
	A First-Order Signature with Computable Real Functions
	Solution Functions of ODEs
	SMT Problems and -Complete Decision Procedures
	SMT Encoding of Standard Problems with ODEs

	Algorithms
	The ICP framework
	ODE Pruning in an ICP Framework
	t-Formulas and Low-Order Approximations

	Experiments
	Conclusion
	References

	023_paper33
	Introduction
	Related Work
	The Digital PLL
	A PLL Primer
	The Digital PLL

	Verifying Convergence with SpaceEx
	Modeling the digital PLL
	Limitations of the model

	Parameterized Verification with Z3
	Conclusions and Future Work
	References

	024_paper44
	Introduction
	Validation Aims and Technical Approach
	Modelling Approach and Concurrency
	Validation Technology and Concurrency Encoding

	Hardware Models from QEMU Devices
	Co-validation of a Real-Time Clock
	Interface Properties
	Technical Details of the RTC Benchmark

	Co-validation of an I2C Temperature Sensor
	Co-validation of an Ethernet MAC
	Experimental Results
	Discussion and Future Work
	Related Work
	Concluding Remarks
	Acknowledgements
	References

	025_paper67
	026_paper62
	027_paper77
	028_paper93
	Introduction
	Modular SAT Solvers
	SAT Modulo SAT
	Interpolants as Side Effects

	IC3 Using SAT Modulo SAT
	Additional Changes to IC3

	Experimental Results
	Conclusion
	Acknowledgments
	References

	029_paper85
	030_paper97
	031_paper18
	032_paper71
	033_paper23
	Introduction
	Preliminaries
	Conjunctive Normal Form
	Resolution
	Boolean Constraint Propagation
	Clausal Proofs

	Antecedent Graphs
	Backward Reverse Unit Propagation
	Forward Checking
	Backward Checking

	Adding Information to Clausal Proofs
	Adding Deletion Information
	Extending RUP with Antecedents

	Preferring Core Clauses during BCP
	Experimental Evaluation
	Comparing solving / checking / trimming times
	Comparing the Quality of Trimming

	Conclusion
	References

	034_paper73
	035_paper12
	Introduction
	The Algorithms
	MUS-Biased Search
	Eager Model Rotation
	Path Strengthening

	Experimental Results
	Conclusion
	Acknowledgments
	References

	036_paper10
	Introduction
	Our Approach at a Glance
	System Model with Multiple Parameters
	Threshold-guarded FTDAs
	Abstraction Scheme
	PIA data abstraction
	PIA counter abstraction

	Abstraction Refinement
	Experimental Evaluation
	Related work
	Conclusions
	References

	037_paper43
	Introduction
	Basic Definitions
	Impact Algorithm for Concurrent Programs
	Concurrent Impact with Full Interleaving

	Partial Order Reduction
	Independence and Mazurkiewicz Equivalence
	Pi-completeness
	Abstraction Algorithm
	Conditional Dependence

	Experiments
	Related Work
	Conclusion
	References

	038_paper15
	Introduction
	Related Work.

	Preliminaries
	SMT and Max-SMT
	Transition Systems, Invariants and Ranking Functions
	Constraint-Based Program Analysis

	Termination Analysis with Max-SMT
	An SMT Approach to Proving Termination
	A Max-SMT Approach to Proving Termination

	Implementation
	Experimental Evaluation
	Conclusions and Future Work
	References

	039_paper61

	062_Author Index__2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /None
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /None
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'No Compression'] [Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

