
An SMT Based Method for

Optimizing Arithmetic Computations

in Embedded Software Code

Hassan Eldib and Chao Wang

FMCAD, October 22, 2013

The Dream

• Having a tool that automatically synthesizes

the optimum version of a software program.

22-Oct-13 Hassan Eldib and Chao Wang 2/35

Embedded Software

22-Oct-13 Hassan Eldib and Chao Wang 3/35

Objective

• Synthesizing an optimal version of the C code

with fixed-point linear arithmetic computation

for embedded devices.

– Minimizing the bit-width.

– Maximizing the dynamic

 range.

22-Oct-13 Hassan Eldib and Chao Wang 4/35

Motivating Example

• Compute average of A and B on a microcontroller
with signed 8-bit fixed-point

• Given: A, B ∈ [-20, 80].

•
𝑨+𝑩

𝟐

•
𝑨

𝟐
+

𝑩

𝟐

• B +
𝑨−𝑩

𝟐
 has neither overflow nor truncation errors.

22-Oct-13 Hassan Eldib and Chao Wang 5/35

may have overflow errors.

 may have truncation errors.

Bit-width versus Range

• Larger range requires a larger bit-width.

• Decreasing the bit-width, will reduce the range.

22-Oct-13 Hassan Eldib and Chao Wang 6/35

Fixed-point Representation

• Range: -128 ↔ 127

• Resolution = 1

22-Oct-13 Hassan Eldib and Chao Wang 7/35

Representations for 8-bit fixed-point numbers

• Range : -16 ↔ 15.875

• Resolution = 1/8

Range ∝ Bit-width

Resolution ∝ Bit-width

22-Oct-13 Hassan Eldib and Chao Wang 8/35

Problem Statement

Range & resolution of the input variables:
A -1000 3000

res. 1/4

B -1000 3000

res. 1/4

…

Program:

Optimized program:

Problem Statement

• Given

– The C code with fixed-point linear arithmetic computation

– The range and resolution of all input variables

• Synthesize the optimized C code with

– Reduced bit-width with same input range, or

– Larger input range with the same bit-width

22-Oct-13 Hassan Eldib and Chao Wang 9/35

SMT-based Inductive Program Synthesis

22-Oct-13 Hassan Eldib and Chao Wang 10/35

Some Related Work

• Jha, 2011
– Use an SMT solver to choose the best fixed-point representation in

order to reduce error. No new programs are synthesized.

• Majumdar, Saha, and Zamani, 2012
– Use a mixed integer linear programing (MILP) solver to minimize the

error bound by only changing the fixed-point representation.

• Schkufza, Sharma, and Aiken, 2013
– Use a compiler based method for optimization, which is an exhaustive

approach.

22-Oct-13 Hassan Eldib and Chao Wang 11/35

SMT-based Inductive Program Synthesis

22-Oct-13 Hassan Eldib and Chao Wang 12/35

Step 1: Finding a Candidate Program

• Create the most general AST that can represent any

arithmetic equation, with reduced bit-width.

• Use SMT solver to find a solution such that

– For some test inputs (samples),

– output of the AST is the same as the desired computation

22-Oct-13 Hassan Eldib and Chao Wang 13/35

SMT-based Solution

• SMT encoding for the general equation AST structure

– Each Op node can any operation from *, +, -, >> or <<.

– Each L node can be an input variable or a constant value.

• SMT Solver finds a solution by equating the AST output to that

of the desired program

22-Oct-13 Hassan Eldib and Chao Wang 14/35

Fig. General Equation AST.

• Ψ = Φ𝑝𝑟𝑜𝑔 ⋀ Φ𝐴𝑆𝑇 ⋀ Φ𝑠𝑎𝑚𝑒𝐼 ⋀ Φ𝑠𝑎𝑚𝑒𝑂 ⋀Φ𝑖𝑛 ⋀ Φ𝑏𝑙𝑜𝑐𝑘

– Φ𝑝𝑟𝑜𝑔 : Desired input program to be optimized.

– Φ𝐴𝑆𝑇 : General AST with reduced bit-width.

– Φ𝑠𝑎𝑚𝑒𝐼 : Same input values.

– Φ𝑠𝑎𝑚𝑒𝑂 Same output value.

– Φ𝑖𝑛 : Test cases (inputs).

– Φ𝑏𝑙𝑜𝑐𝑘 : Blocked solutions.

SMT Encoding

15/35 22-Oct-13 Hassan Eldib and Chao Wang

SMT-based Solution (an example)

𝐴

2
+

𝐵

2
 ≡

22-Oct-13 Hassan Eldib and Chao Wang 16/35

SMT-based Inductive Program Synthesis

22-Oct-13 Hassan Eldib and Chao Wang 17/35

Step 2: Verifying the Solution

• Is the program good for all possible inputs?

– Yes, we found an optimized program

– No, block this (bad) solution, and try again

22-Oct-13 Hassan Eldib and Chao Wang 18/35

• Φ = Φ𝑝𝑟𝑜𝑔 ⋀ Φ𝑠𝑜𝑙 ⋀ Φ𝑠𝑎𝑚𝑒𝐼 ⋀ Φ𝑑𝑖𝑓𝑓𝑂 ⋀Φ𝑟𝑎𝑛𝑔𝑒𝑠 ⋀ Φ𝑟𝑒𝑠

– Φ𝑝𝑟𝑜𝑔 : Desired input program to be optimized.

– 𝚽𝒔𝒐𝒍 : Found candidate solution.

– Φ𝑠𝑎𝑚𝑒𝐼 : Same input values.

– 𝚽𝒅𝒊𝒇𝒇𝐎 : Different output value.

– Φ𝑟𝑎𝑛𝑔𝑒𝑠 : Ranges of the input variables.

– Φ𝑟𝑒𝑠 : Resolution of the input variables.

SMT Encoding

19/35 22-Oct-13 Hassan Eldib and Chao Wang

SMT-based Inductive Program Synthesis

22-Oct-13 Hassan Eldib and Chao Wang 20/35

The Next Solution

 B +
𝐴−𝐵

2
 ≡

22-Oct-13 Hassan Eldib and Chao Wang 21/35

SMT-based Inductive Program Synthesis

22-Oct-13 Hassan Eldib and Chao Wang 22/35

Scalability Problem

• Advantage of the SMT-based approach

– Find optimal solution within an AST depth bound

• Disadvantage

– Cannot scale up to larger programs

• Sketch tool by Solar-Lezama & Bodik (5 nodes)

• Our own tool based on YICES (9 nodes)

22-Oct-13 Hassan Eldib and Chao Wang 23/35

• Combine static analysis and SMT-based

inductive synthesis.

• Apply SMT solver only to small code regions
– Identify an instruction that causes overflow/underflow.

– Extract a small code region for optimization.

– Compute redundant LSBs (allowable truncation error).

– Optimize the code region.

– Iterate until no more further optimization is possible.

Incremental Optimization

22-Oct-13 Hassan Eldib and Chao Wang 24/35

Our Incremental Approach

22-Oct-13 Hassan Eldib and Chao Wang 25/35

Example

Detecting Overflow Errors

• The addition of a and b may overflow

22-Oct-13 Hassan Eldib and Chao Wang 26/35

The parent nodes

Some sibling nodes

Some child nodes

Example

Computing Redundant LSBs

• The redundant LSBs of a are computed as 4 bits

• The redundant LSBs of b are computed as 3 bits.

22-Oct-13 Hassan Eldib and Chao Wang 27/35

Example

Extracting Code Region

• Extract the code surrounding the overflow operation.

• The new code requires a smaller bit-width.

22-Oct-13 Hassan Eldib and Chao Wang 28/35

• Clang/LLVM + Yices SMT solver

• Bit-vector arithmetic theory

• Evaluated on a set of public benchmarks for

embedded control and DSP applications

Implementation

29/35 Hassan Eldib and Chao Wang 22-Oct-13

Benchmarks (embedded control software)

22-Oct-13 Hassan Eldib and Chao Wang 30/35

Benchmark Bits LoC
Arithmetic

Operations Citation

Sobel Image filter 32 42 28 Qureshi, 2005

Bicycle controller 32 37 27 Rupak, Saha & Zamani, 2012

Locomotive controller 64 42 38
Martinez, Majumdar, Saha &

Tabuada, 2010

IDCT (N=8) 32 131 114 Kim, Kum, & Sung, 1998

Controller impl. 32 21 8
Martinez, Majumdar, Saha

& Tabuada, 2010
Differ. image filter 32 131 77 Burger, & Burge, 2008

FFT (N=8) 32 112 82 Xiong, Johnson, & Padua,2001

IFFT (N=8) 32 112 90 Xiong, Johnson, & Padua,2001

All benchmark examples are public-domain examples

Experiment (increase in range)

22-Oct-13 Hassan Eldib and Chao Wang 31/35

• Average increase in range is 307%

 (602%, 194%, 5%, 40%, 32%, 1515%, 0% , 103%)

1

10

100

1000

10000

Sobel Image Bicycle Locomotive IDCT Controller Diff. Image FFT IFFT

Input/output range increase

Range increase

Experiment (decrease in bit-width)

22-Oct-13 Hassan Eldib and Chao Wang 32/35

• Required bit-width: 32-bit 16-bit

 64-bit 32-bit

Experiment (scaling error)

22-Oct-13 Hassan Eldib and Chao Wang 33/35

If we reduce microcontroller’s bit-width, how much error will be introduced?

Original program New program

Experiment (runtime statistics)

22-Oct-13 Hassan Eldib and Chao Wang 34/35

Benchmark

Optimized

Code Regions Time

Sobel image filter 22 2s
Bicycle controller 2 5s
Locomotive controller 1 5m 41s
IDCT (N=8) 3 2.7s
Controller impl. 1 46s

Differ. image filter 23 10s
FFT (N=8) 14 1m 9s
IFFT (N=8) 1 4s

64 bit

Conclusions

• We presented a new SMT-based method for optimizing

fixed-point linear arithmetic computations in

embedded software code

– Effective in reducing the required bit-width

– Scalable for practice use

• Future work

– Other aspects of the performance optimization, such as

execution time, power consumption, etc.

22-Oct-13 Hassan Eldib and Chao Wang 35/35

More on Related Work

• Solar-Lezama et al. Programming by sketching for bit-streaming
programs, ACM SIGPLAN’05.
– General program synthesis. Does not scale beyond 3-4 LoC for our application.

• Gulwani et al. Synthesis of loop-free programs, ACM SIGPLAN’11.
– Synthesizing bit-vector programs. Largest synthesized program has 16 LoC,

taking >45mins. Do not have incremental optimization.

• Jha. Towards automated system synthesis using sciduction, Ph.D.
dissertation, UC Berkeley, 2011.
– Computing the minimal required bit-width for fixed-point representation. Do

not change the code structure.

• Rupak et al. Synthesis of minimal-error control software, EMSOFT’12.
– Synthesizing fixed-point computation from floating-point computation. Again,

only compute minimal required bit-widths, without changing code structure.

22-Oct-13 Hassan Eldib and Chao Wang

