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Decision Problems over Real Numbers

Given an arbitrary first-order @ over
(R, >, F)

decide the truth value of ¢.



Decision Problems over Real Numbers

Given an arbitrary first-order @ over
(R, >, F)

decide the truth value of ¢.

With a rich enough F', we would be able to:

= solve many control-engineering problems
= verify and synthesize safety-critical embedded systems
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High-speed Parking
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Logic Encoding

We can do this if we can solve the following SMT formula in real-time:

I
speedup(X() A ()?1 = X0 + / speeding(s)ds) /\
0
%)
steer(X1,X2) A | X3 =5€2+/ turning(s)ds /\
0

I3
brake(x3, X4) A <)?5 = X4 + / drifting(s)ds) /\ parked(X’s)
0



Isn't this problem too hard?



Difficulty

Suppose F is {+, X}.

?
R E JaVb3c (ax?* + bx + ¢ > 0)

= Decidable [Tarski 1948].
= Double-exponential lower-bound. Extensive research on
practical solvers.



Difficulty

Suppose F further contains sine:

?
R E 3x,y,z (sin®(zx) + sin*(zy) + sin’(zz) = o/\x3 +y° =27

= > case already undecidable.

= Partial algorithms are of extremely high complexity.
= Engineers would rather be left alone.



The key is to change the decision problem.



The Delta-Decision Problem (one version)

Given ¢ and 6 € Q" return one of the following:

= ¢ s false.
= A weakening of the original formula, ¢, is true.

We now define what ¢~° is.



o-Variants

Any bounded L7 -sentence ¢ can be written in the form

O, e Qe A\ 1E) > 0v \/ 1X) > 0)

Definition (8-weakening)
Lets € QT U {0} . The 8-weakening ¢~° of ¢ is

0"y Oy A1) > =6 v \/ 1@) 2 ~8)



o-Decisions

Let 5 € Q" be arbitrary.

Definition (0-decisions)
Decide, for any given bounded ¢, whether

= ¢ isfalse, or
= @ % is true.

When the two cases overlap, either answer can be returned.



o-Decidability

Let 7 be an arbitrary collection of Type 2 computable functions.

Theorem [Gao et al. LICS'12]
The o-decision problem over R# is decidable.

Type 2 computable functions:

= Polynomials

= exp, sine, ...

= |-continuous ODEs
= PDEs, ...



o-Decisions

There is a grey area that a 6-complete algorithm can be wrong about.
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o IS good

A system S is safe if some formula ¢ is false.

m dxodrdx,(Reach(xg, t,x;) A Unsafe(x;))

Now the interpretation of 6-decisions is:

= False: S is safe (within bounds, for BMC).
= 5-True: S is unsafe, or some é-perturbation would make
it unsafe. You shouldn't rely on it anyway.



Complexity

Theorem

= F = {+,X,exp,sin,...} : X -complete.
= 7 = {ODEs with PTIME deriv.} : PSPACE -complete.

These are extremely low compared to the original ones.



In theory, it may be possible to solve
some. In practice?



Formal Analysis of Numerical Algorithms

= We say an algorithm is 8-complete if it solves §-decision
problem.

= Many numerically-driven procedures satisfy 6-
completeness after formal analysis [Gao et al, JCAR'12].



Interval Constraint Propagation

= Contract big initial interval boxes to small ones that cover
solutions.

» |f some constraints are satisfiable, then the interval
relaxations always have overlapping boxes.

Candidate
Solution Box

No Solutions
Here




Interval Constraint Propagation

dx,y € [0.5,1.0] : y = sin(x) A y = atan(x)

Begin | xdim: | x #|ydim: |y %] | Next

Reset

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 X



o-Completeness of ICP

We gave conditions for a pruning operator to be well-defined,
formalizing practical implementation strategies used in ICP.

Theorem [Gao et al. IJCAR'12]
DPLL(ICP) is 6-complete iff its pruning operators are well-defined.



We now go into the details of ODE solving.



Handling Differential Equations

An ODE system
d.)z) PPN
E _f(xat)
when put in Picard-Lindel6f form:

t
X, = X0 +/ f(f,s)ds
0

is seen as a constraint between Xy, x;, and z.



ODE Pruning

Starting with big intervals for
;ta )_C)Oa [

use the ODE constraints to find smaller intervals for them.



Forward Pruning (on X;)




Forward Pruning (on X;)

At§

AtEAtE




Forward Pruning (on X;)
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Backward Pruning (on Xo)




Backward Pruning (on Xo)




Backward Pruning (on Xo)




Time Pruning (on T)
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Pruning with Invariant
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Pruning with Invariant




Tool

= Open-source at http://dreal.cs.cmu.edu

= Nonlinear ODEs, and of course, polynomials,
transcendental functions, etc.

= Formulas with hundreds of nonlinear ODEs have been
solved.

dReal  dReach  Downloads  Benchmarks  Publications  People

dRedl

An SMT Solver for Nonlinear Theories of the Reals

SMT formulas over the real numbers can encode a wide range of problems in theorem proving and formal verification. Such formulas are very hard
to solve when nonlinear functions are involved. 8-Complete decision procedures provided a new general framework for handling nonlinear SMT
problems over the reals. We say a decision procedure is d-complete for a set S of SMT formulas, where d is an arbitrary positive rational number, if
for any ¢ from S the procedure returns one of the following answers:

 “unsat” ¢ is unsatisfiable.
o “d-sat”: " is satisfiable.


http://dreal.cs.cmu.edu/
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Experiments
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Experiments

P [ #M | #D | #O | #V | delta | R | Time(s) | Trace
AF 4 3 20 44 | 0.001 S 43.10 90K
AF 8 7 40 88 | 0.001 S 698.86 20M
AF 8 23 | 120 | 246 | 0.001 S 4528.13 S59M
AF 8 31 160 | 352 | 0.001 S 8485.99 T8M
AF 8 47 | 240 | 528 | 0.001 S 15740.41 117M
AF 8 55 | 280 | 616 | 0.001 S | 19989.59 | 137M
CT 2 2 15 36 | 0.005 | S 345.84 3.1M
CT 2 2 15 36 | 0002 | S 362.84 3.1M
EO 3 2 18 42 0.01 S 5293 | 998K
EO 3 2 18 42 | 0.001 S 5767 | 847K
EO 3 11 72 | 168 001 | U 7.75 -
BB 2 10 22 66 0.01 S 0.25 123K
BB 2 20 42 | 126 0.01 S 0.57 171K
BB 21 20 42 1 126 | 0.001 S 2.21 168K
BB 2| 40 82 | 246 001 | U 0.27 —
BB 2 40 82 | 246 | 0.001 | U 0.26 —
DI 3 2 9 24 0.1 S 30.84 72K
DU 3 2 6 16 0.1 | U 0.04 -

TABLE I: Experimental results. #M = Number of modes in the
hybrid system, #D = Unrolling depth, #0O = Number of ODE:s in the
unrolled formula, #V = Number of variables in the unrolled formula,
R = Bounded Model Checking Result (delta-SAT/UNSAT) Time =
CPU time (s), Trace = Size of the ODE trajectory, AF = Atrial
Filbrillation Model, CT = Cancer Treatment Model, EO = Electronic
Oscillator Model, BB = Bouncing Ball with Drag Model, D1,DU =
Decay Model.






Conclusion

This is not much harder than SAT solving.



