An SMT Based Method for
Optimizing Arithmetic Computations
in Embedded Software Code

Hassan Eldib and Chao Wang

rE“VurglmalTech

nt the Futur

FMCAD, October 22, 2013

The Dream

« Having a tool that automatically synthesizes
the optimum version of a software program.

Embedded Software

22-0Oct-13 Hassan Eldib and Chao Wang 3/35

Objective

 Synthesizing an optimal version of the C code

with fixed-point linear arithmetic computation
for embedded devices.

— Minimizing the bit-width.

— Maximizing the dynamic

range. T

\!

—
~—

22-0Oct-13 Hassan Eldib and Chao Wang 4/35

Motivating Example

 Compute average of Aand B on a microcontroller
with signed 8-bit fixed-point

- Given: A, B € [-20, 80].

A+B
2

may have overflow errors.

+ may have truncation errors.

N |
N | &

A-B . .
B + —~ has neither overflow nor truncation errors.

Bit-width versus Range

Inl
In2 N-bit =
- Fixed-point
I . Embedded Device
nx

 Coeff70 = 50;
Coeff71 =-142;
Coeff72 = 212;
Coeff73 =-250;
dout?7 =10
dout7tmp0 = dout7 + ((Coeff70 * Dind)==g);
dout7tmpl = dout7tmp0 + ((Coeff71 * Din5)==8);
Jut dout7tmp2 = dout7tmp1 + ((Coeff72 * Din6)=>g);
kdeut?tmpS = dout7tmp2 + ((Coeff73 * Din7)=>8); g

 Larger range requires a larger bit-width.
 Decreasing the bit-width, will reduce the range.

22-Oct-13

Hassan Eldib and Chao Wang 6/35

Fixed-point Representation

Representations for 8-bit fixed-point numbers

Range: -128 « 127
Resolution =1

lof{1|{1]{o]|1]0]o]1]
128643216 8 4 2 1

|0‘1‘1‘0‘1‘0‘0‘1\

16 8 4 2 1Whi4lL

Range : -16 «» 15.875
Resolution = 1/8

Range o Bit-width
Resolution « Bit-width

Problem Statement

Program:

: int comp(int A,int B,int H,int E,int D,int F,int K) {
int t0,t1,t2,t3,t4,t5,t6,L7,t8,t9,810,£11,¢£12;

£l12 = 3 « A;
£l = £12 + B;
=H << 2;

1

2

3

4:

5: tll
6: t8 = tl0 + £l1;
T te = t9 =» 3;

B: B =13 %= E;

§: ©7 = t8 + D;

10: €5 = t7 - 16469;
11: t3 = t5 + té6;
12: €t4 =12 = F;

13: £t2 = t3 - t4;
14: t1 = £2 »= 2;
15: t0 = tl1 + K;

16: return ti;

17:}

Optimized program:

Range & resolution of the input variables
A -1000 3000

res. 1/4

B -1000 3000

res. 1/4

int t0,tl1,t3,td4,t5,t6,t8,E£12;

int N1,N2,N3,N4,N5,N&,N7,N9,N10;

£i12
N6
N10O
N9
N7
N5

: N4
: k6
: t8
: N3
: E5
: E3
: t4
: N2
: N1
: E1
: tO
: return t0;

2 % Ly

H;

tlz - B;
N10 == 1;
B + N%;
N7 == 1;
NS + Hé;
Nd == 1;
3+« E;

L8 - 1le4de9;
N3 + D;
£S5 + t6;
12 + F;
td »= 2;
E3 == 2;
Nl - H2;
tl + K;

: int comp(int A,int B,int H,int E,int D,int F,int K]

{

22-0Oct-13 Hassan Eldib and Chao Wang

8/35

Problem Statement

 Glven

— The C code with fixed-point linear arithmetic computation
— The range and resolution of all input variables

« Synthesize the optimized C code with
— Reduced bit-width with same input range, or

— Larger input range with the same bit-width

Synthesis
process

Program Synthesized
Specs program

[—-

22-0Oct-13 Hassan Eldib and Chao Wang 9/35

SMT-based Inductive Program Synthesis

Find a candidate

program

Verify found
program

& Failed
Block program

Blocked
programs

appearing again

Passed

from

Synthesized
program

Some Related Work

» Jha, 2011

— Use an SMT solver to choose the best fixed-point representation in
order to reduce error. No new programs are synthesized.

« Majumdar, Saha, and Zamani, 2012

— Use a mixed integer linear programing (MILP) solver to minimize the
error bound by only changing the fixed-point representation.

e Schkufza, Sharma, and Aiken, 2013

— Use a compiler based method for optimization, which is an exhaustive
approach.

22-0Oct-13 Hassan Eldib and Chao Wang 11/35

SMT-based Inductive Program Synthesis

— Find a candidate
—_ program
Specs ﬁ

Verify found
program

& Failed
Block program

Blocked
programs

appearing again

22-Oct-13

Hassan Eldib and Chao Wang

Passed

from

Synthesized
program

12/35

Step 1: Finding a Candidate Program

 Create the most general AST that can represent any
arithmetic equation, with reduced bit-width.

« Use SMT solver to find a solution such that
— For some test inputs (samples),
— output of the AST Is the same as the desired computation

22-0Oct-13 Hassan Eldib and Chao Wang 13/35

SMT-based Solution

Fig. General Equation AST.

« SMT encoding for the general equation AST structure
— Each Op node can any operation from *, +, -, >> or <<,
— Each L node can be an input variable or a constant value.

« SMT Solver finds a solution by equating the AST output to that
of the desired program

22-0Oct-13 Hassan Eldib and Chao Wang 14/35

SMT Encoding

+ ¥ = q)prog /\ CI)AST /\ CI)sa‘mel /\ CI)sameO /\Cpin /\ CI)block

— @04 - Desired input program to be optimized.
— &1 - General AST with reduced bit-width.

— D mer - Same input values.

— . meo Same output value.

— &;,, : Test cases (inputs).

— &y1,0k - Blocked solutions.

SMT-based Solution (an example)

N |
N | &

SMT-based Inductive Program Synthesis

—_ . . . | Passed
— . Find a candidate Verify found =
— program program

4

Prnfram ﬁ & Failed Synthesized
Specs Block program from program
appearing agaim
Blocked
programs
22-Oct-13

Hassan Eldib and Chao Wang 17/35

Step 2: Veritying the Solution

* |s the program good for all possible inputs?
— Yes, we found an optimized program
— No, block this (bad) solution, and try again

SMT Encoding

c d = q)prog A CI)SOl A CI)SCLTneI A CI)diffO /\q)ranges A CI)res

— @4 - Desired Input program to be optimized.
— @, : Found candidate solution.
— D mer - Same input values.

— ®yirro - Different output value.
— ®,anges - Ranges of the input variables.
— &, : Resolution of the input variables.

SMT-based Inductive Program Synthesis

— . Find a candidate
—_ program

Specs ﬁ

Blocked
programs

22-Oct-13

Verify found
program

& Failed

Passed

Block program from

Hassan Eldib and Chao Wang

appearing again

Synthesized
program

20/35

The Next Solution

22222

SMT-based Inductive Program Synthesis

— : : : Passed
— . Find a candidate | o, | Verify found =
—_ program program
Prnfram ﬁ & Failed Synthesized
Specs Block program from program
appearmg again
Blocked
programs
22-Oct-13

Hassan Eldib and Chao Wang 22/35

Scalability Problem

» Advantage of the SMT-based approach
— Find optimal solution within an AST depth bound

« Disadvantage
— Cannot scale up to larger programs

 Sketch tool by Solar-Lezama & Bodik (5 nodes)
* Our own tool based on YICES (9 nodes)

22-0Oct-13 Hassan Eldib and Chao Wang 23/35

Incremental Optimization

« Combine static analysis and SMT-based
Inductive synthesis.

* Apply SMT solver only to small code regions
— Identify an instruction that causes overflow/underflow.
— Extract a small code region for optimization.
— Compute redundant LSBs (allowable truncation error).
— Optimize the code region.
— Iterate until no more further optimization is possible.

Our Incremental Approach

Hassan Eldib and Chao Wang

4 N
Input —_— — . ; e Passed
— = Find a candidate Verify found —
program | — == program = program = =
Program 1} Failed Synthesized
I Specs Block program from program
appearing agairn
Blocked
For each programs
node %
If will Yes Extract | Yes .
flow rﬁ‘gjﬂﬂ Op €
No No -
Exit
Yes — | Optimized
— | program
22-Oct-13

25/35

Example

Detecting Overflow Errors

The parent nodes
Some sibling nodes
Some child nodes

« The addition of a and b may overflow

22-0Oct-13 Hassan Eldib and Chao Wang 26/35

Example

Computing Redundant LSBs

@K 2 3 (3)

I__ _Fd,"ll

« The redundant LSBs of a are computed as 4 bits

e The redundant LSBs of b are computed as 3 bits.

22-0Oct-13 Hassan Eldib and Chao Wang

27/35

Example

Extracting Code Region

:ﬁf’zﬂ%{ :> /3% ______ a?g:'__};;f"_/____-_g/.’
S o S

 Extract the code surrounding the overflow operation.
« The new code requires a smaller bit-width.

22-0Oct-13 Hassan Eldib and Chao Wang 28/35

Implementation

* Clang/LLVM + Yices SMT solver
* Bit-vector arithmetic theory

 Evaluated on a set of public benchmarks for
embedded control and DSP applications

Benchmarks (embedded control software)

Arithmetic
Benchmark Bits LoC | Operations Citation
Sobel Image filter 32 42 28 Qureshi, 2005
Bicycle controller 32 37 27 Rupak, Saha & Zamani, 2012
Martinez, Majumdar, Saha &
Locomotive controller| 64 42 38 Tabuada, 2010
IDCT (N=8) 32 131 114 Kim, Kum, & Sung, 1998
Martinez, Majumdar, Saha
Controller impl. 32 21 8 & Tabuada, 2010
Differ. image filter 32 131 77 Burger, & Burge, 2008
FFT (N=8) 32 112 82 Xiong, Johnson, & Padua,2001
IFFT (N=8) 32 112 90 Xiong, Johnson, & Padua,2001

All benchmark examples are public-domain examples

22-Oct-13

Hassan Eldib and Chao Wang

30/35

EXxperiment (increase in range)

Input/output range increase
10000

1000

100 - .
m Range increase
10 | I I
1 B T T . T T T T T 1

Sobel Image Bicycle Locomotive IDCT Controller Diff. Image FFT IFFT

 Average increase in range is 307%
(602%, 194%, 5%, 40%, 32%, 1515%, 0%, 103%)

22-0Oct-13 Hassan Eldib and Chao Wang 31/35

EXperiment (decrease in bit-width)

Name of Original (bit-width) Optimized (bit-width)
Benchmark Minimum | Average | Mimnimmum | Average
Sobel 1mage filter (3x3) 17 10.26 15 6.67
Bicycle controller 18 14.47 16 14.16
Locomotive controller 33 29.41 32 29.32
IDCT (N=8) 20 16.29 19 16.38
Control. Impl. 17 15 16 14.67
Diff. image filter (5x5) 17 11.11 13 8.09
FET (N=8) 18 7.32 16 6.95
IFFT (N=8) 17 7.11 16 7.26

* Required bit-width:

22-Oct-13

32-bit > 16-bit
64-bit = 32-bit

Hassan Eldib and Chao Wang

32/35

EXxperiment (scaling error)

Original program New program

Benchmark Scaling Error origmal | Error optimized
Sobel Image filter (3x3) | 32-b — 16-b | 3.1 % 10~~ 0.0
Bicycle controller 32-b — 16-b | 3.5%10* 2.0% 104
Locomotive controller 64-b — 32-b 2.9% 1078 1.5% 107"
IDCT (N=8) 32-b — 16-b 9.2 % 103 1.8 % 10?
Control. Impl. 32-b — 16-b | 5.2% 104 2.9% 104
Diff. image filter (5x5) | 32-b — 16-b | 1.2 %1072 2.5% 1073
FFT (N=8) 32-b — 16-b | 8.1% 1072 4.4 %103
IFFT (N=8) 32-b — 16-b 8.4 %102 3.2% 1072

If we reduce microcontroller’s bit-width, how much error will be introduced?

22-0Oct-13 Hassan Eldib and Chao Wang 33/35

Experiment (runtime statistics)

Optimized

Benchmark Code Regions Time
Sobel image filter 22 25
Bicycle controller 2 5s
Locomotive controller 1 5m 41s
IDCT (N=8) 3 2.7s
Controller impl. 1 465
Differ. image filter 23 10s
FFT (N=8) 14 1m 9s
IFFT (N=8) 1 453

22-Oct-13

Hassan Eldib and Chao Wang

64 bit

34/35

Conclusions @

* We presented a new SMT-based method for optimizing
fixed-point linear arithmetic computations in
embedded software code

— Effective in reducing the required bit-width
— Scalable for practice use

* Future work

— Other aspects of the performance optimization, such as
execution time, power consumption, etc.

More on Related Work

» Solar-Lezama et al. Programming by sketching for bit-streaming
programs, ACM SIGPLAN’035.

— General program synthesis. Does not scale beyond 3-4 LoC for our application.

« Gulwani et al. Synthesis of loop-free programs, ACM SIGPLAN’11.

— Synthesizing bit-vector programs. Largest synthesized program has 16 LoC,
taking >45mins. Do not have incremental optimization.

« Jha. Towards automated system synthesis using sciduction, Ph.D.
dissertation, UC Berkeley, 2011.

— Computing the minimal required bit-width for fixed-point representation. Do
not change the code structure.

* Rupak et al. Synthesis of minimal-error control software, EMSOFT’12.

— Synthesizing fixed-point computation from floating-point computation. Again,
only compute minimal required bit-widths, without changing code structure.

22-0Oct-13 Hassan Eldib and Chao Wang

